JPH09169507A - Production of aluminum nitride - Google Patents

Production of aluminum nitride

Info

Publication number
JPH09169507A
JPH09169507A JP33484995A JP33484995A JPH09169507A JP H09169507 A JPH09169507 A JP H09169507A JP 33484995 A JP33484995 A JP 33484995A JP 33484995 A JP33484995 A JP 33484995A JP H09169507 A JPH09169507 A JP H09169507A
Authority
JP
Japan
Prior art keywords
aluminum nitride
reactor
ammonia
temperature
organoaluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33484995A
Other languages
Japanese (ja)
Other versions
JP3585302B2 (en
Inventor
Yoshinori Nochi
能地  芳徳
Kazuo Wakimura
和生 脇村
Masao Tanaka
将夫 田中
Nobuhisa Iwane
伸久 岩根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP33484995A priority Critical patent/JP3585302B2/en
Publication of JPH09169507A publication Critical patent/JPH09169507A/en
Application granted granted Critical
Publication of JP3585302B2 publication Critical patent/JP3585302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce AlN having a low C content without requiring oxidation treatment and firing in ammonia. SOLUTION: When an organoaluminum compd. and ammonia are brought into a vapor phase reaction to produce AlN powder, the compd. is evaporated at the b.p. or below with carrier gas and the evaporated compd. is transferred to a reactor at the b.p.+20 deg.C or below within 100sec. It is fed into a zone at 200-600 deg.C in the reactor and allowed to react with ammonia at 300-600 deg.C. The resultant precursor of AlN is decarbonized by firing at 1,100-1,900 deg.C in inert gas. By this firing, decarbonization can be easily and very effectively carried out and the objective high purity AlN for a semiconductor substrate having very low O and C contents and high heat conductivity is more easily obtd. as compared with conventional treatment in an oxidizing atmosphere or in an atmosphere of ammonia. This method is low-cost and industrially advantageous from the viewpoint of processes and apparatus.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は窒化アルミニウム粉
末の製法に関する。詳しくは、半導体周辺材料及び耐熱
・耐蝕性セラミックスとして好適に用いられる窒化アル
ミニウム焼結体を得るための炭素含有量の少ない窒化ア
ルミニウム粉末の製法に関する。
TECHNICAL FIELD The present invention relates to a method for producing aluminum nitride powder. More specifically, the present invention relates to a method for producing an aluminum nitride powder having a low carbon content for obtaining an aluminum nitride sintered body that is preferably used as a semiconductor peripheral material and heat resistant / corrosion resistant ceramics.

【0002】[0002]

【従来の技術】従来、窒化アルミニウム粉末の製造方法
として次の2つの方法が工業化されていた。ひとつは金
属アルミニウム粉末を窒素またはアンモニアガスで窒化
する直接窒化法であり、もうひとつはアルミナとカーボ
ンの粉末混合物を還元雰囲気下で焼成するアルミナ還元
法である。これに対して最近有機アルミニウム法が原料
として蒸留等により精製可能な有機アルミを用いるた
め、製品の高純度化が容易というメリットを有しており
注目されている。
2. Description of the Related Art Conventionally, the following two methods have been industrialized as methods for producing aluminum nitride powder. One is a direct nitriding method of nitriding metallic aluminum powder with nitrogen or ammonia gas, and the other is an alumina reduction method of firing a powder mixture of alumina and carbon in a reducing atmosphere. On the other hand, recently, since the organic aluminum method uses organic aluminum that can be refined by distillation or the like as a raw material, it has the merit that it is easy to make the product highly purified, and therefore, it has attracted attention.

【0003】[0003]

【発明が解決しようとする問題点】しかしながら、有機
アルミニウム法は得られる製品中に原料のアルキル基に
起因する不純物を炭素として3 wt%前後含有するという
問題点を有していた。しかし、上記焼結用の原料粉末と
しては酸素含有量もさることながら炭素含有量の少ない
ものが求められており、一般的にその上限は0.1 wt%程
度とされている。したがって、この炭素を除去するため
に有機アルミニウムとアンモニアの反応で生成した窒化
アルミニウム前駆体を酸化性ガス雰囲気下(空気中な
ど)での焼成や、特開平2-199009で開示されているよう
に、NH3 中での焼成を行って炭素含有量を減少する必要
があった。
However, the organoaluminum method has a problem in that the obtained product contains about 3 wt% of carbon as impurities due to the alkyl group of the raw material. However, the raw material powder for sintering is required to have a low carbon content as well as an oxygen content, and the upper limit is generally set to about 0.1 wt%. Therefore, in order to remove this carbon, the aluminum nitride precursor produced by the reaction of organoaluminum and ammonia is fired in an oxidizing gas atmosphere (such as in air), or as disclosed in JP-A-2-199009. , It was necessary to reduce the carbon content by firing in NH 3 .

【0004】酸化処理による場合は結果として過剰に酸
化されて酸素を数%含有することになって、製品を焼結
した際の熱伝導率悪化の原因となっていた。また、NH3
中での焼成は前駆体中の炭素の除去には大変有効な方法
であるものの、NH3 および電力原単位の悪化等、経済的
な問題、さらに高温下NH3 雰囲気に耐える材質が無いと
いうこともあり、安全性の点からも問題点を有してい
る。例えば特公平4-8364には有機アルミニウムとアンモ
ニアガスとを反応させて窒化アルミニウム粉末を製造す
る方法が公開されている。この方法はこれらの化合物を
200 ℃以下で混合した後に600 〜1300℃で反応をせしめ
るものであるが、200 ℃以下でこれらの化合物を混合し
た場合、混合部での閉塞が起きて長時間の運転が困難と
なる。さらに反応温度が600 〜1300℃と高く不経済であ
ること、高温下でアンモニア雰囲気に耐えうる素材がな
い事から安全性の面で問題がある。など、工業化するに
は問題点がある。
In the case of oxidation treatment, as a result, it is excessively oxidized and contains a few percent of oxygen, which causes deterioration of thermal conductivity when the product is sintered. Also, NH 3
Although calcination inside is a very effective method for removing carbon in the precursor, it is an economic problem such as deterioration of NH 3 and power consumption, and there is no material that can withstand NH 3 atmosphere at high temperature. There is also a problem in terms of safety. For example, Japanese Patent Publication No. 4364/1996 discloses a method of producing aluminum nitride powder by reacting organic aluminum with ammonia gas. This method uses these compounds
Although the reaction is carried out at 600 to 1300 ° C. after mixing at 200 ° C. or less, when these compounds are mixed at 200 ° C. or less, clogging occurs at the mixing part, and long-term operation becomes difficult. Furthermore, the reaction temperature is as high as 600 to 1300 ° C, which is uneconomical, and there is no material that can withstand an ammonia atmosphere at high temperatures, so there is a problem in terms of safety. There are problems in industrialization.

【0005】また有機アルミニウムガスとアンモニアガ
スとを反応させて窒化アルミニウム粉末を製造する方法
が特開平2-141408(窒化アルミニウムの製造方法)、特
開平2-217311(有機アルミニウムを二重管で供給するこ
とによる長時間運転)、特開平2-239109(有機アルミニ
ウムとアンモニアおよび系内全ガス比による生成粒子の
均一化)に開示され、蒸発温度および輸送温度を記載し
ているものもあるが蒸発後、反応器に至る迄の輸送時間
が100 秒以上であれば有機アルミニウムが一部分解し、
得られる窒化アルミニウム前駆体中の分解種としての炭
素含有量が増加する、この分解種は焼成中に揮散し難
く、得られる窒化アルミニウム中の炭素含有量までもが
増大する。
Further, a method for producing aluminum nitride powder by reacting an organoaluminum gas with an ammonia gas is disclosed in JP-A-2-141408 (aluminum nitride production method) and JP-A-2-217311 (organic aluminum is supplied by a double pipe). Operation for a long time) and Japanese Patent Laid-Open No. 2-239109 (homogenization of produced particles by the ratio of organoaluminum and ammonia and the total gas in the system), and the evaporation temperature and the transport temperature are described. After that, if the transportation time to reach the reactor is 100 seconds or more, some of the organoaluminum will decompose,
The content of carbon as a decomposing species in the obtained aluminum nitride precursor increases, the decomposing species are difficult to evaporate during firing, and the carbon content in the obtained aluminum nitride also increases.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記問題
点を解決するため、高純度の窒化アルミニウム粉末を安
価に製造する方法について鋭意研究を行ってきた。その
結果、炭素含有量を低く抑えた窒化アルミニウム粉末を
酸化処理やアンモニア中での焼成処理なしに製造する方
法を開発することができ、本発明を完成した。
In order to solve the above-mentioned problems, the inventors of the present invention have conducted earnest research on a method for inexpensively producing high-purity aluminum nitride powder. As a result, it was possible to develop a method for producing aluminum nitride powder having a low carbon content without oxidation treatment or firing treatment in ammonia, and completed the present invention.

【0007】即ち、本発明の窒化アルミニウムの製造法
は、蒸発させた有機アルミニウムとアンモニアを気相反
応させて窒化アルミニウム粉末を製造する方法におい
て、有機アルミニウムの蒸発を同伴ガスにより沸点以下
で行い、且つ反応器に到るまでの間の温度を沸点+20
℃以下に保持し、さらに蒸発後反応器に到るまでの到達
時間を100 秒以下で輸送して反応器内の200 〜600 ℃の
ゾーンに供給し、300 〜600 ℃においてアンモニアと気
相反応せしめ、得られた窒化アルミニウム前駆体を不活
性ガス中において1100〜1900℃で焼成することを特徴と
するものである。従来、有機アルミニウム法で得られる
窒化アルミニウム粉末は、残存する炭素を除去するため
に酸化ガス雰囲気中で700 ℃以上の温度で焼成する必要
があり、結果として過剰に酸化されて酸素を数%含有
し、この酸素原子が熱伝導率に悪影響を及ぼしていた。
本発明ではこの問題点を簡単なプロセスで解決でき、工
業的に極めて有利である。
That is, the method for producing aluminum nitride of the present invention is a method for producing aluminum nitride powder by subjecting vaporized organoaluminum and ammonia to a gas phase reaction to evaporate the organoaluminum by an entrained gas at a boiling point or lower, And the temperature before reaching the reactor is the boiling point +20
The temperature is kept below ℃, and the time required to reach the reactor after evaporation is transported within 100 seconds and supplied to the zone of 200 to 600 ℃ in the reactor, and the gas phase reaction with ammonia at 300 to 600 ℃. Then, the obtained aluminum nitride precursor is fired at 1100 to 1900 ° C. in an inert gas. Conventionally, aluminum nitride powder obtained by the organoaluminum method needs to be fired at a temperature of 700 ° C. or higher in an oxidizing gas atmosphere in order to remove residual carbon, and as a result, it is excessively oxidized and contains a few percent of oxygen. However, this oxygen atom adversely affected the thermal conductivity.
In the present invention, this problem can be solved by a simple process, which is extremely advantageous industrially.

【0008】[0008]

【発明の実施の形態】本発明の原料として使用される有
機アルミニウムはAlR1R2R3(R1、R2、R3はCH3、C2H5、n-C3H
7、i-C3H7などのC1〜C4のアルキル基のひとつ以上の組み
合わせ)で示されるものであり、代表的な有機アルミニ
ウムとしてトリメチルアルミニウム、トリエチルアルミ
ニウムがあげられる。これらはそれぞれ融点は15.3℃、
−45.5℃、沸点は127.1 ℃、186.6 ℃、という物性を有
し、いずれも常温で液体であるため、蒸留精製などの簡
単な手段で高純度化が容易で、得られる窒化アルミニウ
ム粉末は電子材料として好適に用いられるレベル迄の超
高純度化が可能である。また、工業的に生産する際の入
手の容易さも特徴のひとつとしてあげることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The organoaluminum used as the raw material of the present invention is AlR 1 R 2 R 3 (R 1 , R 2 and R 3 are CH 3 , C 2 H 5 and nC 3 H).
7 , a combination of one or more C 1 to C 4 alkyl groups such as iC 3 H 7 ), and typical organic aluminums include trimethylaluminum and triethylaluminum. These have melting points of 15.3 ℃,
It has the physical properties of -45.5 ° C and boiling points of 127.1 ° C and 186.6 ° C. Since they are liquids at room temperature, they can be easily purified by simple means such as distillation and purification, and the obtained aluminum nitride powder is an electronic material. It is possible to achieve ultra-high purification up to the level suitable for use as. Further, the ease of availability when industrially producing can be mentioned as one of the characteristics.

【0009】本発明は、精製有機アルミニウム化合物
を、水素、ヘリウム、窒素、アルゴンなどの不活性キャ
リアガスにより沸点以下で蒸発を行う。蒸発した有機ア
ルミニウムおよび不活性キャリアガスは、反応器迄の温
度を沸点+20 ℃以下、到達時間を100 秒以下で輸送
し、反応器内の200 〜600 ℃のゾーンに供給する。反応
後得られる窒化アルミニウム前駆体は炭素を2.0 wt%以
下含有するものの、この種の炭素種は熱分解によってガ
ス化揮散し易く、この窒化アルミニウム前駆体を不活性
ガス雰囲気中において1100〜1900℃の温度で焼成するこ
とによって容易に揮散脱炭しうる。得られる窒化アルミ
ニウム粉末は、炭素の含有量が0.1 wt%以下とする事は
容易である。
In the present invention, the purified organoaluminum compound is vaporized at a temperature below the boiling point by using an inert carrier gas such as hydrogen, helium, nitrogen and argon. The vaporized organoaluminum and inert carrier gas are transported to the reactor at a boiling point of + 20 ° C or less and an arrival time of 100 seconds or less, and are supplied to the zone of 200 to 600 ° C in the reactor. Although the aluminum nitride precursor obtained after the reaction contains 2.0 wt% or less of carbon, this kind of carbon species is easily gasified and volatilized by thermal decomposition, and the aluminum nitride precursor is heated to 1100 to 1900 ° C in an inert gas atmosphere. It can be easily volatilized and decarburized by firing at the temperature of. The obtained aluminum nitride powder can easily have a carbon content of 0.1 wt% or less.

【0010】本発明の方法では有機アルミニウムはその
沸点以下で蒸発させるのがよい。蒸発温度が沸点以上で
は有機アルミニウムの分解が起こり一部揮散脱炭の非常
に困難な分解種として生成物中に残留するため好ましく
ない。蒸発した有機アルミニウムの輸送は温度を沸点+
20 ℃以下に保ち、反応器迄の到達時間を100 秒以下で
輸送するのがよい。好ましくは到達時間を10秒以下で輸
送するのがよい。100秒以上では有機アルミニウムが一
部前述の揮散脱炭の非常に困難な分解種として生成物中
に残留するため好ましくない。沸点+20 ℃以上でも同
様に分解が起こり一部分解種として生成物中に残留する
ため好ましくない。
In the method of the present invention, organoaluminum is preferably vaporized below its boiling point. When the evaporation temperature is higher than the boiling point, decomposition of organoaluminum occurs, and a part of it is vaporized and remains in the product as a decomposed species which is very difficult to decarburize, which is not preferable. The transport of vaporized organoaluminum causes the temperature to rise to the boiling point +
It is recommended to keep the temperature below 20 ° C and transport it within 100 seconds to reach the reactor. It is preferable that the transportation time is 10 seconds or less. If it is 100 seconds or more, some of the organoaluminum remains in the product as a decomposition species that is very difficult to volatilize and decarburize. Even at a boiling point of + 20 ° C or higher, decomposition similarly occurs, and some decomposition species remain in the product, which is not preferable.

【0011】有機アルミニウムは反応器の200 〜600 ℃
の温度ゾーンに吹き込むのがよい。200 ℃以下では品質
上問題ないもののアンモニアとの混合および反応過程で
粘着性物質を生成し、反応器内の閉塞が起こり長時間運
転が困難である。また600 ℃以上では有機アルミニウム
の分解が促進され分解種として生成物中に残存する炭素
分が増加し、更に分解物が供給口で閉塞し長時間運転が
困難となるなど好ましくない。反応は300〜600℃で行
う。
Organoaluminum is from 200 to 600 ° C in the reactor.
Blow into the temperature zone. If the temperature is below 200 ° C, there is no problem in quality, but a sticky substance is produced in the process of mixing with ammonia and the reaction process, clogging the inside of the reactor and making long-term operation difficult. On the other hand, when the temperature is 600 ° C. or higher, the decomposition of organoaluminum is promoted, the carbon content remaining in the product as a decomposition species increases, and the decomposition product is clogged at the supply port, which makes it difficult to operate for a long time. The reaction is carried out at 300-600 ° C.

【0012】得られた窒化アルミニウム前駆体の焼成
は、不活性ガス中で1100〜1900℃の温度で行う。不活性
ガスとしては、水素、ヘリウム、窒素、アルゴン等から
選ぶことが可能であるが、経済的な面から考えると窒素
ガスが好ましい。温度は1100℃でも十分であるが、残留
有機物の揮散は1400℃以上でさらに良くなる。しかし、
1900℃を越えると部分的なシンタリングが発生し製品の
歩留まりを悪化させる。炭素濃度の分析にはセラミック
ス中炭素・水素・窒素分析装置(LECO社製)を用いて容
易に定量することができる。
The aluminum nitride precursor obtained is fired at a temperature of 1100-1900 ° C. in an inert gas. As the inert gas, hydrogen, helium, nitrogen, argon or the like can be selected, but nitrogen gas is preferable from the economical point of view. A temperature of 1100 ° C is sufficient, but volatilization of residual organic matter is further improved at 1400 ° C or higher. But,
If the temperature exceeds 1900 ° C, partial sintering occurs and the product yield is deteriorated. The carbon concentration can be easily quantified using a carbon / hydrogen / nitrogen analyzer (made by LECO) in ceramics.

【0013】[0013]

【実施例】以下に本発明を実施例によって具体的に例示
するが、本発明はこれらの実施例に限定されるものでは
ない。
EXAMPLES The present invention will now be specifically described by way of examples, but the present invention is not limited to these examples.

【0014】実施例1 蒸発器に窒素ガスをキャリアーとして毎時3.4 Kg、トリ
エチルアルミニウムを毎時2.5 Kgフィードし170 ℃で蒸
発させた。蒸発したトリエチルアルミニウムは反応器ま
での温度を200 ℃、到達時間を1.2 秒で輸送した。反応
器(空塔反応器、内径8cm 、長さ6m)を外部加熱により
480 ℃に制御して反応器内に挿入された反応器内吹き出
し部は300 ℃であった。反応器内でアンモニアと反応さ
せてフューム状の反応生成物をSUS316製の焼結金属フィ
ルターにより補集したところ毎時約0.8Kg の生成物(窒
化アルミニウム前駆体)を得た。この結果得られた生成
物をカーボン製坩堝にいれて、窒素ガス雰囲気下で1600
℃に昇温し、同温度で3時間保持した後室温まで降温
し、窒化アルミニウム粉末を得た。評価結果を表1に示
す。
Example 1 3.4 Kg / hour and 2.5 Kg / hour of triethylaluminum were fed to the evaporator by using nitrogen gas as a carrier and evaporated at 170 ° C. The evaporated triethylaluminum was transported to the reactor at a temperature of 200 ° C and an arrival time of 1.2 seconds. External heating of the reactor (empty tower reactor, inner diameter 8 cm, length 6 m)
The blow-out part in the reactor inserted into the reactor while controlling the temperature to 480 ° C was 300 ° C. When the fumed reaction product was reacted with ammonia in the reactor and collected with a SUS316 sintered metal filter, about 0.8 Kg of product (aluminum nitride precursor) per hour was obtained. The resulting product was placed in a carbon crucible and placed under a nitrogen gas atmosphere for 1600
The temperature was raised to 0 ° C., the temperature was maintained for 3 hours, and then the temperature was lowered to room temperature to obtain an aluminum nitride powder. Table 1 shows the evaluation results.

【0015】実施例2 蒸発したトリエチルアルミニウムの反応器までの到達時
間を3.7 秒で行った他は実施例1と同様にして窒化アル
ミニウム粉末を得た。ただし蒸発させたトリエチルアル
ミニウムの滞留時間は蒸発器から反応器までの配管径お
よび長さを変える事で行った。評価結果を表1に示す。
Example 2 An aluminum nitride powder was obtained in the same manner as in Example 1 except that the time required for the evaporated triethylaluminum to reach the reactor was 3.7 seconds. However, the residence time of the evaporated triethylaluminum was changed by changing the pipe diameter and length from the evaporator to the reactor. Table 1 shows the evaluation results.

【0016】実施例3 蒸発したトリエチルアルミニウムの反応器までの到達時
間を8.6 秒で行った他は実施例1と同様にして窒化アル
ミニウム粉末を得た。評価結果を表1に示す。
Example 3 An aluminum nitride powder was obtained in the same manner as in Example 1 except that the time required for the evaporated triethylaluminum to reach the reactor was 8.6 seconds. Table 1 shows the evaluation results.

【0017】実施例4 蒸発したトリエチルアルミニウムの反応器までの到達時
間を53.2秒で行った他は実施例1と同様にして窒化アル
ミニウム粉末を得た。評価結果を表1に示す。
Example 4 An aluminum nitride powder was obtained in the same manner as in Example 1 except that the time required for the evaporated triethylaluminum to reach the reactor was 53.2 seconds. Table 1 shows the evaluation results.

【0018】実施例5 反応器を700 ℃で制御し、トリエチルアルミニウムの反
応器内吹き出し部の温度を300 ℃で行った他は実施例1
と同様にして窒化アルミニウム粉末を得た。評価結果を
表1に示す。
Example 5 Example 1 was repeated except that the reactor was controlled at 700 ° C. and the temperature of the blowing portion of triethylaluminum in the reactor was 300 ° C.
Aluminum nitride powder was obtained in the same manner as in. Table 1 shows the evaluation results.

【0019】実施例6 実施例2で得られた生成物(窒化アルミニウム前駆体)
をカーボン製坩堝にいれて、窒素ガス雰囲気下で1200℃
に昇温し、同温度で3時間保持した後室温まで降温し、
窒化アルミニウム粉末を得た。評価結果を表1に示す。
Example 6 Product obtained in Example 2 (aluminum nitride precursor)
In a carbon crucible at 1200 ° C under a nitrogen gas atmosphere.
The temperature was raised to, held at the same temperature for 3 hours, and then cooled to room temperature.
An aluminum nitride powder was obtained. Table 1 shows the evaluation results.

【0020】比較例1 トリエチルアルミニウムの蒸発温度を200 ℃で行った他
は実施例1と同様にして、窒化アルミニウム粉末を得
た。評価結果を表1に示す。
Comparative Example 1 An aluminum nitride powder was obtained in the same manner as in Example 1 except that the evaporation temperature of triethylaluminum was 200 ° C. Table 1 shows the evaluation results.

【0021】比較例2 トリエチルアルミニウムの蒸発温度を240 ℃で行った他
は実施例1と同様にして、窒化アルミニウム粉末を得
た。評価結果を表1に示す。
Comparative Example 2 An aluminum nitride powder was obtained in the same manner as in Example 1 except that the evaporation temperature of triethylaluminum was 240 ° C. Table 1 shows the evaluation results.

【0022】比較例3 蒸発したトリエチルアルミニウムの反応器までの温度を
240 ℃で行った他は実施例1と同様にして窒化アルミニ
ウム粉末を得た。評価結果を表1に示す。
Comparative Example 3 The temperature of evaporated triethylaluminum to the reactor was measured.
Aluminum nitride powder was obtained in the same manner as in Example 1 except that the treatment was carried out at 240 ° C. Table 1 shows the evaluation results.

【0023】比較例4 蒸発したトリエチルアルミニウムの反応器までの到達時
間を112 秒で行った他は実施例1と同様にして窒化アル
ミニウム粉末を得た。評価結果を表1に示す。
Comparative Example 4 An aluminum nitride powder was obtained in the same manner as in Example 1 except that the time required for the evaporated triethylaluminum to reach the reactor was 112 seconds. Table 1 shows the evaluation results.

【0024】比較例5 トリエチルアルミニウムの反応器内吹き出し部の温度を
160 ℃で行った他は実施例1と同様にして行った。ただ
し反応器内吹き出し部の温度は反応器の温度分布を利用
して吹き出し位置を変えることでおこなった。運転結
果、13時間後供給ラインの圧力上昇が起こり運転を中止
した、装置を解体し点検を行ったところ供給部から反応
器内部にかけて灰白色の固形物が固着しており反応器が
閉塞していた。
Comparative Example 5 The temperature of the outlet of triethylaluminum in the reactor was adjusted to
The same procedure as in Example 1 was repeated except that the test was carried out at 160 ° C. However, the temperature of the blowing part in the reactor was changed by changing the blowing position by utilizing the temperature distribution of the reactor. As a result of operation, after 13 hours, the supply line pressure increased and operation was stopped.When the equipment was disassembled and inspected, an off-white solid was stuck from the supply section to the inside of the reactor and the reactor was blocked. .

【0025】比較例6 反応器を700 ℃で制御し、トリエチルアルミニウムの反
応器内吹き出し部の温度を630 ℃で行った他は実施例1
と同様にして行った結果、7 時間後供給ラインの圧力上
昇が起こり運転を中止した、装置を解体し点検を行った
ところ供給部に白銀色の固形物が固着しており供給口が
閉塞していた。得られた窒化アルミニウム粉末の評価結
果を表1に示す。
Comparative Example 6 Example 1 was repeated except that the reactor was controlled at 700 ° C. and the temperature of the blowing portion of triethylaluminum in the reactor was 630 ° C.
After 7 hours, the supply line pressure increased and operation was stopped.The equipment was disassembled and inspected, and a white silver solid adhered to the supply section and the supply port was blocked. Was there. Table 1 shows the evaluation results of the obtained aluminum nitride powder.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】本発明の方法によれば、反応後の生成し
た窒化アルミニウム前駆体中の炭素は、不活性ガス雰囲
気中で焼成することによりガス化、揮散しやすく有効に
脱炭素処理を行うことができる。これは、プロセスおよ
び装置面において極めて容易でありコスト的にも有利で
ある。また、品質でも優れた窒化アルミニウム粉末を工
業的に得ることができる。
According to the method of the present invention, the carbon in the aluminum nitride precursor produced after the reaction is easily gasified and volatilized by firing in an inert gas atmosphere, and effectively decarbonized. be able to. This is extremely easy in terms of process and equipment and is advantageous in terms of cost. Further, it is possible to industrially obtain an aluminum nitride powder excellent in quality.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩根 伸久 大阪府高石市高砂1丁目6番地 三井東圧 化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuhisa Iwane 1-6 Takasago, Takaishi-shi, Osaka Mitsui Toatsu Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】蒸発させた有機アルミニウムとアンモニア
を気相反応させて窒化アルミニウム粉末を製造する方法
において、有機アルミニウムの蒸発を同伴ガスにより沸
点以下で行い、且つ反応器に到るまでの間の温度を沸点
+20 ℃以下に保持し、さらに蒸発後反応器に到るまで
の到達時間を100 秒以下で輸送して反応器内の200 〜60
0 ℃のゾーンに供給し、300 〜600 ℃においてアンモニ
アと気相反応せしめ、得られた窒化アルミニウム前駆体
を不活性ガス中において1100〜1900℃で焼成することを
特徴とする窒化アルミニウムの製造方法。
1. A method for producing an aluminum nitride powder by subjecting vaporized organoaluminum and ammonia to a gas phase reaction, wherein vaporization of organoaluminum is carried out by an entrained gas at a temperature not higher than the boiling point and before reaching the reactor. The temperature is kept below the boiling point + 20 ° C, and the time required to reach the reactor after evaporation is transported within 100 seconds and the temperature of 200 to 60
A method for producing aluminum nitride, characterized in that the aluminum nitride precursor is supplied to a zone of 0 ° C., gas-phase reacted with ammonia at 300 to 600 ° C., and the obtained aluminum nitride precursor is fired at 1100 to 1900 ° C. in an inert gas. .
【請求項2】有機アルミニウムがトリアルキルアルミニ
ウムである請求項1記載の窒化アルミニウムの製造方
法。
2. The method for producing aluminum nitride according to claim 1, wherein the organic aluminum is trialkylaluminum.
JP33484995A 1995-12-22 1995-12-22 Manufacturing method of aluminum nitride Expired - Fee Related JP3585302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33484995A JP3585302B2 (en) 1995-12-22 1995-12-22 Manufacturing method of aluminum nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33484995A JP3585302B2 (en) 1995-12-22 1995-12-22 Manufacturing method of aluminum nitride

Publications (2)

Publication Number Publication Date
JPH09169507A true JPH09169507A (en) 1997-06-30
JP3585302B2 JP3585302B2 (en) 2004-11-04

Family

ID=18281915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33484995A Expired - Fee Related JP3585302B2 (en) 1995-12-22 1995-12-22 Manufacturing method of aluminum nitride

Country Status (1)

Country Link
JP (1) JP3585302B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014094880A (en) * 2012-10-11 2014-05-22 Ube Ind Ltd Al-N-H BASED COMPOUND POWDER, AND METHOD FOR PRODUCING THE SAME
JP6271665B1 (en) * 2016-09-20 2018-01-31 國家中山科學研究院 Method for producing spherical aluminum nitride powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014094880A (en) * 2012-10-11 2014-05-22 Ube Ind Ltd Al-N-H BASED COMPOUND POWDER, AND METHOD FOR PRODUCING THE SAME
JP6271665B1 (en) * 2016-09-20 2018-01-31 國家中山科學研究院 Method for producing spherical aluminum nitride powder

Also Published As

Publication number Publication date
JP3585302B2 (en) 2004-11-04

Similar Documents

Publication Publication Date Title
CN102245503B (en) Method for producing high-purity silicon nitride
JP3585302B2 (en) Manufacturing method of aluminum nitride
JPS6111886B2 (en)
EP0385096B1 (en) Process for producing sinterable crystalline aluminum nitride powder
JP2736548B2 (en) Method for producing aluminum nitride and continuous furnace for producing the same
JP3539777B2 (en) Manufacturing method of aluminum nitride
JPS62100404A (en) Production of pulverous hexagonal boron nitride having high purity
JP2726703B2 (en) Method for producing aluminum nitride powder
JPH0553723B2 (en)
JPH06135715A (en) Production of high purity rare earth metal halide
JP3325344B2 (en) Method for producing aluminum nitride powder
KR102475700B1 (en) Preparation method of silicon powder, and preparation method of silicon nitride using the same
JPS62100403A (en) Production of fine powder of hexagonal boron nitride having high purity
JP3385059B2 (en) Method for producing high-purity aluminum nitride powder
JPH01176208A (en) Production of fine powder of boron nitride of hexagonal system
JP2670331B2 (en) Method for producing aluminum nitride powder
JPS6168310A (en) Production of silicon nitride having high purity using silicon chip as raw material
JPS62197317A (en) Production of vanadium suboxide
JPH0264100A (en) Production of aln whisker
EP0225412A1 (en) Production of silicon imides and of silicon nitride thereof
NO178999B (en) Process for reducing carbon pollutants in finely divided ceramic powders
JPS61168509A (en) Production of hexagonal boron nitride
JPH03199112A (en) Aluminum nitride powder and its production
JPS6360102A (en) Production of high-purity aluminum nitride powder
JPS60174807A (en) Refining method of fine particle

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040629

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Effective date: 20040803

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090813

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100813

LAPS Cancellation because of no payment of annual fees