JPS59153801A - Calcium base metal and its production - Google Patents

Calcium base metal and its production

Info

Publication number
JPS59153801A
JPS59153801A JP58023799A JP2379983A JPS59153801A JP S59153801 A JPS59153801 A JP S59153801A JP 58023799 A JP58023799 A JP 58023799A JP 2379983 A JP2379983 A JP 2379983A JP S59153801 A JPS59153801 A JP S59153801A
Authority
JP
Japan
Prior art keywords
calcium
reaction
gas
particles
base metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58023799A
Other languages
Japanese (ja)
Inventor
Hidetoshi Nakayama
秀俊 中山
Koichi Katamura
浩一 片村
Mitsunobu Tanaka
光信 田中
Ryoichi Yoshimura
吉村 亮一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP58023799A priority Critical patent/JPS59153801A/en
Publication of JPS59153801A publication Critical patent/JPS59153801A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a Ca base metal having excellent weatherability by subjecting Ca powdery and granular particles to a heating treatment in an atmosphere contg. gaseous fluorine and forming a protective layer consisting of CaF2 on the particle surface. CONSTITUTION:Ca powdery and granular particles are subjected to a heating treatment in a temp. range of 100-500 deg.C in an atmosphere consisting of 5- 100% gaseous fluorine and 95-0% inert gas. The conditions and type of reaction are selected in this stage to form uniformly the dense layer of CaF2 on the particle surface of the Ca powder and granules. The thickness of the layer is satisfactory at about 1-20mum and the Ca base metal that provides a substantial protective function at 2-5% fluorination is obtd. with Ca particles having about several mm. diameter.

Description

【発明の詳細な説明】 本発明は空気中における耐候性にすぐ名にカルシウム質
金属およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a calcium metal, which is known for its weather resistance in the air, and a method for producing the same.

金属カルシウムは資源的にも豊富であり、特性面でも有
用であるにもか\わらず、取り扱いにくい難点がある。
Although metallic calcium is an abundant resource and has useful properties, it is difficult to handle.

その主たる要因は金属カルシウムは活性が高く、空気中
できわめて酸化し易いことに起因している。この傾向は
表面積の大きい粉粒体においてより顕著であり、安全上
の問題にもつながりかねず、梱包、運搬、貯蔵にもコス
トがかさむことは言うまでもない。これらの点が使用上
の制約となり、利用価値が犬であるにもか\わらずあま
り多用できないのが実情である。
The main reason for this is that metallic calcium has high activity and is extremely easily oxidized in the air. This tendency is more pronounced in powder particles with a large surface area, which may lead to safety problems, and needless to say, packaging, transportation, and storage costs increase. These points are restrictions on its use, and the reality is that it cannot be used very often, even though it has great utility value.

カルシウムの主な用途にはU%Th、 REM、などの
難還元性金属化合物の還元製錬剤や、鉄鋼、アルミニウ
ムなどの溶融金属の精錬剤やメンテナンスフリー電池用
鉛−カルシウム合金、医薬品などがある。
The main uses of calcium include as a reducing smelting agent for refractory metal compounds such as U%Th and REM, as a refining agent for molten metals such as steel and aluminum, as lead-calcium alloys for maintenance-free batteries, and as pharmaceuticals. be.

溶鋼へのカルシウム添加は超低硫化や非金属介在物を有
害なMnS、 Al1203系からCab、 12ca
O*7Aff120.系に変換させる、いわゆる形態制
御(shapecontrol)  の手段として高級
鋼製造のため、近年積極的におこなわれている。
Calcium addition to molten steel reduces ultra-low sulfidation and removes harmful non-metallic inclusions from MnS, Al1203 to Cab, 12ca.
O*7Aff120. In recent years, this method has been actively used to produce high-grade steel as a means of so-called shape control.

溶鋼へのカルシウム添加の場合も、カルシウムの活性を
抑えるため、Ca−8iやCa−41などのカルシウム
合金にして使用したり、金属カルシウムを鉄またはアル
ミニウムで被覆してクラッドワイヤーに加工して使用す
るどなどの煩雑な方法をとっている。
When adding calcium to molten steel, in order to suppress calcium activity, calcium alloys such as Ca-8i and Ca-41 are used, or metallic calcium is coated with iron or aluminum and processed into clad wire. They use complicated methods such as swiping.

このため適用鋼種が限定されたり、反応効率の良い粒度
での使用が制限されたり、インジェクション精錬の様に
細粒でなければ実施不可能な用途での使用を断念してい
るのが実情である。
For this reason, the applicable steel types are limited, the use of grain sizes with high reaction efficiency is restricted, and the actual situation is that the use of steel in applications where fine grains are required, such as injection refining, is abandoned. .

本発明はこれらの問題を解決するためになされたもので
ある。本発明の特徴とするところは−1>金ことにより
、使用時の反応性を阻害することなく、カルシウム粉粒
体の活性を抑制し、取り扱いを容易にぜんとするもので
ある。
The present invention has been made to solve these problems. The feature of the present invention is that -1> Gold suppresses the activity of calcium powder without inhibiting the reactivity during use, making it easy to handle.

本発明によるカルシウム質金属はカルシウム粉粒体の粒
子表面が実質的にフッ化カルシウムからなる保護層でお
おわれているものである。
The calcium metal according to the present invention is a calcium powder whose particle surface is covered with a protective layer consisting essentially of calcium fluoride.

また、本発明によるカルシウム質金属の製造方法は、カ
ルシウム粉粒体粒子をフッ素ガス5〜100弘不活性ガ
ス95〜0チからなる雰囲気中において100〜500
℃の温度範囲で処理し、粒子表面に実質的にフッ化カル
シウムからなる保護層を形成させるものである。
In addition, in the method for producing a calcium metal according to the present invention, calcium powder particles are heated to a temperature of 100 to 500 h in an atmosphere consisting of 5 to 100 h of fluorine gas and 95 to 0 h of inert gas.
C. to form a protective layer substantially consisting of calcium fluoride on the surface of the particles.

本発明におけるカルシウムとは、市販の純金属カルシウ
ムはかりでなく、カルシウム−アルミニウム合金、カル
シウム−マグネシウム合金等のカルシウム質含有する合
金であっても良い。合金中のカルシウム含有量は特に制
限はないが、保護層の効果が発揮されるのは、酸化性が
強くなるCa2O係以上の合金である。
Calcium in the present invention is not a commercially available pure metal calcium scale, but may be an alloy containing calcium such as a calcium-aluminum alloy or a calcium-magnesium alloy. Although there is no particular restriction on the calcium content in the alloy, the effect of the protective layer is exhibited when the alloy has a Ca2O concentration or higher, which exhibits strong oxidizing properties.

カルシウムの粒径も特に制限するものではなく、mオー
ダーの粒状品からμmオーダーの粒状品まで利用可能と
なるが%特に5膿程度以下の粒径品において著しい耐候
性効果が発揮される。
There is no particular restriction on the particle size of calcium, and it can be used from granules on the order of m to granules on the order of μm, but especially particles with a particle size of about 5% or less exhibit remarkable weather resistance effects.

本発明のカルシウム質金属粒子の表面は実質的にフッ化
カルシウム層で覆われている。フッ化カルシウムはきわ
めて安定であるため、保護層の厚さは最低1μm以上あ
れば耐候性の効果を有する。
The surface of the calcium metal particles of the present invention is substantially covered with a calcium fluoride layer. Since calcium fluoride is extremely stable, the protective layer should have a thickness of at least 1 μm or more to provide weather resistance.

保護層の中にM%Mg%Mn 等のカルシウム合金元素
を含んでいても効果は劣ることはない。
Even if the protective layer contains a calcium alloy element such as M%Mg%Mn, the effect will not deteriorate.

このようなフッ化カルシウムから成る保護層を有するカ
ルシウム質金属粉ね体は、カルシウムの持つ性質を阻害
することなく、空気中での耐候性を備えたものとなるの
で取り扱いがきわめて容易となる利点を有する。
Calcium metal powder having a protective layer made of calcium fluoride has the advantage of being extremely easy to handle because it has weather resistance in the air without impeding the properties of calcium. has.

カルシウムと共存するフッ化カルシウムは、UF6やT
h02  などの還元製錬においても有害成分とはなら
ず、また鉄鋼などの溶融金属の精錬剤として使用する場
合は、フッ化カルシウムはむしろ精錬反応促進の面で有
効な成分として作用するので好ましい成分である。
Calcium fluoride, which coexists with calcium, is UF6 and T.
Calcium fluoride is not a harmful component even in reduction smelting such as h02, and when used as a refining agent for molten metals such as iron and steel, calcium fluoride is a preferable component because it acts as an effective component in promoting the refining reaction. It is.

特に溶融金属にカルシウムを添加する場合、このような
フッ化カルシウム保護層を有するカルシウム質金属粉粒
体は顕著な改善効果を発揮する。
Particularly when calcium is added to molten metal, the calcium-based metal powder having such a calcium fluoride protective layer exhibits a remarkable improvement effect.

すなわち、従来カルシウムとの合金粉末でなければ実施
できなかったインジェクション精錬が、実質的にカルシ
ウム単味でも可能となり、他方クラッドワイヤーの製造
においても粉粒状カルシウム質金属を直接鉄やアルミニ
ウムテープでクラッドするだけの、簡単な方法で実用に
供することができるようになる。
In other words, injection refining, which conventionally could only be carried out using powder alloyed with calcium, is now possible with just calcium.On the other hand, in the production of clad wire, granular calcium metal can be directly clad with iron or aluminum tape. It becomes possible to put it into practical use with a simple method.

次に製造方法について説明する。Next, the manufacturing method will be explained.

一般に活性粒子を保護する方法としては、スプレーなど
によるコーティングが安易な方法であるが、カルシウム
の場合バインダーとの反応を生じ適用できない。まft
、バインダーレスのコーティングは皮膜が脆弱で保護効
果がきわめて少ない。
Generally speaking, coating by spraying or the like is an easy method for protecting active particles, but calcium cannot be used because it reacts with the binder. Maft
, binderless coatings have a fragile film and have very little protective effect.

以上の問題点を一挙に解決する手段として想到したのが
、フッ素ガス処理によりCaとF2を反応させ、フッ化
カルシウムからなる保護層を形成させる方法である。本
発明の方法によればCaF2層はきわめヤ安易に形成す
ることが可能であり、かつ形成されたフッ化カルシウム
層はきわめて安定であり、内部のカルシウムを大気中で
の酸化から保護する効果に優れていることが判明した。
As a means to solve the above problems all at once, we have come up with a method in which Ca and F2 are reacted by fluorine gas treatment to form a protective layer made of calcium fluoride. According to the method of the present invention, the CaF2 layer can be formed extremely easily, and the formed calcium fluoride layer is extremely stable and has the effect of protecting the calcium inside from oxidation in the atmosphere. It turned out to be excellent.

本発明で使用する原料カルシウムは、金属カルシウムで
もカルシウム合金でも良い。形状も特に制限はなく棒状
、塊状、粒状、粉状などいずれでも良く、大きさのいか
んによらず使用可能である。
The raw material calcium used in the present invention may be metallic calcium or a calcium alloy. There is no particular restriction on the shape, and it may be rod-like, lump-like, granular, powder-like, etc., and can be used regardless of size.

保護層を形成させるガスとしては酸素、窒素。Oxygen and nitrogen are gases that form the protective layer.

二酸化炭素などが考えられるが、いずねもカルシウムの
使用−の反応を阻害するため好1しぐない。
Carbon dioxide is a possible choice, but it is not a good choice as it inhibits the reaction of calcium.

フッ素ガスを使用すればこれらの問題は起こらない。フ
ッ素ガスは市販の純フッ素ガス(純度99係)ある〜・
は無水フッ酸の電気分解で発生する未精製のフッ素ガス
(フッ化水素を約10係含有する)のいずれでも良い。
These problems do not occur if fluorine gas is used. Fluorine gas is commercially available pure fluorine gas (purity: 99).
may be any unpurified fluorine gas (containing about 10% hydrogen fluoride) generated by electrolysis of anhydrous hydrofluoric acid.

さらにこれらのフッ素ガスをヘリウムやアルゴン等の不
活性ガス、あるいは500℃捷での温度でカルシウムや
フッ素と反応しないガスで希釈して使用しても良い。工
業的に有意義な時間内でフッ素化処理をおこなうには反
応ガス中に少くともにvol %以上のフッ素が含まれ
ていれば、反応温度や反応時間を選択することによりフ
ッ化カルシウムを形成させることが可能である。
Furthermore, these fluorine gases may be diluted with an inert gas such as helium or argon, or a gas that does not react with calcium or fluorine at a temperature of 500°C. In order to carry out the fluorination treatment within an industrially meaningful time, if the reaction gas contains at least vol% or more fluorine, calcium fluoride must be formed by selecting the reaction temperature and reaction time. is possible.

希釈ガスとして窒素を使用する場合は条件によって目的
とするフッ化カルシウム層が形成されないで、カルシウ
ムと窒素が反応して窒化カルシウムを生成し、ポーラス
で不安定な皮膜層と4るので耐候性効果が生じない場合
がある。
When nitrogen is used as a diluent gas, depending on the conditions, the desired calcium fluoride layer may not be formed, but calcium and nitrogen may react to form calcium nitride, resulting in a porous and unstable film layer, which improves weather resistance. may not occur.

反応温度は100〜500℃の範囲、好ましくは200
〜400℃が適する。反応温度が低いとフッ化カルシウ
ムの生成に時間を要するし、生成したフッ化カルシウム
層の均一性、緻密性が劣る。反応温度が500’Cを越
えるとフッ素化反応が急激に進行し、形成されたフッ化
カルシウム層が緻密なものとならないので、耐候性の効
果が少くなる。
The reaction temperature is in the range of 100 to 500°C, preferably 200°C.
~400°C is suitable. If the reaction temperature is low, it takes time to generate calcium fluoride, and the resulting calcium fluoride layer has poor uniformity and density. If the reaction temperature exceeds 500'C, the fluorination reaction will proceed rapidly and the formed calcium fluoride layer will not be dense, so the weather resistance effect will be reduced.

反応時間は一般に数分〜1時間で良い。反応時間は反応
温度およびフッ素ガス濃度に関連し、希望するフッ化カ
ルシウム生成量となるよう選択すればよい。
The reaction time may generally be several minutes to one hour. The reaction time is related to the reaction temperature and fluorine gas concentration and may be selected so as to provide the desired amount of calcium fluoride produced.

反応圧力は常圧、減圧、加圧いずれでも可能であるが常
圧系が操作も容易である。
The reaction pressure can be normal pressure, reduced pressure, or increased pressure, but normal pressure systems are easier to operate.

反応形式は連続方式あるいはバッチ方式いずれでも良い
。フッ素ガスとカルシウム粉粒体との気固接触を均一化
して、カルシウム粉粒体表面全体に緻密なフッ化カルシ
ウム層を均一に形成させるよう、反応条件や反応形式を
選択する。高価なフッ素ガスを有効に利用するため、反
応ガスを循環方式とする装置の選択が好ましい。
The reaction format may be either continuous or batch. The reaction conditions and reaction format are selected so as to uniformize the gas-solid contact between the fluorine gas and the calcium powder to uniformly form a dense calcium fluoride layer over the entire surface of the calcium powder. In order to effectively utilize expensive fluorine gas, it is preferable to select an apparatus that circulates the reaction gas.

フッ化カルシウム層の厚さはフッ化カルシウム層が緻密
で均一に形成されていれば1〜20μmあればよく、直
径数祁のカルシウム粒子においてはフッ素化率2〜5チ
で充分保護機能を発揮する。
The thickness of the calcium fluoride layer should be 1 to 20 μm as long as the calcium fluoride layer is dense and uniformly formed, and a fluorination rate of 2 to 5 μm provides sufficient protection for calcium particles with a diameter of several μm. do.

上記のごとく製造したフッ化力ルンウム保護層を有する
カルシウム質金属は、大気中に放置しても急激な酸化を
受けず安定であり、保存や加工中の取り扱いがきわめて
容易であるので、使用範囲′を拡大するのに役立つもの
である。
Calcium metals with a fluorinated protective layer manufactured as described above are stable without undergoing rapid oxidation even when left in the atmosphere, and are extremely easy to handle during storage and processing. ′ is useful for expanding ′.

本発明によるカルシウム質金属は主として溶鋼などの脱
酸、脱硫、脱燐などに用いるカルンウム質金属精錬剤と
してきわめて有用である。
The calcium metal according to the present invention is extremely useful as a calumium metal refining agent mainly used for deoxidizing, desulfurizing, dephosphorizing, etc. molten steel.

次に実施例をあげて本発明を説明する。Next, the present invention will be explained with reference to Examples.

原料としてCa : 99.7%、Mg:0.1%、A
7:0.1%の組成を有する粒度3〜6メツンユの金属
カルシウムを使用し、反応装置としては加熱装置を備え
たニッケル類の回転反応器(内径27.6 M X長さ
300陥)ヲ使用した。反応条件は表1に示すとおりで
あった。例1〜例7、および例10では約5グラムの金
属カルシウム粒を反応器内に入れ1反応器内をヘリウム
ガスで置換後、所定温度まで加熱昇温する。所定温度に
達した後、表1に示すフッ素ガスを含む反応ガスを50
cc/Mnの割合で反応器中に導入し、所定時間反応さ
せる。反応後反応ガスを停止しヘリウムガスで反応器内
を置換し冷却する。
As raw materials Ca: 99.7%, Mg: 0.1%, A
7: Calcium metal with a particle size of 3 to 6 mm with a composition of 0.1% is used, and the reaction device is a nickel rotary reactor (inner diameter 27.6 M x length 300 mm) equipped with a heating device. used. The reaction conditions were as shown in Table 1. In Examples 1 to 7 and Example 10, about 5 grams of metallic calcium particles were placed in a reactor, the inside of each reactor was replaced with helium gas, and then heated to a predetermined temperature. After reaching the predetermined temperature, 50% of the reaction gas containing fluorine gas shown in Table 1 was added.
It is introduced into the reactor at a ratio of cc/Mn and reacted for a predetermined time. After the reaction, the reaction gas is stopped, the inside of the reactor is replaced with helium gas, and the reactor is cooled.

例81例9および例11の場合は、表1に示した組成の
反応ガスを3リツトル容器に充填しく圧力的0.1 K
9Cr/cni )、この反応ガス容器と循環ポンプを
前記と同様の反応器に接続した。約5グラムの金属カル
ンウム粒を反応器内に入れ、反応器内をヘリウムガスで
置換後真空にする。つ(・で反応ガス容器より反応ガス
を反応器に導入し、循環ポンプを作動させて反応器中の
ガスを循環させる。
Example 81 In the case of Examples 9 and 11, a 3-liter container was filled with the reaction gas having the composition shown in Table 1, and the pressure was 0.1 K.
9Cr/cni), and the reaction gas container and circulation pump were connected to the same reactor as above. Approximately 5 grams of metal carunium particles are placed in a reactor, and the interior of the reactor is replaced with helium gas and then evacuated. Introduce the reaction gas from the reaction gas container into the reactor at step 1, and operate the circulation pump to circulate the gas in the reactor.

循環するガスの量は200cc/=とじた。これと同時
に反応器を加熱し、約30分で所定温度まで昇温しこの
温度で20時間反応させた。反応終了後ガスの循環を止
め、窒素ガスで反応器内を置換し冷却した。
The amount of gas to be circulated was 200 cc/=. At the same time, the reactor was heated, the temperature was raised to a predetermined temperature in about 30 minutes, and the reaction was continued at this temperature for 20 hours. After the reaction was completed, the gas circulation was stopped, and the inside of the reactor was replaced with nitrogen gas to cool it.

上記のごとく処理した反応生成物を反応器から取りだし
、極力空気との接触を断ちかつ乾燥雰囲気下に保持し重
量を測定した。
The reaction product treated as described above was taken out from the reactor, kept in a dry atmosphere with as little contact with air as possible, and its weight was measured.

反応生成物の表面は灰色であるが、内部はカルシウムの
金属光沢を呈していた。例10以外の反応生成物は分析
の結果フッ化カルシウムが生成していることが確認さね
た。よって反応による重量増加はフッ化カルシウムの生
成によるものとし、フッ化カルシウム生成率を算出した
。これらの結果を表1に示す。
The surface of the reaction product was gray, but the interior had a calcium metallic luster. Analysis of the reaction products other than Example 10 did not confirm that calcium fluoride was produced. Therefore, the weight increase due to the reaction was assumed to be due to the production of calcium fluoride, and the calcium fluoride production rate was calculated. These results are shown in Table 1.

例10の場合の反応生成物の表面は黄褐色を呈し、内部
はカルシウムの金属光沢を有していた。
The surface of the reaction product in Example 10 was yellowish brown, and the interior had a calcium metallic luster.

この反応生成物を分析した結果フッ化カルシウムが同定
された。またこの反応生成物を水に溶かしネスカー試薬
でアンモニウムイオ/(NH才)’i検出したことから
2表面には窒化カルシウムの生成が確認された。
As a result of analyzing this reaction product, calcium fluoride was identified. Furthermore, by dissolving this reaction product in water and detecting ammonium ion/(NH)'i with a Nescar reagent, the formation of calcium nitride on the surface of the 2 was confirmed.

次に上記フッ素ガス処理をほどこしたカルシウム粒子と
、何ら処理をほどこさない金属カルシウム粒子とを、温
度35±2℃、湿度約80係の空気中に静置し%重量の
経時変化を測定した。その結果を第1図に図示する。
Next, the calcium particles subjected to the above-mentioned fluorine gas treatment and the metal calcium particles not subjected to any treatment were left standing in air at a temperature of 35±2°C and a humidity of approximately 80%, and the change in percent weight over time was measured. . The results are illustrated in FIG.

第1図から明らかなとおりフッ素ガス処理をほどこさな
いカルシウム粒子や窒化カルシウムの生成し斤カルシウ
ム粒子は、大気中で急速に酸化されたり吸湿して酸化物
あるいは水酸化物となり白色化して重量増加が大きい(
第1図中のG)。
As is clear from Figure 1, calcium particles and calcium nitride that are not subjected to fluorine gas treatment are rapidly oxidized in the atmosphere, absorb moisture, turn into oxides or hydroxides, turn white, and increase in weight. is large (
G in Figure 1).

窒化カルシウムは不安定でかつカルシウム粒子表富士を 行するが生成す    が緻密にならなかので耐酸化性
に劣るものとなる(第1図のF)。
Calcium nitride is unstable, and although calcium particles are formed, they are not dense and have poor oxidation resistance (F in Figure 1).

一方、強固なフッ化カルシウム層でコートされたカルシ
ウム粒子は長時間安定であり、重量増加は徐々に進行し
増加の割合も小さい(第1図中A〜E)。この保護層を
破壊すれば未処理のカルシウムと同様の傾向を示す。
On the other hand, calcium particles coated with a strong calcium fluoride layer are stable for a long time, and their weight increases gradually and the rate of increase is small (A to E in Figure 1). If this protective layer is destroyed, calcium exhibits the same tendency as untreated calcium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカルシウム粒子の曝露試験における重量の経時
変化を示す図である。 A:例11例2、例4、例6%例7のもの。 B:例Bのもの。 C:例9のもの。 D:例3のもの。 E:例5のもの。 F:例11のもの。 G:未処理のカルシウム粒および例10のもの。 特許出願人 昭和電工株式会社 代理人弁理士菊地精−
FIG. 1 is a diagram showing changes in weight over time in an exposure test of calcium particles. A: Example 11 Example 2, Example 4, Example 6% Example 7. B: Example B. C: Example 9. D: Example 3. E: Example 5. F: Example 11. G: Untreated calcium granules and those of Example 10. Patent applicant Sei Kikuchi, patent attorney representing Showa Denko Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)  カルシウム粉粒体の粒子表面が実質的にフッ
化カルシウムからなる保護層でおおわれていることを特
徴とするカルシウム質金属。
(1) A calcium metal characterized in that the particle surface of calcium powder is covered with a protective layer consisting essentially of calcium fluoride.
(2)  カルシウム粉粒体粒子をフッ素ガス5〜io
o %、不活性ガス95〜0チからなる雰囲気中におい
て100〜500℃の温度範囲で処理し、該粉粒体の粒
子表面に実質的にフッ化カルシウムからなる保護層を形
成させることを特徴とするカルシウム質金属の製造方法
(2) Calcium powder particles are treated with 5 to io of fluorine gas.
o%, inert gas at a temperature range of 100 to 500°C in an atmosphere containing 95 to 0% of inert gas to form a protective layer substantially consisting of calcium fluoride on the particle surface of the granular material. A method for producing calcium metal.
JP58023799A 1983-02-17 1983-02-17 Calcium base metal and its production Pending JPS59153801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58023799A JPS59153801A (en) 1983-02-17 1983-02-17 Calcium base metal and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58023799A JPS59153801A (en) 1983-02-17 1983-02-17 Calcium base metal and its production

Publications (1)

Publication Number Publication Date
JPS59153801A true JPS59153801A (en) 1984-09-01

Family

ID=12120366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58023799A Pending JPS59153801A (en) 1983-02-17 1983-02-17 Calcium base metal and its production

Country Status (1)

Country Link
JP (1) JPS59153801A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506772A (en) * 2007-12-19 2011-03-03 エカー グラニュラテ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー カーゲー Transport form for base metal particles and use thereof
JP2011225900A (en) * 2010-04-15 2011-11-10 Nippon Material Kk Method for protecting metal calcium, and protected metal calcium
JP2012219300A (en) * 2011-04-06 2012-11-12 Nippon Material Kk Desulfurizing agent for ferrous metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506772A (en) * 2007-12-19 2011-03-03 エカー グラニュラテ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー カーゲー Transport form for base metal particles and use thereof
JP2011225900A (en) * 2010-04-15 2011-11-10 Nippon Material Kk Method for protecting metal calcium, and protected metal calcium
JP2012219300A (en) * 2011-04-06 2012-11-12 Nippon Material Kk Desulfurizing agent for ferrous metal

Similar Documents

Publication Publication Date Title
CN113493191B (en) Method for preparing high-purity alpha-silicon nitride powder and high-purity alpha-silicon nitride powder
JPS59153801A (en) Calcium base metal and its production
US5840131A (en) Process for producing grain-oriented electrical steel sheet having excellent glass film and magnetic properties
US5037705A (en) Oxygen-containing molybdenum metal powder and processes for its preparation
US3660031A (en) Method for preparing boron suboxide
US3157532A (en) Methods of treating metallic powders
EP1875978A1 (en) Method of melting alloy containing high-vapor-pressure metal
EP0273571B1 (en) Separating-agents composition and method using same
US4871402A (en) Separating-agent composition and method using same
US2754194A (en) Process for making copper-iron powder
US4684400A (en) Method for controlling the oxygen content in agglomerated molybdenum powders
US3853537A (en) Sintering alloy
US4216033A (en) Method of nitriding steel
EP0355438B1 (en) Method for passivating uranium oxides to control oxidation, and the oxidation resisting uranium product thereof
JPS62274003A (en) Sintering of powder material
JPH03126801A (en) Method for stabilizing metal magnetic powder
JPS6011099B2 (en) Production method of low phosphorus manganese ferroalloy
JPH07233406A (en) Production of superfine powdery composite starting material for cemented carbide
JPH06145712A (en) Production of iron base sintered parts low in nitrogen content
JPH04321505A (en) Production of aluminum nitride
JPH10332861A (en) Method for preparing uranium mononitride
JPS6029408A (en) Manufacture of sponge iron
JPS5952940B2 (en) Dephosphorization method for high carbon ferromanganese
JPS60131810A (en) Manufacture of yttrium nitride
JPS62256703A (en) Production of aluminum nitride powder