JPS60174807A - Refining method of fine particle - Google Patents

Refining method of fine particle

Info

Publication number
JPS60174807A
JPS60174807A JP2963284A JP2963284A JPS60174807A JP S60174807 A JPS60174807 A JP S60174807A JP 2963284 A JP2963284 A JP 2963284A JP 2963284 A JP2963284 A JP 2963284A JP S60174807 A JPS60174807 A JP S60174807A
Authority
JP
Japan
Prior art keywords
fine particles
metallic
product
solvent
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2963284A
Other languages
Japanese (ja)
Inventor
Takao Tanaka
隆夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP2963284A priority Critical patent/JPS60174807A/en
Publication of JPS60174807A publication Critical patent/JPS60174807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To refine the fine particles of the metal or metallic nitride obtd. by bringing metallic halide into reaction with a reducing gas in a vapor phase while preventing sintering and oxidation by washing said particles by using a solvent in an inert gaseous atmosphere. CONSTITUTION:Metallic halide such as FeCl2 in a gaseous or fine particulate state is brought into reaction with a reducing gas such as ammonia, hydrogen substantially in a vapor phase. The fine particles of the metal and/or metallic nitride such as metallic iron, iron nitride or the like obtd. by such vapor phase reaction are cleansed by water or solvent such as ethanol in an inert gaseous atomsphere of nitrogen, helium, argon, etc. Said solvents are preferably preliminarily removed of the dissolved oxygen by a method for blowing nitrogen, etc. The impurities consisting of unreacted halide and by-product, etc. are dissolved away by such washing and the above-mentioned fine particles are refined while oxidation and sintering are prevented.

Description

【発明の詳細な説明】 本発明は微粒子の新規な精製法に関する。[Detailed description of the invention] The present invention relates to a novel method for purifying microparticles.

近年、窒化鉄微粒子や金属微粒子の製造法として金属ハ
ロゲン化物ガスを水素やアンモニアなどの還元性ガスと
反応させる、いわゆる気相反応法が注目されている。
In recent years, a so-called gas phase reaction method in which a metal halide gas is reacted with a reducing gas such as hydrogen or ammonia has been attracting attention as a method for producing iron nitride fine particles or metal fine particles.

この気相反応による微粒子の″製造法は生産性が高く、
粒径の制御が容易で、原料ハロゲン化物の組成制御によ
り種々の組成の合金微粒子や、窒化物微粒子が製造出来
る等数々の優れた特徴を持った製造法である。しかしな
がらこの方法には生成微粒子中に、未反応・・ロゲン化
物や副生成物が含有され生成物の粒径な小さくした場合
には、特に未反応ハロゲン化物の含有量が多くなるとい
う問題があった。
This method of producing fine particles through gas phase reaction is highly productive;
This manufacturing method has many excellent features, such as easy control of particle size and the ability to produce alloy fine particles and nitride fine particles of various compositions by controlling the composition of the raw material halide. However, this method has the problem that unreacted halides and by-products are contained in the fine particles produced, and when the particle size of the product is reduced, the content of unreacted halides increases. Ta.

か(のどとき生成物中に混入する未反応ハロゲン化物及
び副生成物は、生成微粒子の純度を下げるのみならず、
生成微粒子の酸化を促進する等の悪影響を及ぼしており
、その除去方法の開発が望まれていた。この生成物中の
未反応物や、副生成物の除去方法としては、例えばハロ
ゲン化物が気化する温度において高温気固分離し、金属
ハロゲン化物をガスとして除く方法や、水やアルコール
などの金属ハロゲン化物や副生成物を溶解する溶媒を用
いて、生成物を洗浄し、未反応ハロゲン化物や副生成物
を溶解除去する方法などが考えられてきプこ。
(Unreacted halides and by-products mixed into the product not only reduce the purity of the fine particles produced, but also
It has an adverse effect such as promoting the oxidation of the generated fine particles, and it has been desired to develop a method for removing it. Methods for removing unreacted substances and byproducts in this product include, for example, high-temperature gas-solid separation at a temperature at which the halide vaporizes to remove the metal halide as a gas, and metal halides such as water and alcohol. A method has been proposed in which unreacted halides and by-products are dissolved and removed by washing the product using a solvent that dissolves the halides and by-products.

しかしながら、高温における気固分離では、生成物が微
粒子であり、表面活性が高いことより、微粒子間の焼結
が進みやすいという欠点があり、また大気中で水やアル
コールなどの溶媒で洗浄する方法では、洗浄中に生成物
が酸化してしまうという欠点があるため実用には適した
方法とは言えない。
However, gas-solid separation at high temperatures has the disadvantage that the products are fine particles, and sintering between the fine particles tends to proceed due to the high surface activity. However, this method cannot be said to be suitable for practical use because it has the disadvantage that the product is oxidized during cleaning.

今般本発明者は、かかる気相反応法によって製造された
微粒子に含まれる不純物を、焼結や酸化を防ぎつつ除去
精製する方法を検討した結果気相反応法によって得られ
た微粒子を、未反応ハロゲン化物及び副生成物を溶解オ
る溶媒を用い、不活性ガス雰囲気で洗浄することにより
、酸化や焼結を防ぎつつ精製出来ることを見出し、本発
明に到達した。
The present inventor has recently investigated a method for removing and refining the impurities contained in fine particles produced by such a gas phase reaction method while preventing sintering and oxidation. The present invention was achieved by discovering that purification can be achieved while preventing oxidation and sintering by using a solvent that dissolves halides and by-products and washing in an inert gas atmosphere.

本発明の対象となる微粒子は、金属ノ・ロゲン化物をガ
ス状または微小粒状とした状態で、実質的に気相中にお
いてアンモニアや水素等の還元性ガスと反応させるいわ
ゆる気相反応によって得られるFe、Co、Ni、Cu
、 Ad、 Ga、 Cr、■、Sn、Ti。
The fine particles that are the object of the present invention are obtained by a so-called gas phase reaction in which a metal halogenide is reacted in a gaseous or fine particle state with a reducing gas such as ammonia or hydrogen in substantially the gas phase. Fe, Co, Ni, Cu
, Ad, Ga, Cr, ■, Sn, Ti.

S i、Mn、 Zn等の単体もしくは合金となった、
金属もしくは窒化物の微粒子である。
Single element or alloy of Si, Mn, Zn, etc.
They are fine particles of metal or nitride.

洗浄に用いる溶媒としては、上記の金属ハロゲン化物等
の未反応ハロゲン化物や、アンモニアと反応した場合に
生じるハロゲン化アンモニウム等の副生物を溶解するも
ので、例えば水やエタノール、メタノール等のアルコー
ルが挙げられる。
The solvent used for cleaning is one that dissolves unreacted halides such as the metal halides mentioned above and by-products such as ammonium halides produced when reacting with ammonia. For example, water, alcohols such as ethanol, methanol, etc. Can be mentioned.

洗浄に当っては、溶媒をそのまま使ってもよいが、溶媒
中の溶存酸素は前もって除いた方が好ましい。溶存酸素
を除去する方法としては、例えば溶媒に不活性ガスを吹
き込み溶存酸素を窒素で置換する方法、溶媒を真空槽内
に入れ、溶存酸素を抜く方法等が挙げられる。不活性ガ
スとしてはこれら金属等と反応しないものであればよく
、窒素、ヘリウム、アルゴン等が好適に用いられる。
In washing, the solvent may be used as is, but it is preferable to remove dissolved oxygen in the solvent in advance. Examples of methods for removing dissolved oxygen include a method in which inert gas is blown into the solvent to replace the dissolved oxygen with nitrogen, a method in which the solvent is placed in a vacuum chamber, and dissolved oxygen is removed. Any inert gas may be used as long as it does not react with these metals, and nitrogen, helium, argon, etc. are preferably used.

微粒子の洗浄は不活性ガス雰囲気中で行なうが、この方
法としては、内部を不活性ガス置換したグローブボック
ス内で溶媒中に末梢製粉を入れ、攪拌後、濾過やデカン
テーション等の操作で、精製粉と不純物を含んだ溶媒に
分離する方法、不活性ガス置換した攪拌槽内に溶媒と末
梢製粉を入れ、攪拌した後窒素雰囲気下で、ど過オる方
法等力1ある。
Cleaning of fine particles is carried out in an inert gas atmosphere, and this method involves placing the peripheral powder in a solvent in a glove box whose interior has been replaced with an inert gas, stirring, and then purifying it by operations such as filtration and decantation. There is a method of separating the powder and a solvent containing impurities, a method of putting the solvent and peripheral flour into a stirring tank purged with inert gas, stirring, and then draining under a nitrogen atmosphere.

洗浄に当っては、溶媒の温度には特に制限はな(ゝ0 以上のようにして、洗浄、精製された微粒子は、不活性
ガス雰囲気下で乾燥され、l−/レニンなどσ)溶θν
中にて保存される。
During washing, there is no particular restriction on the temperature of the solvent.
It is stored inside.

以下実施例にて、本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 原料ノ・ロゲンfヒ物として市販のp e: C12・
n1120を窒素気流中、250℃で2時間脱水処理し
たF c C12を用いた。
Example 1 Commercially available raw material pe: C12.
F c C12 obtained by dehydrating n1120 at 250° C. for 2 hours in a nitrogen stream was used.

反応は流通法で行なった。反応器としては外径45mm
φ、長さ80cIrLの石英管を用(・た。この石英管
はガス入口側より40儂が三重管となっており、一番内
側には原料FeC4を入れたアルミナボート側の管には
アンモニアを流し、反応部で一挙に混合反応させるよう
に設計されている。加熱には長さ23cmの電気炉を2
台直列に並べて使用し、ガス入口側の電気炉は原料F 
e C (J 2の蒸発に、ガス出口側の電気炉は反応
部を所定反応温度まで加熱するのに用いた。
The reaction was carried out using the distribution method. The reactor has an outer diameter of 45 mm.
A quartz tube with a diameter of 80 cIrL and a length of 80 cIrL was used.This quartz tube is a triple tube from the gas inlet side, and the innermost tube contains raw material FeC4, and the tube on the alumina boat side contains ammonia. It is designed to mix and react all at once in the reaction section.Two 23cm long electric furnaces are used for heating.
The electric furnaces are used in series, and the electric furnace on the gas inlet side is the raw material F.
For the evaporation of e C (J 2 ), the electric furnace on the gas outlet side was used to heat the reaction section to a predetermined reaction temperature.

合成の具体例を述べる。まず前もって脱水したFeC1
2約6gをアルミナボートへ入れ、蒸発部で800℃に
加熱する。次に発生したF e C 4蒸気を高純度窒
素ガスにより反応部へ供給し、880℃でアンモニアと
混合、反応させた。
A specific example of synthesis will be described. First, FeC1 was dehydrated in advance.
Approximately 6 g of 2 was placed in an alumina boat and heated to 800°C in the evaporation section. Next, the generated F e C 4 vapor was supplied to the reaction section using high-purity nitrogen gas, mixed with ammonia at 880° C., and reacted.

反応部におけるFeC4 とアンモニアのモル比は、約
45倍のアンモニア過剰とした。
The molar ratio of FeC4 to ammonia in the reaction section was about 45 times excess ammonia.

生成速度約0.2り7m i n ’で得られた生成物
粉末は、反応管出口へ取り付けた静電捕集器にて回収し
た。
The product powder obtained at a production rate of about 0.2-7 min was collected with an electrostatic collector attached to the outlet of the reaction tube.

回収された生成物をX−線回折にて分析したところ窒化
鉄、金属鉄の他に未反応塩化鉄、副生塩化アンモニウム
を含んでいた。
When the recovered product was analyzed by X-ray diffraction, it was found to contain unreacted iron chloride and by-product ammonium chloride in addition to iron nitride and metallic iron.

次に生成物中の未反応塩化鉄、副生塩化アンモニウムを
除くため、生成物を、内部な窒素置換したグローブボッ
クス内に入れた。グローブボックス内には窒素を約1時
間吹き込み、溶存酸素を除いた水が入れてあり、ビーカ
ー内にこの水と、生成物を]:]OOの割合で入れ、室
温で1時間攪拌した後デカンテーション法により水と生
成物を分離した。以」二の洗浄操作を3回くり返した後
、分離された精製粉を真空乾燥した。
Next, in order to remove unreacted iron chloride and by-product ammonium chloride in the product, the product was placed in a glove box whose interior was replaced with nitrogen. The glove box contains water that has been blown with nitrogen for about 1 hour to remove dissolved oxygen, and this water and the product are placed in a beaker at a ratio of ]:]OO, and after stirring at room temperature for 1 hour, decane is added. Water and product were separated by the cation method. After repeating the above washing operation three times, the separated purified powder was vacuum dried.

真空乾燥した生成物を再度X−線回折にて分析すると、
窒化鉄と、金属鉄のピークのみで未反応塩化物、副生塩
化アンモニウムのピークは消えていた。
When the vacuum-dried product was analyzed again by X-ray diffraction,
The peaks for unreacted chloride and by-product ammonium chloride disappeared, leaving only the peaks for iron nitride and metallic iron.

比較例1 実施例1の方法で得られた、未反応塩化鉄、副生塩化ア
ンモニウムを含んだ粉末を用い、大気中で水中に入れ、
1時間攪拌したところ、生成粉末は赤く変色した。水と
分離後生成物をX−線回折にて分析すると、水酸化鉄の
ピークが得られた。
Comparative Example 1 Using a powder containing unreacted iron chloride and by-product ammonium chloride obtained by the method of Example 1, it was placed in water in the atmosphere,
After stirring for 1 hour, the resulting powder turned red. When the product after separation from water was analyzed by X-ray diffraction, a peak of iron hydroxide was obtained.

実施例2 実施例1で用いた反応装置を用い、還元ガスを水素と変
えた他は、゛実施例Jと同じ条件で気相反応を行ない粉
状生成物を得た。
Example 2 A gas phase reaction was carried out under the same conditions as in Example J, except that the same reaction apparatus as in Example 1 was used, and the reducing gas was replaced with hydrogen, to obtain a powdered product.

生成物をX−線回折にて分析すると、金属鉄と未反応塩
化鉄のピークが見られた。
When the product was analyzed by X-ray diffraction, peaks of metallic iron and unreacted iron chloride were observed.

この生成物10りを窒素置換されたグローブボックス内
で、溶存酸素を除いた水11に分散させ、1時間攪拌し
た後E過分前した。P別された生成物を真空乾燥した後
X−線分析を行なうと、金属鉄のみのピ〜りが現われた
。− 比較例2 実施例2にで得られた未反応塩化鉄を含んだ粉末を、大
気中で水中に分散し、1時間攪拌したところ生成粉末は
赤く変色した。水を分離後X−線分析を行なうと、水酸
化鉄が生成していた。
In a glove box purged with nitrogen, 10 ml of this product was dispersed in 11 ml of water from which dissolved oxygen had been removed, stirred for 1 hour, and then poured into an aqueous solution. When the P-separated product was vacuum-dried and then subjected to X-ray analysis, peel containing only metallic iron appeared. - Comparative Example 2 When the powder containing unreacted iron chloride obtained in Example 2 was dispersed in water in the air and stirred for 1 hour, the resulting powder turned red. After water was separated, X-ray analysis revealed that iron hydroxide was produced.

実施例3 実施例2で得られた未反応塩化鉄を含んだ生成粉末1g
を窒素置換したグローブボックス内で、溶存酸素を除い
たエタノール 200−に分散し、1時間攪拌した後炉
別し、戸残を真空乾燥した。
Example 3 1 g of the product powder containing unreacted iron chloride obtained in Example 2
was dispersed in 200% ethanol from which dissolved oxygen had been removed in a nitrogen-substituted glove box, stirred for 1 hour, then separated from the oven, and the residue was vacuum-dried.

乾燥後X−線分析を行なうと、金属鉄のピークのみが得
られた。
When X-ray analysis was performed after drying, only the peak of metallic iron was obtained.

実施例4 実施例2で得られた、未反応塩化物を含んだ生成粉末J
すを、窒素置換したグローブボックス内で、溶存酸素除
去を特に行なっていない水100g中に分散し、1時間
攪拌した後戸別し、戸残を真空乾燥した。乾燥後X−線
分析を行なうと、金属鉄のピークのみで、水酸化鉄や酸
化鉄のピークは痕跡程度であった。
Example 4 Product powder J containing unreacted chloride obtained in Example 2
The solution was dispersed in 100 g of water from which dissolved oxygen had not been specifically removed in a nitrogen-substituted glove box, and after stirring for 1 hour, the mixture was separated from the door, and the residue was vacuum-dried. When X-ray analysis was performed after drying, only the peak of metallic iron was found, and the peaks of iron hydroxide and iron oxide were only traces.

手 続 補 正 書 (白会Q 昭和59年 8月7日 特許庁長官 志 賀 学 殿 工、事件の表示 昭和59年特許願第29632号 2発明の名称 微粒子の精製方法 3補正をする者 7r゛、\、 明1111書7頁4行目に「・・・・1:100の割合
で・・・・」とあるを「・・・・100:1の割合で・
・・・」と訂正する。
Written amendment to the procedure (Shirakai Q August 7, 1980 Director General of the Patent Office Manabu Shiga, Indication of the case 1983 Patent Application No. 29632 2 Name of the invention Method for purifying fine particles 3 Person making the amendment 7r゛、\、Mei 1111, page 7, line 4, it says "...at a ratio of 1:100..." instead of "...at a ratio of 100:1..."
"..." I corrected myself.

Claims (1)

【特許請求の範囲】[Claims] (1)金属ハロゲン化物をガス状または微小粒状とした
状態で、実質的に気相中において、アンモニアや水素等
の還元性ガスと反応させる気相反応法によって得られた
、金属及び又は金属窒化物の微粒子を精製するに当り、
未反応ハロゲン化物及び、副生成物を溶解する溶媒を用
い、不活性ガス雰囲気で、該微粒子を洗浄し、該微粒中
の未反応ハロゲン化物や、副生成物からなる不純物を溶
解除去することを特徴とする微粒子の精製方法。
(1) Metal and/or metal nitridation obtained by a gas phase reaction method in which a metal halide is reacted in gaseous or fine particle form with a reducing gas such as ammonia or hydrogen substantially in the gas phase. In refining fine particles of matter,
The fine particles are washed in an inert gas atmosphere using a solvent that dissolves unreacted halides and by-products, and impurities consisting of unreacted halides and by-products in the fine particles are dissolved and removed. Characteristic method for purifying fine particles.
JP2963284A 1984-02-21 1984-02-21 Refining method of fine particle Pending JPS60174807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2963284A JPS60174807A (en) 1984-02-21 1984-02-21 Refining method of fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2963284A JPS60174807A (en) 1984-02-21 1984-02-21 Refining method of fine particle

Publications (1)

Publication Number Publication Date
JPS60174807A true JPS60174807A (en) 1985-09-09

Family

ID=12281460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2963284A Pending JPS60174807A (en) 1984-02-21 1984-02-21 Refining method of fine particle

Country Status (1)

Country Link
JP (1) JPS60174807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259003A (en) * 1989-03-31 1990-10-19 Tanaka Kikinzoku Kogyo Kk Manufacture of copper fine particles
JPH02259004A (en) * 1989-03-31 1990-10-19 Tanaka Kikinzoku Kogyo Kk Manufacture of noble metal fine particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259003A (en) * 1989-03-31 1990-10-19 Tanaka Kikinzoku Kogyo Kk Manufacture of copper fine particles
JPH02259004A (en) * 1989-03-31 1990-10-19 Tanaka Kikinzoku Kogyo Kk Manufacture of noble metal fine particles

Similar Documents

Publication Publication Date Title
US4122155A (en) Preparation of silicon nitride powder
US4241037A (en) Process for purifying silicon
JPS6112844B2 (en)
JPH0123403B2 (en)
JPS60174807A (en) Refining method of fine particle
JPS6191335A (en) Method for recovering platinum group metal
KR100360559B1 (en) Process for the production of extra fine powder of Cobalt
JPS6148506A (en) Refining method of fine particle by gaseous phase process
US4582696A (en) Method of making a special purity silicon nitride powder
JP3309402B2 (en) Method for producing high purity phosphorus
JPH09227965A (en) Refined metal ruthenium powder and its production
JPS6042164B2 (en) Powder manufacturing method
JP2613262B2 (en) Method for producing trichlorosilane
JPS61146797A (en) Continuous manufacture of silicon nitride and silicon carbide
JPH0693316A (en) Production of extremely fine copper powder
JPS58176109A (en) Production of alpha-type silicon nitride
JP3585302B2 (en) Manufacturing method of aluminum nitride
JP3564852B2 (en) Method for producing high purity metal ruthenium powder
RU1770276C (en) Method of boron production
JPS62143806A (en) Aluminum nitride powder and production thereof
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPH01162701A (en) Method for refining copper super fine powder
JPS63170207A (en) Production of high-purity silicon carbide powder
JPH0393630A (en) Production of copper molybdenum sulfide
JP2000053611A (en) Reduction of propionic acid in acrylic acid mixture gas