JP3585302B2 - Manufacturing method of aluminum nitride - Google Patents

Manufacturing method of aluminum nitride Download PDF

Info

Publication number
JP3585302B2
JP3585302B2 JP33484995A JP33484995A JP3585302B2 JP 3585302 B2 JP3585302 B2 JP 3585302B2 JP 33484995 A JP33484995 A JP 33484995A JP 33484995 A JP33484995 A JP 33484995A JP 3585302 B2 JP3585302 B2 JP 3585302B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
reactor
aluminum
temperature
nitride powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33484995A
Other languages
Japanese (ja)
Other versions
JPH09169507A (en
Inventor
能地  芳徳
和生 脇村
将夫 田中
伸久 岩根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP33484995A priority Critical patent/JP3585302B2/en
Publication of JPH09169507A publication Critical patent/JPH09169507A/en
Application granted granted Critical
Publication of JP3585302B2 publication Critical patent/JP3585302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は窒化アルミニウム粉末の製法に関する。詳しくは、半導体周辺材料及び耐熱・耐蝕性セラミックスとして好適に用いられる窒化アルミニウム焼結体を得るための炭素含有量の少ない窒化アルミニウム粉末の製法に関する。
【0002】
【従来の技術】
従来、窒化アルミニウム粉末の製造方法として次の2つの方法が工業化されていた。ひとつは金属アルミニウム粉末を窒素またはアンモニアガスで窒化する直接窒化法であり、もうひとつはアルミナとカーボンの粉末混合物を還元雰囲気下で焼成するアルミナ還元法である。これに対して最近有機アルミニウム法が原料として蒸留等により精製可能な有機アルミを用いるため、製品の高純度化が容易というメリットを有しており注目されている。
【0003】
【発明が解決しようとする問題点】
しかしながら、有機アルミニウム法は得られる製品中に原料のアルキル基に起因する不純物を炭素として3 wt%前後含有するという問題点を有していた。しかし、上記焼結用の原料粉末としては酸素含有量もさることながら炭素含有量の少ないものが求められており、一般的にその上限は0.1 wt%程度とされている。したがって、この炭素を除去するために有機アルミニウムとアンモニアの反応で生成した窒化アルミニウム前駆体を酸化性ガス雰囲気下(空気中など)での焼成や、特開平2−199009で開示されているように、NH中での焼成を行って炭素含有量を減少する必要があった。
【0004】
酸化処理による場合は結果として過剰に酸化されて酸素を数%含有することになって、製品を焼結した際の熱伝導率悪化の原因となっていた。また、NH中での焼成は前駆体中の炭素の除去には大変有効な方法であるものの、NHおよび電力原単位の悪化等、経済的な問題、さらに高温下NH雰囲気に耐える材質が無いということもあり、安全性の点からも問題点を有している。例えば特公平4−8364には有機アルミニウムとアンモニアガスとを反応させて窒化アルミニウム粉末を製造する方法が公開されている。この方法はこれらの化合物を200 ℃以下で混合した後に600 〜1300℃で反応をせしめるものであるが、200 ℃以下でこれらの化合物を混合した場合、混合部での閉塞が起きて長時間の運転が困難となる。さらに反応温度が600 〜1300℃と高く不経済であること、高温下でアンモニア雰囲気に耐えうる素材がない事から安全性の面で問題がある。など、工業化するには問題点がある。
【0005】
また有機アルミニウムガスとアンモニアガスとを反応させて窒化アルミニウム粉末を製造する方法が特開平2−141408(窒化アルミニウムの製造方法)、特開平2−217311(有機アルミニウムを二重管で供給することによる長時間運転)、特開平2−239109(有機アルミニウムとアンモニアおよび系内全ガス比による生成粒子の均一化)に開示され、蒸発温度および輸送温度を記載しているものもあるが蒸発後、反応器に至る迄の輸送時間が100 秒以上であれば有機アルミニウムが一部分解し、得られる窒化アルミニウム前駆体中の分解種としての炭素含有量が増加する、この分解種は焼成中に揮散し難く、得られる窒化アルミニウム中の炭素含有量までもが増大する。
【0006】
【課題を解決するための手段】
本発明者らは、上記問題点を解決するため、高純度の窒化アルミニウム粉末を安価に製造する方法について鋭意研究を行ってきた。その結果、炭素含有量を低く抑えた窒化アルミニウム粉末を酸化処理やアンモニア中での焼成処理なしに製造する方法を開発することができ、本発明を完成した。
【0007】
即ち、本発明の窒化アルミニウムの製造法は、蒸発させた有機アルミニウムとアンモニアを気相反応させて窒化アルミニウム粉末を製造する方法において、有機アルミニウムの蒸発を同伴ガスにより沸点以下で行い、且つ反応器に到るまでの間の温度を沸点+20 ℃以下に保持し、さらに蒸発後反応器に到るまでの到達時間を100 秒以下で輸送して反応器内の200 〜600 ℃のゾーンに供給し、300 〜600 ℃においてアンモニアと気相反応せしめ、得られた窒化アルミニウム前駆体を不活性ガス中において1100〜1900℃で焼成することを特徴とするものである。従来、有機アルミニウム法で得られる窒化アルミニウム粉末は、残存する炭素を除去するために酸化ガス雰囲気中で700 ℃以上の温度で焼成する必要があり、結果として過剰に酸化されて酸素を数%含有し、この酸素原子が熱伝導率に悪影響を及ぼしていた。本発明ではこの問題点を簡単なプロセスで解決でき、工業的に極めて有利である。
【0008】
【発明の実施の形態】
本発明の原料として使用される有機アルミニウムはAlR(R、R、RはCH、C、n−C、i−CなどのC〜Cのアルキル基のひとつ以上の組み合わせ)で示されるものであり、代表的な有機アルミニウムとしてトリメチルアルミニウム、トリエチルアルミニウムがあげられる。これらはそれぞれ融点は15.3℃、−45.5℃、沸点は127.1 ℃、186.6 ℃、という物性を有し、いずれも常温で液体であるため、蒸留精製などの簡単な手段で高純度化が容易で、得られる窒化アルミニウム粉末は電子材料として好適に用いられるレベル迄の超高純度化が可能である。また、工業的に生産する際の入手の容易さも特徴のひとつとしてあげることができる。
【0009】
本発明は、精製有機アルミニウム化合物を、水素、ヘリウム、窒素、アルゴンなどの不活性キャリアガスにより沸点以下で蒸発を行う。蒸発した有機アルミニウムおよび不活性キャリアガスは、反応器迄の温度を沸点+20 ℃以下、到達時間を100 秒以下で輸送し、反応器内の200 〜600 ℃のゾーンに供給する。反応後得られる窒化アルミニウム前駆体は炭素を2.0 wt%以下含有するものの、この種の炭素種は熱分解によってガス化揮散し易く、この窒化アルミニウム前駆体を不活性ガス雰囲気中において1100〜1900℃の温度で焼成することによって容易に揮散脱炭しうる。得られる窒化アルミニウム粉末は、炭素の含有量が0.1 wt%以下とする事は容易である。
【0010】
本発明の方法では有機アルミニウムはその沸点以下で蒸発させるのがよい。蒸発温度が沸点以上では有機アルミニウムの分解が起こり一部揮散脱炭の非常に困難な分解種として生成物中に残留するため好ましくない。蒸発した有機アルミニウムの輸送は温度を沸点+20 ℃以下に保ち、反応器迄の到達時間を100 秒以下で輸送するのがよい。好ましくは到達時間を10秒以下で輸送するのがよい。100 秒以上では有機アルミニウムが一部前述の揮散脱炭の非常に困難な分解種として生成物中に残留するため好ましくない。沸点+20 ℃以上でも同様に分解が起こり一部分解種として生成物中に残留するため好ましくない。
【0011】
有機アルミニウムは反応器の200 〜600 ℃の温度ゾーンに吹き込むのがよい。200 ℃以下では品質上問題ないもののアンモニアとの混合および反応過程で粘着性物質を生成し、反応器内の閉塞が起こり長時間運転が困難である。また600 ℃以上では有機アルミニウムの分解が促進され分解種として生成物中に残存する炭素分が増加し、更に分解物が供給口で閉塞し長時間運転が困難となるなど好ましくない。反応は300〜600℃で行う。
【0012】
得られた窒化アルミニウム前駆体の焼成は、不活性ガス中で1100〜1900℃の温度で行う。不活性ガスとしては、水素、ヘリウム、窒素、アルゴン等から選ぶことが可能であるが、経済的な面から考えると窒素ガスが好ましい。温度は1100℃でも十分であるが、残留有機物の揮散は1400℃以上でさらに良くなる。しかし、1900℃を越えると部分的なシンタリングが発生し製品の歩留まりを悪化させる。炭素濃度の分析にはセラミックス中炭素・水素・窒素分析装置(LECO社製)を用いて容易に定量することができる。
【0013】
【実施例】
以下に本発明を実施例によって具体的に例示するが、本発明はこれらの実施例に限定されるものではない。
【0014】
実施例1
蒸発器に窒素ガスをキャリアーとして毎時3.4 Kg、トリエチルアルミニウムを毎時2.5 Kgフィードし170 ℃で蒸発させた。蒸発したトリエチルアルミニウムは反応器までの温度を200 ℃、到達時間を1.2 秒で輸送した。反応器(空塔反応器、内径8cm 、長さ6m)を外部加熱により480 ℃に制御して反応器内に挿入された反応器内吹き出し部は300 ℃であった。反応器内でアンモニアと反応させてフューム状の反応生成物をSUS316製の焼結金属フィルターにより補集したところ毎時約0.8Kg の生成物(窒化アルミニウム前駆体)を得た。この結果得られた生成物をカーボン製坩堝にいれて、窒素ガス雰囲気下で1600℃に昇温し、同温度で3時間保持した後室温まで降温し、窒化アルミニウム粉末を得た。評価結果を表1に示す。
【0015】
実施例2
蒸発したトリエチルアルミニウムの反応器までの到達時間を3.7 秒で行った他は実施例1と同様にして窒化アルミニウム粉末を得た。ただし蒸発させたトリエチルアルミニウムの滞留時間は蒸発器から反応器までの配管径および長さを変える事で行った。評価結果を表1に示す。
【0016】
実施例3
蒸発したトリエチルアルミニウムの反応器までの到達時間を8.6 秒で行った他は実施例1と同様にして窒化アルミニウム粉末を得た。評価結果を表1に示す。
【0017】
実施例4
蒸発したトリエチルアルミニウムの反応器までの到達時間を53.2秒で行った他は実施例1と同様にして窒化アルミニウム粉末を得た。評価結果を表1に示す。
【0018】
実施例5
反応器を700 ℃で制御し、トリエチルアルミニウムの反応器内吹き出し部の温度を300 ℃で行った他は実施例1と同様にして窒化アルミニウム粉末を得た。評価結果を表1に示す。
【0019】
実施例6
実施例2で得られた生成物(窒化アルミニウム前駆体)をカーボン製坩堝にいれて、窒素ガス雰囲気下で1200℃に昇温し、同温度で3時間保持した後室温まで降温し、窒化アルミニウム粉末を得た。評価結果を表1に示す。
【0020】
比較例1
トリエチルアルミニウムの蒸発温度を200 ℃で行った他は実施例1と同様にして、窒化アルミニウム粉末を得た。評価結果を表1に示す。
【0021】
比較例2
トリエチルアルミニウムの蒸発温度を240 ℃で行った他は実施例1と同様にして、窒化アルミニウム粉末を得た。評価結果を表1に示す。
【0022】
比較例3
蒸発したトリエチルアルミニウムの反応器までの温度を240 ℃で行った他は実施例1と同様にして窒化アルミニウム粉末を得た。評価結果を表1に示す。
【0023】
比較例4
蒸発したトリエチルアルミニウムの反応器までの到達時間を112 秒で行った他は実施例1と同様にして窒化アルミニウム粉末を得た。評価結果を表1に示す。
【0024】
比較例5
トリエチルアルミニウムの反応器内吹き出し部の温度を160 ℃で行った他は実施例1と同様にして行った。ただし反応器内吹き出し部の温度は反応器の温度分布を利用して吹き出し位置を変えることでおこなった。運転結果、13時間後供給ラインの圧力上昇が起こり運転を中止した、装置を解体し点検を行ったところ供給部から反応器内部にかけて灰白色の固形物が固着しており反応器が閉塞していた。
【0025】
比較例6
反応器を700 ℃で制御し、トリエチルアルミニウムの反応器内吹き出し部の温度を630 ℃で行った他は実施例1と同様にして行った結果、7 時間後供給ラインの圧力上昇が起こり運転を中止した、装置を解体し点検を行ったところ供給部に白銀色の固形物が固着しており供給口が閉塞していた。得られた窒化アルミニウム粉末の評価結果を表1に示す。
【0026】
【表1】

Figure 0003585302
【0027】
【発明の効果】
本発明の方法によれば、反応後の生成した窒化アルミニウム前駆体中の炭素は、不活性ガス雰囲気中で焼成することによりガス化、揮散しやすく有効に脱炭素処理を行うことができる。これは、プロセスおよび装置面において極めて容易でありコスト的にも有利である。また、品質でも優れた窒化アルミニウム粉末を工業的に得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing aluminum nitride powder. More specifically, the present invention relates to a method for producing an aluminum nitride powder having a low carbon content to obtain an aluminum nitride sintered body suitably used as a semiconductor peripheral material and a heat-resistant and corrosion-resistant ceramic.
[0002]
[Prior art]
Conventionally, the following two methods have been industrialized as methods for producing aluminum nitride powder. One is a direct nitriding method in which metallic aluminum powder is nitrided with nitrogen or ammonia gas, and the other is an alumina reducing method in which a powder mixture of alumina and carbon is fired in a reducing atmosphere. On the other hand, recently, the organoaluminum method uses organic aluminum which can be purified by distillation or the like as a raw material.
[0003]
[Problems to be solved by the invention]
However, the organoaluminum method has a problem in that the resulting product contains about 3% by weight of carbon-based impurities due to the alkyl group of the raw material. However, the raw material powder for sintering is required to have a low carbon content as well as an oxygen content, and the upper limit thereof is generally set to about 0.1 wt%. Therefore, the aluminum nitride precursor generated by the reaction between the organic aluminum and ammonia to remove the carbon is calcined in an oxidizing gas atmosphere (such as in air), or as disclosed in Japanese Patent Application Laid-Open No. 2-199909. , it is necessary to reduce the carbon content by performing the firing in NH 3.
[0004]
In the case of the oxidizing treatment, as a result, it is excessively oxidized and contains several% of oxygen, which is a cause of deterioration of the thermal conductivity when the product is sintered. In addition, although calcination in NH 3 is a very effective method for removing carbon in the precursor, economical problems such as deterioration of NH 3 and electric power consumption unit, and a material that can withstand an NH 3 atmosphere at high temperatures. There is no problem, and there is a problem in terms of safety. For example, Japanese Patent Publication No. 4-8364 discloses a method for producing aluminum nitride powder by reacting organic aluminum with ammonia gas. In this method, these compounds are mixed at a temperature of 200 ° C. or less and then reacted at 600 ° C. to 1300 ° C. However, when these compounds are mixed at a temperature of 200 ° C. or less, a clogging in a mixing portion occurs and a long time is required. Driving becomes difficult. Further, there is a problem in terms of safety because the reaction temperature is as high as 600 to 1300 ° C., which is uneconomical, and there is no material that can withstand an ammonia atmosphere at a high temperature. There are problems in industrialization.
[0005]
Also, a method for producing an aluminum nitride powder by reacting an organic aluminum gas and an ammonia gas is disclosed in JP-A-2-141408 (a method for producing aluminum nitride) and JP-A-2-217311 (by supplying an organic aluminum by a double pipe). Long-term operation), and JP-A-2-239109 (homogenization of formed particles by ratio of organoaluminum to ammonia and total gas in the system), which describes the evaporation temperature and the transport temperature. If the transport time to the vessel is 100 seconds or more, the organic aluminum is partially decomposed, and the carbon content as a decomposed species in the obtained aluminum nitride precursor is increased. This decomposed species is difficult to volatilize during firing. The carbon content in the resulting aluminum nitride also increases.
[0006]
[Means for Solving the Problems]
The present inventors have enthusiastically studied a method for inexpensively producing high-purity aluminum nitride powder in order to solve the above problems. As a result, it was possible to develop a method for producing aluminum nitride powder having a low carbon content without oxidation treatment or calcination treatment in ammonia, and thus completed the present invention.
[0007]
That is, the method for producing aluminum nitride according to the present invention is a method for producing aluminum nitride powder by subjecting vaporized organic aluminum and ammonia to a gas phase reaction. Is maintained at the boiling point + 20 ° C. or less, and the time required to reach the reactor after evaporation is transported in 100 seconds or less and fed to the zone of 200 to 600 ° C. in the reactor. And a gas phase reaction with ammonia at 300 to 600 ° C., and firing the obtained aluminum nitride precursor at 1100 to 1900 ° C. in an inert gas. Conventionally, aluminum nitride powder obtained by the organic aluminum method must be fired at a temperature of 700 ° C. or more in an oxidizing gas atmosphere to remove residual carbon, and as a result, is excessively oxidized and contains several percent of oxygen. However, this oxygen atom had an adverse effect on the thermal conductivity. According to the present invention, this problem can be solved by a simple process, which is industrially extremely advantageous.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The organoaluminum used as the raw material of the present invention is AlR 1 R 2 R 3 (R 1 , R 2 , R 3 is CH 3 , C 2 H 5 , nC 3 H 7 , iC 3 H 7, etc. One or more combinations of C 1 -C 4 alkyl groups), and typical organic aluminums include trimethylaluminum and triethylaluminum. These have physical properties of melting point of 15.3 ° C., −45.5 ° C., and boiling point of 127.1 ° C., 186.6 ° C., and are liquid at room temperature. And the resulting aluminum nitride powder can be highly purified to a level suitable for use as an electronic material. In addition, easy availability in industrial production can be cited as one of the features.
[0009]
In the present invention, the purified organoaluminum compound is evaporated below the boiling point with an inert carrier gas such as hydrogen, helium, nitrogen or argon. The vaporized organoaluminum and inert carrier gas are transported to the reactor at a boiling point of not higher than + 20 ° C. and the arrival time is not longer than 100 seconds, and are supplied to a zone of 200 to 600 ° C. in the reactor. Although the aluminum nitride precursor obtained after the reaction contains not more than 2.0 wt% of carbon, this kind of carbon is easily gasified and volatilized by thermal decomposition. By baking at a temperature of 1900 ° C., volatilization and decarburization can be easily performed. It is easy for the obtained aluminum nitride powder to have a carbon content of 0.1 wt% or less.
[0010]
In the method of the present invention, the organoaluminum is preferably evaporated below its boiling point. When the evaporation temperature is higher than the boiling point, decomposition of the organic aluminum occurs, and part of the organic aluminum remains as a very difficult decomposed species in volatilization and decarburization, which is not preferable. It is preferable to transport the evaporated organoaluminum while keeping the temperature at a boiling point of + 20 ° C. or less, and to reach the reactor in a time of 100 seconds or less. Preferably, the transport time is 10 seconds or less. If the time is longer than 100 seconds, the organic aluminum is not preferable because part of the organic aluminum remains as a very difficult decomposed species in the above-mentioned volatile decarburization. If the boiling point is higher than + 20 ° C., decomposition is similarly caused, and some of the decomposition species remain in the product, which is not preferable.
[0011]
The organoaluminum is preferably blown into the reactor at a temperature zone of 200-600 ° C. At 200 ° C. or less, although there is no problem in quality, a sticky substance is generated in the process of mixing with and reacting with ammonia, and the reactor is clogged, which makes it difficult to operate for a long time. On the other hand, when the temperature is 600 ° C. or higher, the decomposition of the organic aluminum is promoted, the carbon content remaining in the product as a decomposed species is increased, and the decomposed product is blocked at the supply port, which makes it difficult to operate for a long time. The reaction is performed at 300-600 ° C.
[0012]
The firing of the obtained aluminum nitride precursor is performed in an inert gas at a temperature of 1100 to 1900 ° C. The inert gas can be selected from hydrogen, helium, nitrogen, argon and the like, but nitrogen gas is preferred from the economical viewpoint. Although a temperature of 1100 ° C. is sufficient, the volatilization of residual organic matter is further improved at 1400 ° C. or higher. However, when the temperature exceeds 1900 ° C., partial sintering occurs and the product yield is deteriorated. The carbon concentration can be easily quantified using a carbon-hydrogen-nitrogen analyzer in ceramics (manufactured by LECO).
[0013]
【Example】
Hereinafter, the present invention will be specifically illustrated by way of examples, but the present invention is not limited to these examples.
[0014]
Example 1
3.4 kg / hour and 2.5 kg / hour of triethylaluminum were fed to the evaporator using nitrogen gas as a carrier, and evaporated at 170 ° C. The evaporated triethylaluminum was transported to the reactor at a temperature of 200 ° C. and an arrival time of 1.2 seconds. The reactor (empty tower reactor, inner diameter 8 cm, length 6 m) was controlled at 480 ° C. by external heating, and the outlet inside the reactor inserted into the reactor was at 300 ° C. The reaction product was reacted with ammonia in a reactor, and the fume-like reaction product was collected by a SUS316 sintered metal filter to obtain about 0.8 kg / h of a product (aluminum nitride precursor). The resulting product was placed in a carbon crucible, heated to 1600 ° C. in a nitrogen gas atmosphere, kept at the same temperature for 3 hours, and then cooled to room temperature to obtain an aluminum nitride powder. Table 1 shows the evaluation results.
[0015]
Example 2
An aluminum nitride powder was obtained in the same manner as in Example 1 except that the time required for the evaporated triethylaluminum to reach the reactor was 3.7 seconds. However, the residence time of the evaporated triethylaluminum was determined by changing the pipe diameter and length from the evaporator to the reactor. Table 1 shows the evaluation results.
[0016]
Example 3
An aluminum nitride powder was obtained in the same manner as in Example 1, except that the time required for the evaporated triethyl aluminum to reach the reactor was 8.6 seconds. Table 1 shows the evaluation results.
[0017]
Example 4
An aluminum nitride powder was obtained in the same manner as in Example 1, except that the time required for the evaporated triethyl aluminum to reach the reactor was 53.2 seconds. Table 1 shows the evaluation results.
[0018]
Example 5
An aluminum nitride powder was obtained in the same manner as in Example 1 except that the reactor was controlled at 700 ° C. and the temperature of the outlet of triethyl aluminum in the reactor was set at 300 ° C. Table 1 shows the evaluation results.
[0019]
Example 6
The product (aluminum nitride precursor) obtained in Example 2 was placed in a carbon crucible, heated to 1200 ° C. in a nitrogen gas atmosphere, kept at the same temperature for 3 hours, and then cooled to room temperature. A powder was obtained. Table 1 shows the evaluation results.
[0020]
Comparative Example 1
An aluminum nitride powder was obtained in the same manner as in Example 1 except that the evaporation temperature of triethylaluminum was 200 ° C. Table 1 shows the evaluation results.
[0021]
Comparative Example 2
An aluminum nitride powder was obtained in the same manner as in Example 1, except that the evaporation temperature of triethylaluminum was 240 ° C. Table 1 shows the evaluation results.
[0022]
Comparative Example 3
An aluminum nitride powder was obtained in the same manner as in Example 1, except that the temperature of the evaporated triethylaluminum up to the reactor was 240 ° C. Table 1 shows the evaluation results.
[0023]
Comparative Example 4
An aluminum nitride powder was obtained in the same manner as in Example 1, except that the time required for the evaporated triethyl aluminum to reach the reactor was 112 seconds. Table 1 shows the evaluation results.
[0024]
Comparative Example 5
The procedure was performed in the same manner as in Example 1 except that the temperature of the outlet of triethylaluminum in the reactor was 160 ° C. However, the temperature of the blowing section in the reactor was changed by changing the blowing position using the temperature distribution of the reactor. As a result of the operation, after 13 hours, the pressure of the supply line increased and the operation was stopped. The apparatus was disassembled and inspected. As a result, an off-white solid was fixed from the supply section to the inside of the reactor, and the reactor was closed. .
[0025]
Comparative Example 6
The reactor was controlled at 700 ° C., and the same procedure as in Example 1 was carried out except that the temperature of the outlet of triethylaluminum in the reactor was 630 ° C. As a result, after 7 hours, the supply line pressure increased and the operation was started. When the apparatus was disassembled and inspected, white silver solid matter was fixed to the supply section and the supply port was closed. Table 1 shows the evaluation results of the obtained aluminum nitride powder.
[0026]
[Table 1]
Figure 0003585302
[0027]
【The invention's effect】
According to the method of the present invention, the carbon in the aluminum nitride precursor produced after the reaction is easily gasified and volatilized by firing in an inert gas atmosphere, and the decarbonizing treatment can be effectively performed. This is extremely easy and cost-effective in terms of process and equipment. Further, aluminum nitride powder excellent in quality can be obtained industrially.

Claims (2)

蒸発させた有機アルミニウムとアンモニアを気相反応させて窒化アルミニウム粉末を製造する方法において、有機アルミニウムの蒸発を同伴ガスにより沸点以下で行い、且つ反応器に到るまでの間の温度を沸点+20 ℃以下に保持し、さらに蒸発後反応器に到るまでの到達時間を100 秒以下で輸送して反応器内の200 〜600 ℃のゾーンに供給し、300 〜600 ℃においてアンモニアと気相反応せしめ、得られた窒化アルミニウム前駆体を不活性ガス中において1100〜1900℃で焼成することを特徴とする窒化アルミニウムの製造方法。In the method of producing aluminum nitride powder by vapor-phase reacting the evaporated organic aluminum with ammonia, the organic aluminum is evaporated at a boiling point or lower by an accompanying gas, and the temperature until reaching the reactor is set to a boiling point of + 20 ° C. It is transported within 100 seconds to reach the reactor after evaporation and supplied to the zone of 200 to 600 ° C. in the reactor, and reacted with ammonia at 300 to 600 ° C. in the gas phase. And baking the obtained aluminum nitride precursor at 1100 to 1900 ° C. in an inert gas. 有機アルミニウムがトリアルキルアルミニウムである請求項1記載の窒化アルミニウムの製造方法。The method for producing aluminum nitride according to claim 1, wherein the organic aluminum is a trialkyl aluminum.
JP33484995A 1995-12-22 1995-12-22 Manufacturing method of aluminum nitride Expired - Fee Related JP3585302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33484995A JP3585302B2 (en) 1995-12-22 1995-12-22 Manufacturing method of aluminum nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33484995A JP3585302B2 (en) 1995-12-22 1995-12-22 Manufacturing method of aluminum nitride

Publications (2)

Publication Number Publication Date
JPH09169507A JPH09169507A (en) 1997-06-30
JP3585302B2 true JP3585302B2 (en) 2004-11-04

Family

ID=18281915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33484995A Expired - Fee Related JP3585302B2 (en) 1995-12-22 1995-12-22 Manufacturing method of aluminum nitride

Country Status (1)

Country Link
JP (1) JP3585302B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6149668B2 (en) * 2012-10-11 2017-06-21 宇部興産株式会社 Al-N-H compound powder and method for producing the same
JP6271665B1 (en) * 2016-09-20 2018-01-31 國家中山科學研究院 Method for producing spherical aluminum nitride powder

Also Published As

Publication number Publication date
JPH09169507A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
US4428916A (en) Method of making α-silicon nitride powder
JP3585302B2 (en) Manufacturing method of aluminum nitride
JPH0123403B2 (en)
JPS60155507A (en) Continuous preparation of boron nitride
JPS6111886B2 (en)
EP0385096B1 (en) Process for producing sinterable crystalline aluminum nitride powder
JP3539777B2 (en) Manufacturing method of aluminum nitride
JP2721678B2 (en) β-silicon carbide molded body and method for producing the same
JP2726703B2 (en) Method for producing aluminum nitride powder
JP3385059B2 (en) Method for producing high-purity aluminum nitride powder
EP0225412B1 (en) Production of silicon imides and of silicon nitride thereof
JP3325344B2 (en) Method for producing aluminum nitride powder
KR102475700B1 (en) Preparation method of silicon powder, and preparation method of silicon nitride using the same
US4798714A (en) Process for the preparation of silicon nitride low in carbon content
EP0391150B1 (en) Process for the production of low-carbon fine particle ceramic powder
JPS62197317A (en) Production of vanadium suboxide
JPH0264100A (en) Production of aln whisker
JPS6168310A (en) Production of silicon nitride having high purity using silicon chip as raw material
RU1770276C (en) Method of boron production
JPH0465002B2 (en)
JPS63103899A (en) Production of silicon carbide whisker of high-quality and apparatus therefor
JPH062568B2 (en) Method for producing high-purity silicon carbide powder
JPS60174807A (en) Refining method of fine particle
JPS61168509A (en) Production of hexagonal boron nitride
JPH01141809A (en) Production of high purity aluminum nitride powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees