JPS62197317A - Production of vanadium suboxide - Google Patents

Production of vanadium suboxide

Info

Publication number
JPS62197317A
JPS62197317A JP3975386A JP3975386A JPS62197317A JP S62197317 A JPS62197317 A JP S62197317A JP 3975386 A JP3975386 A JP 3975386A JP 3975386 A JP3975386 A JP 3975386A JP S62197317 A JPS62197317 A JP S62197317A
Authority
JP
Japan
Prior art keywords
vanadium
reaction vessel
gas
nh4vo3
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3975386A
Other languages
Japanese (ja)
Other versions
JPH0742114B2 (en
Inventor
Kunimitsu Tsukagoshi
塚越 邦光
Hiroshi Aragaki
新垣 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Shinko Corp
Shinko Chemical Co Ltd
Original Assignee
Shinko Chemical Co Ltd
Shinko Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Chemical Co Ltd, Shinko Chemical Industries Co Ltd filed Critical Shinko Chemical Co Ltd
Priority to JP61039753A priority Critical patent/JPH0742114B2/en
Publication of JPS62197317A publication Critical patent/JPS62197317A/en
Publication of JPH0742114B2 publication Critical patent/JPH0742114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To produce vanadium suboxide at a low cost without feeding reducing gas from the outside by introducing NH4VO3 into an inactive heat resistant reaction vessel and heating it at the specified temp. and removing air by means of generated gaseous NH3 and also holding the inside of the vessel in the specified conditions. CONSTITUTION:NH4VO3 or NH4VO3 mixed with <=15% V2O5 is introduced into an inactive heat resistant reaction vessel and heated at 380-750 deg.C in 0.5-30 deg.C/min temp. raising velocity so that the outside air does not infiltrate thereinto and held in this state for 30min-3hr. In the meantime, NH4VO3 incorporated in the reaction vessel is pyrolytically decomposed and gaseous NH3 is generated and gas pressure is raisen. Therefore the gas pressure is held in about 3atm or below by a pressure-control valve, an excess gas is discharged together with air to the outside of the system. In the inside of the reaction vessel, higher vanadium oxide (V2O5 or the like) produced by the pyrolysis of NH4VO3 is reduced to V6O13 or V2O4 of suboxide by gaseous NH3. Thereafter the reaction reactor is cooled while keeping the outside air from infiltrating thereinto and vanadium suboxide is taken out from the reaction vessel.

Description

【発明の詳細な説明】 〔利用される技術分野〕 この発明は各種センナに用いられる機能的材料、合金製
造材料、又は触媒に用いられる素材としてのパナジクム
低級酸化物殊にVliO13又はV2O4を製造する方
法に関する。
Detailed Description of the Invention [Technical field to be used] This invention is for producing panazicum lower oxides, especially VliO13 or V2O4, as functional materials used in various types of senna, alloy production materials, or materials used in catalysts. Regarding the method.

〔従来技術及び問題点〕[Prior art and problems]

従来V6O13’P V2O4を製造する方法としては
NH4VO3を加熱熱分解して、VzOsを製造し、こ
れK フII シェフ (CHsCH= C= C)h
 ) 、NHa 又に2802を別途供給し、還元する
方法が知られているが、工程が2工程になる。
The conventional method for producing V2O4 is to thermally decompose NH4VO3 to produce VzOs.
), NHa, and a method of separately supplying 2802 and reducing it is known, but it requires two steps.

またバナジウム酸塩に鉄、ニッケル、コバルトを添加し
、更に還元ガス(水素、硫化水素等)を用いて550乃
至65’Ot:に加熱減圧してV6O13を製造してい
ることが特公昭45−14409号特許公報によって知
られているが、添加金属が目的物中に残り、純度の高い
ものが得られない。
It is also known that V6O13 is produced by adding iron, nickel, and cobalt to vanadate salts, and then heating and reducing the pressure to 550 to 65'Ot using reducing gas (hydrogen, hydrogen sulfide, etc.). Although this method is known from Patent Publication No. 14409, the added metal remains in the target product, making it impossible to obtain a product with high purity.

またV6O13を製造する方法として、V z Osと
V2O5を当量混合し、封管中加熱して得られる方法も
知られているが、それぞれV2O5、V2O3を先ず製
造し、後V、O,とV2O5とを反応させ、る2工程に
なるだけでなく固相反応であるため、反応にも時間を要
する。
Another known method for producing V6O13 is to mix equivalent amounts of VzOs and V2O5 and heat them in a sealed tube. Not only is it a two-step reaction in which the

〔解決しようとする問題点〕[Problem to be solved]

この発明は従来NH4VO,を焼成するときに熱分解し
て、 VzOsを製造するときに発生するNHaガスに
着目し、このNHaを利用し、NH4VOaを焼成冷却
する一連の過程において、他から還元ガスを供給するこ
となく、工程を簡素化し、廉価に目的物を製造するため
の方法を市場に提供するためである。
This invention focuses on the NHa gas generated when VzOs is produced by thermally decomposing it when NH4VO is conventionally fired, and utilizes this NHa to generate reducing gas from other sources in a series of firing and cooling processes of NH4VOa. This is to provide the market with a method for simplifying the process and manufacturing the desired product at a low cost without having to supply it.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は出発物質としてメタバナジン酸アンモニア 
(NH4VO5) (Q単味乃至前記NH4VO3と五
酸化バナジウム(VzOs)との混合物を不活性耐熱反
応容器に外気が侵入できないように装入し、温度上昇速
度0.5乃至30℃/mで380乃至T50′cまで加
熱し、前記出発物質中のNH4VO3が熱分解して発生
するアンモニアガス(NHsガス)によって、前記反応
容器中の空気を反応容器外に追い出し、かつ前記容器中
の圧力を外気より高く約3atm以内に保持しながら3
0分乃至3時間その状態を保持し、反応容器中の前記N
Haガスによって、NH4VO3より熱分解して生成し
たもの、乃至は出発物質中に含まれる製造目的物よりも
高級のバナジウム酸化物を還元し、後これを外気と接触
しないようにしながら冷却することを特徴とするバナジ
ウム低級酸化物の製法とすることによって問題点を解決
した。
This invention uses ammonia metavanadate as a starting material.
(NH4VO5) (Q alone or the mixture of NH4VO3 and vanadium pentoxide (VzOs) was charged into an inert heat-resistant reaction container so that outside air could not enter, and the temperature was increased to 380°C at a temperature increase rate of 0.5 to 30°C/m. The air in the reaction vessel is expelled from the reaction vessel by the ammonia gas (NHs gas) generated by thermal decomposition of NH4VO3 in the starting material, and the pressure in the vessel is reduced to outside air. 3 while holding within about 3 atm higher.
This state is maintained for 0 minutes to 3 hours, and the N in the reaction vessel is
By using Ha gas, the vanadium oxide produced by thermal decomposition of NH4VO3 or the vanadium oxide higher than the production target contained in the starting material is reduced, and then it is cooled while avoiding contact with the outside air. The problem was solved by using a unique manufacturing method for vanadium lower oxide.

〔方法及び作用〕[Method and action]

叙上の方法を更に具体的に説明すれば、例えば内壁面が
磁器製品で内張り、又は加熱炉の中に磁器製などの反応
容器、若(は全体が磁器製のロータリーキルンなどの中
に所定量の出発物質(原材料) トL、 テNH4VO
3又に215 %以内V2O5全混合したものを装入し
、これらの反応容器に外気が侵入しないようにし、反応
容器中の温度上昇速度が前述の0.5乃至3Q’C/m
の範囲内で加熱し、前記反応容器中の温度が380乃至
750 ’CKなるまで加熱する。
To explain the above method more specifically, for example, the inner wall surface is lined with a porcelain product, or a reaction vessel made of porcelain is placed in a heating furnace, or a predetermined amount is placed in a rotary kiln made entirely of porcelain. Starting materials (raw materials) for L, NH4VO
A total mixture of V2O5 of 215% or less is charged in three prongs, and outside air is prevented from entering these reaction vessels, and the temperature rise rate in the reaction vessels is kept within the range of 0.5 to 3Q'C/m as mentioned above.
The temperature in the reaction vessel is 380 to 750 CK.

この加熱方法は内部燃焼以外ならば特に限定はなく、電
気炉、高周波、電磁波、外部燃焼式など適宜の方法で行
う。
This heating method is not particularly limited as long as it is other than internal combustion, and may be performed using an appropriate method such as an electric furnace, high frequency, electromagnetic waves, or external combustion.

このようKして、反応温度に達したならばその状態を3
0分乃至3時間程度保持される。
K in this way, and when the reaction temperature is reached, the state is changed to 3
It is maintained for about 0 minutes to 3 hours.

前記の加熱開始より反応温度を保持する間に反応容器中
のNH4VOsは熱分解を起し、NHaガスを発生し、
反応容器中のガス圧は上昇するが、調圧弁によって、反
応容器中のガス圧を約3atm以下に保持し、余分のガ
スを系外に放出し、−緒に反応容器中の空気も外部に追
い出す。
While maintaining the reaction temperature from the start of heating, NH4VOs in the reaction vessel undergoes thermal decomposition, generating NHa gas,
The gas pressure in the reaction vessel increases, but the pressure regulating valve maintains the gas pressure in the reaction vessel below approximately 3 atm, releases excess gas to the outside of the system, and simultaneously releases the air in the reaction vessel to the outside. kick out

このような状態において、反応容器中でNH40Va、
より熱分解したV6O13又はV20’4よりも高級の
バナジウム酸化物例えばV 20 sなどは先のNH3
カスによって還元し、前記の製造目的物たるV6O13
又はV2O4となる。
Under such conditions, NH40Va,
Vanadium oxides higher than thermally decomposed V6O13 or V20'4, such as V 20 s, are
V6O13, which is the target product of the above production, is reduced by the residue.
Or it becomes V2O4.

その後反応容器を外気が侵入しないようにしながら冷却
し、冷却後目的物たる前記バナジウム低級酸化物を反応
容器より取り出す。
Thereafter, the reaction vessel is cooled while preventing outside air from entering, and after cooling, the objective lower vanadium oxide is taken out from the reaction vessel.

前述の反応容器冷却時に外部より今年活性ガスを吹き込
んで冷却しても、また不活性ガスが充満している別個の
容器中で前記の還元して製造されたバナジウム低級酸化
物を冷却し、反応容器を次のバッチに用い、熱エネルギ
ーを有効に利用するようにしても、この発明の方法とし
ては同一である。
Even if an active gas is blown into the reaction vessel from the outside to cool it, the vanadium lower oxide produced by the reduction is cooled in a separate vessel filled with an inert gas, and the reaction continues. Even if the container is used for the next batch and the thermal energy is utilized effectively, the method of the present invention remains the same.

〔効 果〕〔effect〕

このようKこの発明の方法においては、不活性により、
かつ内部圧力を前記の範囲とすることによって、何ら外
部から還元ガスを供給することな造コストを低減できる
In this way, in the method of this invention, due to inertness,
Moreover, by setting the internal pressure within the above range, manufacturing costs can be reduced without supplying any reducing gas from the outside.

A、 VsOlgを製造する場合 実験例1゜ 環状炉中に直径?5,1m、長さ50clLの磁器製ス
リーブよりなる反応容器を横置し、この中に出発物質(
原材11’r ) タルNH4VO3’t 2009 
人し、両端を閉止して、前記反応容器を軸線周りに回転
させながら、環状炉中の温度を上昇させ、前記反応容器
中の温度上昇速度1.8で7mとし、反応温度440ピ
まで加熱し、後反応温度を3時間保持した。
A. When producing VsOlg Experimental example 1゜Diameter in annular furnace? A reaction vessel made of a porcelain sleeve with a length of 5.1 m and 50 clL was placed horizontally, and the starting material (
Raw material 11'r) Tal NH4VO3't 2009
Then, with both ends closed, the temperature in the annular furnace was increased while rotating the reaction vessel around the axis, and the temperature in the reaction vessel was increased to 7 m at a temperature increase rate of 1.8, and heated to a reaction temperature of 440 psi. The post-reaction temperature was maintained for 3 hours.

後室温まで冷却して製品を反応容器よりとり出した。After cooling to room temperature, the product was taken out from the reaction vessel.

前記の加熱開始後、冷却完了までの全過程において、反
応容器中に空気が入らないよう忙した。
During the entire process from the start of heating to the completion of cooling, care was taken to prevent air from entering the reaction vessel.

また反応容器中の圧力が丁度3atm以上になったとき
は逆上調圧弁を押し開いて、内部発生ガスを放出させた
。而してVsO□3を得た。
Further, when the pressure in the reaction vessel reached exactly 3 atm or more, the reverse pressure regulating valve was pushed open to release the internally generated gas. Thus, VsO□3 was obtained.

実験例2゜ 実験例1.と同じ設備を用い、出発物質として重量比テ
NH4VO3ヲ90 m 、V2O5ヲ10 郡全体ト
L。
Experimental example 2゜Experimental example 1. Using the same equipment as the starting materials, the weight ratios were 90 m of NH4VO3 and 10 m of V2O5.

て合計500yの原材料を用い、温度上昇速度2.0℃
/馴とし、反応温度470℃、反応温度保持時間3時間
とし、その他は実験例1と同様の方法とし、V6O13
を得た。
Using a total of 500y of raw materials, the temperature rise rate was 2.0℃.
/ acclimatized, reaction temperature was 470°C, reaction temperature holding time was 3 hours, other methods were the same as in Experimental Example 1, V6O13
I got it.

B、 V2O4を製造する場合 実験例6゜ 実験例1.と同一の設備を用い、出発物質としてNH4
VO3’l 600 f! !! ’JE L、温度上
昇速度231/馴、反応温度700tとし、その他実験
例1゜と同様の方法とし、V2O4を得た。
B. When producing V2O4 Experimental example 6゜Experimental example 1. using the same equipment as NH4 as the starting material.
VO3'l 600f! ! ! V2O4 was obtained by using the same method as in Experimental Example 1, except that the temperature rise rate was 231/cm2, the reaction temperature was 700 t, and the reaction temperature was 700 t.

実験例4゜ 容量100kg用の実験用ロータリーキルンを用い、N
H4VOaを50q、入れ、温度上昇速度25.6”C
/ m、反応温度630℃とし、他は実験例1.と同様
としV2O4を得た。
Experimental Example 4 Using an experimental rotary kiln with a capacity of 100 kg, N
Add 50q of H4VOa, temperature rise rate 25.6”C
/ m, reaction temperature was 630°C, and other conditions were as in Experimental Example 1. V2O4 was obtained in the same manner as above.

C0比較実験 実験例5゜ 実験例1.と同一の設備を用いNH4VO3を6001
、温度上昇速度i 、Q ’C/ wとし、反応温度3
50″Cとし、他は実験例1、と同一の方法を実施した
ところ、製品はVans sの外、V2O3、及びその
他のバナジウム酸化物を含有したものであった。
C0 Comparative Experiment Experimental Example 5゜Experimental Example 1. NH4VO3 using the same equipment as 6001
, temperature increase rate i, Q'C/w, reaction temperature 3
When the temperature was 50''C and the same method as in Experimental Example 1 was carried out, the product contained Vans S, V2O3, and other vanadium oxides.

実験例6゜ 出発物質としてV2O5のみを400y、温度上昇速度
2.0℃/W、反応温度450″C1その他、実験例1
.と同一の方法を実施したところ、全く反応はなく V
zOsそのま〜であった。
Experimental Example 6゜400y using only V2O5 as the starting material, temperature increase rate 2.0℃/W, reaction temperature 450''C1, etc. Experimental Example 1
.. When the same method as V was carried out, there was no reaction at all.
zOs was just like that.

実験例Z 実験例1.と同一の設備を用い、出発物質としてNH4
VO3をs o o y、温度上昇速R10,4r/s
us。
Experimental example Z Experimental example 1. using the same equipment as NH4 as the starting material.
VO3 so o y, temperature rise rate R10, 4r/s
us.

反応温度530℃として、他は実験例1、と同一の方法
により、製品を得たところV2O4以外のバナジウム酸
化物例えばV2O4が混在した。
When a product was obtained by the same method as in Experimental Example 1 except that the reaction temperature was 530°C, vanadium oxides other than V2O4, such as V2O4, were mixed.

実験例8゜ 実験例1.と同一の設備を用い、出発物質としてNH4
VOaを300y、温度上昇速度32℃/ Ul+ 。
Experimental example 8゜Experimental example 1. using the same equipment as NH4 as the starting material.
VOa is 300y, temperature rise rate is 32℃/Ul+.

反応温度160℃とし、その他は実験例1.と同一の方
法により製品を得たところ、還元が進み過ぎ一部にV2
O3が発生し、V2O4と混在した。
The reaction temperature was 160°C, and the other conditions were as in Experimental Example 1. When the product was obtained using the same method as above, the reduction progressed too much and some parts showed V2.
O3 was generated and mixed with V2O4.

叙上の各実験例を一括表にすれば次に示す通りである。The following table shows the experimental examples described above.

       − 前記光に示す実験例より次のことが指摘できる。      − The following points can be pointed out from the experimental examples shown in the above-mentioned light.

vaotsを製造するとき、 反応温度が380″C以下では還元が十分に進まずs 
VzOsが残留し、500″C以上では還元が進みすぎ
、V2O4、V2O3ができ易くなる。
When producing vaots, if the reaction temperature is below 380"C, reduction will not proceed sufficiently.
VzOs remains, and at temperatures above 500″C, reduction progresses too much and V2O4 and V2O3 are easily formed.

また反応容器中の圧力がi atm以下では外気、特に
酸素を吸い込み酸化され易く、かつ1atm以下で処理
するには気密装置や減圧ポンプを必要とし、方法が面倒
である。他方3atm以上では安全面からも、反応容器
を耐圧性にしなければならずその方法を実施の為の設備
に特殊のものを必要とし、製品コストを押し上げるが、
この方法においては、特別な減圧ポンプも、耐圧容器も
必要とせずに実施できる。
Furthermore, if the pressure in the reaction vessel is less than 1 atm, outside air, especially oxygen, is easily sucked in and oxidized, and processing at 1 atm or less requires an airtight device or a pressure reducing pump, making the method cumbersome. On the other hand, if the pressure is higher than 3 atm, the reaction vessel must be made pressure resistant from a safety standpoint, and special equipment is required to carry out the method, which increases product cost.
This method can be carried out without the need for special vacuum pumps or pressure vessels.

また温度上昇速度を0,5′c/シ乃至7″”C/ m
ix トしたために、NH4VO3の熱分解で発生する
NH,ガスによって、反応容器中の空気の追い出しと、
その後のNH3ガスは反応温度に既に達したV6O13
よりも高級のバナジウム酸化物との還元反応に有効に利
用されるが(実験例1.2.参照)、温度上昇速度が前
述の範囲よりも遅いときは反応容器中の温度が反応温度
に達する前に発生したNHaガスによる圧力が上昇して
、このNlhガスが反応容器乃至は系外に放出され、発
生したNHsガスが還元反応に充分利用されない。他方
温度上昇速度が7で/翔よりも速いと反応がV2O4ま
で進み、Vistaが得られない。
In addition, the temperature increase rate is set from 0.5'c/cm to 7''C/m.
ix, the air in the reaction vessel is expelled by the NH gas generated by the thermal decomposition of NH4VO3,
The subsequent NH3 gas is V6O13 which has already reached the reaction temperature.
(See Experimental Example 1.2.) However, when the rate of temperature rise is slower than the above range, the temperature in the reaction vessel reaches the reaction temperature. The pressure due to the previously generated NHa gas increases, and this Nlh gas is released from the reaction vessel or outside the system, and the generated NHs gas is not sufficiently utilized for the reduction reaction. On the other hand, if the temperature rise rate is faster than 7/sho, the reaction will proceed to V2O4 and Vista will not be obtained.

V2O4を製造する場合 反応温度が580℃以下では還元が十分に進まず、75
0℃以上では還元が進み過ぎ、V2O3が一部に生成さ
れる。
When producing V2O4, if the reaction temperature is below 580°C, the reduction will not proceed sufficiently, and the
At temperatures above 0°C, reduction proceeds too much and V2O3 is partially generated.

また温度上昇速度が15乃至30″C/mの@みよりも
遅いと反応容器内のNHaガスの分圧が低く温度の高い
V2O4を得ることができず、また、この仏反上昇範囲
よりも速いとMもガスの発生が激し鉋ぎV2O3まで一
部還元が進行し、やはり純度の高℃v204が得られな
い。
Furthermore, if the temperature rise rate is slower than 15 to 30"C/m, the partial pressure of NHa gas in the reaction vessel will be low and it will not be possible to obtain high temperature V2O4. If it is too fast, M will also generate a lot of gas, and the reduction will proceed partially to V2O3, making it impossible to obtain V204 with high purity.

その他VsO1a 、V2O4の製法とも反応時間が3
C分以下では、充分な還元反応が得られないし、3時間
以上では、反応が進み過ぎたり、或は進ま九〜・ように
しても、加熱時間が長すぎ不経済である。
Other VsO1a and V2O4 production methods require a reaction time of 3
If the heating time is less than C minutes, a sufficient reduction reaction cannot be obtained, and if the heating time is longer than 3 hours, the reaction may proceed too much, or even if heated, the heating time is too long and uneconomical.

また出発物質中にNHa VOsの外、v2o、が15
%以内であれば、光分NH4VO3から発生するNHa
ガスによって、添加したV2O5も還元できるが、V2
O1St  のみでは、加熱してもNHaガスは発生し
ない。実験例6.かもも明かなようK 、 V2O5の
混合比が大きくなると還元反応が充分に起らない。
Also, in addition to NHa VOs, v2o is present in the starting material at 15
If it is within %, the NHa generated from the light NH4VO3
Added V2O5 can also be reduced by gas, but V2
With O1St alone, NHa gas is not generated even when heated. Experimental example 6. As is obvious, when the mixing ratio of K and V2O5 increases, the reduction reaction does not occur sufficiently.

前記実験例1.と6.により生成されたものをX@を回
折した図を第1図及び牙2図に示した。A S TMカ
ード19−1398と一致していることが判る。
Said Experimental Example 1. and 6. Figures 1 and 2 show the diffraction diagrams of X@ generated by . It can be seen that it matches ASTM card 19-1398.

【図面の簡単な説明】[Brief explanation of drawings]

1   図面はこの発明に係るものであり1,1−1図
は災、  験例1.のX線回折図、矛2図は実験例6.
のX巌回l  折回である。
1 The drawings are related to this invention, and Figure 1, 1-1 is a disaster.Example 1. The X-ray diffraction diagram and Figure 2 are from Experimental Example 6.
This is the

Claims (1)

【特許請求の範囲】 1)出発物質としてメタバナジン酸アンモニア(NH_
4VO_3)の単味乃至前記NH_4VO_3と五酸化
バナジウム(V_2O_5)との混合物を不活性耐熱反
応容器に外気が侵入できないように装入し、温度上昇速
度0.5乃至30℃/minで380℃乃至750℃ま
で加熱し、前記出発物質中のNH_4VO_3が熱分解
して発生するアンモニアガス(NH_3ガス)によつて
前記反応容器中の空気を反応容器外に追い出し、かつ前
記容器中の圧力を外気より高く約3atm以内に保持し
ながら30分乃至3時間その状態を保持し、反応容器中
の前記NH_3ガスによつて、NH_4VO_3より熱
分解して生成したもの、乃至は出発物質中に含まれる製
造目的物よりも高級のバナジウム酸化物を還元し、後こ
れを外気と接触しないようにしながら冷却することを特
徴とするバナジウム低級酸化物の製法。 2)前記出発物質としてほゞ100%メタバナジン酸ア
ンモニウムを用いることを特徴とする特許請求の範囲第
1項記載のバナジウム低級酸化物の製法。 3)前記出発物質として、重量比でNH_4VO_3に
対し、15%以内の範囲でV_2O_5が混合されたも
のを用いる方法であることを特徴とする特許請求の範囲
第1項記載のバナジウム低級酸化物の製法4)前記温度
上昇速度は0.5乃至7℃/minであり、前記加熱温
度は380乃至500℃として、目的物たるバナジウム
低級酸化物としてV_6O_1_3を製造することを特
徴とする特許請求の範囲第1項記載のバナジウム低級酸
化物の製法。 5)前記温度上昇速度は15乃至30℃/min、前記
反応温度は580乃至750℃として目的物たるバナジ
ウム低級酸化物としてV_2O_4を製造することを特
徴とする特許請求の範囲第1項記載のバナジウム低級酸
化物の製法。 6)不活性耐熱反応容器としては磁器製容器を用いるこ
とを特徴とする特許請求の範囲第項記載のバナジウム低
級酸化物の製法。
[Claims] 1) Ammonia metavanadate (NH_
4VO_3) or a mixture of NH_4VO_3 and vanadium pentoxide (V_2O_5) were charged into an inert heat-resistant reaction vessel so that outside air could not enter, and the temperature was raised from 380°C to 380°C at a temperature increase rate of 0.5 to 30°C/min. It is heated to 750°C, and the air in the reaction vessel is expelled from the reaction vessel by ammonia gas (NH_3 gas) generated by thermal decomposition of NH_4VO_3 in the starting material, and the pressure in the vessel is lowered from outside air. The product is thermally decomposed from NH_4VO_3 by the NH_3 gas in the reaction vessel, or the production purpose contained in the starting materials. A method for producing a lower vanadium oxide, which is characterized by reducing a vanadium oxide higher than that of a vanadium oxide, and then cooling the vanadium oxide while avoiding contact with the outside air. 2) The method for producing a lower vanadium oxide according to claim 1, characterized in that substantially 100% ammonium metavanadate is used as the starting material. 3) The method uses, as the starting material, a mixture of V_2O_5 to NH_4VO_3 in a weight ratio within 15% of the vanadium lower oxide according to claim 1. Production method 4) The temperature increase rate is 0.5 to 7°C/min, and the heating temperature is 380 to 500°C to produce V_6O_1_3 as the target vanadium lower oxide. A method for producing a vanadium lower oxide according to item 1. 5) Vanadium according to claim 1, wherein the temperature increase rate is 15 to 30°C/min, and the reaction temperature is 580 to 750°C to produce V_2O_4 as the target vanadium lower oxide. Manufacturing method of lower oxides. 6) A method for producing a vanadium lower oxide according to claim 1, wherein a porcelain container is used as the inert heat-resistant reaction container.
JP61039753A 1986-02-25 1986-02-25 Vanadium lower oxide manufacturing method Expired - Lifetime JPH0742114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61039753A JPH0742114B2 (en) 1986-02-25 1986-02-25 Vanadium lower oxide manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61039753A JPH0742114B2 (en) 1986-02-25 1986-02-25 Vanadium lower oxide manufacturing method

Publications (2)

Publication Number Publication Date
JPS62197317A true JPS62197317A (en) 1987-09-01
JPH0742114B2 JPH0742114B2 (en) 1995-05-10

Family

ID=12561710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61039753A Expired - Lifetime JPH0742114B2 (en) 1986-02-25 1986-02-25 Vanadium lower oxide manufacturing method

Country Status (1)

Country Link
JP (1) JPH0742114B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2726545A1 (en) * 1994-11-09 1996-05-10 Peintures Jefco VANADIUM DIOXIDE MICROPARTICLES, PROCESS FOR OBTAINING SUCH MICROPARTICLES AND THEIR USE, IN PARTICULAR FOR SURFACE COATINGS
US6042805A (en) * 1994-11-29 2000-03-28 Danionics A/S Method for synthesizing an essentially V2 O5 -free vanadium oxide
KR100436709B1 (en) * 2001-03-28 2004-06-22 삼성에스디아이 주식회사 Process for preparing spherical nanosize vanadium oxide particle
CN103420421A (en) * 2013-07-29 2013-12-04 大连博融新材料有限公司 Production method of vanadium tetraoxide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109297A (en) * 1975-02-21 1976-09-28 Toraibahaa Kemishe Beruke Ag
JPS5240919A (en) * 1975-09-26 1977-03-30 Matsushita Electric Ind Co Ltd Chrominance signal record reproducing system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109297A (en) * 1975-02-21 1976-09-28 Toraibahaa Kemishe Beruke Ag
JPS5240919A (en) * 1975-09-26 1977-03-30 Matsushita Electric Ind Co Ltd Chrominance signal record reproducing system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2726545A1 (en) * 1994-11-09 1996-05-10 Peintures Jefco VANADIUM DIOXIDE MICROPARTICLES, PROCESS FOR OBTAINING SUCH MICROPARTICLES AND THEIR USE, IN PARTICULAR FOR SURFACE COATINGS
WO1996015068A1 (en) * 1994-11-09 1996-05-23 Les Peintures Jefco Vanadium dioxide microparticles, method for preparing same, and use thereof, in particular for surface coating
US6042805A (en) * 1994-11-29 2000-03-28 Danionics A/S Method for synthesizing an essentially V2 O5 -free vanadium oxide
KR100436709B1 (en) * 2001-03-28 2004-06-22 삼성에스디아이 주식회사 Process for preparing spherical nanosize vanadium oxide particle
CN103420421A (en) * 2013-07-29 2013-12-04 大连博融新材料有限公司 Production method of vanadium tetraoxide

Also Published As

Publication number Publication date
JPH0742114B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
JP2017132677A (en) Manufacturing method of vanadium dioxide
US6569222B2 (en) Continuous single stage process for the production of molybdenum metal
JPS62197317A (en) Production of vanadium suboxide
CN109052476B (en) Method for preparing molybdenum dioxide in short process
US2461018A (en) Production of titanium nitride
US2385066A (en) Preparation of red copper oxide
JPS60186407A (en) Preparation of finely powdered zirconium nitride
KR102330000B1 (en) A method for manufacuring tantalum powder using self-propagating high-temperature synthesis
CA1113688A (en) Process for the preparation of nitrous oxide
JPS58181707A (en) Manufacture of boron nitride
US5456896A (en) Preparation of high alpha-type silicon nitride powder
JP3585302B2 (en) Manufacturing method of aluminum nitride
US2450266A (en) Method of producing lithium hydride and hydrides of other alkali metals
US3173755A (en) Synthesis of calcium cyanamide
JPS5884108A (en) Manufacture of high purity alpha-type silicon nitride
JPS5895606A (en) Production of silicon nitride powder
JPS61158804A (en) Production of silicon nitride
US3460918A (en) Method of chlorinating metals with carbon tetrachloride and carbon dioxide
KR102177532B1 (en) Process of treating filtrate solution in lithium peroxide manufacturing process
JPS6256310A (en) Production of aluminum nitride
JPS63103899A (en) Production of silicon carbide whisker of high-quality and apparatus therefor
JPS63297206A (en) Production of aluminum nitride
JPH0770667A (en) Production of low nitrogen vanadium
US1291498A (en) Process of making magnesium carbonated in blast-furnaces.
SU791603A1 (en) Method of producing vanadium pentoxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term