JPS5860609A - Preparation of high purity sic - Google Patents

Preparation of high purity sic

Info

Publication number
JPS5860609A
JPS5860609A JP56155236A JP15523681A JPS5860609A JP S5860609 A JPS5860609 A JP S5860609A JP 56155236 A JP56155236 A JP 56155236A JP 15523681 A JP15523681 A JP 15523681A JP S5860609 A JPS5860609 A JP S5860609A
Authority
JP
Japan
Prior art keywords
powder
sic
granulated
carbonaceous material
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56155236A
Other languages
Japanese (ja)
Inventor
Kentaro Sawamura
沢村 建太郎
「よし」田 保夫
Yasuo Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP56155236A priority Critical patent/JPS5860609A/en
Publication of JPS5860609A publication Critical patent/JPS5860609A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare high purity SiC, by compounding a granular carbonaceous material to the granulated mixtue of SiO2 powder and C powder, heating the composition at high temperature in a chlorine-containing atmosphere to dissipate the impurities as chlorides and at the same time to react the produced gaseous Si oxide with said granular carbonaceous material, and then separating and removing the reaction residue. CONSTITUTION:SiO2 powder obtained usually by crushing quartzite is mixed with C powder such as petroleum coke powder (the molar ratio of SiO2 to C is about 1), and granulated to granule diameter of 2-10mm.. The granulated mixture is compounded with granular carbonaceous material such as charcoal, or the granulated mixture is coated with the carbonaceous material, and the composition is heated at >=1,600 deg.C, especially at 1,700-2,000 deg.C in an atmosphere of Cl2 or a chloride to dissipate the impurites of the raw material, e.g. Al2O3, Fe2O3, etc. as chlorides. SiO2 in the granulated mixture is made to react with C simultaneously to the above dissipation to obtain gaseous Si oxide, which is released from the granulated mixture and reacted with the granular carbonaceous material to obtain SiC. The SiC-containing material is separated from the reaction residue of the above granulated mixture to obtain highly pure SiC having a purity of >=99.95%.

Description

【発明の詳細な説明】 本発明は、8i0.粉末と炭素粉末′f:原料として高
純度のsic  r製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on 8i0. Powder and carbon powder'f: Relating to a method for producing high-purity SICR as a raw material.

高純度S五〇の微粉は、焼結用原料、合成樹脂の充填剤
、金属工具の摩耗か発生し易い部分へのメッキ等の利用
か期待されており・8i、N4 と共に現在最も有望視
されている材料である。
High-purity S50 fine powder is expected to be used as a raw material for sintering, as a filler for synthetic resins, and as a plating material for parts of metal tools that are prone to wear.It is currently considered the most promising along with 8i and N4. This is the material that is used.

従来SiCの製法としては、ナイ石(8i0りとコーク
ス(C)k混合してアチソン炉1抗F)で加熱Tる方法
かあり、次式に従って反応してsic  が生成Tる。
A conventional method for producing SiC is to mix nite (8i0) and coke (C) and heat the mixture in an Acheson furnace (1/2F), which reacts according to the following equation to produce SiC.

8i0.+JC=8iC+コCO ところで、上記ケイ石中には、通常AJ! 011、F
e、0.等の不純物が合計で/1近く含有されており、
これ等不揮発性不純物か製品SiC中に濃縮蓄積され、
StCの高純度化を妨げていた。
8i0. +JC=8iC+CoCO By the way, the above silica stone usually contains AJ! 011,F
e, 0. Contains a total of nearly 1/1 impurity such as
These non-volatile impurities are concentrated and accumulated in the product SiC,
This hindered the high purity of StC.

これを解決するためC6又はHCI rt上ESiC製
造炉に通したり、高温で塩化物蒸気となるNaCJを原
料に混合して不純物を塩化物として除去する方法も行な
われたが、8iCの純度【所望の純度まで高めるには到
っていない。
To solve this problem, methods have been used to remove impurities as chlorides by passing the raw material through an ESiC production furnace on C6 or HCI rt or by mixing NaCJ, which becomes chloride vapor at high temperatures, with the raw material. It has not yet been possible to increase the purity to that level.

本発明者は、前に高純度8iCの製法として・シリカ粉
末と炭素粉末を混合造粒し、この造粒物に粒状の炭材e
配合したもの或いは本出願と同時に上記造粒物に炭材を
コーティングしたものを非酸化性雰囲気で1000℃以
上に加熱し、上記造粒物中のsio、とCとを反応させ
て気体のシリコン酸化物を生成し、造粒物外に放出し、
これを上記粒状の軟材或はコーティング炭材と反応させ
8jCとTる下記(])\(2+式によるSICの製造
法t−提案した。
The present inventor previously developed a method for producing high-purity 8iC by mixing and granulating silica powder and carbon powder, and adding granular carbonaceous material e to this granulated product.
The above-mentioned granules are heated to 1000°C or higher in a non-oxidizing atmosphere, and the sio and C in the above-mentioned granules are reacted to form gaseous silicon. Generates oxides and releases them outside the granules,
This was reacted with the above-mentioned granular soft wood or coated carbon material to produce 8jC and T.A method for producing SIC using the following (])\(2+ formula was proposed.

8fO,+C→SiO+CO(1) 8i0  +コC−+8 i c+co    (21
ところで、上記方法は、998;%程度の高純度SiC
は容易に製造出来るが、?9!?3%以上の8iCを得
るには、造粒物原料である5iO1、Cおよび発生17
11SiOを捕集してSiCを生t?、Tる炭材の純度
を高くしなけnばならない。
8fO, +C→SiO+CO (1) 8i0 +CoC-+8 i c+co (21
By the way, the above method uses high purity SiC of about 998%.
can be easily manufactured, but? 9! ? In order to obtain 8iC of 3% or more, 5iO1, C and generated 17, which are granule raw materials,
Collecting 11SiO and producing SiC? , the purity of the carbon material must be increased.

本発明は、通常、容易に得られる純度の8i0!および
C【用いて極めて純度の高いSiCを製造Tる方法を提
供Tることを目的とするもので、シリカ粉末と炭素粉末
を混合造粒し、この造粒物に粒状の炭材を配合したもの
或いは上記造粒物に炭材をコーティングしたちの【塩素
または塩化物雰囲気中でii、co”c以上に加熱し、
原料中の不純物を塩化物等として揮散させるとともに、
上記造粒物中のStO,とCとを反応させて気体シリコ
ン酸化物として狛粒物外に放出し、これ配上記粒状炭材
或いはコーティング炭材と反応させてSiCとし、この
SiC含有物を上記造粒物の反応残渣と分離することを
特徴とした方法である。
The present invention typically has an easily obtainable purity of 8i0! The purpose is to provide a method for producing extremely pure SiC using SiC and C. Silica powder and carbon powder are mixed and granulated, and granular carbonaceous material is blended into this granulated material. The product or the above granules are coated with carbonaceous material and heated to a temperature of ii, co"c or higher in a chlorine or chloride atmosphere,
In addition to volatilizing impurities in raw materials as chlorides,
StO and C in the granules are reacted and released as gaseous silicon oxide to the outside of the granules, which is then reacted with the granular carbon material or coated carbon material to form SiC, and this SiC-containing material is This method is characterized by separating the granules from the reaction residue.

以下1本発明をざらに詳しく説明する。The present invention will be explained in detail below.

原料5tOt粉末は、通常ケイ石を粉砕して使用に供T
る。粒度は、造粒物の強度及び反応性を高めるため細い
程よく、少なくともりqμ以下にする必要がある。好ま
しくはダダμ以下である。
The raw material 5tOt powder is usually prepared by crushing silica stone.
Ru. The particle size should be as thin as possible in order to increase the strength and reactivity of the granulated product, and should be at least less than qμ. Preferably it is Dada μ or less.

炭素粉末は、石油コークス、石炭コークス、木炭等殆ど
の炭材が使用でき、粒度はケイ石粉末と同様である。
Most carbon materials such as petroleum coke, coal coke, and charcoal can be used as the carbon powder, and the particle size is similar to that of silica powder.

勿−1上記ケイ石と炭材は、混合粉砕してもよい。粉砕
機は、いずれの場合においてもボールミル、振動ミル、
遠心マールミル等が使用される。
Of course-1, the above-mentioned silica stone and carbonaceous material may be mixed and pulverized. In any case, the crusher is a ball mill, vibratory mill,
A centrifugal marl mill or the like is used.

混合粉末の造粒には、パンペレタイザー、マルメライザ
ー、プリナツトマシン等が使用され1そのg、H粉、C
MC,PVA、アラビヤゴム等の水溶液を一次結合剤と
して使用してもよい。造粒物の大きざは4〜lOwの範
囲で選ぶのが適当である。もし、径がコnφ以下となる
と発生Tる■ガスの通気が悪く反応が妨げられ、また径
が10酊φ以上だと造粒物内部での反応速度か遅くなり
、ざらに気相のSiO等が放出しにくくなる◇8i0.
とCとの混合割合は重要で、先ず下に示す第一段の反応
式(1)によって反応するので、StO。
A pan pelletizer, marmerizer, pre-nut machine, etc. is used to granulate the mixed powder.
Aqueous solutions of MC, PVA, gum arabic, etc. may be used as the primary binder. It is appropriate to select the size of the granules within the range of 4 to 1 Ow. If the diameter is less than 10mm, the reaction will be hindered due to poor gas ventilation, and if the diameter is more than 10mm, the reaction rate inside the granules will be slow, and SiO2 will be generated in the gas phase. etc. become difficult to release ◇8i0.
The mixing ratio of C and StO is important because they react according to the first stage reaction formula (1) shown below.

とCとをほぼ等モル混合して造粒する。and C are mixed in approximately equimolar amounts and granulated.

S i O,−1−C→S iO+cO(1)また、上
記造粒物より発生Tる8i0 は、炭材と(2)式によ
って反応し8iCを生成Tる。
S i O, -1-C→S iO+cO (1) Also, 8i0 generated from the above granulated material reacts with the carbonaceous material according to equation (2) to generate 8iC.

8 i 0+2C−+S i C+Co     (2
1従って、コーティング又は炭素粒状物の原料となるC
は、反応性か大きく、気孔率、表面積の大きいものか望
ましい。置体的には、木炭、活性炭略あるいは、カーボ
ンブラック等であり、比表面積で表わせば1ootyt
7y以上のものが望ましい。
8 i 0+2C-+S i C+Co (2
1 Therefore, C as a raw material for coating or carbon granules
It is desirable to have high reactivity, high porosity, and high surface area. In terms of material, it is charcoal, activated carbon, carbon black, etc., and expressed in terms of specific surface area, it is 1 ootyt.
7y or more is desirable.

また反応性からは、黒船化度の低いものかよい。Also, from the viewpoint of reactivity, it is preferable to use a material with a low degree of black ship formation.

そしてコーティングの場合は71/−μ以下程度の粉末
が適し、炭素粒状物の場合は!〜/jxx位か適Tる。
And in the case of coating, powder of about 71/-μ or less is suitable, and in the case of carbon granules! ~/jxx or so.

炭素粒状物は炭素粉末を造粒したものでもよい。The carbon granules may be granulated carbon powder.

炭素粉末のコーティングは、造粒物に炭素粉末を加えて
造粒機により行なうことかできる。
Coating with carbon powder can be performed by adding carbon powder to a granulated product and using a granulator.

粒状炭材又はコーティング炭材の使用量は、8i0 の
捕集を完全にTるため造粒物中のSin!1モルに対し
一〜qモルの割合で使用される。
The amount of granular carbonaceous material or coated carbonaceous material to be used is determined by the amount of Sin! in the granules in order to completely collect 8i0. It is used in a ratio of 1 to q mol per mol.

(以下、シリカと炭材の造粒物に炭素粉末をコーティン
グしたもの、又は同造粒物に炭素粒状物を配合したもの
を原料という) 原料の加熱装置としては、特に限定されるものでなく、
C6又は塩化物雰囲気とすることが出来るものであれば
よい。この場合、加熱温度は1400℃以上がよいが、
好ましくは1700〜200Q℃である。
(Hereinafter, silica and carbonaceous granules coated with carbon powder, or granules mixed with carbon granules will be referred to as raw materials.) The raw material heating device is not particularly limited. ,
Any material that can provide a C6 or chloride atmosphere may be used. In this case, the heating temperature is preferably 1400°C or higher, but
Preferably it is 1700-200Q°C.

上記導入するC/、又は塩化物のガス量は、上記原料中
の造粒物1kgに対し、0l−II1分程度か適当であ
る。塩化物のガスとしてはH(J  ガスの外高温にお
いて塩化物蒸気となる物質、例えばNaC1等を原料の
造粒物中に混入あるいは造粒物と混合してもよい。Na
C1の場合、原料の造粒物に対し、03〜S%添加丁れ
ばよい。加熱後、未反応のNaC1は、低温部で凝縮す
るので、あとで水洗除去しなければならない。MCI 
 においては、凝縮がなく好適に使用出来る。また、C
Jffiを使用Tると、N 81 C4が生成Tるか、
低温で揮発して排出されるので問題がない。また、原料
中の不純物AI!、 O,、Fe、 o、等は、塩化物
等となって多くは製品から除去ぎnるが、密閉装置ので
行うと、低温部に凝縮して製品中に入るものかあるので
、これを除去Tる必要がある。この除去は水洗等によっ
て容易に行なうことかできる。
The amount of C/ or chloride gas to be introduced is approximately 0 l-II 1 minute per 1 kg of granules in the raw material. The chloride gas may be H (J). A substance that becomes chloride vapor at high temperature outside the gas, such as NaCl, may be mixed into or mixed with the granules as a raw material.Na
In the case of C1, it is sufficient to add 03 to S% to the raw material granules. After heating, unreacted NaCl condenses in the low temperature section and must be removed by washing with water afterwards. MCI
It can be used suitably as there is no condensation. Also, C
When using Jffi, N 81 C4 is generated or
There is no problem because it evaporates at low temperatures and is emitted. Also, impurities in raw materials AI! , O,, Fe, O, etc. are often removed from the product as chlorides, etc., but if this is done in a closed equipment, some may condense in the low temperature parts and enter the product. It is necessary to remove it. This removal can be easily done by washing with water or the like.

以上述べたように本発明のSiC製造法は、普通の純度
のsic、cおよび炭材な用いて、極めて純度の高いS
iCが生成されるものである。
As described above, the SiC manufacturing method of the present invention uses extremely pure S
iC is what is generated.

次に本発明の一笑施態様について説明する。Next, a simple embodiment of the present invention will be explained.

第7図は8iCを連続製造Tる場合に用いられる竪型炉
の一例をボTものである。原料8は、竪型炉1の投入口
2より連続して供給される。また、下部には、テーブル
フィーダ番が設けられ、反応が終了した造粒物を連続し
て取出T。また、5はヒーターで、炉l内を降下Tる原
料8を加熱Tる。
FIG. 7 shows an example of a vertical furnace used for continuous production of 8iC. The raw material 8 is continuously supplied from the input port 2 of the vertical furnace 1 . In addition, a table feeder number is provided at the bottom, and a T for continuously taking out the granulated material after the reaction has been completed. Further, 5 is a heater which heats the raw material 8 that is descending inside the furnace 1.

原料8は、この降下過程で導入口6より導入されるCJ
ffi又はH(J等と高温下で接し、原料8に含有され
る”t Os 、F e、 o、は塩化物となって揮散
され、排出ロアより排出される。
The raw material 8 is introduced from the inlet 6 during this descending process.
When it comes into contact with ffi or H(J) at high temperature, the tOs, Fe, o, contained in the raw material 8 are volatilized as chlorides and discharged from the discharge lower.

また、第2図は、黒鉛坩堝IOを示Tもので11は蓋で
ある。蓋11には排出口12が設けられている。また、
坩堝10内恥の底には、黒鉛目皿18が設けられ、目皿
1Bの下側には、蓋を貫通して設けられたC4又はHC
l等の導入管14の先端が開口している。この坩堝lO
内に原料art入れ密閉し、t’too℃以上に加熱す
るとともに導入管14よりCl5R又はHCJ等を導入
Tる。これにより原料8中の不純物は、塩化物となって
揮散し、純度の高いStCが生成Tる。
Moreover, FIG. 2 shows a graphite crucible IO, and 11 is a lid. A discharge port 12 is provided in the lid 11. Also,
A graphite perforated plate 18 is provided at the bottom of the crucible 10, and a C4 or HC plate provided through the lid is provided below the perforated plate 1B.
The tip of the introduction tube 14 such as L is open. This crucible lO
The raw material art is placed in the tank, sealed, and heated to t'too°C or higher, and Cl5R or HCJ or the like is introduced from the introduction pipe 14. As a result, impurities in the raw material 8 become chlorides and volatilize, producing StC with high purity.

次に上記装置による8iCの製造P実施例および比較例
によって説明Tる。
Next, the production of 8iC using the above apparatus will be explained using Examples and Comparative Examples.

実施例1 シリカ粉末と炭素粉末(それぞれ純度97%)をほぼ等
モルで混合造粒して、ざらに炭素粉末(C純度デざ%)
をシリカ7モルに対し23モルの割合でコーティングし
た。この二重構造原料8をw、1図に示すような炉頂が
完全にシールされている竪型炉lの投入口2より連続供
給し、同時に反応条件は、1ts−o 〜ttzo”c
、滞留時間は1時間であった。生成物は、黄色の球状の
殻で脱t#後、水洗、酸洗(王水、7ツ酸)し分析した
結果8iC9デ?7%であった。ま−r、 t t81
廟連続運転により、β−8iC300P9が得られた。
Example 1 Silica powder and carbon powder (each with a purity of 97%) were mixed and granulated in approximately equal molar amounts to make rough carbon powder (C purity: 7%).
was coated at a ratio of 23 moles to 7 moles of silica. This double-structure raw material 8 is continuously fed from the input port 2 of a vertical furnace l whose top is completely sealed as shown in Fig. 1, and at the same time the reaction conditions are 1ts-o to ttzo”c
, the residence time was 1 hour. The product was removed using a yellow spherical shell, washed with water, acid washed (regia regia, 7-acid), and analyzed as 8iC9 de? It was 7%. Ma-r, t t81
β-8iC300P9 was obtained through continuous operation.

比較例1 C1hを通さない他は、実施例1とすべて同じ操作によ
って行ない得られたβ−8iCの純度を調べた。その結
果、99.7%であった。
Comparative Example 1 The purity of β-8iC obtained by carrying out all the same operations as in Example 1 except that C1h was not passed was examined. The result was 99.7%.

実施例2 実施例1と同じ二重構造原料ご内径aoo’xxφ高7
5300Rmの黒鉛坩堝10に入れ、密閉し、1900
℃で1時間保持し、その間坩堝10の導入管14よりC
4ガスを吹込んだ(第2図参照)。生成物は黄色を呈し
脱炭、水洗、酸洗(塩酸、フッrM、)後分析した結果
β−8iC99’l!r%であった。
Example 2 Same double structure raw material as Example 1. Inner diameter aoo'xxφ height 7
Place it in a graphite crucible 10 of 5300 Rm, seal it, and heat it to 1900 Rm.
℃ for 1 hour, during which time C.
4 gases were injected (see Figure 2). The product had a yellow color and was analyzed after decarburization, water washing, and pickling (hydrochloric acid, Fluorine M), and the result was β-8iC99'l! It was r%.

実施例3 sio、とC粉末との造粒物に8i0,1モルに対し、
3モルの粒状炭材を配合した原料ペレットを、実施例2
の坩堝に入れ、C/*の代りにH(J  を使用した他
は同じ条件でβ−8iCを製造し、分析した0その結果
1生成したβ−8iCはタデタ3%であった。
Example 3 For 0.1 mole of 8i in the granulated product of sio and C powder,
Example 2 Raw material pellets containing 3 moles of granular carbonaceous material were
β-8iC was produced under the same conditions except that H(J was used instead of C/*) and analyzed. As a result, the amount of β-8iC produced was 3% of Tadeta.

一8iCを製造した。β−8iCの純度は??、 A%
であった。
One 8iC was manufactured. What is the purity of β-8iC? ? , A%
Met.

実施例4Example 4

Claims (1)

【特許請求の範囲】[Claims] シリカ粉末と炭素粉末P混合造粒し、この造粒物に粒状
の炭材を配合したもの、或いは上記造粒物に粉状の炭材
をコーティングしたものを塩素または塩化物雰囲気中で
11.00℃以上に加熱し、原料中の不純物を揮散させ
るとともに、上記造粒物中の8i0.とCとを反応させ
て気体シリコン酸化物として造粒物外に放出し、こj、
を上記粒状炭材或いはコーティング炭材と反応させて8
iCと1このSiC含有@を上記造粒物の反応残渣と分
離Tることを特徴とする高純度SiCの製造法。
Silica powder and carbon powder P are mixed and granulated, and the granules are blended with granular carbonaceous materials, or the granules are coated with powdery carbonaceous materials in a chlorine or chloride atmosphere under 11. 00°C or higher to volatilize impurities in the raw materials and remove 8i0. and C are reacted and released as gaseous silicon oxide to the outside of the granules.
8 by reacting with the granular carbon material or coated carbon material.
A method for producing high-purity SiC, which comprises separating iC and 1 containing SiC from the reaction residue of the granules.
JP56155236A 1981-09-30 1981-09-30 Preparation of high purity sic Pending JPS5860609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56155236A JPS5860609A (en) 1981-09-30 1981-09-30 Preparation of high purity sic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56155236A JPS5860609A (en) 1981-09-30 1981-09-30 Preparation of high purity sic

Publications (1)

Publication Number Publication Date
JPS5860609A true JPS5860609A (en) 1983-04-11

Family

ID=15601506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56155236A Pending JPS5860609A (en) 1981-09-30 1981-09-30 Preparation of high purity sic

Country Status (1)

Country Link
JP (1) JPS5860609A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217613A (en) * 1983-05-23 1984-12-07 Toshiba Ceramics Co Ltd Silicon carbide material for producing semiconductor
JP2006256941A (en) * 2005-03-18 2006-09-28 Toda Kogyo Corp Method for manufacturing silicon carbide powder
JP2009256153A (en) * 2008-04-21 2009-11-05 Bridgestone Corp Method and apparatus for producing silicon carbide powder
JP2013117329A (en) * 2011-12-01 2013-06-13 Chugai Ro Co Ltd Powder heat treatment device
RU2627428C1 (en) * 2016-10-31 2017-08-08 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Method of producing silicon carbide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217613A (en) * 1983-05-23 1984-12-07 Toshiba Ceramics Co Ltd Silicon carbide material for producing semiconductor
JP2006256941A (en) * 2005-03-18 2006-09-28 Toda Kogyo Corp Method for manufacturing silicon carbide powder
JP2009256153A (en) * 2008-04-21 2009-11-05 Bridgestone Corp Method and apparatus for producing silicon carbide powder
JP2013117329A (en) * 2011-12-01 2013-06-13 Chugai Ro Co Ltd Powder heat treatment device
RU2627428C1 (en) * 2016-10-31 2017-08-08 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Method of producing silicon carbide

Similar Documents

Publication Publication Date Title
CN108793169A (en) A kind of square law device and system recycling Buddha's warrior attendant wire cutting silicon material by-product silicon mud
CN105236363B (en) A kind of method for preparing the spherical silicon nitride powder of microscale-nanoscale
KR20110112334A (en) Method for producing high-purity silicon nitride
NZ212218A (en) Producing silicon carbide whiskers using silica recovered from geothermal hot water
JP2004051453A (en) METHOD OF MANUFACTURING Si
US2843458A (en) Process for producing silicon tetrachloride
JPS5860609A (en) Preparation of high purity sic
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
KR101084711B1 (en) A method for manufacturing SiC micro-powder with high purity at low temperature
US3607046A (en) Preparation of aluminum nitride
JPS6111886B2 (en)
JPH0216270B2 (en)
JPS589807A (en) Preparation of sic in high purity
JP2019085303A (en) Manufacturing method and manufacturing device of silicon
US3956454A (en) Process for producing aluminum trichloride
US2681847A (en) Thermal preparation of titanium monoxide
US2801903A (en) Process for the manufacture of boron nitride
US3411882A (en) Production of boron nitride
Sokić et al. The possibilities of obtaining metallic calcium from Serbian carbonate mineral raw materials
JPS5841706A (en) Preparation of ceramic substance containing boron nitride
JPH10203806A (en) Production of boron nitride powder
JPS616109A (en) Manufacture of sic
AU648108B2 (en) A proces for the preparation of alpha-silicon nitride powder
JPS5815021A (en) Simultaneous manufacture of beta-sic and zro2
US2349801A (en) Treatment of chromium ores