JP6135479B2 - Method for producing nickel powder - Google Patents

Method for producing nickel powder Download PDF

Info

Publication number
JP6135479B2
JP6135479B2 JP2013245863A JP2013245863A JP6135479B2 JP 6135479 B2 JP6135479 B2 JP 6135479B2 JP 2013245863 A JP2013245863 A JP 2013245863A JP 2013245863 A JP2013245863 A JP 2013245863A JP 6135479 B2 JP6135479 B2 JP 6135479B2
Authority
JP
Japan
Prior art keywords
nickel
powder
hydroxide
nickel powder
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013245863A
Other languages
Japanese (ja)
Other versions
JP2015101784A (en
Inventor
尚人 西村
尚人 西村
雅男 浅田
雅男 浅田
春樹 両見
春樹 両見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2013245863A priority Critical patent/JP6135479B2/en
Publication of JP2015101784A publication Critical patent/JP2015101784A/en
Application granted granted Critical
Publication of JP6135479B2 publication Critical patent/JP6135479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、ニッケル粉の製造方法に関し、より詳しくは、積層セラミックスコンデンサ(以後、MLCCと記載する)の内部や外部電極、電磁波シールドなどの電子部品用として有用な、微細で連結粒子が少なく酸素濃度が低いニッケル粉を、特殊な装置によらず、低コストかつ簡潔なプロセスで効率よく得ることができるニッケル粉の製造方法に関する。   The present invention relates to a method for producing nickel powder. More specifically, the present invention relates to a method for producing fine, less connected particles and oxygen useful for electronic parts such as a multilayer ceramic capacitor (hereinafter referred to as MLCC), an external electrode, and an electromagnetic shield. The present invention relates to a nickel powder production method capable of efficiently obtaining nickel powder having a low concentration by a low-cost and simple process regardless of a special apparatus.

近年、携帯電話やデジタル機器の小型化、高性能化に伴い、チップ部品であるMLCCについても、小型化、大容量化が進んでいる。MLCCの小型化、高容量化に伴い、内部電極に使用されているニッケル粉も小径化や粗大粒子の低減が求められており、様々なニッケル粉の製造方法が提案されている。   In recent years, with the miniaturization and high performance of mobile phones and digital devices, MLCC, which is a chip component, is also becoming smaller and larger in capacity. With the miniaturization and increase in capacity of MLCCs, nickel powders used for internal electrodes are also required to be reduced in diameter and coarse particles, and various nickel powder production methods have been proposed.

例えば、塩化ニッケル蒸気を還元性ガスにより還元する気相還元法、金属化合物を含む溶液を微細な液滴にして高温で熱分解させる噴霧熱分解法、水または有機溶媒中でニッケル塩を還元剤により還元する湿式還元法、酸化ニッケル、水酸化ニッケル、炭酸ニッケルなどのニッケル化合物の粉を水素ガスにより還元する静置式水素還元法などがある。   For example, a vapor phase reduction method that reduces nickel chloride vapor with a reducing gas, a spray pyrolysis method in which a solution containing a metal compound is made into fine droplets and thermally decomposed at a high temperature, and a nickel salt is reduced in water or an organic solvent. There are a wet reduction method in which reduction is carried out by a method, and a static hydrogen reduction method in which powder of a nickel compound such as nickel oxide, nickel hydroxide, nickel carbonate is reduced with hydrogen gas.

これらの方法の中でも、湿式法により水酸化ニッケルを生成し、これを原料として還元処理しニッケル粉を製造する方法は、生産性も高く低コストでニッケル粉を得ることができる製造方法である。例えば、一定温度に保持された反応槽内のスラリーに、含ニッケル溶液を連続的に添加しつつ、該スラリーを所定のpHに保持するようにアルカリ溶液を添加して水酸化ニッケルを生成し、該スラリーをろ過し、水洗し、乾燥させて水酸化ニッケル粉を得た後、これを水素ガス還元雰囲気下で、還元温度を400〜550℃として加熱還元するニッケル粉の製造方法が開示されている(特許文献1)。
この方法は、塩化ニッケルを原料として用いることで、安価で生産性が良いニッケル粉が得られるが、ニッケル粉の残留塩素が多いという問題点がある。ニッケル粉中の残留塩素が多いと、ニッケル粉の耐錆性を阻害するだけではなく、電子部品の材料として使用する場合、焼成等の工程で塩化水素ガスを発生させ、電子部品や装置、環境へ悪影響を与えるといった問題がある。
Among these methods, a method of producing nickel powder by producing nickel hydroxide by a wet method and using this as a raw material to produce nickel powder is a production method capable of obtaining nickel powder with high productivity and low cost. For example, while continuously adding a nickel-containing solution to a slurry in a reaction vessel maintained at a constant temperature, an alkali solution is added so as to maintain the slurry at a predetermined pH to produce nickel hydroxide, A method for producing nickel powder is disclosed in which the slurry is filtered, washed with water and dried to obtain nickel hydroxide powder, which is then heated and reduced at a reduction temperature of 400 to 550 ° C. in a hydrogen gas reducing atmosphere. (Patent Document 1).
This method uses nickel chloride as a raw material to obtain nickel powder that is inexpensive and has good productivity, but has a problem that the residual chlorine of the nickel powder is large. If there is a lot of residual chlorine in the nickel powder, it will not only inhibit the rust resistance of the nickel powder, but when used as a material for electronic parts, it generates hydrogen chloride gas in the process of firing, etc. There is a problem of adversely affecting

前記問題点を解決するために、水酸化ニッケル中の不純物を水酸化ナトリウム水溶液で洗浄する工程を含む酸化ニッケルの製造方法(特許文献2)、水酸化ニッケルの製造工程で中和反応終了後にスラリーのpHを10以上に上げる工程を含む酸化ニッケルの製造方法(特許文献3)、ニッケル粉を有機酸で洗浄する方法(特許文献4)が提案されている。   In order to solve the above problems, a nickel oxide production method including a step of washing impurities in nickel hydroxide with a sodium hydroxide aqueous solution (Patent Document 2), a slurry after completion of the neutralization reaction in the nickel hydroxide production step A method for producing nickel oxide (Patent Document 3) including a step of raising the pH of the powder to 10 or more and a method for washing nickel powder with an organic acid (Patent Document 4) have been proposed.

特許文献2、3には得られた酸化ニッケルを還元する工程について記載はないが、これらの製造方法で、塩素濃度を低減した水酸化ニッケルを得た後、酸化処理により酸化ニッケル粉を生成し、この酸化ニッケル粉を還元処理によりニッケル粉を製造した場合、還元処理中の焼結阻害効果が小さくなり連結粒子が生じやすくなる。一方で、連結粒子を低減するために熱処理温度を低下させると、ニッケル粉の還元が十分に進行せず、ニッケル粉の酸素濃度が高くなり、電極用材料として適さない。   Patent Documents 2 and 3 do not describe the step of reducing the obtained nickel oxide, but after obtaining nickel hydroxide with a reduced chlorine concentration by these production methods, nickel oxide powder is produced by oxidation treatment. When nickel powder is produced by reduction treatment of this nickel oxide powder, the sintering inhibiting effect during the reduction treatment is reduced, and linked particles are easily generated. On the other hand, when the heat treatment temperature is lowered in order to reduce the connected particles, the reduction of the nickel powder does not proceed sufficiently, and the oxygen concentration of the nickel powder increases, which is not suitable as an electrode material.

特許文献4では有機酸を使用するため、発生する廃液を処理する必要性があり、高コストになる。
そのため、塩化ニッケルを原料とするニッケル粉の製造方法で、連結粒子が少なく、かつ酸素濃度が低い安価なニッケル粉が切望されていた。
In Patent Document 4, since an organic acid is used, it is necessary to treat the generated waste liquid, resulting in high costs.
Therefore, an inexpensive nickel powder with few connected particles and a low oxygen concentration has been eagerly desired in a nickel powder manufacturing method using nickel chloride as a raw material.

特開2003−213310号公報JP 2003-213310 A 特許第5194876号公報Japanese Patent No. 519476 特開2011−42528号公報JP 2011-42528 A 特開2009−108351号公報JP 2009-108351 A

本発明は、上記従来技術の問題点に鑑み、積層セラミックスコンデンサ(以後、MLCCと記載する)の内部や外部電極、電磁波シールドなどの電子部品用として有用な、微細で連結粒子が少なく酸素濃度が低いニッケル粉を、特殊な装置によらず、低コストかつ簡潔なプロセスで効率よく得ることができるニッケル粉の製造方法を提供することを目的としている。   In view of the above-described problems of the prior art, the present invention is useful for electronic components such as multilayer ceramic capacitors (hereinafter referred to as MLCC), external electrodes, electromagnetic wave shields, etc. It aims at providing the manufacturing method of the nickel powder which can obtain low nickel powder efficiently by a low-cost and simple process irrespective of a special apparatus.

本発明者らは、生産性が高く低コストである湿式法で得た水酸化ニッケルを、還元処理することで得られるニッケル粉の連結粒子低減、酸素濃度の低減について鋭意検討した結果、水酸化ニッケルを特定条件で洗浄し、水酸化ニッケル中の塩素濃度を特定の値に制御し、その後、酸化して得られた酸化ニッケルを特定の温度で加熱し還元することで、ニッケル粉の酸素濃度を抑えつつ、連結粒子の少ないニッケル粉の製造が可能であることを見出し、本発明を完成した。   As a result of diligent investigations on reducing the connected particles and reducing the oxygen concentration of nickel powder obtained by reducing nickel hydroxide obtained by a reduction process using a wet method with high productivity and low cost, By cleaning nickel under specific conditions, controlling the chlorine concentration in nickel hydroxide to a specific value, and then heating and reducing the nickel oxide obtained by oxidation at a specific temperature, the oxygen concentration of the nickel powder As a result, the inventors have found that it is possible to produce nickel powder with few connected particles, and thus completed the present invention.

すなわち、本発明の第1の発明によれば、塩化ニッケル水溶液をアルカリで中和して水酸化ニッケルを沈澱させて、残留塩素濃度が5000〜9000質量ppmの水酸化ニッケル粉とする工程(A)と、該水酸化ニッケル粉を酸化性雰囲気下あるいは不活性雰囲気下で加熱処理して酸化ニッケル粉にする工程(B)と、該酸化ニッケルを還元性雰囲気下、380〜500℃で加熱処理してニッケル粉を作製する工程(C)と、該ニッケル粉を洗浄する工程(D)を備えたニッケル粉の製造方法であって、前記工程(A)における塩化ニッケル水溶液とアルカリの中和反応が終了した後、水酸化ニッケルのスラリーのpHを8.5〜12.0として洗浄し、その後、ろ過、純水洗浄を行うことを特徴とするニッケル粉の製造方法が提供される。   That is, according to the first aspect of the present invention, a nickel hydroxide powder having a residual chlorine concentration of 5000 to 9000 mass ppm is obtained by neutralizing an aqueous nickel chloride solution with alkali to precipitate nickel hydroxide (A ), A step (B) of heat-treating the nickel hydroxide powder in an oxidizing atmosphere or an inert atmosphere to form a nickel oxide powder, and heat-treating the nickel oxide at 380 to 500 ° C. in a reducing atmosphere. And producing a nickel powder, and a nickel powder production method comprising a step (D) of washing the nickel powder, wherein the nickel chloride aqueous solution and the alkali are neutralized in the step (A). Is completed, the nickel hydroxide slurry is washed with a pH of 8.5 to 12.0, followed by filtration and pure water washing.

また、本発明の第2の発明によれば、第1の発明において、前記工程(A)において、塩化ニッケル水溶液とアルカリの中和反応が終了した後、水酸化ニッケルのスラリーを濃縮し、pHを8.5〜12.0として洗浄することを特徴とするニッケル粉の製造方法が提供される。
また、本発明の第3の発明によれば、第1の発明において、前記工程(A)において、洗浄時の水酸化ニッケルのスラリーのpHは、塩化ニッケル水溶液とアルカリの中和反応時のpHよりも高いことを特徴とするニッケル粉の製造方法が提供される。
また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、前記工程(A)で中和に用いるアルカリは、水酸化ナトリウム、水酸化カリウムから選ばれる少なくとも1種以上であることを特徴とするニッケル粉の製造方法が提供される。
Further, according to the second invention of the present invention, in the first invention, in the step (A), after the neutralization reaction between the nickel chloride aqueous solution and the alkali is completed, the nickel hydroxide slurry is concentrated to a pH. Is produced as 8.5 to 12.0. A method for producing nickel powder is provided.
According to the third invention of the present invention, in the first invention, in the step (A), the pH of the nickel hydroxide slurry at the time of washing is the pH at the time of neutralization reaction between the nickel chloride aqueous solution and the alkali. The method for producing nickel powder is characterized by being higher than
According to the fourth aspect of the present invention, in any one of the first to third aspects, the alkali used for neutralization in the step (A) is at least one selected from sodium hydroxide and potassium hydroxide. The method for producing nickel powder characterized by the above is provided.

また、本発明の第5の発明によれば、第1〜4のいずれかの発明において、前記工程(A)で洗浄に用いるアルカリは、中和に用いたものと同一のアルカリとすることを特徴とするニッケル粉の製造方法が提供される。
また、本発明の第6の発明によれば、第1〜5のいずれかの発明において、得られるニッケル粉のD90が、1.5μm以下であることを特徴とするニッケル粉の製造方法が提供される。
また、本発明の第7の発明によれば、第1〜6のいずれかの発明において、得られるニッケル粉の酸素濃度が、1.8質量%以下であることを特徴とするニッケル粉の製造方法が提供される。
According to the fifth invention of the present invention, in any one of the first to fourth inventions, the alkali used for washing in the step (A) is the same alkali used for neutralization. A nickel powder production method is provided.
According to a sixth aspect of the present invention, there is provided the nickel powder manufacturing method according to any one of the first to fifth aspects, wherein D90 of the obtained nickel powder is 1.5 μm or less. Is done.
Moreover, according to the seventh invention of the present invention, in any one of the first to sixth inventions, the nickel powder obtained has an oxygen concentration of 1.8% by mass or less. A method is provided.

本発明によれば、塩化ニッケル水溶液とアルカリの中和反応が終了した後、水酸化ニッケルのスラリーのpHを8.5〜12.0として洗浄し、得られる水酸化ニッケルの残留塩素濃度が5000〜9000質量ppmであるようにし、その後、水酸化ニッケルを酸化して得られる酸化ニッケルを特定の温度で熱処理(還元)するという簡易なプロセスであるから、特殊な装置を必要とすることなく、効率よく微細なニッケル粉を製造することができる。
また、本発明によって得られるニッケル粉は、連結粒子が少なく、酸素濃度が低いことから、MLCCの内部や外部電極、電磁波シールドなどの電子部品用として好適であり、その工業的価値は大きい。
According to the present invention, after the neutralization reaction between the nickel chloride aqueous solution and the alkali is completed, the pH of the nickel hydroxide slurry is washed to 8.5 to 12.0, and the resulting nickel hydroxide has a residual chlorine concentration of 5000. Since it is a simple process of heat treating (reducing) nickel oxide obtained by oxidizing nickel hydroxide, and then oxidizing nickel hydroxide at a specific temperature, without special equipment, Fine nickel powder can be produced efficiently.
In addition, the nickel powder obtained by the present invention is suitable for use in electronic parts such as MLCC internal parts, external electrodes, and electromagnetic wave shields because it has few connected particles and has a low oxygen concentration, and its industrial value is great.

以下、本発明のニッケル粉の製造方法について実施形態を詳細に説明する。   Hereinafter, an embodiment is described in detail about a manufacturing method of nickel powder of the present invention.

本発明のニッケル粉の製造方法は、塩化ニッケル水溶液をアルカリで中和して水酸化ニッケルを沈澱させて、残留塩素濃度が5000〜9000質量ppmの水酸化ニッケル粉とする工程(A)と、該水酸化ニッケル粉を酸化性雰囲気下あるいは不活性雰囲気下で加熱処理して酸化ニッケル粉にする工程(B)と、該酸化ニッケルを還元性雰囲気下、380〜500℃で加熱処理してニッケル粉を作製する工程(C)と、該ニッケル粉を洗浄する工程(D)を備えたニッケル粉の製造方法であって、前記工程(A)における塩化ニッケル水溶液とアルカリの中和反応が終了した後、水酸化ニッケルのスラリーのpHを8.5〜12.0として洗浄し、その後、ろ過、純水洗浄を行うことを特徴とするものである。   The method for producing nickel powder of the present invention comprises a step (A) of neutralizing a nickel chloride aqueous solution with an alkali to precipitate nickel hydroxide to obtain a nickel hydroxide powder having a residual chlorine concentration of 5000 to 9000 mass ppm, Step (B) in which the nickel hydroxide powder is heat-treated in an oxidizing atmosphere or in an inert atmosphere to form nickel oxide powder, and the nickel oxide is heat-treated at 380 to 500 ° C. in a reducing atmosphere. A method for producing nickel powder comprising a step (C) for producing powder and a step (D) for washing the nickel powder, wherein the neutralization reaction between the aqueous nickel chloride solution and the alkali in the step (A) is completed. Thereafter, the pH of the nickel hydroxide slurry is washed to 8.5 to 12.0, followed by filtration and pure water washing.

(1)工程A
本発明の工程Aは、塩化ニッケル水溶液をアルカリ水溶液で中和して水酸化ニッケルを生成する工程である。水溶液の濃度や中和条件等は公知の技術が適用でき、洗浄装置も特に限定されるものではなく、機械式攪拌装置を備えた反応槽などを用いることができる。
(1) Process A
Step A of the present invention is a step of producing nickel hydroxide by neutralizing an aqueous nickel chloride solution with an alkaline aqueous solution. Known techniques can be applied to the concentration of the aqueous solution, neutralization conditions, and the like, and the cleaning apparatus is not particularly limited, and a reaction tank equipped with a mechanical stirring apparatus can be used.

このとき、均一な特性の水酸化ニッケルを得るために、十分に攪拌された反応槽内に、水酸化ニッケル水溶液とアルカリ水溶液のpHを一定に保ちながら投入することが好ましい。中和に使用するアルカリ水溶液としては、水酸化ナトリウム、水酸化カリウムから選ばれる少なくとも1種以上が好適であるが、コスト面から水酸化ナトリウムを用いることが特に好ましい。   At this time, in order to obtain nickel hydroxide having uniform characteristics, it is preferable to add the nickel hydroxide aqueous solution and the alkaline aqueous solution while keeping the pH of the nickel hydroxide aqueous solution and the alkaline aqueous solution constant in a sufficiently stirred reaction vessel. The alkaline aqueous solution used for neutralization is preferably at least one selected from sodium hydroxide and potassium hydroxide, but sodium hydroxide is particularly preferred from the viewpoint of cost.

本発明では、水酸化ニッケルの生成後、反応液にアルカリを添加してpHを8.5〜12.0の範囲として水酸化ニッケルの洗浄を行う。洗浄時のpHは、8.5以上10.0未満が好ましく、pH9.0以上10.0未満が好ましい。洗浄時のpHが8.5未満であると、水酸化ニッケルの洗浄が十分に進まず塩素濃度が高くなり生産設備に悪影響を及ぼし、pHが12.0を超えると水酸化ニッケルの塩素濃度が低くなりすぎて熱処理工程で連結粒子が生成されやすくなるため好ましくない。中和時のpHと洗浄時のpHは、洗浄により塩素濃度を低減させるために、アルカリ洗浄時のpHを中和時より高く設定して、洗浄時にアルカリ水溶液をさらに添加するのが好ましい。   In the present invention, after the formation of nickel hydroxide, the alkali is added to the reaction solution to adjust the pH to the range of 8.5 to 12.0 and the nickel hydroxide is washed. The pH during washing is preferably 8.5 or more and less than 10.0, and preferably pH 9.0 or more and less than 10.0. If the pH at the time of washing is less than 8.5, the nickel hydroxide washing will not proceed sufficiently and the chlorine concentration will increase, adversely affecting the production equipment. If the pH exceeds 12.0, the chlorine concentration of the nickel hydroxide will be reduced. Since it becomes too low and it becomes easy to produce | generate connection particle | grains by the heat processing process, it is unpreferable. In order to reduce the chlorine concentration by washing, the pH at the time of neutralization and the pH at the time of washing are preferably set such that the pH at the time of alkali washing is higher than that at the time of neutralization, and an aqueous alkali solution is further added at the time of washing.

中和後の反応液は、洗浄後の廃液量を減らすために生成した水酸化ニッケルを一度沈降させて上澄み液を除去して濃縮後、水酸化ニッケルのスラリーにアルカリ水溶液を添加して洗浄するのが好ましい。また上澄み液除去後の水酸化ニッケルのスラリー濃度は、250〜1000g/Lとするのが好ましい。アルカリ洗浄前のスラリー濃度が250g/L未満では廃液量が多くなり、1000g/Lより濃ければ、ろ液中の不純物濃度が増え、レパルプ工程への不純物持込が多くなり、結果として不純物濃度が高くなる。なおアルカリ洗浄の時間や温度は適宜設定すればよいが、20〜70℃で15分〜2時間とすることが好ましい。この範囲を外れると、十分なアルカリ洗浄を行えない場合がある。   The reaction solution after neutralization is washed by adding the alkaline aqueous solution to the nickel hydroxide slurry after the produced nickel hydroxide is once settled to remove the amount of waste liquid after washing, removing the supernatant liquid and concentrating. Is preferred. The slurry concentration of nickel hydroxide after removing the supernatant is preferably 250 to 1000 g / L. When the slurry concentration before alkali cleaning is less than 250 g / L, the amount of waste liquid increases. When the slurry concentration is higher than 1000 g / L, the impurity concentration in the filtrate increases and the amount of impurities brought into the repulping process increases. Get higher. The alkali cleaning time and temperature may be appropriately set, but are preferably 20 to 70 ° C. and 15 minutes to 2 hours. Outside this range, sufficient alkali cleaning may not be performed.

水酸化ニッケルの洗浄度合いは、残留塩素濃度によって把握できることから、洗浄後の残留塩素を5000〜9000質量ppmに制御することが好ましい。残留塩素が5000質量ppm未満では熱処理工程で連結粒子が生成されやすくなり、9000質量ppmを超えると塩素濃度が高くなり生産設備に悪影響を及ぼす。   Since the cleaning degree of nickel hydroxide can be grasped by the residual chlorine concentration, it is preferable to control the residual chlorine after cleaning to 5000 to 9000 mass ppm. If the residual chlorine is less than 5000 ppm by mass, connected particles are likely to be generated in the heat treatment step, and if it exceeds 9000 ppm by mass, the chlorine concentration increases and adversely affects production equipment.

従来は、アルカリ洗浄の代わりに純水で洗浄を行っていたが、純水だと塩素濃度を低減するために複数回の洗浄が必要となり、廃液や生産性の面で好ましくない。アルカリ洗浄時に添加するアルカリ水溶液としては、ニッケル粉の不純物濃度を高くしないように中和時に用いたものと同一である水酸化ナトリウム、水酸化カリウムが好ましく、コスト面から水酸化ナトリウムを用いることが特に好ましい。
こうして生成された水酸化ニッケルは、ろ過により固液分離し、ケーキとする。得られたケーキは直接次工程で使用することも可能であるが、アルカリ水溶液由来の元素濃度を低減させるために、水洗することが好ましい。洗浄方法は、任意の方法を用いることができ、固液分離したケーキに通水する方法や、純水中に再度スラリー化する方法(レパルプ)などが用いられる。
Conventionally, cleaning is performed with pure water instead of alkali cleaning. However, pure water requires multiple cleanings to reduce the chlorine concentration, which is not preferable in terms of waste liquid and productivity. The alkaline aqueous solution added at the time of alkaline cleaning is preferably sodium hydroxide or potassium hydroxide that is the same as that used during neutralization so as not to increase the impurity concentration of the nickel powder. Particularly preferred.
The nickel hydroxide thus produced is solid-liquid separated by filtration to obtain a cake. Although the obtained cake can be used directly in the next step, it is preferably washed with water in order to reduce the concentration of the element derived from the alkaline aqueous solution. An arbitrary method can be used as the washing method, and a method of passing water through the cake separated into solid and liquid, a method of re-slurry in pure water (repulping), or the like is used.

次に、洗浄にて得られた水酸化ニッケル粉を乾燥する。乾燥には大気乾燥機や真空乾燥機といった一般的な乾燥機を使用することができ、乾燥温度は200℃以下が好ましい。200℃より高温で乾燥すると、水酸化ニッケルの分解が起こり、物性に影響を与える場合がある。   Next, the nickel hydroxide powder obtained by washing is dried. For drying, a general dryer such as an air dryer or a vacuum dryer can be used, and the drying temperature is preferably 200 ° C. or lower. When dried at a temperature higher than 200 ° C., nickel hydroxide is decomposed, which may affect physical properties.

(2)工程(B)
本発明の工程(B)は、前記の工程(A)で得られた水酸化ニッケルを酸化性雰囲気下または不活性雰囲気下で加熱処理して酸化ニッケル粉を得る工程である。加熱温度および時間などの処理条件は、得ようとする酸化ニッケル粉に応じて、適宜設定することができる。
(2) Process (B)
The step (B) of the present invention is a step of obtaining nickel oxide powder by heat-treating the nickel hydroxide obtained in the step (A) in an oxidizing atmosphere or an inert atmosphere. Treatment conditions such as heating temperature and time can be appropriately set according to the nickel oxide powder to be obtained.

この加熱処理においては、均一な処理を行うために、ガス交換が行える状態で行うことが好ましい。ガス交換が不十分であると、発生水蒸気の影響により、得られる酸化ニッケル粉の特性が不均一になる可能性がある。前記加熱処理には、一般的な加熱炉を使用することができ、例えば、静置式電気炉、転動炉、バーナー炉、搬送式連続炉などを用いることができる。用いるガス種に関しては、非還元性雰囲気であればその種類は制約されないが、コストや取り扱いやすさの点で酸素を含む大気雰囲気が優れている。   This heat treatment is preferably performed in a state where gas exchange can be performed in order to perform uniform treatment. If the gas exchange is insufficient, the characteristics of the resulting nickel oxide powder may become non-uniform due to the influence of the generated water vapor. For the heat treatment, a general heating furnace can be used. For example, a stationary electric furnace, a rolling furnace, a burner furnace, a conveying continuous furnace, or the like can be used. The type of gas used is not limited as long as it is a non-reducing atmosphere, but an atmosphere containing oxygen is excellent in terms of cost and ease of handling.

(3)工程(C)
本発明の工程(C)は、前記の工程(B)で得られた酸化ニッケル粉を還元性雰囲気で還元してニッケル粉を得る工程である。
(3) Process (C)
Step (C) of the present invention is a step of obtaining nickel powder by reducing the nickel oxide powder obtained in the step (B) in a reducing atmosphere.

この還元条件に関しては、還元温度を380〜500℃とする。好ましい還元温度は380〜450℃であり、より好ましいのは380〜400℃である。また、加熱時間は、還元温度にもよるが、例えば1〜5時間とすることが好ましい。
還元温度が380℃未満では、酸化ニッケル粉が十分に還元されない場合や還元に長時間を要する場合がある。一方で、還元温度が500℃を超えると、ニッケル粒子が粗大化する場合がある。還元性雰囲気は、適宜選択することが可能であるが、環境への影響などを考慮すると、含水素ガス雰囲気とすることが好ましい。また、還元中は、工程(B)と同様の理由より、ガス交換雰囲気で行うことが好ましい。還元に関するその他の因子は、必要とする規模に応じて任意に設定することができる。還元性雰囲気にするために用いるガス種に関しては、その種類は制約されないが、入手の容易さと環境への影響度から、水素含有窒素ガス等の含水素ガスが好ましい。
Regarding this reduction condition, the reduction temperature is set to 380 to 500 ° C. A preferable reduction temperature is 380 to 450 ° C, and more preferably 380 to 400 ° C. The heating time is preferably 1 to 5 hours, for example, although it depends on the reduction temperature.
When the reduction temperature is less than 380 ° C., the nickel oxide powder may not be sufficiently reduced or may take a long time for the reduction. On the other hand, when the reduction temperature exceeds 500 ° C., the nickel particles may be coarsened. The reducing atmosphere can be selected as appropriate, but it is preferably a hydrogen-containing gas atmosphere in consideration of environmental influences. Further, during the reduction, it is preferably performed in a gas exchange atmosphere for the same reason as in the step (B). Other factors relating to reduction can be arbitrarily set according to the required scale. The type of gas used for making the reducing atmosphere is not limited, but a hydrogen-containing gas such as a hydrogen-containing nitrogen gas is preferred from the viewpoint of availability and the degree of influence on the environment.

(4)工程(D)
本発明の工程(D)は、前記の工程(C)で得られたニッケル粉を、洗浄する工程である。ここでの洗浄には、純水、硫酸などの無機酸、あるいはクエン酸などの有機酸を用いることができるが、排水処理の容易さなどから純水を用いるのが好適である。
(4) Process (D)
The step (D) of the present invention is a step of washing the nickel powder obtained in the step (C). For the washing here, pure water, an inorganic acid such as sulfuric acid, or an organic acid such as citric acid can be used, but it is preferable to use pure water because of the ease of wastewater treatment.

また洗浄は、任意の温度で行うことが可能であるが、10℃〜50℃で行うことが好ましい。温度が低いと、洗浄効果が低下し、不純物除去に長時間を要するため生産性に問題を生じる。洗浄温度を高くすることで不純物除去の効果は大きくなるが、水酸化ニッケルへの変化が進み、ニッケル粉の表面状態が変化したり、酸素濃度が上昇したりするといった問題点がある。   Moreover, although washing | cleaning can be performed at arbitrary temperature, it is preferable to carry out at 10 to 50 degreeC. When the temperature is low, the cleaning effect is lowered, and it takes a long time to remove impurities, which causes a problem in productivity. Increasing the cleaning temperature increases the effect of removing impurities, but there is a problem that the change to nickel hydroxide advances, the surface state of nickel powder changes, and the oxygen concentration increases.

前記洗浄のスラリー濃度は、特に限定されるものではないが、スラリー濃度を30〜500g/Lとすることが好ましく、30〜300g/Lとすることがより好ましい。スラリー濃度が30g/L未満の場合、生産性が低く、多量の廃液が生じてしまう。一方、スラリー濃度が500g/Lを超える場合には、ニッケルの分散性が悪化したり、ケーキ中に残留する不純物が増えたりして、洗浄が十分に行えない場合がある。洗浄装置は、特に限定されず前記の工程(A)と同様、機械式攪拌装置を備えた反応槽などを用いることができる。   The concentration of the slurry for washing is not particularly limited, but the slurry concentration is preferably 30 to 500 g / L, more preferably 30 to 300 g / L. When the slurry concentration is less than 30 g / L, productivity is low and a large amount of waste liquid is generated. On the other hand, when the slurry concentration exceeds 500 g / L, the dispersibility of nickel may be deteriorated, or impurities remaining in the cake may increase, and cleaning may not be performed sufficiently. The washing device is not particularly limited, and a reaction vessel equipped with a mechanical stirring device can be used as in the step (A).

最後に、ニッケルスラリーをろ過等により固液分離し、得られたニッケル粉の乾燥を行う。乾燥は、工程(A)と同様、一般的な乾燥機を使用することができるが、乾燥温度は180℃以下が好ましい。180℃より高温で乾燥を行うと、粒子の連結が生じ、ニッケル粉の分散性に影響を与える場合がある。乾燥温度の下限は特に限定されないが、100℃未満では所望の乾燥状態に達するまでに時間を要するので、生産性が低下してしまう。   Finally, the nickel slurry is solid-liquid separated by filtration or the like, and the resulting nickel powder is dried. Although drying can use a general dryer similarly to a process (A), as for drying temperature, 180 degrees C or less is preferable. When drying is performed at a temperature higher than 180 ° C., particles are connected, and the dispersibility of the nickel powder may be affected. The lower limit of the drying temperature is not particularly limited, but if it is less than 100 ° C., it takes time to reach a desired dry state, so that productivity is lowered.

(5)得られるニッケル粉
上記の工程(A)〜(D)を経ることで、D90が1.5μm以下、酸素濃度が1.8質量%以下のニッケル粉を得ることができる。D90が1.5μmを超えるものは、粒子の連結が生じているので、ニッケル粉の分散性が悪化する。また、酸素濃度が1.8質量%を越えたニッケル粉は電極材料として使用し難い。
本発明の製造方法で得られたニッケル粉は、上記のような特徴を有するために、MCLLの内部や外部電極、電磁波シールドなどに適用されるニッケルペーストとして使用することができる。
(5) Obtained nickel powder By passing through said process (A)-(D), D90 is 1.5 micrometers or less and nickel concentration whose oxygen concentration is 1.8 mass% or less can be obtained. When D90 exceeds 1.5 μm, the particles are connected, and thus the dispersibility of the nickel powder deteriorates. Further, nickel powder having an oxygen concentration exceeding 1.8% by mass is difficult to use as an electrode material.
Since the nickel powder obtained by the production method of the present invention has the above-described characteristics, it can be used as a nickel paste applied to the inside of the MLL, external electrodes, electromagnetic wave shields, and the like.

以下に、実施例に基づき本発明を具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。なお、水酸化ニッケル粉中の塩素濃度、ニッケル粉の粒径と酸素濃度は、下記の要領で測定し評価した。   EXAMPLES Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. The chlorine concentration in the nickel hydroxide powder, the particle diameter of the nickel powder and the oxygen concentration were measured and evaluated in the following manner.

(水酸化ニッケル粉中の塩素濃度)
水酸化ニッケル粉中の塩素濃度は、蛍光X線定量分析装置にて検量線法で評価した。(PANalytical社製Magix)
(ニッケル粉の粒径)
ニッケル粉の粒径は、レーザー拡散法により測定し、その粒度分布から体積積算90%での粒径D90を求めた。なお同一粒子径でも連結粒子の比率が増大するとD90の値は増加するため、D90の値は連結粒子の多寡の指標となる。
(ニッケル粉中の酸素濃度)
ニッケル粉中の酸素濃度は、分析装置(LECO社製TC−336)を用い抵抗加熱赤外吸収分析法にて評価した。
(Chlorine concentration in nickel hydroxide powder)
The chlorine concentration in the nickel hydroxide powder was evaluated by a calibration curve method using a fluorescent X-ray quantitative analyzer. (Magic manufactured by PANalytical)
(Nickel powder particle size)
The particle size of the nickel powder was measured by a laser diffusion method, and the particle size D90 with a volume integration of 90% was determined from the particle size distribution. In addition, since the value of D90 increases when the ratio of connected particles increases even with the same particle size, the value of D90 is an indicator of the number of connected particles.
(Oxygen concentration in nickel powder)
The oxygen concentration in the nickel powder was evaluated by resistance heating infrared absorption analysis using an analyzer (TC-336 manufactured by LECO).

(総合評価)
ニッケル粉のD90が1.5μm以下、酸素濃度が1.8%以下、生産性:水酸化ニッケルの洗浄回数が2回以下を良(○)、3回を超えると不可(×)とし、これらを全て満たしたもののみ良(○)とし、1つでも満たさないものがある場合は不可(×)とした。
(Comprehensive evaluation)
Nickel powder with D90 of 1.5 μm or less, oxygen concentration of 1.8% or less, productivity: nickel hydroxide cleaning frequency of 2 times or less is good (◯), and it exceeds 3 times, it is impossible (×). Only those satisfying all of the criteria were judged as good (◯).

(実施例1)
10Lのビーカー内で純水に水酸化ナトリウムを溶解し、pH8.3に調整した水酸化ナトリウム水溶液1.5Lを準備した。この水酸化ナトリウム水溶液に、ニッケル濃度60g/Lの塩化ニッケル水溶液と、pH8.3で一定となるように24質量%の水酸化ナトリウム水溶液を調整しながら反応槽に連続的に添加することで水酸化ニッケルを生成させた。
その際、塩化ニッケル水溶液は24mL/分の速度で添加した。また、液温は60℃に保持し、攪拌羽により200rpmで混合した。3Lの塩化ニッケル水溶液を添加した後、3時間攪拌を続けて水酸化ニッケルを製造した。
次に、得られた水酸化ニッケルのスラリーを一度沈降させ、スラリー濃度が500g/Lとなるように上澄み液を除去した。その後、該スラリーに水酸化ナトリウム水溶液を添加し、pHを8.5、液温を50℃に調整して30分間洗浄を行った。その後、ろ過して水酸化ニッケルのケーキを分離し、更に200g/Lのスラリー濃度で30分の純水レパルプ、ろ過を行い、水酸化ニッケルのろ過ケーキを得た。得られたろ過ケーキを、大気乾燥機に入れ120℃で24時間乾燥し、水酸化ニッケル粉を得た。また得られた水酸化ニッケル粉の塩素濃度を測定した。
引き続き、得られた水酸化ニッケル10gを空気中460℃で2時間加熱し、酸化ニッケルを合成し、得られた酸化ニッケルを、水素雰囲気中400℃で3時間還元し、ニッケル粉を得た。
最後に、得られたニッケル粉を40g/Lのスラリー濃度の純水で30分攪拌して洗浄し、吸引ろ過により固液分離した。その後、大気乾燥機中、120℃で12時間乾燥し、#100の篩にかけ、ニッケル粉を得た。結果を表1に示した。
Example 1
Sodium hydroxide was dissolved in pure water in a 10 L beaker to prepare 1.5 L of an aqueous sodium hydroxide solution adjusted to pH 8.3. To this aqueous sodium hydroxide solution, a nickel chloride aqueous solution with a nickel concentration of 60 g / L and a 24% by mass aqueous sodium hydroxide solution were continuously added to the reaction vessel while adjusting the pH to 8.3, thereby adding water. Nickel oxide was produced.
At that time, the nickel chloride aqueous solution was added at a rate of 24 mL / min. Moreover, liquid temperature was hold | maintained at 60 degreeC and it mixed at 200 rpm with the stirring blade. After adding 3 L of nickel chloride aqueous solution, stirring was continued for 3 hours to produce nickel hydroxide.
Next, the obtained nickel hydroxide slurry was once settled, and the supernatant was removed so that the slurry concentration became 500 g / L. Thereafter, an aqueous sodium hydroxide solution was added to the slurry, and the pH was adjusted to 8.5 and the liquid temperature was adjusted to 50 ° C., followed by washing for 30 minutes. Then, it filtered and isolate | separated the nickel hydroxide cake, Furthermore, the pure water repulp and filtration were performed for 30 minutes with the slurry density | concentration of 200 g / L, and the nickel hydroxide filter cake was obtained. The obtained filter cake was put into an air dryer and dried at 120 ° C. for 24 hours to obtain nickel hydroxide powder. Moreover, the chlorine concentration of the obtained nickel hydroxide powder was measured.
Subsequently, 10 g of the obtained nickel hydroxide was heated in air at 460 ° C. for 2 hours to synthesize nickel oxide, and the obtained nickel oxide was reduced in hydrogen atmosphere at 400 ° C. for 3 hours to obtain nickel powder.
Finally, the obtained nickel powder was washed by stirring with pure water having a slurry concentration of 40 g / L for 30 minutes, and was subjected to solid-liquid separation by suction filtration. Thereafter, it was dried at 120 ° C. for 12 hours in an air dryer and passed through a # 100 sieve to obtain nickel powder. The results are shown in Table 1.

(実施例2)
水酸化ニッケルの洗浄時のpHを9.8に変更した以外は実施例1と同様の方法でニッケル粉を作製した。結果を表1に示した。
(Example 2)
Nickel powder was produced in the same manner as in Example 1 except that the pH at the time of washing nickel hydroxide was changed to 9.8. The results are shown in Table 1.

(実施例3)
水酸化ニッケルの洗浄時のpHを12.0に変更した以外は実施例1と同様の方法でニッケル粉を作製した。結果を表1に示した。
(Example 3)
Nickel powder was prepared in the same manner as in Example 1 except that the pH at the time of washing nickel hydroxide was changed to 12.0. The results are shown in Table 1.

(比較例1)
実施例1で水酸化ニッケルのスラリーを一度沈降させ、上澄み液除去後に洗浄液として水酸化ナトリウム水溶液を添加する代わりに、水酸化ニッケルの洗浄を純水で行い、ろ過後の純水レパルプ及びろ過の回数を3回とした以外は実施例1と同様の方法でニッケル粉を作製した。なお最初の純水洗浄時のpHは7.5であった。結果を表2に示した。
(Comparative Example 1)
In Example 1, the nickel hydroxide slurry was once settled, and instead of adding the aqueous sodium hydroxide solution as the washing liquid after removing the supernatant liquid, the nickel hydroxide was washed with pure water, and the filtered pure water repulped and filtered. Nickel powder was produced in the same manner as in Example 1 except that the number of times was three. The pH at the first pure water washing was 7.5. The results are shown in Table 2.

(比較例2)
実施例1で水酸化ニッケルのスラリーを一度沈降させ、上澄み液除去後に洗浄液として水酸化ナトリウム水溶液を添加する代わりに、水酸化ニッケルの洗浄を純水とした以外は実施例1と同様の方法で水酸化ニッケルを作製した。水酸化ニッケルの残留塩素が高いために、酸化ニッケル生成以降の作業は行わなかった。なお最初の純水洗浄時のpHは7.5であった。結果を表2に示した。
(Comparative Example 2)
In the same manner as in Example 1, except that nickel hydroxide slurry was once settled in Example 1, and instead of adding a sodium hydroxide aqueous solution as a cleaning solution after removing the supernatant, nickel hydroxide was washed with pure water. Nickel hydroxide was produced. Due to the high residual chlorine content of nickel hydroxide, the work after nickel oxide generation was not performed. The pH at the first pure water washing was 7.5. The results are shown in Table 2.

(比較例3)
水酸化ニッケルの洗浄時のpHを12.3に変更した以外は実施例1と同様の方法でニッケル粉を作製した。結果を表2に示した。
(Comparative Example 3)
Nickel powder was prepared in the same manner as in Example 1 except that the pH at the time of washing nickel hydroxide was changed to 12.3. The results are shown in Table 2.

(比較例4)
水酸化ニッケルの洗浄時のpHを12.3に変更し、酸化ニッケルの還元処理において水素雰囲気での加熱温度を370℃とした以外は実施例1と同様の方法でニッケル粉を作製した。結果を表1に示した。
(Comparative Example 4)
Nickel powder was prepared in the same manner as in Example 1 except that the pH during the nickel hydroxide washing was changed to 12.3 and the heating temperature in the hydrogen atmosphere was changed to 370 ° C. in the reduction treatment of nickel oxide. The results are shown in Table 1.

Figure 0006135479
Figure 0006135479

Figure 0006135479
Figure 0006135479

(評価)
上記の結果を示す表1から明らかなように、実施例1〜3は、ニッケル粉の生産性に優れ、粗大粒子が少なく、酸素濃度が低いことがわかる。なお、実施例3で得られたニッケル粉は、ややD90が大きく連結粒子が若干多くなるが実用上問題がないレベルである。
(Evaluation)
As is apparent from Table 1 showing the above results, Examples 1 to 3 have excellent nickel powder productivity, few coarse particles, and low oxygen concentration. The nickel powder obtained in Example 3 has a large D90 and a slight increase in the number of connected particles, but at a level where there is no practical problem.

これに対し、表2から明らかなように、比較例1は、水酸化ニッケルの洗浄にアルカリを使用しなかったため、洗浄回数が多くなり、生産性で不可となった。比較例2は、純水での洗浄を2回としたため、水酸化ニッケルの塩素濃度が高く、設備に与える影響が大きいため不可となった。比較例3は、水酸化ニッケルの洗浄時にpHを12.0よりも高くしたため、水酸化ニッケルの塩素濃度が低くなりすぎ、粒子の連結が進行したため不可となった。比較例4は、水酸化ニッケルの洗浄時のpHを12.0より高くしたため、水酸化ニッケルの塩素濃度が低くなったので、粒子の連結防止のために熱処理温度を下げた結果、酸素濃度が高く不可となった。   On the other hand, as is apparent from Table 2, Comparative Example 1 did not use an alkali for the cleaning of nickel hydroxide, so that the number of cleanings was increased and the productivity became impossible. In Comparative Example 2, the cleaning with pure water was performed twice, so that the chlorine concentration of nickel hydroxide was high, and the influence on the equipment was large, which was not possible. In Comparative Example 3, since the pH was higher than 12.0 during the washing of nickel hydroxide, the chlorine concentration of nickel hydroxide became too low, and the connection of particles progressed, making it impossible. In Comparative Example 4, since the pH at the time of washing nickel hydroxide was higher than 12.0, the chlorine concentration of nickel hydroxide was lowered, and as a result of lowering the heat treatment temperature to prevent particle connection, the oxygen concentration was Highly impossible.

本発明のニッケル粉の製造方法によれば、連結粒子が少なく、酸素濃度を低減したニッケル粉が得られる。得られるニッケル粉は、MLCCや電磁波シールドなどにおける配線材料、電極材料といった電子部品材料として好適である。   According to the method for producing nickel powder of the present invention, nickel powder with few connected particles and reduced oxygen concentration can be obtained. The obtained nickel powder is suitable as an electronic component material such as a wiring material or an electrode material in MLCC or electromagnetic wave shield.

Claims (7)

塩化ニッケル水溶液をアルカリで中和して水酸化ニッケルを沈澱させて、残留塩素濃度が5000〜9000質量ppmの水酸化ニッケル粉とする工程(A)と、該水酸化ニッケル粉を酸化性雰囲気下あるいは不活性雰囲気下で加熱処理して酸化ニッケル粉にする工程(B)と、該酸化ニッケルを還元性雰囲気下、380〜500℃で加熱処理してニッケル粉を作製する工程(C)と、該ニッケル粉を洗浄する工程(D)を備えたニッケル粉の製造方法であって、
前記工程(A)における塩化ニッケル水溶液とアルカリの中和反応が終了した後、水酸化ニッケルのスラリーのpHを8.5〜12.0として洗浄し、その後、ろ過、純水洗浄を行うことを特徴とするニッケル粉の製造方法。
A step (A) of neutralizing a nickel chloride aqueous solution with an alkali to precipitate nickel hydroxide to obtain nickel hydroxide powder having a residual chlorine concentration of 5000 to 9000 mass ppm; and the nickel hydroxide powder in an oxidizing atmosphere. Or the process (B) which heat-processes in inert atmosphere and makes nickel oxide powder, the process (C) which heat-processes this nickel oxide at 380-500 degreeC in a reducing atmosphere, and (C), A method for producing nickel powder comprising the step (D) of washing the nickel powder,
After the neutralization reaction between the aqueous nickel chloride solution and the alkali in the step (A) is completed, the nickel hydroxide slurry is washed with a pH of 8.5 to 12.0, and then filtered and washed with pure water. A method for producing nickel powder.
前記工程(A)において、塩化ニッケル水溶液とアルカリの中和反応が終了した後、水酸化ニッケルのスラリーを濃縮し、pHを8.5〜12.0として洗浄することを特徴とする請求項1に記載のニッケル粉の製造方法。   In the step (A), after completion of the neutralization reaction between the aqueous nickel chloride solution and the alkali, the nickel hydroxide slurry is concentrated and washed with a pH of 8.5 to 12.0. The manufacturing method of the nickel powder as described in 2. 前記工程(A)において、洗浄時の水酸化ニッケルのスラリーのpHは、塩化ニッケル水溶液とアルカリの中和反応時のpHよりも高いことを特徴とする請求項1または2に記載のニッケル粉の製造方法。   In the step (A), the pH of the nickel hydroxide slurry at the time of washing is higher than the pH during the neutralization reaction between the aqueous nickel chloride solution and the alkali. Production method. 前記工程(A)において、中和に用いるアルカリは、水酸化ナトリウム、水酸化カリウムから選ばれる少なくとも1種以上であることを特徴とする請求項1〜3のいずれかに記載のニッケル粉の製造方法。   In the said process (A), the alkali used for neutralization is at least 1 sort (s) chosen from sodium hydroxide and potassium hydroxide, The manufacture of the nickel powder in any one of Claims 1-3 characterized by the above-mentioned. Method. 前記工程(A)において、洗浄に用いるアルカリは、中和に用いたものと同一のアルカリとすることを特徴とする請求項1〜4のいずれかに記載のニッケル粉の製造方法。   In the said process (A), the alkali used for washing | cleaning shall be the same alkali as what was used for neutralization, The manufacturing method of the nickel powder in any one of Claims 1-4 characterized by the above-mentioned. 得られるニッケル粉のD90が、1.5μm以下であることを特徴とする請求項1〜5のいずれかに記載のニッケル粉の製造方法。   D90 of the nickel powder obtained is 1.5 micrometers or less, The manufacturing method of the nickel powder in any one of Claims 1-5 characterized by the above-mentioned. 得られるニッケル粉の酸素濃度が、1.8質量%以下であることを特徴とする請求項1〜6のいずれかに記載のニッケル粉の製造方法。   The oxygen concentration of the obtained nickel powder is 1.8 mass% or less, The manufacturing method of the nickel powder in any one of Claims 1-6 characterized by the above-mentioned.
JP2013245863A 2013-11-28 2013-11-28 Method for producing nickel powder Active JP6135479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013245863A JP6135479B2 (en) 2013-11-28 2013-11-28 Method for producing nickel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013245863A JP6135479B2 (en) 2013-11-28 2013-11-28 Method for producing nickel powder

Publications (2)

Publication Number Publication Date
JP2015101784A JP2015101784A (en) 2015-06-04
JP6135479B2 true JP6135479B2 (en) 2017-05-31

Family

ID=53377751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013245863A Active JP6135479B2 (en) 2013-11-28 2013-11-28 Method for producing nickel powder

Country Status (1)

Country Link
JP (1) JP6135479B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102084430B1 (en) * 2018-10-30 2020-03-04 인하대학교 산학협력단 The method of generating oxygen vacancies in nickel hydroxide catalyst for oxygen evolution reaction and the nickel hydroxide catalyst thereby

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5125411B2 (en) * 2007-10-26 2013-01-23 住友金属鉱山株式会社 Nickel powder and method for producing the same
JP5194876B2 (en) * 2008-02-25 2013-05-08 住友金属鉱山株式会社 Nickel oxide powder and method for producing the same
JP5168070B2 (en) * 2008-10-08 2013-03-21 住友金属鉱山株式会社 Nickel oxide powder and method for producing the same
JP5369864B2 (en) * 2009-04-24 2013-12-18 住友金属鉱山株式会社 Nickel powder and method for producing the same
JP5182206B2 (en) * 2009-04-24 2013-04-17 住友金属鉱山株式会社 Nickel powder and method for producing the same
JP5509725B2 (en) * 2009-08-21 2014-06-04 住友金属鉱山株式会社 Nickel oxide powder and method for producing the same
JP5373867B2 (en) * 2011-08-23 2013-12-18 株式会社田中化学研究所 Method for producing nickel oxide

Also Published As

Publication number Publication date
JP2015101784A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
JP5574154B2 (en) Nickel powder and method for producing the same
JP5369864B2 (en) Nickel powder and method for producing the same
JP5182206B2 (en) Nickel powder and method for producing the same
JP2009024197A (en) Method for producing nickel powder
JP5067312B2 (en) Nickel powder and its manufacturing method
JP5141983B2 (en) Nickel fine powder and method for producing the same
JP6159306B2 (en) Nickel oxide powder
TWI632005B (en) Method for producing nickel powder
JP5621268B2 (en) Nickel oxide fine powder and method for producing the same
JP6135479B2 (en) Method for producing nickel powder
JP2010024501A (en) Method for producing silver powder
KR102017177B1 (en) A method for preparing high-purity silver nano powder using wet process
JP2011225395A (en) Nickel oxide fine powder, and method for producing the same
JP6213301B2 (en) Method for producing nickel powder
JP6131775B2 (en) Method for producing nickel powder
JP2018024535A (en) Production method of nickel oxide fine powder
JP6131773B2 (en) Nickel powder, method for producing the same, and nickel paste using the same
JP5168592B2 (en) Method for producing nickel powder
KR102023711B1 (en) A silver nano powder of high purity
JP2018024550A (en) Nickel oxide fine powder and production method of the same
JP6065699B2 (en) Method for producing nickel powder
JP5979041B2 (en) Method for producing nickel powder
JP5125411B2 (en) Nickel powder and method for producing the same
JP2016172658A (en) Manufacturing method of nickel oxide powder
JP2006037195A (en) Method for producing nickel powder

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R150 Certificate of patent or registration of utility model

Ref document number: 6135479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150