JPS62256703A - Production of aluminum nitride powder - Google Patents

Production of aluminum nitride powder

Info

Publication number
JPS62256703A
JPS62256703A JP9767286A JP9767286A JPS62256703A JP S62256703 A JPS62256703 A JP S62256703A JP 9767286 A JP9767286 A JP 9767286A JP 9767286 A JP9767286 A JP 9767286A JP S62256703 A JPS62256703 A JP S62256703A
Authority
JP
Japan
Prior art keywords
gas
aluminum
powder
nitriding
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9767286A
Other languages
Japanese (ja)
Other versions
JPH0621016B2 (en
Inventor
Kunihiko Nakamura
邦彦 中村
Toshiya Kunisaki
国崎 敏哉
Hidenobu Fujiki
藤木 秀信
Tatsuhiro Tanaka
田中 辰弘
Motoharu Uchida
内田 元治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Aluminum Co Ltd
Original Assignee
Mitsui Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Aluminum Co Ltd filed Critical Mitsui Aluminum Co Ltd
Priority to JP9767286A priority Critical patent/JPH0621016B2/en
Publication of JPS62256703A publication Critical patent/JPS62256703A/en
Publication of JPH0621016B2 publication Critical patent/JPH0621016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain the title high-purity powder with high production efficiency and at a low cost by controlling the partial pressure and temp. of a nitriding gas to heat specified aluminum powder or fiber, and allowing the aluminum material to react with the gas in two steps. CONSTITUTION:The atomized aluminum powder having <=200mu particle diameter or the aluminum fiber having <=100mu diameter is used as the raw material, and 1-3wt% catalyst such as NaF and CaF2 is added, as required. The material is kept at 600-800 deg.C for >=3hr in the nitriding gas atmosphere contg. <=0.5atm partial pressure N2 or NH3, and the material is allowed to react with the gas to convert only the surface of the material into AlN. The partial pressure of the nitriding gas is then increased to >0.5atm, the temp. is increased to >800 deg.C, hence the material is allowed to react with the gas, and the whole material is nitrided. In this case, the content of the mixed impurities is adjusted to <=0.1%, and the title powder is obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は不純物としての酸素の含有量が少ない高純度窒
化アルミニウム粉末の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing high-purity aluminum nitride powder with a low content of oxygen as an impurity.

〈従来の技術及びその問題点〉 窒化アルミニウムは、高い熱伝導性、電気絶縁性、耐食
性を有しており、その焼結体は機械的強度も大であると
ころから高温耐熱材料や電子機器材料等多くの分野で用
いられている。ところで窒化アルミニウム粉末の製造法
としては従来から金属アルミ粉の直接窒化法とアルミナ
粉の還元窒化法は良く知られている。この中で金属アル
ミ粉の直接窒化法は原料としてのアルミ粉が微細でなけ
れば窒化反応に伴なう発熱でアルミ粉が溶湯となり凝集
し完全な窒化が出来ない為に粉砕により得られるフレー
ク状のアルミ粉末が用いられ、それよりも粒が大なるア
トマイズアルミ粉やアルミ繊維は殆んど用いられていな
い。フレーク状アルミ粉ば微細で窒化反応が連行し易い
という点では優れているが、比表面積が大である為に表
面酸化物を多く含有し、この表面酸化物は熱化学的に安
定で窒化反応後もそのま一残存し製品である窒化アルミ
ニウム中の酸素含有量が多くなると共に、フレーク状と
する為の粉砕工程からも不純物の泥入は避けられず、高
純度の窒化アルミニウム粉末は11011いという問題
があった。又もう一つの代表的な方法であるアルミナ粉
の還元窒化法は、良好な窒化率を得ろ為には1700℃
位の高温を必要とする為に設備的にも必要なエネルギー
の面からも高価となり、更には過剰の炭素を除去する為
の燃焼工程も必要となり、結果として製品である窒化ア
ルミニウム粉末が高価となる問題がある。
<Prior art and its problems> Aluminum nitride has high thermal conductivity, electrical insulation, and corrosion resistance, and its sintered body has high mechanical strength, so it is used as a high-temperature heat-resistant material and an electronic device material. It is used in many fields such as By the way, as methods for producing aluminum nitride powder, the direct nitriding method of metallic aluminum powder and the reductive nitriding method of alumina powder are well known. Among these methods, the direct nitriding method of metal aluminum powder is used because if the aluminum powder as a raw material is not fine, the heat generated by the nitriding reaction will cause the aluminum powder to become molten and agglomerate, making complete nitriding impossible. aluminum powder is used, and atomized aluminum powder and aluminum fiber, which have larger particles, are rarely used. Flake-like aluminum powder is excellent in that it is fine and easy to carry out the nitriding reaction, but because of its large specific surface area, it contains a large amount of surface oxide, and this surface oxide is thermochemically stable and nitriding reaction takes place easily. The oxygen content of aluminum nitride, which remains as it is after the process, increases, and impurities are unavoidable from the grinding process to make it into flakes, so high-purity aluminum nitride powder is There was a problem. Another typical method, the reduction nitriding method of alumina powder, requires a temperature of 1700°C in order to obtain a good nitriding rate.
It is expensive in terms of equipment and energy because it requires a high temperature of about 1000 yen, and a combustion process is also required to remove excess carbon, resulting in the aluminum nitride powder being expensive. There is a problem.

〈問題点を解決する為の手段〉 本発明は上記諸問題を解消し、高純度の窒化アルミニウ
ム粉末を安価に製造する方法を提供せんとするものであ
り、その要旨は粒径200μm以下のアトマイズアルミ
粉末若しくは直径100μm以下のアルミ繊維を出発原
料とし、該出発原料を600〜800℃の温度域で窒素
ガスあるいはアンモニアガスを含む窒化ガスのガス分圧
を05気圧以下として3時間以上保持し、次いで窒化ガ
ス分圧を05気圧以上となし800℃以上に加熱保持す
ることを特徴とする窒化アルミニウム粉末の製造方法で
ある。
<Means for solving the problems> The present invention aims to solve the above-mentioned problems and provide a method for manufacturing high-purity aluminum nitride powder at low cost. Using aluminum powder or aluminum fibers with a diameter of 100 μm or less as a starting material, holding the starting material at a temperature range of 600 to 800 ° C. with a gas partial pressure of nitriding gas containing nitrogen gas or ammonia gas at 0.5 atmospheres or less for 3 hours or more, This is a method for producing aluminum nitride powder, which is characterized in that the partial pressure of the nitriding gas is then set to 0.5 atm or higher and heated and maintained at 800° C. or higher.

なお本発明方法にあっても、アルミニウムを窒素ガス雰
囲気中で直接窒化する際に用いられろ従来から公知の触
媒をOf用する事もあり、例えばNaFやLiF等のア
ルカリ金属フッ化物やCaF2の如きアルカリ土類金属
フッ化物、更には希土類元素の酸化物やフッ化物等を上
記出発原料中へ1〜3重量%の範囲で添加混同して用い
る場合もある。
In the method of the present invention, conventionally known catalysts that are used when directly nitriding aluminum in a nitrogen gas atmosphere may also be used, such as alkali metal fluorides such as NaF and LiF, and catalysts such as CaF2. In some cases, alkaline earth metal fluorides such as fluorides, and further oxides and fluorides of rare earth elements are added to the above starting materials in an amount of 1 to 3% by weight.

〈作用〉 本発明では上記出発原料を、まず600〜800℃の温
度域で窒化ガスの分圧を05気圧以下で保持するが、こ
の温度域では出発原料の表面に酸化皮膜が形成されてい
る為に未だ溶湯とはならず固体形状を保持したま−その
表面から徐々に窒化され始める。実験によるとこの温度
が600℃未満だと殆んど窒化が起こらず、又800℃
を越えると一部溶湯が出現し出発原料同志が凝集を始め
ろ事が確認出来た。この間の窒化ガスの分圧も温度と深
い関係があり、窒化ガスの分圧を0.5気圧よりも高く
すれば窒化反応が急速に進行しその際の発熱で反応系の
温度が高くなり過ぎ出発原料が溶は始めるので表面にあ
る厚さの窒化アルミニウム層が形成され、該窒化アルミ
ニウム暦が内層の金属アルミニウムの保護層となる迄は
窒化ガスの分圧は0.5気圧以下とする。本発明の窒化
ガスとしては、窒素ガスを所定の減圧状態で用いる方法
、アルゴンガスや水素ガスと混ぜ所定の分圧状態で用い
る方法、更にはアンモニアガスをそれ単独やアルゴンガ
スとの混合ガスとして用いる方法等がある。次にこの6
00〜800℃の温度域での保持時間についてであるが
、触媒を何ら用いない場合については窒化ガス圧が02
気圧の条件で5時間以上、同0,5気圧の条件で3時間
以上が好ましく、上述しtコ各種の触媒を用いればこの
保持時間は幾分短縮は出来るが、窒化反応促進に伴なう
温度上昇には十分注意を要する。この600〜800℃
に於ける温度管理は、その中途の温度に所定時間保持し
てもよいが、実操業上は600℃に保持した反応炉を例
えば05℃/min、の割合で上昇せしめ゛ろという方
法を採用する。
<Function> In the present invention, the above-mentioned starting material is first maintained at a temperature range of 600 to 800°C with a partial pressure of nitriding gas of 0.5 atm or less, but in this temperature range an oxide film is formed on the surface of the starting material. As a result, it has not yet turned into a molten metal, but retains its solid form, and gradually begins to be nitrided from its surface. Experiments have shown that almost no nitriding occurs when this temperature is below 600°C, and at 800°C.
It was confirmed that when the temperature was exceeded, some molten metal appeared and the starting materials began to coagulate together. The partial pressure of the nitriding gas during this period is also closely related to the temperature, and if the partial pressure of the nitriding gas is made higher than 0.5 atm, the nitriding reaction will proceed rapidly and the temperature of the reaction system will become too high due to the heat generated. As the starting material begins to melt, an aluminum nitride layer of a certain thickness is formed on the surface, and the partial pressure of the nitriding gas is kept at 0.5 atm or less until the aluminum nitride layer becomes a protective layer for the inner metal aluminum layer. As the nitriding gas of the present invention, nitrogen gas is used in a predetermined reduced pressure state, mixed with argon gas or hydrogen gas and used in a predetermined partial pressure state, and ammonia gas is used alone or as a mixed gas with argon gas. There are various methods to use. Next, this 6
Regarding the holding time in the temperature range of 00 to 800℃, when no catalyst is used, the nitriding gas pressure is 0.2℃.
Preferably, the holding time is 5 hours or more under the atmospheric pressure condition, and 3 hours or more under the same 0.5 atmosphere condition. Although this holding time can be somewhat shortened by using the various catalysts mentioned above, the retention time is due to the promotion of the nitriding reaction. Sufficient attention must be paid to temperature rise. This 600~800℃
Temperature control may be carried out by holding the temperature at an intermediate temperature for a predetermined period of time, but in actual operation, a method is adopted in which the reactor is maintained at 600°C and is raised at a rate of, for example, 05°C/min. do.

この様にまず出発原料の表面層に必要厚さの窒化アルミ
ニウム層を形成せしめた後、それに引続き窒化ガス分圧
を0.5気圧以上に高め800℃以上、好ましくは12
00℃位迄昇渇せしめて原料全体を窒化させる、即ち窒
化ガス分圧の増大及び温度の上昇により窒化反応がより
促進され、該反応によって発生する反応熱で更に反応が
加速され原料はその芯部に至る迄全てが窒化されるので
ある。
In this way, after first forming an aluminum nitride layer of the required thickness on the surface layer of the starting material, the nitriding gas partial pressure is subsequently increased to 0.5 atm or more and 800°C or more, preferably 12
The entire raw material is nitrided by raising the temperature to around 00°C. In other words, the nitriding reaction is further promoted by increasing the nitriding gas partial pressure and temperature, and the reaction is further accelerated by the reaction heat generated by the reaction, and the raw material is heated to its core. Everything down to the top is nitrided.

ここで本発明の出発原料として用いるアトマイズアルミ
粉末、若しくはアルミ繊維は表面酸化物の混入を避ける
という点からはある程度粗粒物が望ましいが、逆にあま
り粗大物では窒化反応が十分に行なわれないので200
μm以下、好ましくは10μm位迄とするのが好ましい
。又これらの出発原料の反応容器内への充填厚さも重要
である、即ち充填厚さが5cmを越えるとその自重の為
に、出発原料表面の酸化膜あるいは窒化膜厚が破壊され
金属アルミの凝集が生起し窒化反応が十分に進行しない
ので反応容器内への充填厚さは5 cm以下となす事が
望ましい。
Here, the atomized aluminum powder or aluminum fiber used as the starting material of the present invention is preferably coarse to some extent in order to avoid contamination with surface oxides, but conversely, if it is too coarse, the nitriding reaction will not take place sufficiently. So 200
It is preferable that the thickness be less than μm, preferably up to about 10 μm. The filling thickness of these starting materials into the reaction vessel is also important; if the filling thickness exceeds 5 cm, the oxide film or nitride film on the surface of the starting materials will be destroyed due to their own weight, leading to agglomeration of metal aluminum. occurs and the nitriding reaction does not proceed sufficiently, so it is desirable that the thickness of the filling in the reaction vessel be 5 cm or less.

〈実施例〉 以下本発明の実施例及び比較例を示す。<Example> Examples and comparative examples of the present invention will be shown below.

ズコ1童LL 粒径100μm以下、純度9999%のアトマイズアル
ミ粉末300gを、直径10cmの黒鉛るつぼに充填厚
さ3 cmとなる様に充填し、これを密閉容器内へ装入
し、02気圧の窒素雰囲気中、650℃で3時間の後、
750℃で2時間保持し、次いで窒素ガスの圧力を1気
圧に高め昇温を続けたところ、850℃位に達した時に
急激な反応が起こり密閉容器内の窒素ガス圧が急激に低
下した。この時点で密閉容器内へ窒素ガスを補充してそ
の圧力を1気圧に保ち乍ら更に1000℃迄昇温し3時
間保持した。冷却後試料を取出すと灰白色の固まりとな
っており、この試料を粉砕麦化学分析を行ったところ、
純度が986%の窒化アルミニウムであり、金属アルミ
は01%未満、酸素含有量は07%であった。
Zuko 1 Do LL 300 g of atomized aluminum powder with a particle size of 100 μm or less and a purity of 9999% was filled into a graphite crucible with a diameter of 10 cm to a filling thickness of 3 cm, and this was charged into a closed container and heated to 0.2 atm. After 3 hours at 650°C in a nitrogen atmosphere,
The temperature was maintained at 750° C. for 2 hours, and then the pressure of nitrogen gas was increased to 1 atm and the temperature was continued to rise. When the temperature reached about 850° C., a rapid reaction occurred and the nitrogen gas pressure in the closed container suddenly decreased. At this point, nitrogen gas was replenished into the sealed container to maintain the pressure at 1 atm, while the temperature was further raised to 1000° C. and held for 3 hours. When the sample was taken out after cooling, it turned out to be a grayish white mass, and when this sample was subjected to chemical analysis of crushed wheat, it was found that
It was aluminum nitride with a purity of 986%, metal aluminum was less than 0.1%, and oxygen content was 0.7%.

止笠五 粒径100μm以下、純度9999%のアトマイズアル
ミ粉末300gを、直径10cmの黒鉛るつぼに充填厚
さ3cmとなる様に充填し、これを密閉容器内へ装入し
、1気圧の窒素雰囲気中で5℃/m i n、の昇温速
度て1000℃迄昇温し、1000℃で3時間保持した
。冷却後試料を取出すと、表面は灰白色の窒化アルミニ
ウムであったが、内部は金属アルミニウムのま5であっ
た。
Fill a graphite crucible with a diameter of 10 cm with 300 g of atomized aluminum powder with a particle size of 100 μm or less and a purity of 9999% to a thickness of 3 cm.The crucible was charged into a sealed container and placed in a nitrogen atmosphere of 1 atm. The temperature was raised to 1000°C at a heating rate of 5°C/min in the chamber, and the temperature was maintained at 1000°C for 3 hours. When the sample was taken out after cooling, the surface was grayish-white aluminum nitride, but the inside was metal aluminum.

ス」1例」工 直径100μm以下、純度9999%のアルミ短識維(
長さ10m以下) 400gを、直径10cmの黒鉛る
つぼに充填厚さ5 cmとなる様に充填し、これを密閉
容器内へ装入し、05気圧の窒素フ囲気中、600℃迄
急昇温し、その後800℃迄を05℃/minの昇温速
度で昇温した。その後窒素ガス圧を1気圧とし更に昇温
したところ850℃位で急激な反応が起こり、密閉容器
内の窒素ガス圧が急激に低下したので、外部より窒素ガ
スを補充し密閉容器内の窒素ガス圧を1気圧に保ち乍ら
1200℃迄昇温し、その温度で3時間保持した。冷却
後試料を取出すと灰白色の固まりとなっており、この試
料を粉停後化学分析を行ったところ、純度が990%の
窒化アルミニウムであり、金属アルミは0.1%未満、
酸素含有量は0.5%であった。
1 example: Aluminum short fiber with a diameter of 100 μm or less and a purity of 9999% (
(Length 10 m or less) 400 g was filled into a graphite crucible with a diameter of 10 cm so that the filling thickness was 5 cm, and this was placed in a sealed container, and the temperature was rapidly raised to 600 ° C in a nitrogen atmosphere of 0.5 atm. Thereafter, the temperature was raised to 800°C at a rate of 05°C/min. After that, when the nitrogen gas pressure was set to 1 atm and the temperature was further raised, a rapid reaction occurred at around 850℃, and the nitrogen gas pressure inside the sealed container suddenly decreased, so nitrogen gas was replenished from the outside and the nitrogen gas inside the sealed container was While maintaining the pressure at 1 atm, the temperature was raised to 1200°C and held at that temperature for 3 hours. When the sample was taken out after cooling, it turned out to be a grayish-white mass. After the sample was stopped, chemical analysis was performed, and it was found that the purity was 990% aluminum nitride, with less than 0.1% metallic aluminum.
The oxygen content was 0.5%.

10蔽童1i 粒径200μm以下、純度9999%のアトマイズアル
ミ粉末300gに、触媒としてNaF粉末3gを乾式混
合した混合粉末を、直径を10cmの黒鉛るつぼに充填
厚さ3cmとなる様に充填し、これを密閉容器内へ装入
し、02気圧の窒素雰囲気中、600℃で1時間、65
0℃、700℃、750℃、800℃で各々30分間ず
つ保持した後、窒素ガス圧を1気圧とし昇温を続けたと
ころ、850℃付近で急激な反応が起こり密閉容器内の
窒素ガス圧が急激に低下したので外部より窒素ガスを補
充し密閉容器内の窒素ガス圧を1気圧に保ち乍ら100
0℃迄昇温し、この温度に3時間保持した。冷却後試料
を取出すと周囲がベージュ色で内部が白色の柔らかい固
まりとなっており、この試料を粉砕麦化学分析を行った
ところ、純度が992%の窒化アルミニウムであり、触
媒として添加したNaFは100p、 p、 rm、以
下であった。これは窒化反応の際の発熱によりNaFが
蒸発したものと思われる。又得られた窒化アルミニウム
中の酸素含有量は04%であった。
10 Kado 1i A mixed powder obtained by dry mixing 300 g of atomized aluminum powder with a particle size of 200 μm or less and a purity of 9999% and 3 g of NaF powder as a catalyst is packed into a graphite crucible with a diameter of 10 cm so that the filling thickness is 3 cm, This was charged into a closed container and heated at 600°C for 1 hour in a nitrogen atmosphere of 0.2 atm.
After holding each temperature at 0°C, 700°C, 750°C, and 800°C for 30 minutes, the nitrogen gas pressure was set to 1 atm and the temperature continued to rise.A rapid reaction occurred around 850°C, causing the nitrogen gas pressure inside the sealed container to drop. As the pressure suddenly decreased, nitrogen gas was replenished from the outside and the nitrogen gas pressure inside the sealed container was maintained at 1 atm.
The temperature was raised to 0°C and maintained at this temperature for 3 hours. When the sample was taken out after cooling, it turned out to be a soft mass with beige surroundings and white inside. Chemical analysis of this sample revealed that it was aluminum nitride with a purity of 992%, and that the NaF added as a catalyst was It was less than 100 p, p, rm. This is thought to be because NaF was evaporated due to heat generated during the nitriding reaction. Further, the oxygen content in the obtained aluminum nitride was 0.4%.

窒化アルミニウムの分析は、アルカリ水溶液溶解窒素蒸
留法で行い、窒素と結合していないアルミニウムは不純
物と見なしている。
Aluminum nitride was analyzed using an alkaline aqueous solution dissolution nitrogen distillation method, and aluminum not bonded to nitrogen is considered an impurity.

又酸素含有量は、LECO製酸素窒素分析計で測定した
Further, the oxygen content was measured using an oxygen nitrogen analyzer manufactured by LECO.

〈発明の効果〉 以上述べて来た如く、本発明方法によれば窒化反応の初
期の段階に於ける反応度合を抑制、即ち温度及び窒化ガ
ス分圧をある限度以下に抑え、まず原料表面のみを窒化
アルミニウム化し、その後全体を窒化させるという2段
階反応とせしめている為に、ある程度粗粒あるいは径の
大きな識維であるアトマイズアルミ粉末やアルEm維を
原料とする事が出来、その為に製品たる窒化アルミニウ
ム中への酸素をはじめとする不純物の侵入を1%以下に
抑える事が可能である。
<Effects of the Invention> As described above, according to the method of the present invention, the degree of reaction in the initial stage of the nitriding reaction is suppressed, that is, the temperature and partial pressure of the nitriding gas are kept below a certain limit, and only the surface of the raw material is first treated. Because this is a two-step reaction in which aluminum nitride is formed, and then the entire product is nitrided, atomized aluminum powder and Al-Em fibers, which are somewhat coarse particles or large-diameter fibers, can be used as raw materials. It is possible to suppress the intrusion of impurities such as oxygen into the aluminum nitride product to 1% or less.

更に本発明方法での出発原料は、従来からのフレーク状
アルミ粉と比べ安価であるという経済的利点がある他、
生産に際し反応容器内へ充填した場合同じ充填厚さでも
フレーク状アルミ粉の場合よりも充填密度を大とする事
が出来るので生産効率を向上せしめる事が出来、この点
からも製品はより安価となるものでその実社会的価値は
大きい。
Furthermore, the starting material used in the method of the present invention has the economic advantage of being cheaper than conventional flaky aluminum powder.
When filled into a reaction vessel during production, the packing density can be greater than that of flake aluminum powder even if the filling thickness is the same, so production efficiency can be improved, and from this point of view, the product is also cheaper. Therefore, its real social value is great.

特許出願人 三井アルミニウム工業株式会社代 理 人
 有害 教晴
Patent applicant: Mitsui Aluminum Industries Co., Ltd. Agent: Noriharu Haruki

Claims (1)

【特許請求の範囲】 1、粒径200μm以下のアトマイズアルミ粉末若しく
は直径100μm以下のアルミ繊維を出発原料とし、該
出発原料を600〜800℃の温度域で窒素ガスあるい
はアンモニアガスを含む窒化ガスのガス分圧を0.5気
圧以下として3時間以上保持し、次いで窒化ガス分圧を
0.5気圧以上となし800℃以上に加熱保持すること
を特徴とする窒化アルミニウム粉末の製造方法。 2、出発原料の反応容器への充填厚さを5cm以下とす
ることを特徴とする特許請求の範囲第1項記載の窒化ア
ルミニウム粉末の製造方法。
[Claims] 1. Atomized aluminum powder with a particle size of 200 μm or less or aluminum fiber with a diameter of 100 μm or less is used as a starting material, and the starting material is heated in a temperature range of 600 to 800°C with a nitriding gas containing nitrogen gas or ammonia gas. A method for producing aluminum nitride powder, which comprises keeping the gas partial pressure at 0.5 atm or less for 3 hours or more, then increasing the nitriding gas partial pressure to 0.5 atm or more and heating and holding at 800° C. or higher. 2. The method for producing aluminum nitride powder according to claim 1, characterized in that the thickness of filling the starting material into the reaction vessel is 5 cm or less.
JP9767286A 1986-04-26 1986-04-26 Method for producing aluminum nitride powder Expired - Lifetime JPH0621016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9767286A JPH0621016B2 (en) 1986-04-26 1986-04-26 Method for producing aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9767286A JPH0621016B2 (en) 1986-04-26 1986-04-26 Method for producing aluminum nitride powder

Publications (2)

Publication Number Publication Date
JPS62256703A true JPS62256703A (en) 1987-11-09
JPH0621016B2 JPH0621016B2 (en) 1994-03-23

Family

ID=14198510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9767286A Expired - Lifetime JPH0621016B2 (en) 1986-04-26 1986-04-26 Method for producing aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPH0621016B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002234711A (en) * 2001-02-02 2002-08-23 Ibaraki Kenkyusho:Kk Method for producing aluminum nitride and aluminum nitride
JP2007284315A (en) * 2006-04-19 2007-11-01 Denki Kagaku Kogyo Kk Aluminum nitride powder and resin composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002234711A (en) * 2001-02-02 2002-08-23 Ibaraki Kenkyusho:Kk Method for producing aluminum nitride and aluminum nitride
JP2007284315A (en) * 2006-04-19 2007-11-01 Denki Kagaku Kogyo Kk Aluminum nitride powder and resin composition
JP4664229B2 (en) * 2006-04-19 2011-04-06 電気化学工業株式会社 Aluminum nitride powder and resin composition

Also Published As

Publication number Publication date
JPH0621016B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
US4235857A (en) Method of nitriding silicon
CN102275918B (en) Method for producing vanadium carbide
CA1251920A (en) Process for the production of porous products made from boron or boron compounds
JPH02196010A (en) Production method of aluminum nitride
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
US3660031A (en) Method for preparing boron suboxide
JPS62256703A (en) Production of aluminum nitride powder
US4719077A (en) Method for the preparation of an alloy of nickel and titanium
US3011982A (en) Refractory and method of making the same
JP2000016805A (en) Manufacturing method of aluminum nitride
KR100235522B1 (en) Direct nitridation process of metal having a low melting point
JPS6111886B2 (en)
US3011983A (en) Refractory and method of making the same
JP2010150049A (en) Raw material for producing silicon oxide, method for producing the same, silicon oxide and method for producing the same
US3114629A (en) Production of columbium and tantalum
CN108039485B (en) Foam-like silicon powder is with preparation method and using its lithium ion battery
US2733133A (en) Production of titanium monoxide
JPH10203806A (en) Production of boron nitride powder
CA1047745A (en) Ceramic materials
JPS6183608A (en) Production of aluminum nitride
JP2907367B2 (en) Method for producing crystalline silicon nitride powder
JPS62100403A (en) Production of fine powder of hexagonal boron nitride having high purity
TWI847465B (en) Powdered lithium oxide, process for its preparation and its use
JPH0455142B2 (en)
JPH0456767B2 (en)