WO2021100394A1 - ポリマー組成物 - Google Patents
ポリマー組成物 Download PDFInfo
- Publication number
- WO2021100394A1 WO2021100394A1 PCT/JP2020/039532 JP2020039532W WO2021100394A1 WO 2021100394 A1 WO2021100394 A1 WO 2021100394A1 JP 2020039532 W JP2020039532 W JP 2020039532W WO 2021100394 A1 WO2021100394 A1 WO 2021100394A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- polymer composition
- acid
- microfibrillated plant
- polymer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L91/00—Compositions of oils, fats or waxes; Compositions of derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/14—Polymer mixtures characterised by other features containing polymeric additives characterised by shape
- C08L2205/16—Fibres; Fibrils
Definitions
- the present invention relates to polymer compositions.
- Patent Document 1 describes a master batch containing microfibrillated plant fibers. The rubber composition used is disclosed.
- Patent Document 1 does not satisfy the parameters specified in the present application, and easily imparts physical properties such as excellent viscoelastic properties (E *, tan ⁇ , etc.) and filler orientation. It leaves room for improvement.
- the present invention has been made in view of the above situation, and provides a polymer composition having excellent viscoelastic properties (E *, tan ⁇ ), physical properties such as durability and impact resistance, and orientation of microfibrillated plant fibers.
- E *, tan ⁇ excellent viscoelastic properties
- the purpose is to provide.
- the present invention contains a polymer and microfibrillated plant fibers, and the ratio (E * a) of the complex elastic modulus E * a (MPa) in the extrusion direction to the complex elastic modulus E * b (MPa) in the direction orthogonal to the extrusion direction.
- / E * b) is the ratio of the breaking stress TBa (MPa) at the time of extension in the extrusion direction to the stress FBa (MPa) at the time of 50% elongation at break during the extension in the extrusion direction (TBa /).
- the present invention relates to a polymer composition in which FBa) satisfies the following formula (2).
- TBa / FBa ⁇ 3.0 is satisfied.
- microfibrillated plant fiber 0.5 to 30 parts by mass of the microfibrillated plant fiber is contained with respect to 100 parts by mass of the polymer.
- the average aspect ratio of the microfibrillated plant fibers in the polymer composition is preferably 10 to 1000.
- the average fiber diameter of the microfibrillated plant fibers in the polymer composition is preferably 10 ⁇ m or less.
- the polymer composition is prepared by a production method including a step 1 of preparing a mixed solution containing microfibrillated plant fibers, oil and an amine organic acid, and a step 2 of preparing a polymer composition containing the mixed solution and a polymer. It is preferable that the product is to be used.
- the step 1 includes the oil obtained by saponifying a plant-derived glycerol fatty acid triester and / or a plant-derived glycerol fatty acid triester, and the organic acid amine is an aliphatic carboxylic acid or an alicyclic. It preferably contains at least one selected from the group consisting of formula carboxylic acids and aromatic carboxylic acids.
- the organic acid amine contains an aliphatic carboxylic acid.
- the polymer preferably contains at least one rubber selected from the group consisting of natural rubber, butadiene rubber and styrene butadiene rubber.
- It preferably contains at least one selected from the group consisting of carbon black and silica.
- the present invention contains a polymer and microfibrillated plant fibers, and the ratio (E * a) of the complex elastic modulus E * a (MPa) in the extrusion direction to the complex elastic modulus E * b (MPa) in the direction orthogonal to the extrusion direction.
- / E * b) is the ratio of the breaking stress TBa (MPa) at the time of extension in the extrusion direction to the stress FBa (MPa) at the time of 50% elongation at break during the extension in the extrusion direction (TBa /). Since FBa) is a polymer composition satisfying the above formula (2), it is excellent in viscoelastic properties (E *, tan ⁇ ), physical properties such as durability and impact resistance, and orientation of microfibrillated plant fibers.
- the polymer composition of the present invention contains a polymer and microfibrillated plant fibers, and satisfies the above formulas (1) and (2).
- the polymer composition is excellent in viscoelastic properties (E *, tan ⁇ ), physical properties such as durability and impact resistance, and orientation of microfibrillated plant fibers.
- the polymer composition has excellent physical properties such as viscoelastic properties (E * (rigidity), tan ⁇ (low fuel consumption)), impact resistance, and orientation of microfibrillated plant fibers, and is resistant to vibration and impact. It is presumed that the composition can be provided.
- E * viscoelastic properties
- tan ⁇ low fuel consumption
- the polymer composition has a complex elastic modulus E * a [MPa] in the extrusion direction and a complex elastic modulus E * b [MPa] in the direction orthogonal to the extrusion direction (complex elastic modulus in the direction orthogonal to the extrusion direction).
- the ratio of (E * a / E * b) satisfies the following equation (1).
- E * a / E * b is 1.4 or more and 1.5 or more from the viewpoint of viscoelastic properties (E *, tan ⁇ ), physical properties such as durability and impact resistance, and orientation of microfibrillated plant fibers. It may be 1.8 or more, 2.0 or more, or 2.2 or more.
- the upper limit is not particularly limited, but from the viewpoint of crack growth resistance in the extrusion direction, E * a / E * b may be 8.0 or less, 6.0 or less, and 5.0 or less.
- the polymer composition has a breaking stress (breaking stress when stretched in the extrusion direction) TBa [MPa] during elongation in the extrusion direction and a stress at 50% elongation at break during elongation in the extrusion direction (extrusion direction).
- the ratio of 50% of the elongation at break (half of the elongation at break) when stretched to FBa [MPa] to the ratio (TBa / FBa) to the stress when stretched in the extrusion direction is the following formula (2).
- TBa / FBa ⁇ 2.6 (2) From the viewpoint of viscoelastic properties (E *, tan ⁇ ), durability, impact resistance and other physical properties, and the orientation of microfibrillated plant fibers, TBa / FBa is 3.0 or higher, 3.1 or higher, 3.2 or higher. As mentioned above, it may be 3.4 or more and 3.5 or more. Although the upper limit is not particularly limited, TBa / FBa may be 8.0 or less, 6.0 or less, and 5.0 or less from the viewpoint of vibration resistance in the extrusion direction.
- the present invention has a viscoelastic property (E *, tan ⁇ ) by forming a polymer composition satisfying the formulas (1) and (2) in the formulation containing the polymer and the microfibrillated plant fiber. It solves the problems (purposes) of improving physical characteristics such as durability and impact resistance, and the orientation of microfibrillated plant fibers. That is, the parameters of the equations (1) and (2) do not define the problem (purpose), and the problem of the present application is the physical properties such as viscoelastic property (E *, tan ⁇ ), durability, impact resistance, and micro. It is an improvement in the orientation of fibrillated plant fibers, and is configured to satisfy the relevant parameters as a solution for that purpose.
- the polymer composition preferably has a complex elastic modulus E * a [MPa] in the extrusion direction satisfying the following formula (1-1).
- E *, tan ⁇ viscoelastic properties
- the lower limit is 1.2 MPa or more, 1.5 MPa or more, 6 MPa or more, 8 MPa or more, It may be 10 MPa or more and 12 MPa or more.
- the upper limit is not particularly limited, but from the viewpoint of impact resistance in the extrusion direction, 90 MPa or less is more preferable, 60 MPa or less is further preferable, 40 MPa or less is particularly preferable, and 20 MPa or less is most preferable.
- the breaking stress TBa [MPa] at the time of elongation in the extrusion direction of the polymer composition satisfies the following formula (2-1).
- the lower limit is 10 MPa or more, 12 MPa or more, 15 MPa or more, 18 MPa or more, 20 MPa or more, 25 MPa. As mentioned above, it may be 30 MPa or more.
- the upper limit is not particularly limited, but 45 MPa or less is more preferable from the viewpoint of vibration resistance in the extrusion direction.
- a method of sufficiently orienting microfibrillated plant fibers in the polymer can be mentioned.
- Specific examples thereof include (a) a method of mixing a dispersion liquid in which microfibrillated plant fibers are dispersed in oil and a polymer, (b) a method of using an amine organic acid, and the like alone or in combination as appropriate. Be done.
- the microfibrillated plant fiber itself is water-soluble, in general, in order to obtain a good dispersion state with respect to a hydrophobic polymer (rubber, resin, etc.), the microfibrillated plant fiber is made hydrophobic (modified). It is necessary to prepare a wet master batch using the modified microfibrillated plant fiber obtained in the above process.
- a water-soluble polymer (carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), etc.) is generally used as the dispersant during the production of the wet masterbatch.
- an unmodified microfibrillated plant fiber is obtained by mixing a dispersion liquid in which microfibrillated plant fiber is dispersed in oil in advance using a specific dispersant (amine organic acid) with a polymer.
- a specific dispersant amine organic acid
- the physical properties such as viscoelastic properties (E *, tan ⁇ ), durability, impact resistance, etc., which are equal to or higher than those when using a conventional wet master batch containing modified microfibrillated plant fibers, microfibrils
- the orientation of the chemical plant fibers is obtained.
- E * a and E * b are complex elastic moduli measured at a temperature of 70 ° C. and a dynamic strain of 1%, respectively, and are measured by the methods described in Examples described later.
- TBa and FBa are values measured at a standard test temperature (23 ⁇ 2 ° C.) according to JIS K6251: 2017, and are measured by the method described in Examples described later.
- E * a, E * b, TBa, and FBa are the physical characteristics of the rubber composition after vulcanization.
- the extrusion direction and the direction orthogonal to the extrusion direction are the direction in which the molding material is extruded from the extrusion port of the extrusion molding machine and the direction orthogonal to the extrusion direction.
- the extrusion direction is the tire circumferential direction and the direction orthogonal to the extrusion direction is the tire radial direction.
- the tire circumferential direction and the tire radial direction are specifically the directions described in FIG. 1 and the like in JP-A-2009-202865.
- the polymer is not particularly limited, and examples thereof include known polymers such as rubber and resin. These polymers may be used alone or in combination of two or more.
- NR natural rubber
- IR isoprene rubber
- BR butadiene rubber
- SBR styrene butadiene rubber
- SIBR styrene isoprene butadiene rubber
- EPDM chloroprene rubber
- CR acrylonitrile butadiene rubber
- NBR acrylonitrile butadiene rubber
- X-IIR halogenated butyl rubber
- IIR halogenated butyl rubber
- IIR butyl rubber
- fluororubbers And so on When applied to a tire, NR, BR, SBR and the like can be preferably used from the viewpoint of tire physical characteristics.
- the NR is not particularly limited, and for example, SIR20, RSS # 3, TSR20 and the like, which are common in the tire industry, can be used.
- the NR may be modified, for example, epoxidized natural rubber (ENR), deproteinized natural rubber (DPNR), high-purity natural rubber (UPNR), hydrogenated natural rubber (HNR), grafted natural rubber, etc. Modified natural rubber is exemplified.
- the content of NR in 100% by mass of the polymer is not particularly limited and may be appropriately selected depending on the intended use.
- it is preferably 20% by mass or more, more preferably 30% by mass or more, and further preferably 40% by mass or more.
- the upper limit of the content is not particularly limited and may be 100% by mass.
- the BR is not particularly limited, and for example, a BR having a high cis content, a BR containing 1,2-syndiotactic polybutadiene crystals (SPB-containing BR), and a butadiene rubber synthesized using a rare earth element catalyst (rare earth element).
- SPB-containing BR 1,2-syndiotactic polybutadiene crystals
- BR tin-modified butadiene rubber modified with a tin compound
- tin-modified BR tin-modified BR
- Ube Industries, Ltd., JSR Corporation, Asahi Kasei Corporation, and Zeon Corporation can be used. These may be used alone or in combination of two or more.
- the cis content of BR is preferably 80% by mass or more, more preferably 85% by mass or more, still more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
- the cis content is a value calculated by infrared absorption spectrum analysis.
- the content of BR in 100% by mass of the polymer is not particularly limited and may be appropriately selected depending on the intended use. For example, from the viewpoint of low temperature characteristics, it is preferably 20% by mass or more, more preferably 30% by mass or more, and further preferably 40% by mass or more.
- the upper limit of the content is not particularly limited, but is preferably 80% by mass or less, more preferably 70% by mass or less, and further preferably 60% by mass or less.
- the SBR is not particularly limited, and for example, emulsion-polymerized styrene-butadiene rubber (E-SBR), solution-polymerized styrene-butadiene rubber (S-SBR), and the like can be used.
- E-SBR emulsion-polymerized styrene-butadiene rubber
- S-SBR solution-polymerized styrene-butadiene rubber
- SBR emulsion-polymerized styrene-butadiene rubber
- S-SBR solution-polymerized styrene-butadiene rubber
- the content of SBR in 100% by mass of the polymer is not particularly limited and may be appropriately selected depending on the intended use. For example, from the viewpoint of grip performance, it is preferably 20% by mass or more, more preferably 30% by mass or more, and further preferably 40% by mass or more.
- the upper limit of the content is not particularly limited and may be 100% by mass.
- the BR and SBR may be non-modified BR or non-modified SBR, or may be modified BR or modified SBR.
- the modified BR and modified SBR may be BR or SBR having a functional group that interacts with a filler such as silica.
- a filler such as silica.
- at least one end of BR or SBR may be a compound having the above functional group (modifying agent).
- Main chain terminal modified BR SBR having the above (for example, main chain terminal modified BR, SBR having the functional group in the main chain and having at least one end modified with the modifying agent), or two or more in the molecule.
- Examples thereof include terminally modified BR and SBR which have been modified (coupled) with a polyfunctional compound having an epoxy group and introduced with a hydroxyl group or an epoxy group.
- Examples of the functional group include an amino group, an amide group, a silyl group, an alkoxysilyl group, an isocyanate group, an imino group, an imidazole group, a urea group, an ether group, a carbonyl group, an oxycarbonyl group, a mercapto group, a sulfide group and a disulfide.
- Examples thereof include a group, a sulfonyl group, a sulfinyl group, a thiocarbonyl group, an ammonium group, an imide group, a hydrazo group, an azo group, a diazo group, a carboxyl group, a nitrile group, a pyridyl group, an alkoxy group, a hydroxyl group, an oxy group and an epoxy group. ..
- these functional groups may have a substituent.
- an amino group preferably an amino group in which the hydrogen atom of the amino group is replaced with an alkyl group having 1 to 6 carbon atoms
- an alkoxy group preferably an alkoxy having 1 to 6 carbon atoms.
- an alkoxysilyl group preferably an alkoxysilyl group having 1 to 6 carbon atoms.
- the resin is not particularly limited, and for example, polyethylene (PE), polypropylene (PP), polyvinyl chloride, polystyrene, polyvinylidene chloride, fluororesin (tetrachloroethylene, hexfluoropropylene, chlorotrifluoroethylene, vilinidene fluoride, fluoride).
- Monopolymers or copolymers such as vinyl and perfluoroalkyl vinyl ether), (meth) acrylic resins ((meth) acrylic acid, (meth) acrylonitrile, (meth) acrylic acid esters, (meth) acrylamides, etc.
- Polyamide resin nylon resin, PA
- polyester aromatic polyester, aliphatic polyester, unsaturated polyester, etc.
- polylactic acid resin polylactic acid and polyester copolymer resin
- ABS resin acrylonitrile-butadiene- Styrene copolymer
- polycarbonate reactant of bisphenol A or its derivative bisphenol and phosgen or phenyldicarbonate, etc.
- polyphenylene oxide polyphenylene oxide
- thermoplastic polyurethane
- vinyl ether resin polysulfone-based resin (copolymers such as 4,4'-dichlorodiphenylsulfone, bisphenol A, etc.)
- cellulose-based resin triacetylated cellulose, diacetylated cellulose, etc.
- Etc. such as thermoplastic resins
- the polymer composition contains microfibrillated plant fibers, and preferably contains, for example, at least one rubber selected from the group consisting of NR, BR and SBR, and microfibrillated plant fibers. Can be used.
- the polymer composition is microscopic with respect to 100 parts by mass of the polymer. It is preferable to contain 0.5 to 30 parts by mass of fibrillated plant fiber.
- the lower limit is more preferably 1 part by mass or more, further preferably 3 parts by mass or more, particularly preferably 4 parts by mass or more, most preferably 5 parts by mass or more, and may be 10 parts by mass or more.
- the upper limit is more preferably 25 parts by mass or less, further preferably 20 parts by mass or less, particularly preferably 15 parts by mass or less, and most preferably 12.5 parts by mass or less.
- cellulose microfibrils are preferable from the viewpoint of breaking strength, abrasion resistance and the like.
- Cellulose microfibrils are not particularly limited as long as they are derived from natural products, and for example, resource biomass such as fruits, grains and root vegetables, wood, bamboo, hemp, jute, kenaf, and pulp obtained from these as raw materials. Paper, cloth, agricultural waste, waste biomass such as food waste and sewage sludge, unused biomass such as rice straw, straw, and thinned wood, as well as those derived from cellulose produced by squirrels, acetic acid bacteria, etc. Be done. These microfibrillated plant fibers may be used alone or in combination of two or more.
- the cellulose microfibrils are typically cellulose fibers having an average fiber diameter of several tens of ⁇ m (20 to 30 ⁇ m or less) or less, preferably 10 ⁇ m or less.
- a typical cellulose microfibril can be formed as, for example, an aggregate of cellulose fibers having an average fiber diameter as described above.
- the method for producing microfibrillated plant fibers is not particularly limited.
- a raw material for cellulose microfibrils is chemically treated with an alkali such as sodium hydroxide as necessary, and then a refiner and a twin-screw kneader (biaxial extruder) are used.
- lignin is separated from the raw material by chemical treatment, so that microfibrillated plant fibers that are substantially free of lignin can be obtained.
- a method of treating a raw material of cellulose microfibrils with an ultra-high pressure can be mentioned.
- microfibrillated plant fiber for example, products such as Sugino Machine Limited and Daicel Finechem Co., Ltd. can be used.
- the microfibrillated plant fiber can be sufficiently oriented in the polymer even with the unmodified microfibrillated plant fiber obtained by the above-mentioned production method or the like, but of course, the unmodified micro.
- fibrillated plant fibers those that have undergone oxidation treatment or various chemical modification treatments, and natural products that can be the origin of cellulose microfibrils (for example, wood, pulp, bamboo, hemp, jute, kenaf, agricultural waste products, etc.
- Cloth, paper, squirrel cellulose, etc. can also be used as a cellulose raw material, which has undergone oxidation treatment and various chemical modification treatments, and then defibrated as necessary (chemically modified microfibrillated plant fibers, etc.). ).
- Examples of the mode of chemical modification of microfibrillated plant fibers include esterification treatment, etherification treatment, acetalization treatment and the like.
- acylation such as acetylation, cyanoethylation, amination, sulfone esterification, phosphate esterification, alkyl esterification, alkyl etherification, composite esterification, ⁇ -keto esterification, alkylation such as butylation, etc. , Chlorization, etc. are preferably exemplified.
- alkyl carbamate formation and aryl carbamate formation can also be exemplified.
- Chemically modified microfibrillated plant fibers are preferably chemically modified so that the degree of substitution is in the range of 0.2 to 2.5.
- the degree of substitution means the average number of hydroxyl groups substituted for other functional groups by chemical modification among the hydroxyl groups of cellulose per glucose ring unit, and the theoretical maximum value is 3.
- the degree of substitution is more preferably in the range of 0.3 to 2.5, further preferably in the range of 0.5 to 2.3, and in the range of 0.5 to 2.0. It is particularly preferable to have.
- the chemically modified microfibrillated plant fiber is composed of two or more kinds of combinations, the degree of substitution is calculated as the average of the entire chemically modified microfibrillated plant fiber.
- the degree of substitution in chemically modified microfibrillated plant fibers can be confirmed, for example, by titration using 0.5N-NaOH and 0.2N-HCl, NMR, infrared absorption spectrum and the like.
- an amination microfibrillated plant fiber having a degree of substitution in the range of 0.3 to 2.5 can be exemplified.
- the degree of substitution is preferably 0.3 to 2.3, more preferably 0.5 to 2.0, further preferably 0.7 to 2.0, and particularly preferably 0.9 to 1.8.
- the degree of substitution is 0.3 to 2.5
- the chemically modified microfibrillated plant fiber is a cellulose esterified microfibrillated plant fiber
- the degree of substitution is 0.3 to 1.8
- Alkyl esterified microfibril cellulose has a degree of substitution of 0.3 to 1.8
- composite esterified microfibril cellulose has a degree of substitution of 0.4 to 1.8
- ⁇ -ketoesterized microfibril cellulose has a degree of substitution of 0.4 to 1.8.
- the degree of substitution is 0.3 to 1.8, the degree of substitution is 0.3 to 1.8 in the case of alkylcarbamate-modified microfibril cellulose, and the degree of substitution is 0.3 to 1 in the case of arylcarbamate-modified microfibril cellulose.
- the range of 8 is preferable.
- Acetylation can be carried out, for example, by adding acetic acid, concentrated sulfuric acid, or acetic anhydride to microfibrillated plant fibers and reacting them. Specifically, for example, a method in which a microfibrillated plant fiber and acetic anhydride are reacted in a mixed solvent of acetic acid and toluene in the presence of a sulfuric acid catalyst to promote an acetylation reaction, and then the solvent is replaced with water. Etc., which can be carried out by a conventionally known method.
- Amination is performed, for example, by performing an oxidation treatment using an N-oxyl compound such as 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO), and then, for example, carbon such as alcohol (for example, ethanol).
- N-oxyl compound such as 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO)
- carbon such as alcohol (for example, ethanol).
- alcohols having numbers 1 to 10 preferably alcohols having 1 to 5 carbon atoms, more preferably primary alcohols having 1 to 4 carbon atoms
- amine compounds for example, oleylamine and the like having 1 to 30 carbon atoms.
- a primary amine compound preferably a primary amine compound having 3 to 25 carbon atoms having a saturated or unsaturated bond, more preferably a primary amine compound having 6 to 23 carbon atoms having an unsaturated bond, still more preferably.
- quaternary alkylammonium salt preferably a quaternary alkylammonium salt having 1 to 30 carbon atoms, more preferably hexadecyltrimethylammonium. It can be carried out by a method of reacting with a quaternary alkylammonium halide having 1 to 20 carbon atoms such as chloride to cause a parent nucleus substitution reaction, or a known method such as tosyl esterification.
- Sulfone esterification can be carried out, for example, by simply dissolving microfibrillated plant fibers in sulfuric acid and adding them to water. Alternatively, it can be treated with anhydrous sulfuric acid gas, treatment with chlorosulfonic acid and pyridine, or the like.
- Phosphoric acid esterification can be carried out, for example, by treating microfibrillated plant fibers that have been treated with dimethylamine or the like with phosphoric acid and urea.
- Alkyl esterification can be carried out, for example, by the Schotten-Baumann method in which microfibrillated plant fibers are reacted with carboxylic acid chloride under basic conditions, and alkyl etherification can be carried out by the micro fibrillation. It can be carried out by the Williamson method or the like in which fibrillated plant fibers are reacted with an alkyl halide under basic conditions.
- Chlorination can be carried out, for example, by adding thionyl chloride in DMF (dimethylformamide) and heating.
- the composite esterification can be carried out, for example, by reacting microfibrillated plant fibers with two or more types of carboxylic acid anhydrides or carboxylic acid chlorides under basic conditions.
- the ⁇ -ketoesterification can be carried out, for example, by reacting the microfibrillated plant fiber with diketene or an alkyl ketene dimer, or by transesterifying the microfibrillated plant fiber with a ⁇ -ketoester compound such as alkylacetoacetate. ..
- Alkyl carbamate formation can be carried out, for example, by reacting microfibrillated plant fibers with alkyl isocyanate in the presence of a basic catalyst or a tin catalyst.
- Arylcarbamate formation can be carried out, for example, by reacting microfibrillated plant fibers with arylisocyanate in the presence of a basic catalyst or a tin catalyst.
- the average fiber diameter of microfibrillated plant fibers in the polymer composition is from the viewpoint of viscoelastic properties (E *, tan ⁇ ), physical properties such as durability and impact resistance, and orientation and dispersibility of microfibrillated plant fibers. Therefore, it is preferably 10 ⁇ m or less.
- the average fiber diameter is more preferably 500 nm or less, further preferably 200 nm or less, particularly preferably 100 nm or less, and most preferably 50 nm or less.
- the lower limit of the average fiber diameter is not particularly limited, but 3 nm or more is preferable, 4 nm or more is more preferable, and 10 nm or more is further preferable, and 20 nm or more is preferable because the microfibrillated plant fibers are difficult to be entangled and dispersed. The above is particularly preferable.
- the average fiber length of the microfibrillated plant fibers in the polymer composition is preferably 100 nm or more, more preferably 300 nm or more, still more preferably 500 nm or more, particularly preferably 1 ⁇ m or more, and most preferably 2 ⁇ m or more. ..
- the upper limit is not particularly limited, but is preferably 5 mm or less, more preferably 50 ⁇ m or less, further preferably 20 ⁇ m or less, particularly preferably 10 ⁇ m or less, and most preferably 5 ⁇ m or less. When the average fiber length is less than the lower limit or exceeds the upper limit, there is a tendency similar to the above-mentioned average fiber diameter.
- the average fiber diameter and the average fiber length are calculated as the average of all the microfibrillated plant fibers. Further, it is more preferable that the microfibrillated plant fiber has an average fiber diameter in the above-mentioned suitable numerical range and has an average fiber length in the above-mentioned suitable numerical range.
- Average aspect ratio of microfibrillated plant fibers in the polymer composition from the viewpoint of viscoelastic properties (E *, tan ⁇ ), physical properties such as durability and impact resistance, orientation and dispersibility of microfibrillated plant fibers. Is preferably 10 to 1000.
- the lower limit is preferably 50 or more, more preferably 100 or more.
- the upper limit is preferably 1000 or less, more preferably 900 or less, and even more preferably 800 or less.
- the average aspect ratio can be calculated by the following formula.
- Average aspect ratio average fiber length / average fiber diameter
- the microfibrillated plant fiber has the above-mentioned average fiber diameter and average fiber length in the preferable range, and has the average aspect ratio in the above-mentioned suitable numerical range. Is more preferable.
- the average fiber diameter and average fiber length of microfibrillated plant fibers are determined by image analysis by scanning electron micrograph, image analysis by transmission electron micrograph, image analysis by atomic force micrograph, and X-ray scattering. It can be measured by data analysis, pore electron resistance method (Coulter principle method), etc.
- the polymer composition containing a polymer and microfibrillated plant fibers and satisfying the above formulas (1) and (2) is, for example, a step 1 for preparing a mixed solution containing microfibrillated plant fibers, oil and amine organic acid. It can be produced by a production method including step 2 for producing a polymer composition containing the mixed solution and the polymer.
- the production method may include other steps as long as the above steps are included, and the above steps may be performed once or repeated a plurality of times, respectively.
- step 1 of preparing a mixed solution containing microfibrillated plant fiber, oil and amine organic acid these are sequentially added dropwise, injected or the like, or after mixing the microfibrillated plant fiber, oil and amine organic acid, for example.
- It can be prepared by dispersing by a known method using a high-speed homogenizer, an ultrasonic homogenizer, a colloid mill, a blender mill or the like.
- the temperature and time at the time of preparation may be appropriately set within a range normally used so that the microfibrillated plant fibers are sufficiently dispersed in the oil, or may be appropriately adjusted while measuring the viscosity so that the mixed solution has a desired viscosity. can do.
- oil and microfibrillated plant fibers solid content from the viewpoints of physical properties such as viscoelastic properties (E *, tan ⁇ ), durability, impact resistance, orientation and dispersibility of microfibrillated plant fibers.
- amount of oil (parts by mass) / Amount of microfibrillated plant fiber (parts by mass) is preferably 10/90 to 90/10, more preferably 20/80 to 80/20, and 30/70. From 70/30 is more preferable, and 40/60 to 60/40 is particularly preferable, and for example, a mixing ratio of 50/50 can be used.
- the amount of the amine organic acid to be blended with respect to the minute) is preferably in the range of 0.1 to 50 parts by mass.
- the lower limit is more preferably 5 parts by mass or more, further preferably 10 parts by mass or more, particularly preferably 15 parts by mass or more, and most preferably 20 parts by mass or more.
- the upper limit is more preferably 45 parts by mass or less, further preferably 40 parts by mass or less.
- the oil is not particularly limited, and examples thereof include known oils such as process oils, vegetable oils and fats, or mixtures thereof.
- process oil for example, paraffin-based process oil, aroma-based process oil, naphthen-based process oil, low PCA (polycyclic aromatic) process oil such as TDAE and MES can be used.
- Vegetable oils and fats include castor oil, cottonseed oil, linseed oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pineapple, tall oil, corn oil, rice oil, beni flower oil, sesame oil, Examples thereof include olive oil, sunflower oil, palm kernel oil, camellia oil, jojoba oil, macadamia nut oil, and tung oil. These may be used alone or in combination of two or more.
- the glycerol fatty acid triester is an ester form of a fatty acid and glycerin, and is also referred to as triglyceride or tri-O-acylglycerin.
- the fatty acids that make up the plant-derived glycerol fatty acid triester are usually palmitic acid (16 carbons, 0 unsaturated bonds), stearic acid (18 carbons, 0 unsaturated bonds), and oleic acid (18 carbons).
- Unsaturated bonds 1) and linoleic acid (18 carbons, 2 unsaturated bonds) are known to form the main components, and palmitic acid, stearic acid, oleic acid and linole in 100% by mass of constituent fatty acids.
- the total content of the acid is usually 80% by mass or more, preferably 90% by mass or more.
- the glycerol fatty acid triester preferably has a saturated fatty acid content of 10 to 25% by mass in 100% by mass of the constituent fatty acids.
- the lower limit is more preferably 12% by mass or more
- the upper limit is more preferably 20% by mass or less, further preferably 18% by mass or less, particularly preferably 15% by mass or less, and most preferably 14% by mass or less.
- the content of the monovalent unsaturated fatty acid having one unsaturated bond in 100% by mass of the constituent fatty acids of the glycerol fatty acid triester is preferably less than 50% by mass, more preferably 45% by mass or less, still more preferably. Is 40% by mass or less, particularly preferably 35% by mass or less, and most preferably 30% by mass or less.
- the lower limit is not particularly limited, but is preferably 8% by mass or more, more preferably 14% by mass or more, still more preferably 20% by mass or more, and particularly preferably 23% by mass or more.
- the content of the polyunsaturated fatty acid having two or more unsaturated bonds in 100% by mass of the constituent fatty acids of the glycerol fatty acid triester is preferably 50% by mass or more, more preferably 55% by mass or more, and further. It is preferably 60% by mass or more, and particularly preferably 63% by mass or more.
- the upper limit is not particularly limited, but is preferably 90% by mass or less, more preferably 80% by mass or less, still more preferably 70% by mass or less, and particularly preferably 65% by mass or less.
- the content of the divalent unsaturated fatty acid having two unsaturated bonds in 100% by mass of the constituent fatty acids of the glycerol fatty acid triester is preferably 35 to 80% by mass, more preferably 40 to 70% by mass, and further preferably. Is 45 to 65% by mass, particularly preferably 52 to 56% by mass.
- the content of the trivalent unsaturated fatty acid having three unsaturated bonds in 100% by mass of the constituent fatty acids is preferably 3 to 25% by mass, more preferably 5 to 15% by mass, and further preferably 8 to 12. It is mass%.
- the total content of unsaturated fatty acids in 100% by mass of the constituent fatty acids of the glycerol fatty acid triester is preferably 75 to 90% by mass, more preferably 80 to 88% by mass, still more preferably 82 to 88% by mass, particularly. It is preferably 85 to 88% by mass.
- the glycerol fatty acid triester preferably satisfies the following formula (A).
- the lower limit of the following formula (A) is preferably 100 or more, more preferably 120 or more, further preferably 140 or more, particularly preferably 150 or more, most preferably 155 or more, and the upper limit is preferably 190 or less, more preferably. Is 180 or less, more preferably 170 or less, and particularly preferably 165 or less.
- the unsaturated bond of the constituent fatty acids is usually a double bond.
- the average carbon number of the constituent fatty acids of the glycerol fatty acid triester is preferably 15 to 21, more preferably 16 to 20, and even more preferably 17 to 19.
- the average carbon number of the constituent fatty acids is calculated by the following formula (D).
- Average number of carbon atoms of constituent fatty acid ⁇ Content of fatty acid having n carbon atoms in 100% by mass of constituent fatty acid (mass%) ⁇ n (carbon number) / 100 Formula (D)
- the glycerol fatty acid triester is preferably liquid at room temperature (25 ° C.).
- the melting point of the glycerol fatty acid triester is preferably 20 ° C. or lower, more preferably 17 ° C. or lower, still more preferably 0 ° C. or lower, particularly preferably ⁇ 5 ° C. or lower, and most preferably ⁇ 8 ° C. or lower.
- the lower limit is not particularly limited, but is preferably ⁇ 100 ° C. or higher, more preferably ⁇ 90 ° C. or higher.
- the melting point of the glycerol fatty acid triester can be measured by differential scanning calorimetry (DSC).
- the iodine value of the glycerol fatty acid triester is preferably 60 or more, more preferably 70 or more, still more preferably 80 or more, particularly preferably 100 or more, and most preferably 120 or more.
- the iodine value is preferably 160 or less, more preferably 150 or less, still more preferably 135 or less, and particularly preferably 132 or less.
- the iodine value is the amount of halogen bound when 100 g of a glycerol fatty acid triester is reacted with halogen, which is converted into the number of grams of iodine, and is measured by the potential difference dropping method (JIS K0070). It is a measured value.
- Examples of the plant-derived glycerol fatty acid triester include those derived from soybean oil, sesame oil, rice oil, safflower oil, corn oil, olive oil, rapeseed oil and the like. Of these, soybean oil, sesame oil, rice oil, and rapeseed oil are preferable, soybean oil, sesame oil, and rice oil are more preferable, and soybean oil is even more preferable, because they are inexpensive, available in large quantities, and have a high effect of improving performance. ..
- the fatty acid composition can be measured by GLC (gas-liquid chromatography).
- the oil those obtained by saponifying a plant-derived glycerol fatty acid triester (vegetable fat) (saponified product of vegetable fat) can also be preferably used.
- the saponification treatment can be carried out by adding an alkali to the vegetable oil and fat and allowing it to stand at a predetermined temperature for a certain period of time. In addition, stirring or the like may be performed if necessary.
- alkali examples include sodium hydroxide, potassium hydroxide, calcium hydroxide, amine compounds, etc., and from the viewpoint of the effect of the saponification treatment, sodium hydroxide or potassium hydroxide is particularly used. Is preferable.
- the amount of alkali added is not particularly limited, but for example, the lower limit is preferably 0.1 part by mass or more, more preferably 0.3 part by mass or more, and further preferably 1 part by mass or more with respect to 100 parts by mass of vegetable oil. ..
- the upper limit is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and even more preferably 10 parts by mass or less.
- the temperature of the saponification treatment can be appropriately set within a range in which the saponification reaction with alkali can proceed at a sufficient reaction rate and a range in which vegetable oils and fats do not deteriorate, but usually 20 to 70 ° C. is preferable, and 30 to 70 ° C. °C is more preferable.
- the treatment time depends on the temperature of the treatment when the vegetable oil is left to stand, but it takes 30 minutes to 48 hours in consideration of sufficient treatment and improvement of productivity. Is preferable, and 1 to 24 hours is more preferable.
- oil and glycerol fatty acid triester include, for example, Idemitsu Kosan Co., Ltd., Sankyo Yuka Kogyo Co., Ltd., Japan Energy Co., Ltd., Orisoi Co., Ltd., H & R Co., Ltd., Toyokuni Oil Co., Ltd., Showa Shell Sekiyu Co., Ltd.
- the polymer composition from the viewpoints of viscoelastic properties (E *, tan ⁇ ), durability, impact resistance and other physical properties, microfibrillated plant fiber orientation and dispersibility, etc., 100 parts by mass of the polymer was used. On the other hand, it is preferable to contain 0.5 to 30 parts by mass of oil.
- the lower limit is more preferably 1 part by mass or more, further preferably 3 parts by mass or more, particularly preferably 4 parts by mass or more, most preferably 5 parts by mass or more, and even more preferably 10 parts by mass or more.
- the upper limit is more preferably 25 parts by mass or less, further preferably 20 parts by mass or less, particularly preferably 15 parts by mass or less, and most preferably 12.5 parts by mass or less.
- Organic acid amines consist of organic acids and amines.
- Examples of the amine constituting the organic acid amine include a primary amine or a secondary amine containing one or two hydrogen atoms bonded to a nitrogen atom.
- the amine may be either a monoamine or a polyamine.
- the amine (amine compound) preferably has 1 to 24 carbon atoms.
- amines include methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine and pentadecylamine. , Hexadecylamine, heptadecylamine, octadecylamine, cyclopentylamine, cyclohexylamine, cycloheptylamine and the like.
- alkylenediamine can also be used, and specific examples thereof include methylenediamine, ethylenediamine, propylenediamine, butylenediamine, pentylenediamine, and hexamethylenediamine.
- Polyalkylene polyamines can also be used, and specifically, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, dipropylenetriamine, dibutylenetriamine, tributylenetetramine, tetrapropylenepentamine and the like can be used. it can.
- Examples of the organic acid constituting the organic acid amine include an aliphatic carboxylic acid, an alicyclic carboxylic acid, and an aromatic carboxylic acid. These carboxylic acids may be any of monocarboxylic acid, dicarboxylic acid, other polycarboxylic acid and the like, and may be either saturated or unsaturated carboxylic acid. Examples of the organic acid include aliphatic sulfonic acid, aromatic sulfonic acid, alkylsalicylic acid, and alkylphenol compound.
- aliphatic carboxylic acid monocarboxylic acid, dicarboxylic acid and the like are suitable.
- the number of carbon atoms is preferably 4 to 30, more preferably 6 to 24.
- Examples of the alicyclic carboxylic acid include cyclohexane monocarboxylic acid and cyclohexane dicarboxylic acid.
- aromatic carboxylic acid in addition to a carboxylic acid in which a carboxyl group is directly linked to the aromatic ring, a carboxylic acid having a carboxy group in the side chain can also be used.
- the aromatic hydrocarbon group in the aromatic carboxylic acid may be either a monocyclic ring or a polycyclic fused ring, and examples thereof include benzene, naphthalene, anthracene, phenanthrene, indene, fluorene, and biphenyl.
- aromatic carboxylic acid a monocarboxylic acid, a dicarboxylic acid, or another polycarboxylic acid can be used. Specific examples of the aromatic carboxylic acid include benzoic acid, phthalic acid, phenylacetic acid, mandelic acid and the like, and derivatives thereof.
- Aliphatic sulfonic acids aromatic sulfonic acid is a compound consisting of an aliphatic or aromatic hydrocarbon group and a sulfonic acid group, respectively, RSO 3 H, is represented by (R ') n ArSO 3 H .
- R and R' are each an aliphatic hydrocarbon group
- Ar represents an aromatic hydrocarbon group.
- the aliphatic sulfonic acid one having a chain hydrocarbon group having 4 to 40 carbon atoms can be used.
- aromatic sulfonic acid one substituted with one or two or more chain hydrocarbon groups or the like can be used.
- the chain hydrocarbon group is preferably an alkyl group having 4 to 40 carbon atoms (particularly an alkyl group having 12 or more carbon atoms), and specifically, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group or a heptadecyl group.
- the aromatic hydrocarbon group may be either a monocyclic ring or a polycyclic condensed ring as in the case of the aromatic carboxylic acid, and benzene, naphthalene and the like can also be exemplified.
- the microfibrillated plant fiber is obtained from the viewpoints of viscoelastic properties (E *, tan ⁇ ), durability, impact resistance and other physical properties, and the orientation and dispersibility of the microfibrillated plant fiber. It is preferable to contain 0.1 to 50 parts by mass of the organic acid amine with respect to 100 parts by mass.
- the lower limit is more preferably 5 parts by mass or more, further preferably 10 parts by mass or more, particularly preferably 15 parts by mass or more, and most preferably 20 parts by mass or more.
- the upper limit is more preferably 45 parts by mass or less, further preferably 40 parts by mass or less.
- the microfibrillated plant fiber is the oil and the organic acid in the state of an aqueous solution (microfibrillated plant fiber aqueous solution) dispersed in water. It may be mixed with an amine, the aqueous solution of the microfibrillated plant fiber may be replaced with ethanol or the like, and then mixed with an oil or an organic acid amine, or the microfibrillated plant fiber may be directly used as an oil or an organic acid. It may be mixed with amine.
- a strong acid such as hydrochloric acid or sulfuric acid is added and heated (for example, 120 to 200 ° C., (Preferably 140 to 180 ° C.), and azeotropic boiling may be performed to remove water.
- the microfibrillated plant fiber aqueous solution can be produced by a known method, and can be prepared, for example, by dispersing the microfibrillated plant fiber in water using a high-speed homogenizer, an ultrasonic homogenizer, a colloid mill, a blender mill or the like.
- the temperature and time at the time of preparation can also be appropriately set so that the microfibrillated plant fibers are sufficiently dispersed in water.
- the content (solid content) of the microfibrillated plant fiber in the microfibrillated plant fiber aqueous solution is preferably 0.2 to 20% by mass, more preferably 0.5 to 10% by mass, and further preferably 0.5 to 0.5 to 20% by mass. It is 3% by mass.
- the step 2 for producing a polymer composition containing the mixed solution and the polymer obtained in step 1 can be carried out by mixing at least the mixed solution and the polymer. If necessary, the mixed solution is heated (for example, 120 to 200 ° C., preferably 140 to 180 ° C.) by adding a strong acid such as hydrochloric acid or sulfuric acid, and azeotropically heated to remove water. After that, it may be mixed with a polymer or the like. A known mixing method can be used for the mixing.
- a method of kneading each component using a rubber kneader such as an open roll or a Banbury mixer, or a method of kneading each component using an extruder (biaxial extruder, etc.) is used. It can be carried out by the method of kneading.
- the above-mentioned polymer composition can be prepared by mixing a mixed solution containing microfibrillated plant fibers, oil and the like, a polymer, and other components if necessary.
- the polymer composition is obtained by saponifying microfibrillated plant fibers and plant-derived glycerol fatty acid triesters (vegetable fats and oils) and / or plant-derived glycerol fatty acid triesters (vegetable fats and oils) as oils.
- the product is produced by a production method including the step 1 of the process 1 and the step 2 of producing a polymer composition containing the mixed solution and the polymer, and microfibrillated plant fibers and a plant-derived glycerol fatty acid triester as an oil
- a production method including the step 1 of the process 1 and the step 2 of producing a polymer composition containing the mixed solution and the polymer, and microfibrillated plant fibers and a plant-derived glycerol fatty acid triester as an oil
- step 1 of preparing a liquid and step 2 of preparing a polymer composition containing the mixed liquid and at least one rubber selected from the group consisting of NR, BR and SBR as a polymer. What is more preferred.
- the polymer composition may contain a filler other than the microfibrillated plant fiber.
- Other fillers include carbon black, silica, calcium carbonate, talc, alumina, clay, aluminum hydroxide, aluminum oxide, mica and the like. When applied to tires, carbon black and silica are preferable.
- the carbon black is not particularly limited, and examples thereof include N134, N110, N220, N234, N219, N339, N330, N326, N351, N550, and N762.
- Asahi Carbon Co., Ltd., Cabot Japan Co., Ltd., Tokai Carbon Co., Ltd., Mitsubishi Chemical Corporation, Lion Corporation, Shin Nikka Carbon Co., Ltd., Columbia Carbon Co., Ltd., etc. are used as commercial products. It can. These may be used alone or in combination of two or more.
- the content thereof is preferably 5 parts by mass or more, more preferably 15 parts by mass or more, still more preferably 25 parts by mass or more, and particularly preferably 30 parts by mass or more with respect to 100 parts by mass of the polymer. is there. By setting it above the lower limit, good wear resistance, grip performance, etc. tend to be obtained.
- the content is preferably 100 parts by mass or less, more preferably 50 parts by mass or less. By setting the content below the upper limit, good processability of the polymer composition tends to be obtained.
- Nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably not less than 10 m 2 / g, more preferably at least 30m 2 / g, 35m 2 / g or more, and more 40 m 2 / g is more preferable. By setting it above the lower limit, good wear resistance and grip performance tend to be obtained. Further, the N 2 SA is preferably 200 meters 2 / g or less, more preferably 150 meters 2 / g, more preferably not more than 130m 2 / g. By setting it below the upper limit, good dispersion of carbon black tends to be obtained.
- the nitrogen adsorption specific surface area of carbon black is determined by JIS K6217-2: 2001.
- silica examples include dry silica (anhydrous silica) and wet silica (hydrous silica). Of these, wet silica is preferable because it has a large number of silanol groups.
- products such as Degussa, Rhodia, Tosoh Silica Co., Ltd., Solvay Japan Co., Ltd., and Tokuyama Corporation can be used. These may be used alone or in combination of two or more.
- the content thereof is preferably 25 parts by mass or more, more preferably 30 parts by mass or more, and further preferably 50 parts by mass or more with respect to 100 parts by mass of the polymer.
- the upper limit of the content is not particularly limited, but is preferably 300 parts by mass or less, more preferably 200 parts by mass or less, further preferably 170 parts by mass or less, particularly preferably 100 parts by mass or less, and most preferably 80 parts by mass or less. is there. By setting it below the upper limit, good dispersibility tends to be obtained.
- the nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 70 m 2 / g or more, more preferably 140 m 2 / g or more, and further preferably 160 m 2 / g or more. By setting it above the lower limit, good wet grip performance and breaking strength tend to be obtained.
- the upper limit of N 2 SA of silica is not particularly limited, but is preferably 500 m 2 / g or less, more preferably 300 m 2 / g or less, and further preferably 250 m 2 / g or less. By setting it below the upper limit, good dispersibility tends to be obtained.
- the N 2 SA of silica is a value measured by the BET method according to ASTM D3037-93.
- the silane coupling agent is not particularly limited, and for example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (4-triethoxysilylbutyl) tetrasulfide, Bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, bis (2-triethoxysilylethyl) trisulfide, bis (4-trimethoxysilylbutyl) trisulfide, bis ( 3-Triethoxysilylpropyl) disulfide, bis (2-triethoxysilylethyl) disulfide, bis (4-triethoxysilylbutyl) disulfide, bis (3-
- Examples thereof include a system, a nitro system such as 3-nitropropyltrimethoxysilane and 3-nitropropyltriethoxysilane, and a chloro system such as 3-chloropropyltrimethoxysilane and 3-chloropropyltriethoxysilane.
- a nitro system such as 3-nitropropyltrimethoxysilane and 3-nitropropyltriethoxysilane
- a chloro system such as 3-chloropropyltrimethoxysilane and 3-chloropropyltriethoxysilane.
- products such as Degussa, Momentive, Shinetsu Silicone Co., Ltd., Tokyo Chemical Industry Co., Ltd., Azumax Co., Ltd., and Toray Dow Corning Co., Ltd. can be used. These may be used alone or in combination of two or more.
- the content of the silane coupling agent is preferably 3 parts by mass or more, and more preferably 6 parts by mass or more with respect to 100 parts by mass of silica. When it is 3 parts by mass or more, good breaking strength and the like tend to be obtained.
- the content is preferably 20 parts by mass or less, more preferably 15 parts by mass or less. When it is 20 parts by mass or less, an effect commensurate with the blending amount tends to be obtained.
- a solid resin (a polymer in a solid state at room temperature (25 ° C.)) may be blended with the polymer composition.
- the content thereof is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and further preferably 5 parts by mass or more with respect to 100 parts by mass of the polymer.
- the content is preferably 50 parts by mass or less, more preferably 30 parts by mass or less, and further preferably 20 parts by mass or less. Within the above range, good wet grip performance tends to be obtained.
- the solid resin is not particularly limited, but for example, a solid styrene resin, a kumaron inden resin, a terpene resin, a pt-butylphenol acetylene resin, an acrylic resin, a dicyclopentadiene resin (DCPD resin). , C5 series petroleum resin, C9 series petroleum resin, C5C9 series petroleum resin and the like. These may be used alone or in combination of two or more.
- the solid styrene resin is a solid polymer using a styrene monomer as a constituent monomer, and examples thereof include a polymer obtained by polymerizing a styrene monomer as a main component (50% by mass or more).
- styrene-based monomers styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, p-methoxystyrene, p-tert-butylstyrene, p-phenylstyrene, In addition to a homopolymer obtained by independently polymerizing o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, etc.), a copolymer obtained by copolymerizing two or more types of styrene-based monomers, and a styrene-based monomer. And other monomer copolymers that can be copolymerized with this.
- Examples of the other monomers include acrylonitrile such as acrylonitrile and methacrylonitrile, unsaturated carboxylic acids such as acrylics and methacrylic acid, unsaturated carboxylic acid esters such as methyl acrylate and methyl methacrylate, chloroprene and butadiene.
- Examples thereof include dienes such as isoprene, olefins such as 1-butane and 1-pentene; ⁇ , ⁇ -unsaturated carboxylic acids such as maleic anhydride or acid anhydrides thereof; and the like.
- a solid ⁇ -methylstyrene resin ( ⁇ -methylstyrene homopolymer, copolymer of ⁇ -methylstyrene and styrene, etc.) is preferable.
- the solid kumaron inden resin is a resin containing kumaron and inden as the main monomer components constituting the skeleton (main chain) of the resin, and may be contained in the skeleton in addition to kumaron and inden.
- examples thereof include styrene, ⁇ -methylstyrene, methylindene, vinyltoluene and the like.
- the solid terpene resin examples include polyterpenes, terpene phenols, and aromatic-modified terpene resins.
- Polyterpenes are resins obtained by polymerizing terpene compounds and their hydrogenated products.
- the terpene compound is a hydrocarbon having a composition of (C 5 H 8 ) n and an oxygen-containing derivative thereof, and is a mono terpene (C 10 H 16 ), a sesqui terpene (C 15 H 24 ), and a diterpene (C 20 H 32). ), Etc., which are compounds having a terpene as a basic skeleton. , 1,8-Cineol, 1,4-Cineol, ⁇ -terpineol, ⁇ -terpineol, ⁇ -terpineol and the like.
- solid polyterpene examples include terpene resins such as ⁇ -pinene resin, ⁇ -pinene resin, limonene resin, dipentene resin, and ⁇ -pinene / limonene resin made from the above-mentioned terpene compound, and hydrogenation to the terpene resin. Also included are solid resins such as treated hydrogenated terpene resins.
- the solid terpene phenol examples include a solid resin obtained by copolymerizing the terpene compound and a phenol-based compound, and a solid resin obtained by hydrogenating the resin.
- the terpene compound, the phenol-based compound, and the like examples include a solid resin obtained by condensing formalin.
- the phenolic compound examples include phenol, bisphenol A, cresol, xylenol and the like.
- the solid aromatic-modified terpene resin examples include a solid resin obtained by modifying the terpene resin with an aromatic compound, and a solid resin obtained by hydrogenating the resin.
- the aromatic compound is not particularly limited as long as it has an aromatic ring, and is, for example, a phenol compound such as phenol, alkylphenol, alkoxyphenol, and unsaturated hydrocarbon group-containing phenol; naphthol, alkylnaphthol, alkoxynaphthol, and the like.
- Naftor compounds such as unsaturated hydrocarbon group-containing naphthol; styrene derivatives such as styrene, alkylstyrene, alkoxystyrene, and unsaturated hydrocarbon group-containing styrene; kumaron, inden and the like can be mentioned.
- Examples of the solid pt-butylphenol acetylene resin include a solid resin obtained by subjecting pt-butylphenol and acetylene to a condensation reaction.
- the solid acrylic resin is not particularly limited, but a solvent-free acrylic solid resin can be preferably used from the viewpoint that a resin having few impurities and a sharp molecular weight distribution can be obtained.
- the solid solvent-free acrylic resin is a high-temperature continuous polymerization method (high-temperature continuous lump polymerization method) (US Patent No. 4,414) without using polymerization initiators, chain transfer agents, organic solvents, etc. as auxiliary raw materials as much as possible.
- 370 Japanese Patent Application Laid-Open No. 59-6207, Japanese Patent Application Laid-Open No. 5-58005, Japanese Patent Application Laid-Open No. 1-313522, US Pat. No. 5,010,166, Toa Synthetic Research Annual Report TRUE 2000 No. 3
- Examples thereof include (meth) acrylic resins (polymers) synthesized by the method described in No. p42-45 and the like.
- (meth) acrylic means methacrylic and acrylic.
- the solid acrylic resin does not substantially contain a polymerization initiator, a chain transfer agent, an organic solvent, etc., which are auxiliary raw materials. Further, the acrylic resin preferably has a relatively narrow composition distribution and molecular weight distribution obtained by continuous polymerization.
- the solid acrylic resin is preferably one that does not substantially contain a polymerization initiator, a chain transfer agent, an organic solvent, etc., which are auxiliary raw materials, that is, one having high purity.
- the purity of the solid acrylic resin is preferably 95% by mass or more, more preferably 97% by mass or more.
- Examples of the monomer component constituting the solid acrylic resin include (meth) acrylic acid, (meth) acrylic acid ester (alkyl ester, aryl ester, aralkyl ester, etc.), (meth) acrylamide, and (meth).
- Examples include (meth) acrylic acid derivatives such as acrylamide derivatives.
- styrene ⁇ -methylstyrene, vinyltoluene, vinylnaphthalene, divinylbenzene, trivinylbenzene, and divinyl are used together with (meth) acrylic acid and (meth) acrylic acid derivatives.
- Aromatic vinyl such as naphthalene may be used.
- the solid acrylic resin may be a resin composed of only a (meth) acrylic component or a resin having a component other than the (meth) acrylic component as a component. Further, the solid acrylic resin may have a hydroxyl group, a carboxyl group, a silanol group, or the like.
- solid resins examples include Maruzen Petrochemical Co., Ltd., Sumitomo Bakelite Co., Ltd., Yasuhara Chemical Co., Ltd., Tosoh Co., Ltd., Rutgers Chemicals Co., Ltd., BASF, Arizona Chemical Co., Ltd., Nikko Chemical Co., Ltd., Co., Ltd. Products such as Nippon Catalyst, JXTG Energy Co., Ltd., Arakawa Chemical Industry Co., Ltd., and Taoka Chemical Industry Co., Ltd. can be used.
- the polymer composition preferably contains an antioxidant from the viewpoint of crack resistance, ozone resistance and the like.
- the antiaging agent is not particularly limited, but is a naphthylamine-based antiaging agent such as phenyl- ⁇ -naphthylamine; a diphenylamine-based antiaging agent such as octylated diphenylamine and 4,4'-bis ( ⁇ , ⁇ '-dimethylbenzyl) diphenylamine.
- P-phenylenediamine-based anti-aging agents such as diamine
- quinoline-based anti-aging agents such as polymers of 2,2,4-trimethyl-1,2-dihydroquinolin
- Monophenolic anti-aging agents such as phenol and styrenated phenol
- polyphenols such as methane Examples include anti-aging agents.
- p-phenylenediamine-based anti-aging agents and quinoline-based anti-aging agents are preferable, and N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, 2,2,4-trimethyl-1 , 2-Dihydroquinoline polymers are more preferred.
- N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, 2,2,4-trimethyl-1 , 2-Dihydroquinoline polymers are more preferred.
- products of Seiko Chemical Co., Ltd., Sumitomo Chemical Co., Ltd., Ouchi Shinko Chemical Industry Co., Ltd., Flexis Co., Ltd. and the like can be used.
- the content of the anti-aging agent is preferably 0.2 parts by mass or more, and more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the polymer. By setting it above the lower limit, sufficient ozone resistance tends to be obtained.
- the content is preferably 7.0 parts by mass or less, more preferably 4.0 parts by mass or less. By setting it below the upper limit, a good appearance tends to be obtained.
- the polymer composition preferably contains stearic acid.
- the content of stearic acid is preferably 0.5 to 10 parts by mass, and more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymer from the viewpoint of the performance balance.
- stearic acid conventionally known ones can be used, and for example, products such as NOF Corporation, NOF Corporation, Kao Corporation, Fujifilm Wako Pure Chemical Industries, Ltd., and Chiba Fatty Acid Co., Ltd. are used. it can.
- the polymer composition preferably contains zinc oxide.
- the content of zinc oxide is preferably 0.5 to 10 parts by mass, and more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the polymer from the viewpoint of the performance balance.
- zinc oxide conventionally known zinc oxide can be used, for example, Mitsui Metal Mining Co., Ltd., Toho Zinc Co., Ltd., HakusuiTech Co., Ltd., Shodo Chemical Industry Co., Ltd., Sakai Chemical Industry Co., Ltd., etc. Products can be used.
- Wax may be added to the polymer composition.
- the wax is not particularly limited, and examples thereof include petroleum wax, natural wax, and synthetic wax obtained by purifying or chemically treating a plurality of waxes. These waxes may be used alone or in combination of two or more.
- Examples of petroleum-based waxes include paraffin wax and microcrystalline wax.
- the natural wax is not particularly limited as long as it is a wax derived from non-petroleum resources, and is, for example, a plant wax such as candelilla wax, carnauba wax, wood wax, rice wax, jojoba wax; Animal waxes; mineral waxes such as ozokelite, selecin, petrolactam; and purified products thereof.
- a plant wax such as candelilla wax, carnauba wax, wood wax, rice wax, jojoba wax
- Animal waxes mineral waxes such as ozokelite, selecin, petrolactam
- purified products thereof for example, products such as Ouchi Shinko Kagaku Kogyo Co., Ltd., Nippon Seiro Co., Ltd., and Seiko Kagaku Co., Ltd. can be used.
- the wax content may be appropriately set from the viewpoint of ozone resistance and cost.
- the polymer composition is a rubber composition
- sulfur in terms of forming an appropriate crosslinked chain on the polymer chain and imparting good rubber physical characteristics
- the sulfur content is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, and further preferably 0.7 parts by mass or more with respect to 100 parts by mass of the polymer.
- the content is preferably 6.0 parts by mass or less, more preferably 4.0 parts by mass or less, and further preferably 3.0 parts by mass or less. Within the above range, a good balance of performance tends to be obtained.
- sulfur examples include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, and soluble sulfur, which are generally used in the rubber industry.
- products such as Tsurumi Chemical Industry Co., Ltd., Karuizawa Sulfur Co., Ltd., Shikoku Chemicals Corporation, Flexis Co., Ltd., Nippon Inui Kogyo Co., Ltd., Hosoi Chemical Industry Co., Ltd., etc. can be used. These may be used alone or in combination of two or more.
- the polymer composition when it is a rubber composition, it preferably contains a vulcanization accelerator.
- the content of the vulcanization accelerator is not particularly limited and may be freely determined according to the desired vulcanization rate and crosslink density, but is usually 0.3 to 10 parts by mass with respect to 100 parts by mass of the polymer. It is preferably 0.5 to 7 parts by mass.
- the type of vulcanization accelerator is not particularly limited, and commonly used ones can be used.
- the sulfide accelerator include thiazole-based sulfide-based sulfide accelerators such as 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, and N-cyclohexyl-2-benzothiadylsulfenamide; tetramethylthiuram disulfide (TMTD).
- TzTD Tetrabenzyl thiuram disulfide
- TOT-N tetrakis (2-ethylhexyl) thiuram disulfide
- other thiuram-based sulfide accelerators N-cyclohexyl-2-benzothiazolesulfenamide, Nt-butyl- 2-benzothiazolyl sulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N, N'-diisopropyl-2-benzothiazolesulfenamide, etc.
- Sulfenamide-based sulfide accelerator Sulfenamide-based sulfide accelerator; guanidine-based sulfide accelerators such as diphenylguanidine, dioltotrilguanidine, orthotrilbiguanidine can be mentioned. These may be used alone or in combination of two or more. Of these, sulfenamide-based vulcanization accelerators and guanidine-based vulcanization accelerators are preferable.
- the polymer composition may appropriately contain ordinary additives used for their use according to application fields such as mold release agents and pigments.
- the polymer composition is a rubber composition
- a known method can be used as a method for producing the polymer composition.
- each of the above-mentioned components is kneaded using a rubber kneading device such as an open roll or a Banbury mixer, and then kneaded. It can be manufactured by a method such as vulcanization.
- the kneading temperature is usually 50 to 200 ° C., preferably 80 to 190 ° C., and the kneading time is usually 30. Seconds to 30 minutes, preferably 1 minute to 30 minutes.
- the kneading temperature is usually 100 ° C. or lower, preferably room temperature to 80 ° C.
- the composition obtained by kneading the vulcanizing agent and the vulcanization accelerator is usually subjected to a vulcanization treatment such as press vulcanization.
- the vulcanization temperature is usually 120 to 200 ° C, preferably 140 to 180 ° C.
- the polymer composition is a resin composition
- a known method can be used as a method for producing the polymer composition.
- each of the above-mentioned components is kneaded and molded using an extruder (such as a twin-screw extruder). The method and the like can be mentioned.
- the polymer composition is resistant to impacts and vibrations from a direction perpendicular to the orientation direction, members having a length in one direction, such as an automobile body, an aircraft wing, a wind turbine for wind power generation, and golf. It can be applied to various uses such as sports equipment such as clubs. Further, since a ring-shaped member such as a tire can be said to be a member having a length in one direction (circumferential direction), it can be suitably applied.
- the tire is manufactured by a conventional method using the polymer composition. That is, a polymer composition containing various materials as needed is extruded according to the shape of the tire member at the unvulcanized stage, and molded together with other tire members by a normal method on a tire molding machine. By doing so, after forming an unvulcanized tire, the tire (pneumatic tire or the like) can be manufactured by heating and pressurizing in a vulcanizer.
- tread cap tread
- base tread under tread
- breaker cushion rubber breaker cushion rubber
- carcass cord coating rubber and ins It can be applied to rations, chafers, inner liners, etc., and side reinforcement layers of run-flat tires.
- it since it is excellent in impact resistance, durability and the like, it can be suitably applied to treads, sidewalls and the like.
- the above pneumatic tires can be suitably used for passenger car tires, large passenger car tires, large SUV tires, heavy load tires such as trucks and buses, light truck tires, motorcycle tires, run flat tires, and competition tires. Is. In particular, it can be more preferably used as a passenger car tire.
- Microfibrillated plant fiber Biomass nanofiber manufactured by Sugino Machine Co., Ltd. (product name "BiNFi-s cellulose", solid content 2% by mass, water content 98% by mass, average fiber diameter 10 to 50 nm, average fiber length 2 to 5 ⁇ m )
- Oil Soybean oil manufactured by Nisshin Oillio Co., Ltd. (Characteristics are shown in Table 1. The fatty acid content in Table 1 is the content (mass%) of each fatty acid in 100% by mass of the constituent fatty acids.
- Amine Organic Acid 1 Carboxylic Acid Amine Salt (FX600, manufactured by Elementis)
- Amine Organic Acid 2 Fatty Acid Amine Salt (Chelestite WR-6 manufactured by Chelest Co., Ltd.)
- NR Latex Uses field latex obtained from Muhibbah LATEKS SBR Latex: LX110 (E-SBR, vinyl content 18% by mass, styrene content: 37.5% by mass, rubber component in rubber latex) manufactured by Nippon Zeon Co., Ltd.
- NR TSR20 SBR: Commercially available product manufactured by Zeon Corporation (S-SBR, styrene content 41% by mass) Carbon Black: Dia Black N550 (N 2 SA41m 2 / g) manufactured by Mitsubishi Chemical Corporation Anti-aging agent: Nocrack 6C manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
- Zinc oxide Zinc oxide type 2 stearic acid manufactured by Mitsui Metal Mining Co., Ltd .: Tsubaki sulfur manufactured by NOF Corporation: Seimi sulfur vulcanization accelerator manufactured by Nippon KANRY CO., LTD. ) Made Noxeller NS Thermoplastic resin: Hybrar 7311F manufactured by Kuraray Co., Ltd. (Resin name, etc.)
- a rubber-microfibrillated plant fiber complex was produced according to the formulation in Table 3. Specifically, the above-prepared aqueous dispersion (aqueous dispersion of microfibrillated plant fibers), NR latex (rubber (solid content) conversion) or SBR latex (rubber (solid content) conversion) is used with a high-speed homogenizer. The mixture was stirred at room temperature for 5 minutes to obtain a compounded latex having a pH of 10.2. Then, a 2 mass% formic acid aqueous solution was added at room temperature to adjust the pH to 3 to 4, and a coagulated product was obtained. The obtained coagulated product was filtered and dried to obtain a rubber-microfibrillated plant fiber complex (WB1, 2).
- Tensile test Tensile test was performed using No. 7 dumbbell sample according to JIS K6251: 2017 "Vulcanized rubber and thermoplastic rubber-How to determine tensile properties" (standard test temperature (23 ⁇ 2 ° C)), and fracture stress during extension in the extrusion direction.
- TBa (MPa) and stress FBa (MPa) at 50% elongation at break during elongation in the extrusion direction were measured.
- each test piece was prepared based on JIS K6260 "Vulcanized rubber and thermoplastic rubber-dematcher bending crack test method", and a bending crack growth test was performed.
- the rubber sheet was bent by repeating 70% stretching 1 million times, and then the length of the cracks generated was measured (in the direction perpendicular to the orientation direction of the microfibrillated plant fibers (direction orthogonal to the extrusion direction). Bending).
- the reciprocal of the measured value (length) of the reference comparative example was set to 100, and the index was displayed. The larger the index, the more the crack growth is suppressed, indicating that the bending crack growth resistance is excellent.
- Vibration performance The vibration performance of each rubber sample (vulcanized rubber composition) and each resin composition was evaluated in accordance with JIS K7391 3.3 Central Vibration Method.
- the vibration performance of the reference comparative example was set to 100, and the index was displayed. The larger the index, the better the vibration performance.
- the bending strength (kgf / mm 2 ) was measured by a test method based on JIS Z 2248 (direction perpendicular to the orientation direction of microfibrillated plant fibers (direction orthogonal to the extrusion direction). ) Measure the bending strength). That is, the distance between the spans was 200 mm, the two supports were circular and the radius was 5 mm, and the intermediate push metal fitting was a three-point bending method having a semicircular cross section with a radius of 5 mm. The test piece had the reinforcing surface facing down, and the crosshead speed was 2 mm / min. The reference comparison example was set to 100, and each test piece was displayed as an index. The larger the index, the higher the bending strength.
- the rubber compositions of Examples satisfying the above formulas (1) and (2) of E * a / E * b ⁇ 1.3 and TBa / FBa ⁇ 2.6 are microfibrillated plant fibers.
- the orientation and dispersibility were good, and the overall performance of impact resistance, fuel efficiency, and bending crack growth resistance (the sum of the indexes of impact resistance, fuel efficiency, and bending crack growth resistance) was excellent. ..
- the vibration performance was also good.
- the resin compositions of Examples satisfying the above formulas (1) and (2) have good orientation and dispersibility of microfibrillated plant fibers, and have good impact resistance, flexural modulus, bending strength, and resistance. It was excellent in the overall performance of bending crack growth (the sum of the indexes of impact resistance, flexural modulus, bending strength, and bending crack growth). The vibration performance was also good.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本発明は、粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性に優れたポリマー組成物を提供する。 本発明は、ポリマー及びミクロフィブリル化植物繊維を含み、押出方向の複素弾性率E*a(MPa)と該押出方向の直交方向の複素弾性率E*b(MPa)との比(E*a/E*b)が下記式(1)、押出方向伸長時の破断応力TBa(MPa)と該押出方向伸長時における破断時伸びの50%伸長時の応力FBa(MPa)との比(TBa/FBa)が下記式(2)を満たすポリマー組成物に関する。 E*a/E*b≧1.3 (1) TBa/FBa≧2.6 (2)
Description
本発明は、ポリマー組成物に関する。
ゴム、樹脂等のポリマーと、補強剤等の各種充填剤とを含むポリマー組成物が広く使用されている。このようなポリマー組成物の充填剤として、優れた強度等を付与できる観点から、各種有機短繊維を用いることが検討され、例えば、特許文献1には、ミクロフィブリル化植物繊維を含むマスターバッチを用いたゴム組成物が開示されている。
しかしながら、特許文献1のゴム組成物は、本願特定のパラメーターを満たすものではなく、簡便に、優れた粘弾性特性(E*、tanδ等)等の物性やフィラー配向性を付与するという点において、改善の余地を残すものである。
本発明は、上記現状に鑑みてなされたものであり、粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性に優れたポリマー組成物を提供することを目的とする。
本発明は、ポリマー及びミクロフィブリル化植物繊維を含み、押出方向の複素弾性率E*a(MPa)と該押出方向の直交方向の複素弾性率E*b(MPa)との比(E*a/E*b)が下記式(1)、押出方向伸長時の破断応力TBa(MPa)と該押出方向伸長時における破断時伸びの50%伸長時の応力FBa(MPa)との比(TBa/FBa)が下記式(2)を満たすポリマー組成物に関する。
E*a/E*b≧1.3 (1)
TBa/FBa≧2.6 (2)
E*a/E*b≧1.3 (1)
TBa/FBa≧2.6 (2)
E*a/E*b≧1.5を満たすことが好ましい。
E*a/E*b≧2.0を満たすことが好ましい。
TBa/FBa≧3.0を満たすことが好ましい。
TBa/FBa≧3.4を満たすことが好ましい。
前記ポリマー100質量部に対して、前記ミクロフィブリル化植物繊維を0.5~30質量部含むことが好ましい。
前記ポリマー組成物中における前記ミクロフィブリル化植物繊維の平均アスペクト比が10~1000であることが好ましい。
前記ポリマー組成物中における前記ミクロフィブリル化植物繊維の平均繊維径が10μm以下であることが好ましい。
前記ポリマー組成物は、ミクロフィブリル化植物繊維、オイル及び有機酸アミンを含む混合液を調製する工程1と、該混合液及びポリマーを含むポリマー組成物を作製する工程2とを含む製造方法により作製されるものであることが好ましい。
前記工程1は、前記オイルが植物由来のグリセロール脂肪酸トリエステル及び/又は植物由来のグリセロール脂肪酸トリエステルをケン化処理して得られたものを含み、前記有機酸アミンが脂肪族カルボン酸、脂環式カルボン酸及び芳香族カルボン酸からなる群より選択される少なくとも1種を含むことが好ましい。
前記有機酸アミンが脂肪族カルボン酸を含むことが好ましい。
前記ポリマーは、天然ゴム、ブタジエンゴム及びスチレンブタジエンゴムからなる群より選択される少なくとも1種のゴムを含むことが好ましい。
カーボンブラック及びシリカからなる群より選択される少なくとも1種を含むことが好ましい。
本発明は、ポリマー及びミクロフィブリル化植物繊維を含み、押出方向の複素弾性率E*a(MPa)と該押出方向の直交方向の複素弾性率E*b(MPa)との比(E*a/E*b)が前記式(1)、押出方向伸長時の破断応力TBa(MPa)と該押出方向伸長時における破断時伸びの50%伸長時の応力FBa(MPa)との比(TBa/FBa)が前記式(2)を満たすポリマー組成物であるので、粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性に優れている。
〔ポリマー組成物〕
本発明のポリマー組成物は、ポリマー及びミクロフィブリル化植物繊維を含み、かつ前記式(1)、(2)を満たす。該ポリマー組成物は、粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性に優れている。
本発明のポリマー組成物は、ポリマー及びミクロフィブリル化植物繊維を含み、かつ前記式(1)、(2)を満たす。該ポリマー組成物は、粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性に優れている。
このような作用効果が得られるメカニズムは明らかではないが、以下のように推察される。
ポリマー及びミクロフィブリル化植物繊維を含む組成物が式(1)を満たす場合、ミクロフィブリル化植物繊維の配向によりE*の異方性が生じていると考えられるため、ポリマー中の該繊維の配向性が高いと推察される。更に式(2)を満たす場合、破断時応力が破断時伸びの50%時応力よりも2.6倍以上も高くなるので、配向方向に垂直な方向からの衝撃や振動に強くなっていると推察される。従って、前記ポリマー組成物は、粘弾性特性(E*(剛性)、tanδ(低燃費性))、耐衝撃性等の物性や、ミクロフィブリル化植物繊維の配向性に優れ、振動や衝撃に強い組成物を提供できると推察される。
ポリマー及びミクロフィブリル化植物繊維を含む組成物が式(1)を満たす場合、ミクロフィブリル化植物繊維の配向によりE*の異方性が生じていると考えられるため、ポリマー中の該繊維の配向性が高いと推察される。更に式(2)を満たす場合、破断時応力が破断時伸びの50%時応力よりも2.6倍以上も高くなるので、配向方向に垂直な方向からの衝撃や振動に強くなっていると推察される。従って、前記ポリマー組成物は、粘弾性特性(E*(剛性)、tanδ(低燃費性))、耐衝撃性等の物性や、ミクロフィブリル化植物繊維の配向性に優れ、振動や衝撃に強い組成物を提供できると推察される。
前記ポリマー組成物は、押出方向の複素弾性率E*a〔MPa〕と、該押出方向の直交方向の複素弾性率(該押出方向に直交する方向の複素弾性率)E*b〔MPa〕との比(E*a/E*b)が下記式(1)を満たす。
E*a/E*b≧1.3 (1)
粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性の観点から、E*a/E*bは、1.4以上、1.5以上、1.8以上、2.0以上、2.2以上でもよい。上限は特に限定されないが、押出方向の耐亀裂成長性の観点から、E*a/E*bは、8.0以下、6.0以下、5.0以下でもよい。
E*a/E*b≧1.3 (1)
粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性の観点から、E*a/E*bは、1.4以上、1.5以上、1.8以上、2.0以上、2.2以上でもよい。上限は特に限定されないが、押出方向の耐亀裂成長性の観点から、E*a/E*bは、8.0以下、6.0以下、5.0以下でもよい。
前記ポリマー組成物は、押出方向伸長時の破断応力(押出方向に伸ばした時の破断応力)TBa〔MPa〕と、該押出方向伸長時における破断時伸びの50%伸長時の応力(該押出方向に伸ばした時の破断時伸びの50%(破断時伸びの半分)を該押出方向に伸ばした時の応力)FBa〔MPa〕との比(TBa/FBa)との比が下記式(2)を満たす。
TBa/FBa≧2.6 (2)
粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性の観点から、TBa/FBaは、3.0以上、3.1以上、3.2以上、3.4以上、3.5以上でもよい。上限は特に限定されないが、押出方向の耐振動性の観点から、TBa/FBaは、8.0以下、6.0以下、5.0以下でもよい。
TBa/FBa≧2.6 (2)
粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性の観点から、TBa/FBaは、3.0以上、3.1以上、3.2以上、3.4以上、3.5以上でもよい。上限は特に限定されないが、押出方向の耐振動性の観点から、TBa/FBaは、8.0以下、6.0以下、5.0以下でもよい。
このように、本発明は、ポリマー及びミクロフィブリル化植物繊維を含む配合において、式(1)、(2)を満たすポリマー組成物の構成にすることにより、粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性の改善という課題(目的)を解決するものである。すなわち、式(1)、(2)のパラメーターは課題(目的)を規定したものではなく、本願の課題は、粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性の改善であり、そのための解決手段として当該パラメーターを満たす構成にしたものである。
前記ポリマー組成物は、押出方向の複素弾性率E*a〔MPa〕が下記式(1-1)を満たすことが好ましい。
1.0MPa≦E*a≦100MPa (1-1)
粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性の観点から、下限は1.2MPa以上、1.5MPa以上、6MPa以上、8MPa以上、10MPa以上、12MPa以上でもよい。上限は特に限定されないが、押出方向の耐衝撃性の観点から、90MPa以下がより好ましく、60MPa以下が更に好ましく、40MPa以下が特に好ましく、20MPa以下が最も好ましい。
1.0MPa≦E*a≦100MPa (1-1)
粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性の観点から、下限は1.2MPa以上、1.5MPa以上、6MPa以上、8MPa以上、10MPa以上、12MPa以上でもよい。上限は特に限定されないが、押出方向の耐衝撃性の観点から、90MPa以下がより好ましく、60MPa以下が更に好ましく、40MPa以下が特に好ましく、20MPa以下が最も好ましい。
前記ポリマー組成物は、押出方向伸長時の破断応力TBa〔MPa〕が下記式(2-1)を満たすことが好ましい。
8MPa≦TBa≦50MPa (2-1)
粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性の観点から、下限は10MPa以上、12MPa以上、15MPa以上、18MPa以上、20MPa以上、25MPa以上、30MPa以上でもよい。上限は特に限定されないが、押出方向の耐振動性の観点から、45MPa以下がより好ましい。
8MPa≦TBa≦50MPa (2-1)
粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性の観点から、下限は10MPa以上、12MPa以上、15MPa以上、18MPa以上、20MPa以上、25MPa以上、30MPa以上でもよい。上限は特に限定されないが、押出方向の耐振動性の観点から、45MPa以下がより好ましい。
ここで、式(1)、(2)や、(1-1)、(2-1)を充足させる方法として、ポリマー中にミクロフィブリル化植物繊維を十分に配向させる手法が挙げられる。具体的には、(a)オイル中にミクロフィブリル化植物繊維を分散させた分散液と、ポリマーとを混合する方法、(b)有機酸アミンを用いる方法、等を単独又は適宜組み合わせる手法が挙げられる。
ミクロフィブリル化植物繊維そのものは水溶性であるので、一般に、疎水系のポリマー(ゴム、樹脂等)に対して良好な分散状態を得るためには、ミクロフィブリル化植物繊維を疎水化(変性)させて得られた変性ミクロフィブリル化植物繊維を用い、ウェットマスターバッチを作製する必要がある。そして、そのウェットマスターバッチ製造時の分散剤には、一般に水溶性高分子(カルボキシメチルセルロース(CMC)、ポリビニルアルコール(PVA)等)が用いられている。これに対し、例えば、特定の分散剤(有機酸アミン)を用いて予めオイル中にミクロフィブリル化植物繊維を分散させた分散液を、ポリマーと混合することにより、未変性のミクロフィブリル化植物繊維を用いた場合でも、従来の変性ミクロフィブリル化植物繊維を含むウェットマスターバッチを用いた場合と、同等以上の粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性が得られる。
なお、E*a、E*bは、それぞれ温度70℃、動歪み1%で測定した複素弾性率であり、後述の実施例に記載の方法により測定される。TBa、FBaは、JIS K6251:2017に準じて、標準試験温度(23±2℃)で測定した値であり、後述の実施例に記載の方法で測定される。ポリマーがゴムの場合、E*a、E*b、TBa、FBaは加硫後のゴム組成物の物性である。
押出方向、及び該押出方向の直交方向とは、押出成形機の押出口から成形材料が押し出される方向、及びそれに直交する方向である。タイヤの場合、押出方向をタイヤ周方向、該押出方向の直交方向をタイヤ径方向とすることが望ましい。タイヤ周方向、タイヤ径方向は、具体的には特開2009-202865号公報の図1等に記載の方向である。
(ポリマー)
ポリマーとしては特に限定されず、例えば、ゴム、樹脂等の公知の高分子が挙げられる。これらのポリマーは単独で用いてもよく、2種以上を併用してもよい。
ポリマーとしては特に限定されず、例えば、ゴム、樹脂等の公知の高分子が挙げられる。これらのポリマーは単独で用いてもよく、2種以上を併用してもよい。
ゴムとしては、ゴム工業において用いられる一般的なゴムを使用することができ、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)などのジエン系ゴム、ハロゲン化ブチルゴム(X-IIR)、ブチルゴム(IIR)などのブチル系ゴム、フッ素ゴムなどが挙げられる。タイヤに適用する場合、タイヤ物性の観点から、NR、BR、SBR等を好適に使用できる。
NRとしては特に制限されず、例えば、SIR20、RSS♯3、TSR20等、タイヤ工業において一般的なものを使用できる。NRは、改質されていてもよく、例えば、エポキシ化天然ゴム(ENR)、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(UPNR)、水素化天然ゴム(HNR)、グラフト化天然ゴムなどの改質天然ゴムが例示される。
ポリマー組成物において、ポリマー100質量%中のNRの含有量は特に限定されず、用途に応じて適宜選択すればよい。例えば、低燃費性の観点からは、好ましくは20質量%以上、より好ましくは30質量%以上、更に好ましくは40質量%以上である。該含有量の上限は特に限定されず、100質量%でもよい。
BRとしては特に限定されず、例えば、高シス含量のBR、1,2-シンジオタクチックポリブタジエン結晶を含有するBR(SPB含有BR)、希土類元素系触媒を用いて合成されたブタジエンゴム(希土類系BR)、スズ化合物により変性されたスズ変性ブタジエンゴム(スズ変性BR)等、タイヤ工業において一般的なものが挙げられる。市販品としては、宇部興産(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
BRのシス含量は、良好な耐屈曲疲労性の観点からは、好ましくは80質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上、特に好ましくは95質量%以上である。なお、本明細書において、シス含量は、赤外吸収スペクトル分析により算出される値である。
ポリマー組成物において、ポリマー100質量%中のBRの含有量は特に限定されず、用途に応じて適宜選択すればよい。例えば、低温特性の観点からは、好ましくは20質量%以上、より好ましくは30質量%以上、更に好ましくは40質量%以上である。また、該含有量の上限は特に限定されないが、好ましくは80質量%以下、より好ましくは70質量%以下、更に好ましくは60質量%以下である。
SBRとしては、特に限定されず、例えば、乳化重合スチレンブタジエンゴム(E-SBR)、溶液重合スチレンブタジエンゴム(S-SBR)等を使用できる。市販品としては、例えば、住友化学(株)、JSR(株)、旭化成(株)、日本ゼオン(株)、ダウ社等により製造・販売されているSBRを使用できる。
ポリマー組成物において、ポリマー100質量%中のSBRの含有量は特に限定されず、用途に応じて適宜選択すればよい。例えば、グリップ性能の観点からは、好ましくは20質量%以上、より好ましくは30質量%以上、更に好ましくは40質量%以上である。また、該含有量の上限は特に限定されず、100質量%でもよい。
BR、SBRとしては、非変性BR、非変性SBRでもよいし、変性BR、変性SBRでもよい。変性BR、変性SBRとしては、シリカ等の充填剤と相互作用する官能基を有するBR、SBRであればよく、例えば、BR、SBRの少なくとも一方の末端を、上記官能基を有する化合物(変性剤)で変性された末端変性BR、SBR(末端に上記官能基を有する末端変性BR、SBR)や、主鎖に上記官能基を有する主鎖変性BR、SBRや、主鎖及び末端に上記官能基を有する主鎖末端変性BR、SBR(例えば、主鎖に上記官能基を有し、少なくとも一方の末端を上記変性剤で変性された主鎖末端変性BR、SBR)や、分子中に2個以上のエポキシ基を有する多官能化合物により変性(カップリング)され、水酸基やエポキシ基が導入された末端変性BR、SBR等が挙げられる。
上記官能基としては、例えば、アミノ基、アミド基、シリル基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、オキシカルボニル基、メルカプト基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、アンモニウム基、イミド基、ヒドラゾ基、アゾ基、ジアゾ基、カルボキシル基、ニトリル基、ピリジル基、アルコキシ基、水酸基、オキシ基、エポキシ基等が挙げられる。なお、これらの官能基は、置換基を有していてもよい。なかでも、タイヤ物性の観点からは、アミノ基(好ましくはアミノ基が有する水素原子が炭素数1~6のアルキル基に置換されたアミノ基)、アルコキシ基(好ましくは炭素数1~6のアルコキシ基)、アルコキシシリル基(好ましくは炭素数1~6のアルコキシシリル基)が好ましい。
樹脂としては特に限定されず、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル、ポリスチレン、ポリ塩化ビニリデン、フッ素樹脂(テトラクロロエチレン、ヘキフロロプロピレン、クロロトリフロロエチレン、フッ化ビリニデン、フッ化ビニル、ペルフルオロアルキルビニルエーテル等の単独重合体又は共重合体等)、(メタ)アクリル系樹脂((メタ)アクリル酸、(メタ)アクリロニトリル、(メタ)アクリル酸エステル、(メタ)アクリルアミド類等の単独重合体又は共重合体等)、ポリアミド樹脂(ナイロン樹脂、PA)、ポリエステル(芳香族ポリエステル、脂肪族ポリエステル、不飽和ポリエステル等)、ポリ乳酸樹脂、ポリ乳酸とポリエステル共重合樹脂、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリカーボネート(ビスフェノールAやその誘導体のビスフェノール類と、ホスゲン又はフェニルジカーボネートとの反応物等)、ポリフェニレンオキシド、(熱可塑性)ポリウレタン(ジイソシアネート類とジオール類との共重合体等)、ポリアセタール(POM)、ビニルエーテル樹脂、ポリスルホン系樹脂(4,4’-ジクロロジフェニルスルホンやビスフェノールA等の共重合体等)、セルロース系樹脂(トリアセチル化セルロース、ジアセチル化セルロース等)等の熱可塑性樹脂;等が挙げられる。
(ミクロフィブリル化植物繊維)
前記ポリマー組成物は、ミクロフィブリル化植物繊維を含むものであり、例えば、NR、BR及びSBRからなる群より選択される少なくとも1種のゴムと、ミクロフィブリル化植物繊維とを含むものを好適に使用できる。
前記ポリマー組成物は、ミクロフィブリル化植物繊維を含むものであり、例えば、NR、BR及びSBRからなる群より選択される少なくとも1種のゴムと、ミクロフィブリル化植物繊維とを含むものを好適に使用できる。
粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性及び分散性等の観点から、ポリマー組成物において、ポリマー100質量部に対して、ミクロフィブリル化植物繊維を0.5~30質量部含むことが好ましい。下限は、1質量部以上がより好ましく、3質量部以上が更に好ましく、4質量部以上が特に好ましく、5質量部以上が最も好ましく、10質量部以上でもよい。上限は、25質量部以下がより好ましく、20質量部以下が更に好ましく、15質量部以下が特に好ましく、12.5質量部以下が最も好ましい。
ミクロフィブリル化植物繊維としては、破壊強度、耐摩耗性等の観点から、セルロースミクロフィブリルが好ましい。セルロースミクロフィブリルとしては、天然物由来のものであれば特に制限されず、例えば、果実、穀物、根菜などの資源バイオマス、木材、竹、麻、ジュート、ケナフ、及びこれらを原料として得られるパルプや紙、布、農作物残廃物、食品廃棄物や下水汚泥などの廃棄バイオマス、稲わら、麦わら、間伐材などの未使用バイオマスの他、ホヤ、酢酸菌等の生産するセルロースなどに由来するものが挙げられる。これらミクロフィブリル化植物繊維は、1種を用いてもよいし、2種以上を組み合わせて用いてもよい。
なお、本明細書において、セルロースミクロフィブリルとは、典型的には、平均繊維径が数十μm(20~30μm以下等)以下、好ましくは10μm以下の範囲内であるセルロース繊維、より典型的には、セルロース分子の集合により形成されている平均繊維径500nm以下の微小構造を有するセルロース繊維(平均繊維径が数十μm以下、10μm以下、500nm以下のミクロフィブリル化植物繊維)を意味する。なお、典型的なセルロースミクロフィブリルは、例えば、上記のような平均繊維径を有するセルロース繊維の集合体として形成されていることができる。
ミクロフィブリル化植物繊維の製造方法としては特に限定されないが、例えば、セルロースミクロフィブリルの原料を必要に応じて水酸化ナトリウム等のアルカリで化学処理した後、リファイナー、二軸混練機(二軸押出機)、二軸混練押出機、高圧ホモジナイザー、媒体撹拌ミル、石臼、グラインダー、振動ミル、サンドグラインダー等により機械的に磨砕ないし叩解する方法が挙げられる。これらの方法では、化学処理によって原料からリグニンが分離されるため、リグニンを実質的に含有しないミクロフィブリル化植物繊維が得られる。また、その他の方法として、セルロースミクロフィブリルの原料を超高圧処理する方法なども挙げられる。
ミクロフィブリル化植物繊維としては、例えば、(株)スギノマシン、ダイセルファインケム(株)等の製品を使用できる。
なお、ミクロフィブリル化植物繊維は、前記のとおり、上記製造方等法により得られた未変性のミクロフィブリル化植物繊維でも十分にポリマー中に配向させることができるが、当然に、未変性のミクロフィブリル化植物繊維の他、酸化処理や種々の化学変性処理などを施したものや、セルロースミクロフィブリルの由来となり得る天然物(例えば、木材、パルプ、竹、麻、ジュート、ケナフ、農作物残廃物、布、紙、ホヤセルロース等)をセルロース原料として、酸化処理や種々の化学変性処理などを行い、その後に必要に応じて解繊処理を行ったものも使用できる(化学変性ミクロフィブリル化植物繊維等)。
ミクロフィブリル化植物繊維の化学変性の態様としては、例えば、エステル化処理、エーテル化処理、アセタール化処理等が例示される。具体的には、アセチル化等のアシル化、シアノエチル化、アミノ化、スルホンエステル化、リン酸エステル化、アルキルエステル化、アルキルエーテル化、複合エステル化、β-ケトエステル化、ブチル化等のアルキル化、塩素化、等が好ましく例示される。更には、アルキルカルバメート化、アリールカルバメート化も例示できる。
化学変性ミクロフィブリル化植物繊維は、置換度が0.2~2.5の範囲内となるように化学変性されていることが好ましい。ここで置換度とは、セルロースの水酸基のうち化学変性によって他の官能基に置換された水酸基のグルコース環単位当りの平均個数を意味し、理論上最大値は3である。該置換度は、0.3~2.5の範囲内であることがより好ましく、0.5~2.3の範囲内であることが更に好ましく、0.5~2.0の範囲内であることが特に好ましい。なお、上記化学変性ミクロフィブリル化植物繊維が2種以上の組み合わせからなる場合、置換度は、化学変性ミクロフィブリル化植物繊維全体での平均として算出される。
化学変性ミクロフィブリル化植物繊維における該置換度は、例えば、0.5N-NaOHと0.2N-HClとを用いる滴定法やNMR、赤外吸収スペクトル等の測定によって確認できる。
好適な化学変性ミクロフィブリル化植物繊維としては、置換度が0.3~2.5の範囲内のアミノ化ミクロフィブリル化植物繊維を例示できる。該置換度は、0.3~2.3が好ましく、0.5~2.0がより好ましく、0.7~2.0が更に好ましく、0.9~1.8が特に好ましい。
化学変性ミクロフィブリル化植物繊維がアセチル化ミクロフィブリル化植物繊維の場合は置換度が0.3~2.5、スルホンエステル化ミクロフィブリル化植物繊維の場合は置換度が0.3~1.8、アルキルエステル化ミクロフィブリルセルロースの場合は置換度が0.3~1.8、複合エステル化ミクロフィブリルセルロースの場合は置換度が0.4~1.8、β-ケトエステル化ミクロフィブリルセルロースの場合は置換度が0.3~1.8、アルキルカルバメート化ミクロフィブリルセルロースの場合は置換度が0.3~1.8、アリールカルバメート化ミクロフィブリルセルロースの場合は置換度が0.3~1.8の範囲内が好ましい。
アセチル化は、例えば、ミクロフィブリル化植物繊維に、酢酸、濃硫酸、無水酢酸を加えて反応させる方法等で行なうことができる。具体的には、例えば、酢酸とトルエンとの混合溶媒中、硫酸触媒存在下で、ミクロフィブリル化植物繊維と無水酢酸とを反応させてアセチル化反応を進行させ、その後、溶媒を水に置き換える方法等、従来公知の方法で行なうことができる。
アミノ化は、例えば、2,2,6,6-テトラメチルピペリジン-1-オキシル(TEMPO)等のN-オキシル化合物を用いた酸化処理を行った後に、例えば、アルコール(例えば、エタノール等の炭素数1~10のアルコール(好ましくは炭素数1~5のアルコール、より好ましくは炭素数1~4の第1級アルコール))中で、アミン化合物(例えば、オレイルアミン等の炭素数1~30の第1級アミン化合物(好ましくは飽和結合又は不飽和結合を有する炭素数3~25の第1級アミン化合物、より好ましくは不飽和結合を有する炭素数6~23の第1級アミン化合物、更に好ましくは不飽和二重結合を有する炭素数10~20の第1級アミン化合物))や4級アルキルアンモニウム塩(好ましくは、炭素数1~30の4級アルキルアンモニウム塩、より好ましくは、ヘキサデシルトリメチルアンモニウムクロリド等の炭素数1~20の4級アルキルアンモニウムハライド)と反応させ、親核置換反応させる方法や、トシルエステル化など公知の方法により行なうことができる。
スルホンエステル化は、例えば、ミクロフィブリル化植物繊維を硫酸に溶解して、水中に投入するのみの簡単な操作で行なうことができる。他にも、無水硫酸ガス処理、クロルスルホン酸とピリジンによって処理する方法等で行なうことができる。
リン酸エステル化は、例えば、ジメチルアミン処理等を施したミクロフィブリル化植物繊維をリン酸と尿素とで処理する方法により行なうことができる。
アルキルエステル化は、例えば、ミクロフィブリル化植物繊維を塩基性条件下でカルボン酸クロライドを用いて反応させるSchotten-Baumann法(ショッテン・バウマン法)で行うことができ、また、アルキルエーテル化は、ミクロフィブリル化植物繊維を塩基性条件下でハロゲン化アルキルを用いて反応させるWilliamson法等で行なうことができる。
塩素化は、例えば、DMF(ジメチルホルムアミド)中で塩化チオニルを加えて加熱する方法で行なうことができる。
複合エステル化は、例えば、ミクロフィブリル化植物繊維に2種類以上のカルボン酸無水物またはカルボン酸クロライドを塩基性条件下で反応させる方法で行なうことができる。
β-ケトエステル化は、例えば、ミクロフィブリル化植物繊維にジケテンやアルキルケテンダイマーを反応させる方法、もしくはミクロフィブリル化植物繊維とアルキルアセトアセテートのようなβ-ケトエステル化合物のエステル交換反応により行なうことができる。
アルキルカルバメート化は、例えば、ミクロフィブリル化植物繊維にアルキルイソシアナートを塩基性触媒またはスズ触媒存在下で反応させる方法で行なうことができる。
アリールカルバメート化は、例えば、ミクロフィブリル化植物繊維にアリールイソシアナートを塩基性触媒またはスズ触媒存在下で反応させる方法で行なうことができる。
前記ポリマー組成物中におけるミクロフィブリル化植物繊維の平均繊維径は、粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性及び分散性の観点から、10μm以下であることが好ましい。当該平均繊維径は、500nm以下がより好ましく、200nm以下が更に好ましく、100nm以下が特に好ましく、50nm以下が最も好ましい。また、該平均繊維径の下限は特に制限されないが、ミクロフィブリル化植物繊維の絡まりがほどけにくく、分散し難いという理由から、3nm以上が好ましく、4nm以上がより好ましく、10nm以上が更に好ましく、20nm以上が特に好ましい。
前記ポリマー組成物中におけるミクロフィブリル化植物繊維の平均繊維長は、100nm以上であることが好ましく、より好ましくは300nm以上、更に好ましくは500nm以上、特に好ましくは1μm以上、最も好ましくは2μm以上である。また、上限は特に限定されないが、5mm以下が好ましく、50μm以下がより好ましく、20μm以下が更に好ましく、10μm以下が特に好ましく、5μm以下が最も好ましい。平均繊維長が下限未満の場合や上限を超える場合は、前述の平均繊維径と同様の傾向がある。
なお、ミクロフィブリル化植物繊維が2種以上の組み合わせからなる場合、平均繊維径、平均繊維長は、ミクロフィブリル化植物繊維全体での平均として算出される。また、ミクロフィブリル化植物繊維は、前述の好適な数値範囲の平均繊維径を有し、前述の好適な数値範囲の平均繊維長を有するものであることがより好ましい。
粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性及び分散性の観点から、前記ポリマー組成物中におけるミクロフィブリル化植物繊維の平均アスペクト比は、10~1000であることが好ましい。下限は、50以上が好ましく、100以上がより好ましい。上限は、1000以下が好ましく、900以下がより好ましく、800以下が更に好ましい。
なお、上記平均アスペクト比は、下記式により算出することができる。
平均アスペクト比=平均繊維長/平均繊維径
また、ミクロフィブリル化植物繊維は、前述の好適な範囲の平均繊維径及び平均繊維長を有し、かつ前記好適な数値範囲の平均アスペクト比を有するものであることがより好ましい。
なお、上記平均アスペクト比は、下記式により算出することができる。
平均アスペクト比=平均繊維長/平均繊維径
また、ミクロフィブリル化植物繊維は、前述の好適な範囲の平均繊維径及び平均繊維長を有し、かつ前記好適な数値範囲の平均アスペクト比を有するものであることがより好ましい。
本明細書において、ミクロフィブリル化植物繊維の平均繊維径及び平均繊維長は、走査型電子顕微鏡写真による画像解析、透過型電子顕微鏡写真による画像解析、原子間力顕微鏡写真による画像解析、X線散乱データの解析、細孔電気抵抗法(コールター原理法)等によって測定できる。
ポリマー及びミクロフィブリル化植物繊維を含み、かつ前記式(1)、(2)を満たす前記ポリマー組成物は、例えば、ミクロフィブリル化植物繊維、オイル及び有機酸アミンを含む混合液を調製する工程1と、該混合液及びポリマーを含むポリマー組成物を作製する工程2とを含む製造方法などにより製造できる。なお、該製造方法は、上記工程を含む限り、その他の工程を含んでいてもよく、また、上記工程をそれぞれ、1回行ってもよいし、複数回繰り返し行ってもよい。
ミクロフィブリル化植物繊維、オイル及び有機酸アミンを含む混合液を調製する工程1は、これらを順次滴下、注入等を行ったり、ミクロフィブリル化植物繊維、オイル及び有機酸アミンの混合後、例えば、高速ホモジナイザー、超音波ホモジナイザー、コロイドミル、ブレンダーミル等を用いる公知の方法で分散させることにより調製できる。調製の際の温度や時間は、ミクロフィブリル化植物繊維がオイルに十分分散するよう、通常行われる範囲で適宜設定したり、混合液が所望の粘度となるよう粘度を測定しながら適宜調整したりすることができる。
上記混合液において、粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性及び分散性の観点から、オイルとミクロフィブリル化植物繊維(固形分)との混合比〔オイル量(質量部)/ミクロフィブリル化植物繊維量(質量部)〕は、10/90~90/10が好ましく、20/80~80/20がより好ましく、30/70~70/30が更に好ましく、40/60~60/40が特に好ましく、例えば、50/50の混合比を使用できる。
上記混合液において、粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性及び分散性の観点から、ミクロフィブリル化植物繊維100質量部(固形分)に対する有機酸アミンの配合量は、0.1~50質量部の範囲内が好ましい。下限は、5質量部以上がより好ましく、10質量部以上が更に好ましく、15質量部以上が特に好ましく、20質量部以上が最も好ましい。上限は、45質量部以下がより好ましく、40質量部以下が更に好ましい。
(オイル)
オイルとしては特に限定されず、例えば、プロセスオイル、植物油脂、又はその混合物などの公知のオイルが挙げられる。プロセスオイルとしては、例えば、パラフィン系プロセスオイル、アロマ系プロセスオイル、ナフテン系プロセスオイル、TDAE、MES等の低PCA(多環式芳香族)プロセスオイルなどを使用できる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、べに花油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、桐油等が挙げられる。これらは、1種を用いてもよいし、2種以上を組み合わせて用いてもよい。
オイルとしては特に限定されず、例えば、プロセスオイル、植物油脂、又はその混合物などの公知のオイルが挙げられる。プロセスオイルとしては、例えば、パラフィン系プロセスオイル、アロマ系プロセスオイル、ナフテン系プロセスオイル、TDAE、MES等の低PCA(多環式芳香族)プロセスオイルなどを使用できる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、べに花油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、桐油等が挙げられる。これらは、1種を用いてもよいし、2種以上を組み合わせて用いてもよい。
LCA(Life Cycle Assessment)の観点からは、オイルとして、植物由来のグリセロール脂肪酸トリエステル(植物油脂)を用いることが好ましい。ここで、グリセロール脂肪酸トリエステルとは、脂肪酸とグリセリンとのエステル体であり、トリグリセリド、トリ-O-アシルグリセリンとも称される。
植物由来のグリセロール脂肪酸トリエステルを構成する脂肪酸としては、通常、パルミチン酸(炭素数16、不飽和結合数0)、ステアリン酸(炭素数18、不飽和結合数0)、オレイン酸(炭素数18、不飽和結合数1)、リノール酸(炭素数18、不飽和結合数2)が主成分をなすことが知られており、構成脂肪酸100質量%中のパルミチン酸、ステアリン酸、オレイン酸、リノール酸の合計含有量は、通常、80質量%以上、好ましくは90質量%以上である。
グリセロール脂肪酸トリエステルは、構成脂肪酸100質量%中の、飽和脂肪酸の含有量が10~25質量%であることが好ましい。下限は12質量%以上がより好ましく、上限は20質量%以下がより好ましく、18質量%以下が更に好ましく、15質量%以下が特に好ましく、14質量%以下が最も好ましい。
グリセロール脂肪酸トリエステルは、構成脂肪酸100質量%中の、不飽和結合を1個有する1価不飽和脂肪酸の含有量が50質量%未満であることが好ましく、より好ましくは45質量%以下、更に好ましくは40質量%以下、特に好ましくは35質量%以下、最も好ましくは30質量%以下である。下限は特に限定されないが、好ましくは8質量%以上、より好ましくは14質量%以上、更に好ましくは20質量%以上、特に好ましくは23質量%以上である。
グリセロール脂肪酸トリエステルは、構成脂肪酸100質量%中の、不飽和結合を2個以上有する多価不飽和脂肪酸の含有量が50質量%以上であることが好ましく、より好ましくは55質量%以上、更に好ましくは60質量%以上、特に好ましくは63質量%以上である。上限は特に限定されないが、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下、特に好ましくは65質量%以下である。
グリセロール脂肪酸トリエステルは、構成脂肪酸100質量%中の、不飽和結合を2個有する2価不飽和脂肪酸の含有量が、好ましくは35~80質量%、より好ましくは40~70質量%、更に好ましくは45~65質量%、特に好ましくは52~56質量%である。また、構成脂肪酸100質量%中の、不飽和結合を3個有する3価不飽和脂肪酸の含有量が、好ましくは3~25質量%、より好ましくは5~15質量%、更に好ましくは8~12質量%である。
グリセロール脂肪酸トリエステルは、構成脂肪酸100質量%中の、不飽和脂肪酸の合計含有量が、好ましくは75~90質量%、より好ましくは80~88質量%、更に好ましくは82~88質量%、特に好ましくは85~88質量%である。
グリセロール脂肪酸トリエステルは、下記式(A)を満たすことが好ましい。
下記式(A)の下限は、好ましくは100以上、より好ましくは120以上、更に好ましくは140以上、特に好ましくは150以上、最も好ましくは155以上であり、上限は、好ましくは190以下、より好ましくは180以下、更に好ましくは170以下、特に好ましくは165以下である。
80≦構成脂肪酸100質量%中の不飽和結合を1個有する1価不飽和脂肪酸の含有量(質量%)×1(不飽和結合数)+構成脂肪酸100質量%中の不飽和結合を2個有する2価不飽和脂肪酸の含有量(質量%)×2(不飽和結合数)+構成脂肪酸100質量%中の不飽和結合を3個有する3価不飽和脂肪酸の含有量(質量%)×3(不飽和結合数)≦200 式(A)
下記式(A)の下限は、好ましくは100以上、より好ましくは120以上、更に好ましくは140以上、特に好ましくは150以上、最も好ましくは155以上であり、上限は、好ましくは190以下、より好ましくは180以下、更に好ましくは170以下、特に好ましくは165以下である。
80≦構成脂肪酸100質量%中の不飽和結合を1個有する1価不飽和脂肪酸の含有量(質量%)×1(不飽和結合数)+構成脂肪酸100質量%中の不飽和結合を2個有する2価不飽和脂肪酸の含有量(質量%)×2(不飽和結合数)+構成脂肪酸100質量%中の不飽和結合を3個有する3価不飽和脂肪酸の含有量(質量%)×3(不飽和結合数)≦200 式(A)
グリセロール脂肪酸トリエステルは、植物由来のグリセロール脂肪酸トリエステルの場合、構成脂肪酸が有する不飽和結合は、通常、二重結合である。
グリセロール脂肪酸トリエステルは、構成脂肪酸の平均炭素数が、好ましくは15~21、より好ましくは16~20、更に好ましくは17~19である。
本明細書において、構成脂肪酸の平均炭素数は、以下の式(D)により算出される。
構成脂肪酸の平均炭素数=Σ構成脂肪酸100質量%中の炭素数nの脂肪酸の含有量(質量%)×n(炭素数)/100 式(D)
本明細書において、構成脂肪酸の平均炭素数は、以下の式(D)により算出される。
構成脂肪酸の平均炭素数=Σ構成脂肪酸100質量%中の炭素数nの脂肪酸の含有量(質量%)×n(炭素数)/100 式(D)
グリセロール脂肪酸トリエステルは、常温(25℃)で液体であることが好ましい。グリセロール脂肪酸トリエステルの融点は、好ましくは20℃以下、より好ましくは17℃以下、更に好ましくは0℃以下、特に好ましくは-5℃以下、最も好ましくは-8℃以下である。
下限は特に限定されないが、好ましくは-100℃以上、より好ましくは-90℃以上である。
なお、グリセロール脂肪酸トリエステルの融点は、示差走査熱量測定(DSC)により測定できる。
下限は特に限定されないが、好ましくは-100℃以上、より好ましくは-90℃以上である。
なお、グリセロール脂肪酸トリエステルの融点は、示差走査熱量測定(DSC)により測定できる。
グリセロール脂肪酸トリエステルのヨウ素価は、好ましくは60以上、より好ましくは70以上、更に好ましくは80以上、特に好ましくは100以上、最も好ましくは120以上である。また、上記ヨウ素価は、好ましくは160以下、より好ましくは150以下、更に好ましくは135以下、特に好ましくは132以下である。
なお、本明細書において、ヨウ素価とは、グリセロール脂肪酸トリエステル100gにハロゲンを反応させたとき、結合するハロゲンの量をヨウ素のグラム数に換算したものであり、電位差滴定法(JIS K0070)により測定した値である。
なお、本明細書において、ヨウ素価とは、グリセロール脂肪酸トリエステル100gにハロゲンを反応させたとき、結合するハロゲンの量をヨウ素のグラム数に換算したものであり、電位差滴定法(JIS K0070)により測定した値である。
植物由来のグリセロール脂肪酸トリエステルとしては、例えば、大豆油、ごま油、米油、紅花油、コーン油、オリーブ油、菜種油等由来のものが挙げられる。なかでも、安価かつ大量に入手可能であり、性能の向上効果も高いという理由から、大豆油、ごま油、米油、菜種油が好ましく、大豆油、ごま油、米油がより好ましく、大豆油が更に好ましい。
なお、上記脂肪酸組成は、GLC(気-液クロマトグラフィー)により測定できる。
オイルとしてはまた、植物由来のグリセロール脂肪酸トリエステル(植物油脂)をケン化処理して得られたもの(植物油脂のケン化処理物)も好適に使用できる。該ケン化処理としては、上記植物油脂に、アルカリを添加して所定温度で一定時間、静置することにより行うことができる。なお、必要に応じて撹拌等を行ってもよい。
ケン化処理に用いることができるアルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アミン化合物等が挙げられ、ケン化処理の効果の観点から、特に水酸化ナトリウム又は水酸化カリウムを用いることが好ましい。
アルカリの添加量は、特に限定されないが、例えば、植物油脂100質量部に対して、下限は0.1質量部以上が好ましく、0.3質量部以上がより好ましく、1質量部以上が更に好ましい。また、上限は20質量部以下が好ましく、15質量部以下がより好ましく、10質量部以下が更に好ましい。
ケン化処理の温度は、アルカリによるケン化反応が十分な反応速度で進行しうる範囲、植物油脂が変質を起こさない範囲で適宜、設定できるが、通常は20~70℃が好ましく、30~70℃がより好ましい。また処理の時間は、植物油脂を静置して処理を行う場合、処理の温度にもよるが、十分な処理を行うことと、生産性を向上することとを併せ考慮すると30分~48時間が好ましく、1~24時間がより好ましい。
オイル、グリセロール脂肪酸トリエステル等の市販品としては、例えば、出光興産(株)、三共油化工業(株)、(株)ジャパンエナジー、オリソイ社、H&R社、豊国製油(株)、昭和シェル石油(株)、富士興産(株)、日清オイリオ(株)、J-オイルミルズ(株)、昭和産業(株)、不二製油(株)、ミヨシ油脂(株)、ボーソー油脂(株)等の製品を使用できる。
なお、得られるポリマー組成物において、粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性及び分散性等の観点から、ポリマー100質量部に対して、オイルを0.5~30質量部含むことが好ましい。下限は、1質量部以上がより好ましく、3質量部以上が更に好ましく、4質量部以上が特に好ましく、5質量部以上が最も好ましく、10質量部以上がより最も好ましい。上限は、25質量部以下がより好ましく、20質量部以下が更に好ましく、15質量部以下が特に好ましく、12.5質量部以下が最も好ましい。
(有機酸アミン)
ミクロフィブリル化植物繊維及びオイルに有機酸アミンを添加することで、有機酸アミンの親水側がミクロフィブリル化植物繊維と相溶し、疎水側がオイルと相溶する。そして、これらの混合液を、ゴム、樹脂等のポリマーに配合した際、ポリマーに影響しないオイルを使用しているため、ポリマー中にオイルが分散すると共に、ミクロフィブリル化植物繊維の分散、配向効果も得られ、組成物の物性や配向性を向上できる。
ミクロフィブリル化植物繊維及びオイルに有機酸アミンを添加することで、有機酸アミンの親水側がミクロフィブリル化植物繊維と相溶し、疎水側がオイルと相溶する。そして、これらの混合液を、ゴム、樹脂等のポリマーに配合した際、ポリマーに影響しないオイルを使用しているため、ポリマー中にオイルが分散すると共に、ミクロフィブリル化植物繊維の分散、配向効果も得られ、組成物の物性や配向性を向上できる。
有機酸アミン(有機酸アミン塩)は、有機酸とアミンとからなる。有機酸アミンを構成するアミンとしては、窒素原子に結合した1個又は2個の水素原子を含有する第一級アミン又は第二級アミン等が挙げられる。アミンは、モノアミン、ポリアミンのいずれでもよい。アミン(アミン化合物)の炭素数は、1~24が好適である。
アミンとしては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン、シクロペンチルアミン、シクロヘキシルアミン、シクロヘプチルアミン等を挙げることができる。アミンとして、アルキレンジアミンも使用可能であり、具体的には、メチレンジアミン、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ペンチレンジアミン、ヘキサメチレンジアミンを挙げることができる。ポリアルキレンポリアミンも使用可能であり、具体的には、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ジプロピレントリアミン、ジブチレントリアミン、トリブチレンテトラミン、テトラプロピレンペンタミン等を用いることができる。
有機酸アミンを構成する有機酸としては、脂肪族カルボン酸、脂環式カルボン酸、芳香族カルボン酸等を挙げることができる。これらのカルボン酸は、モノカルボン酸、ジカルボン酸、他のポリカルボン酸等のいずれでもよく、飽和、不飽和カルボン酸のいずれでもよい。また、有機酸としては、脂肪族スルホン酸、芳香族スルホン酸、アルキルサリチル酸、アルキルフェノール化合物等も挙げられる。
脂肪族カルボン酸としては、モノカルボン酸、ジカルボン酸等が好適である。炭素数は、好ましくは4~30、より好ましくは6~24である。具体的には、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、エイコサン酸、ドコサン酸(ベヘン酸)等のアルカン酸及びこれらの分岐アルカン酸(2-メチルペンタン酸、2-エチルヘキサン酸、4-プロピルペンタン酸、2-メチルデカン酸、3-メチルヘンデカン酸、2-メチルドデカン酸、2-メチルトリデカン酸、2-メチルテトラデカン酸、2-エチルテトラデカン酸、2-プロピルデカン酸、2-エチルヘキサデカン酸、2-メチルオクタデカン酸);ヘキセン酸、オクテン酸、デセン酸、ドデセン酸、テトラデセン酸、ヘキサデセン酸、オクタデセン酸、エイコセン酸、ドコセン酸、オクタデカトリエニル酸、ヘキサン二酸、ヘプタン二酸、オクタン二酸、ノナン二酸、デカン二酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカン二酸、ヘプタデカン二酸、オクタデカン二酸、ノナデカン二酸、エイコサン二酸、ドコサン二酸等のジカルボン酸を例示できる。
脂環式カルボン酸としては、シクロヘキサンモノカルボン酸、シクロヘキサンジカルボン酸等が挙げられる。
芳香族カルボン酸としては、芳香環にカルボキシル基を直結するカルボン酸のほか、側鎖にカルボキシ基を有するカルボン酸も使用できる。芳香族カルボン酸における芳香族炭化水素基は、単環、多環縮合環のいずれでもよく、ベンゼン、ナフタレン、アントラセン、フェナントレン、インデン、フルオレン、ビフェニル等を例示できる。芳香族カルボン酸は、モノカルボン酸、ジカルボン酸、他のポリカルボン酸を使用できる。芳香族カルボン酸の具体例としては、安息香酸、フタル酸、フェニル酢酸、マンデル酸等及びこれらの誘導体等を挙げることができる。
脂肪族スルホン酸、芳香族スルホン酸は、脂肪族又は芳香族炭化水素基とスルホン酸基とからなる化合物で、それぞれ、RSO3H、(R’)nArSO3Hで表される。R、R’は各々、脂肪族炭化水素基であり、Arは芳香族炭化水素基を示す。脂肪族スルホン酸は炭素数4~40の鎖状炭化水素基を有するもの等を使用できる。芳香族スルホン酸としては、1個又は2個以上の鎖状炭化水素基で置換されたもの等を使用できる。鎖状炭化水素基は、炭素数4~40のアルキル基(特に炭素数12以上のアルキル基)が好ましく、具体的には、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、テトラキシル基、ペンタコシル基、ヘキサコシル基、ヘプタコシル基、オクタコシル基、ノナコシル基、トリアコンチル基、ペンタトリアコンチル基、オクタトリアコンチル基等を挙げることができる。芳香族炭化水素基としては、前記芳香族カルボン酸と同様に、単環、多環縮合環のいずれでもよく、同様にベンゼン、ナフタレン等を例示できる。
なお、得られるポリマー組成物において、粘弾性特性(E*、tanδ)、耐久性、耐衝撃性等の物性、ミクロフィブリル化植物繊維の配向性及び分散性等の観点から、ミクロフィブリル化植物繊維100質量部に対して、有機酸アミンを0.1~50質量部含むことが好ましい。下限は、5質量部以上がより好ましく、10質量部以上が更に好ましく、15質量部以上が特に好ましく、20質量部以上が最も好ましい。上限は、45質量部以下がより好ましく、40質量部以下が更に好ましい。
工程1のミクロフィブリル化植物繊維、オイル及び有機酸アミンを含む混合液の調製において、ミクロフィブリル化植物繊維は、水中に分散させた水溶液(ミクロフィブリル化植物繊維水溶液)の状態でオイル、有機酸アミンと混合してもよいし、ミクロフィブリル化植物繊維水溶液をエタノール等で溶媒置換した後、オイル、有機酸アミンと混合してもよいし、あるいは、ミクロフィブリル化植物繊維をそのままオイル、有機酸アミンと混合してもよい。なお、ミクロフィブリル化植物繊維水溶液の状態でオイル、有機酸アミンと混合した場合、その後、必要に応じて、例えば、塩酸や硫酸等の強酸を添加して、加熱(例えば、120~200℃、好ましくは140~180℃)し、共沸させるなどして水分を除去すればよい。
ミクロフィブリル化植物繊維水溶液は、公知の方法で製造でき、例えば、高速ホモジナイザー、超音波ホモジナイザー、コロイドミル、ブレンダ―ミルなどを用いてミクロフィブリル化植物繊維を水中に分散させることで調製できる。調製の際の温度や時間も、ミクロフィブリル化植物繊維が水中に十分分散するように適宜設定できる。
ミクロフィブリル化植物繊維水溶液中のミクロフィブリル化植物繊維の含有量(固形分)は、好ましくは0.2~20質量%、より好ましくは0.5~10質量%、更に好ましくは0.5~3質量%である。
工程1で得られた該混合液とポリマーとを含むポリマー組成物を作製する工程2では、少なくとも前記混合液及び前記ポリマーを混合することにより実施できる。前記混合液は、必要に応じて、例えば、塩酸や硫酸等の強酸を添加して、加熱(例えば、120~200℃、好ましくは140~180℃)し、共沸させるなどして水分を除去した後、ポリマー等と混合してもよい。前記混合は、公知の混合方法を用いることができ、例えば、各成分をオープンロール、バンバリーミキサーなどのゴム混練装置を用いて混練する方法、各成分を押出機(2軸押出機等)を用いて混練する方法、等で実施できる。そして、ミクロフィブリル化植物繊維、オイル等を含む混合液、ポリマー、必要に応じて他の成分を混合することで、前述のポリマー組成物を作製できる。
なかでも、前記ポリマー組成物は、ミクロフィブリル化植物繊維と、オイルとして植物由来のグリセロール脂肪酸トリエステル(植物油脂)及び/又は植物由来のグリセロール脂肪酸トリエステル(植物油脂)をケン化処理して得られたもの(植物油脂のケン化処理物)と、有機酸アミンとして脂肪族カルボン酸、脂環式カルボン酸及び芳香族カルボン酸からなる群より選択される少なくとも1種とを含む混合液を調製する工程1と、該混合液及びポリマーを含むポリマー組成物を作製する工程2とを含む製造方法により作製されるものが好ましく、ミクロフィブリル化植物繊維と、オイルとして植物由来のグリセロール脂肪酸トリエステル(植物油脂)及び/又は植物由来のグリセロール脂肪酸トリエステル(植物油脂)をケン化処理して得られたもの(植物油脂のケン化処理物)と、有機酸アミンとして脂肪族カルボン酸とを含む混合液を調製する工程1と、該混合液と、ポリマーとしてNR、BR及びSBRからなる群より選択される少なくとも1種のゴムとを含むポリマー組成物を作製する工程2とを含む製造方法により作製されるものがより好ましい。
(他の成分)
なお、前記ポリマー組成物は、ミクロフィブリル化植物繊維以外の他のフィラーを配合してもよい。他のフィラーとしては、カーボンブラック、シリカ、炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、酸化アルミニウム、マイカなどが挙げられる。タイヤに適用する場合、カーボンブラック、シリカが好ましい。
なお、前記ポリマー組成物は、ミクロフィブリル化植物繊維以外の他のフィラーを配合してもよい。他のフィラーとしては、カーボンブラック、シリカ、炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、酸化アルミニウム、マイカなどが挙げられる。タイヤに適用する場合、カーボンブラック、シリカが好ましい。
カーボンブラックとしては、特に限定されないが、N134、N110、N220、N234、N219、N339、N330、N326、N351、N550、N762等が挙げられる。市販品としては、旭カーボン(株)、キャボットジャパン(株)、東海カーボン(株)、三菱ケミカル(株)、ライオン(株)、新日化カーボン(株)、コロンビアカーボン社等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
カーボンブラックを含む場合、その含有量は、ポリマー100質量部に対して、好ましくは5質量部以上、より好ましくは15質量部以上、更に好ましくは25質量部以上、特に好ましくは30質量部以上である。下限以上にすることで、良好な耐摩耗性、グリップ性能等が得られる傾向がある。また、上記含有量は、好ましくは100質量部以下、より好ましくは50質量部以下である。上限以下にすることで、ポリマー組成物の良好な加工性が得られる傾向がある。
カーボンブラックの窒素吸着比表面積(N2SA)は、10m2/g以上が好ましく、30m2/g以上がより好ましく、35m2/g以上が更に好ましく、40m2/g以上が更に好ましい。下限以上にすることで、良好な耐摩耗性、グリップ性能が得られる傾向がある。また、上記N2SAは、200m2/g以下が好ましく、150m2/g以下がより好ましく、130m2/g以下が更に好ましい。上限以下にすることで、カーボンブラックの良好な分散が得られる傾向がある。
なお、カーボンブラックの窒素吸着比表面積は、JIS K6217-2:2001によって求められる。
なお、カーボンブラックの窒素吸着比表面積は、JIS K6217-2:2001によって求められる。
シリカとしては、乾式法シリカ(無水シリカ)、湿式法シリカ(含水シリカ)などが挙げられる。なかでも、シラノール基が多いという理由から、湿式法シリカが好ましい。市販品としては、デグッサ社、ローディア社、東ソー・シリカ(株)、ソルベイジャパン(株)、(株)トクヤマ等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
シリカを含む場合、その含有量は、ポリマー100質量部に対して、好ましくは25質量部以上、より好ましくは30質量部以上、更に好ましくは50質量部以上である。下限以上にすることで、良好なウェットグリップ性能、操縦安定性が得られる傾向がある。該含有量の上限は特に限定されないが、好ましくは300質量部以下、より好ましくは200質量部以下、更に好ましくは170質量部以下、特に好ましくは100質量部以下、最も好ましくは80質量部以下である。上限以下にすることで、良好な分散性が得られる傾向がある。
シリカの窒素吸着比表面積(N2SA)は、好ましくは70m2/g以上、より好ましくは140m2/g以上、更に好ましくは160m2/g以上である。下限以上にすることで、良好なウェットグリップ性能、破壊強度が得られる傾向がある。また、シリカのN2SAの上限は特に限定されないが、好ましくは500m2/g以下、より好ましくは300m2/g以下、更に好ましくは250m2/g以下である。上限以下にすることで、良好な分散性が得られる傾向がある。
なお、シリカのN2SAは、ASTM D3037-93に準じてBET法で測定される値である。
なお、シリカのN2SAは、ASTM D3037-93に準じてBET法で測定される値である。
前記ポリマー組成物がシリカを含む場合、更にシランカップリング剤を含むことが好ましい。
シランカップリング剤としては、特に限定されず、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(4-トリエトキシシリルブチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(4-トリメトキシシリルブチル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(4-トリエトキシシリルブチル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(2-トリメトキシシリルエチル)ジスルフィド、ビス(4-トリメトキシシリルブチル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、などのスルフィド系、3-メルカプトプロピルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、Momentive社製のNXT、NXT-Zなどのメルカプト系、ビニルトリエトキシシラン、ビニルトリメトキシシランなどのビニル系、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシランなどのアミノ系、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、などのグリシドキシ系、3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシランなどのニトロ系、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシランなどのクロロ系などがあげられる。市販品としては、デグッサ社、Momentive社、信越シリコーン(株)、東京化成工業(株)、アヅマックス(株)、東レ・ダウコーニング(株)等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
シランカップリング剤としては、特に限定されず、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(4-トリエトキシシリルブチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(4-トリメトキシシリルブチル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(4-トリエトキシシリルブチル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(2-トリメトキシシリルエチル)ジスルフィド、ビス(4-トリメトキシシリルブチル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、などのスルフィド系、3-メルカプトプロピルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、Momentive社製のNXT、NXT-Zなどのメルカプト系、ビニルトリエトキシシラン、ビニルトリメトキシシランなどのビニル系、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシランなどのアミノ系、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、などのグリシドキシ系、3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシランなどのニトロ系、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシランなどのクロロ系などがあげられる。市販品としては、デグッサ社、Momentive社、信越シリコーン(株)、東京化成工業(株)、アヅマックス(株)、東レ・ダウコーニング(株)等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
シランカップリング剤の含有量は、シリカ100質量部に対して、3質量部以上が好ましく、6質量部以上がより好ましい。3質量部以上であると、良好な破壊強度等が得られる傾向がある。また、上記含有量は、20質量部以下が好ましく、15質量部以下がより好ましい。20質量部以下であると、配合量に見合った効果が得られる傾向がある。
前記ポリマー組成物には、固体樹脂(常温(25℃)で固体状態のポリマー)を配合してもよい。
固体樹脂を含有する場合、その含有量は、ポリマー100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、更に好ましくは5質量部以上である。また、上記含有量は、好ましくは50質量部以下、より好ましくは30質量部以下、更に好ましくは20質量部以下である。上記範囲内であると、良好なウェットグリップ性能が得られる傾向がある。
固体樹脂としては、特に限定されないが、例えば、固体状のスチレン系樹脂、クマロンインデン樹脂、テルペン系樹脂、p-t-ブチルフェノールアセチレン樹脂、アクリル系樹脂、ジシクロペンタジエン系樹脂(DCPD系樹脂)、C5系石油樹脂、C9系石油樹脂、C5C9系石油樹脂等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
固体状のスチレン系樹脂は、スチレン系単量体を構成モノマーとして用いた固体状ポリマーであり、スチレン系単量体を主成分(50質量%以上)として重合させたポリマー等が挙げられる。具体的には、スチレン系単量体(スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-メトキシスチレン、p-tert-ブチルスチレン、p-フェニルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン等)をそれぞれ単独で重合した単独重合体、2種以上のスチレン系単量体を共重合した共重合体の他、スチレン系単量体及びこれと共重合し得る他の単量体のコポリマーも挙げられる。
上記他の単量体としては、アクリロニトリル、メタクリロニトリルなどのアクリロニトリル類、アクリル類、メタクリル酸などの不飽和カルボン酸類、アクリル酸メチル、メタクリル酸メチルなどの不飽和カルボン酸エステル類、クロロプレン、ブタジエンイソプレンなどのジエン類、1-ブテン、1-ペンテンのようなオレフィン類;無水マレイン酸等のα,β-不飽和カルボン酸又はその酸無水物;等が例示できる。
なかでも、固体状のα-メチルスチレン系樹脂(α-メチルスチレン単独重合体、α-メチルスチレンとスチレンとの共重合体等)が好ましい。
固体状のクマロンインデン樹脂としては、樹脂の骨格(主鎖)を構成する主なモノマー成分として、クマロン及びインデンを含む樹脂であり、クマロン、インデン以外に骨格に含まれていてもよいモノマー成分としては、スチレン、α-メチルスチレン、メチルインデン、ビニルトルエンなどが挙げられる。
固体状のテルペン系樹脂としては、ポリテルペン、テルペンフェノール、芳香族変性テルペン樹脂などが挙げられる。
ポリテルペンは、テルペン化合物を重合して得られる樹脂及びそれらの水素添加物である。テルペン化合物は、(C5H8)nの組成で表される炭化水素及びその含酸素誘導体で、モノテルペン(C10H16)、セスキテルペン(C15H24)、ジテルペン(C20H32)などに分類されるテルペンを基本骨格とする化合物であり、例えば、α-ピネン、β-ピネン、ジペンテン、リモネン、ミルセン、アロオシメン、オシメン、α-フェランドレン、α-テルピネン、γ-テルピネン、テルピノレン、1,8-シネオール、1,4-シネオール、α-テルピネオール、β-テルピネオール、γ-テルピネオールなどが挙げられる。
ポリテルペンは、テルペン化合物を重合して得られる樹脂及びそれらの水素添加物である。テルペン化合物は、(C5H8)nの組成で表される炭化水素及びその含酸素誘導体で、モノテルペン(C10H16)、セスキテルペン(C15H24)、ジテルペン(C20H32)などに分類されるテルペンを基本骨格とする化合物であり、例えば、α-ピネン、β-ピネン、ジペンテン、リモネン、ミルセン、アロオシメン、オシメン、α-フェランドレン、α-テルピネン、γ-テルピネン、テルピノレン、1,8-シネオール、1,4-シネオール、α-テルピネオール、β-テルピネオール、γ-テルピネオールなどが挙げられる。
固体状のポリテルペンとしては、上述したテルペン化合物を原料とするα-ピネン樹脂、β-ピネン樹脂、リモネン樹脂、ジペンテン樹脂、β-ピネン/リモネン樹脂などのテルペン樹脂の他、該テルペン樹脂に水素添加処理した水素添加テルペン樹脂等の固体樹脂も挙げられる。
固体状のテルペンフェノールとしては、上記テルペン化合物とフェノール系化合物とを共重合した固体樹脂、及び該樹脂に水素添加処理した固体樹脂が挙げられ、具体的には、上記テルペン化合物、フェノール系化合物及びホルマリンを縮合させた固体樹脂が挙げられる。なお、フェノール系化合物としては、例えば、フェノール、ビスフェノールA、クレゾール、キシレノールなどが挙げられる。
固体状の芳香族変性テルペン樹脂としては、テルペン樹脂を芳香族化合物で変性して得られる固体樹脂、及び該樹脂に水素添加処理した固体樹脂が挙げられる。なお、芳香族化合物としては、芳香環を有する化合物であれば特に限定されないが、例えば、フェノール、アルキルフェノール、アルコキシフェノール、不飽和炭化水素基含有フェノールなどのフェノール化合物;ナフトール、アルキルナフトール、アルコキシナフトール、不飽和炭化水素基含有ナフトールなどのナフトール化合物;スチレン、アルキルスチレン、アルコキシスチレン、不飽和炭化水素基含有スチレンなどのスチレン誘導体;クマロン、インデンなどが挙げられる。
固体状のp-t-ブチルフェノールアセチレン樹脂としては、p-t-ブチルフェノールとアセチレンとを縮合反応させて得られる固体樹脂が挙げられる。
固体状のアクリル系樹脂としては特に限定されないが、不純物が少なく、分子量分布がシャープな樹脂が得られるという点から、無溶剤型アクリル系固体樹脂を好適に使用できる。
固体状の無溶剤型アクリル樹脂は、副原料となる重合開始剤、連鎖移動剤、有機溶媒などを極力使用せずに、高温連続重合法(高温連続塊重合法)(米国特許第4,414,370号明細書、特開昭59-6207号公報、特公平5-58005号公報、特開平1-313522号公報、米国特許第5,010,166号明細書、東亜合成研究年報TREND2000第3号p42-45等に記載の方法)により合成された(メタ)アクリル系樹脂(重合体)が挙げられる。なお、本明細書において、(メタ)アクリルは、メタクリル及びアクリルを意味する。
固体状のアクリル系樹脂は、実質的に副原料となる重合開始剤、連鎖移動剤、有機溶媒などを含まないことが好ましい。また、上記アクリル系樹脂は、連続重合により得られる組成分布や分子量分布が比較的狭いものが好ましい。
上述のように、固体状のアクリル系樹脂としては、実質的に副原料となる重合開始剤、連鎖移動剤、有機溶媒などを含まないもの、すなわち、純度が高いものが好ましい。固体状のアクリル系樹脂の純度(該樹脂中に含まれる樹脂の割合)は、好ましくは95質量%以上、より好ましくは97質量%以上である。
固体状のアクリル系樹脂を構成するモノマー成分としては、例えば、(メタ)アクリル酸や、(メタ)アクリル酸エステル(アルキルエステル、アリールエステル、アラルキルエステルなど)、(メタ)アクリルアミド、及び(メタ)アクリルアミド誘導体などの(メタ)アクリル酸誘導体が挙げられる。
また、固体状のアクリル系樹脂を構成するモノマー成分として、(メタ)アクリル酸や(メタ)アクリル酸誘導体と共に、スチレン、α-メチルスチレン、ビニルトルエン、ビニルナフタレン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレンなどの芳香族ビニルを使用してもよい。
固体状のアクリル系樹脂は、(メタ)アクリル成分のみで構成される樹脂であっても、(メタ)アクリル成分以外の成分をも構成要素とする樹脂であっても良い。
また、固体状のアクリル系樹脂は、水酸基、カルボキシル基、シラノール基等を有していてよい。
また、固体状のアクリル系樹脂は、水酸基、カルボキシル基、シラノール基等を有していてよい。
固体樹脂としては、例えば、丸善石油化学(株)、住友ベークライト(株)、ヤスハラケミカル(株)、東ソー(株)、RutgersChemicals社、BASF社、アリゾナケミカル社、日塗化学(株)、(株)日本触媒、JXTGエネルギー(株)、荒川化学工業(株)、田岡化学工業(株)等の製品を使用できる。
前記ポリマー組成物は、耐クラック性、耐オゾン性等の観点から、老化防止剤を含有することが好ましい。
老化防止剤としては特に限定されないが、フェニル-α-ナフチルアミン等のナフチルアミン系老化防止剤;オクチル化ジフェニルアミン、4,4′-ビス(α,α′-ジメチルベンジル)ジフェニルアミン等のジフェニルアミン系老化防止剤;N-イソプロピル-N′-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N′-フェニル-p-フェニレンジアミン、N,N′-ジ-2-ナフチル-p-フェニレンジアミン等のp-フェニレンジアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物等のキノリン系老化防止剤;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のモノフェノール系老化防止剤;テトラキス-[メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート]メタン等のビス、トリス、ポリフェノール系老化防止剤などが挙げられる。なかでも、p-フェニレンジアミン系老化防止剤、キノリン系老化防止剤が好ましく、N-(1,3-ジメチルブチル)-N′-フェニル-p-フェニレンジアミン、2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物がより好ましい。市販品としては、例えば、精工化学(株)、住友化学(株)、大内新興化学工業(株)、フレクシス社等の製品を使用できる。
老化防止剤の含有量は、ポリマー100質量部に対して、好ましくは0.2質量部以上、より好ましくは0.5質量部以上である。下限以上にすることで、充分な耐オゾン性が得られる傾向がある。該含有量は、好ましくは7.0質量部以下、より好ましくは4.0質量部以下である。上限以下にすることで、良好な外観が得られる傾向がある。
前記ポリマー組成物は、ステアリン酸を含むことが好ましい。ステアリン酸の含有量は、前記性能バランスの観点から、ポリマー100質量部に対して、好ましくは0.5~10質量部、より好ましくは0.5~5質量部である。
なお、ステアリン酸としては、従来公知のものを使用でき、例えば、日油(株)、NOF社、花王(株)、富士フイルム和光純薬(株)、千葉脂肪酸(株)等の製品を使用できる。
前記ポリマー組成物は、酸化亜鉛を含むことが好ましい。酸化亜鉛の含有量は、前記性能バランスの観点から、ポリマー100質量部に対して、好ましくは0.5~10質量部、より好ましくは1~5質量部である。
なお、酸化亜鉛としては、従来公知のものを使用でき、例えば、三井金属鉱業(株)、東邦亜鉛(株)、ハクスイテック(株)、正同化学工業(株)、堺化学工業(株)等の製品を使用できる。
前記ポリマー組成物には、ワックスを配合してもよい。ワックスとしては特に限定されず、石油系ワックス、天然系ワックスなどが挙げられ、また、複数のワックスを精製又は化学処理した合成ワックスも使用可能である。これらのワックスは、単独で使用しても、2種類以上を併用してもよい。
石油系ワックスとしては、パラフィンワックス、マイクロクリスタリンワックス等が挙げられる。天然系ワックスとしては、石油外資源由来のワックスであれば特に限定されず、例えば、キャンデリラワックス、カルナバワックス、木ろう、ライスワックス、ホホバろうなどの植物系ワックス;ミツロウ、ラノリン、鯨ろうなどの動物系ワックス;オゾケライト、セレシン、ペトロラクタムなどの鉱物系ワックス;及びこれらの精製物などが挙げられる。市販品としては、例えば、大内新興化学工業(株)、日本精蝋(株)、精工化学(株)等の製品を使用できる。なお、ワックスの含有量は、耐オゾン性、コストの点から、適宜設定すれば良い。
前記ポリマー組成物がゴム組成物の場合、ポリマー鎖に適度な架橋鎖を形成し、良好なゴム物性を付与するという点で、硫黄を配合することが好ましい。
硫黄の含有量は、ポリマー100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは0.7質量部以上である。該含有量は、好ましくは6.0質量部以下、より好ましくは4.0質量部以下、更に好ましくは3.0質量部以下である。上記範囲内にすることで、良好な前記性能バランスが得られる傾向がある。
硫黄としては、ゴム工業において一般的に用いられる粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、可溶性硫黄などが挙げられる。市販品としては、鶴見化学工業(株)、軽井沢硫黄(株)、四国化成工業(株)、フレクシス社、日本乾溜工業(株)、細井化学工業(株)等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
前記ポリマー組成物がゴム組成物の場合、加硫促進剤を含むことが好ましい。
加硫促進剤の含有量は特に制限はなく、要望する加硫速度や架橋密度に合わせて自由に決定すれば良いが、ポリマー100質量部に対して、通常、0.3~10質量部、好ましくは0.5~7質量部である。
加硫促進剤の含有量は特に制限はなく、要望する加硫速度や架橋密度に合わせて自由に決定すれば良いが、ポリマー100質量部に対して、通常、0.3~10質量部、好ましくは0.5~7質量部である。
加硫促進剤の種類は特に制限はなく、通常用いられているものを使用可能である。加硫促進剤としては、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド等のチアゾール系加硫促進剤;テトラメチルチウラムジスルフィド(TMTD)、テトラベンジルチウラムジスルフィド(TBzTD)、テトラキス(2-エチルヘキシル)チウラムジスルフィド(TOT-N)等のチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が好ましい。
前記ポリマー組成物には、上記成分以外にも、離型剤や顔料等の応用分野に従って、それらの使用に使われる通常の添加物を適宜配合してもよい。
前記ポリマー組成物がゴム組成物の場合、その製造方法としては、公知の方法を用いることができ、例えば、前述の各成分をオープンロール、バンバリーミキサーなどのゴム混練装置を用いて混練し、その後加硫する方法などにより製造できる。
混練条件としては、加硫剤及び加硫促進剤以外の添加剤を混練するベース練り工程では、混練温度は、通常50~200℃、好ましくは80~190℃であり、混練時間は、通常30秒~30分、好ましくは1分~30分である。加硫剤、加硫促進剤を混練する仕上げ練り工程では、混練温度は、通常100℃以下、好ましくは室温~80℃である。また、加硫剤、加硫促進剤を混練した組成物は、通常、プレス加硫などの加硫処理が施される。加硫温度としては、通常120~200℃、好ましくは140~180℃である。
前記ポリマー組成物が樹脂組成物の場合、その製造方法としては、公知の方法を用いることができ、例えば、前述の各成分を押出機(2軸押出機等)を用いて混練し、成形する方法等が挙げられる。
前記のとおり、前記ポリマー組成物は、配向方向に垂直な方向からの衝撃や振動に強いため、一方向に長さのある部材、例えば、自動車の車体、航空機の翼、風力発電用風車、ゴルフクラブ等のスポーツ用具等の様々な用途に適用できる。また、タイヤのようにリング状部材も一方向(周方向)に長さのある部材と言えるため、好適に適用できる。
上記ポリマー組成物をタイヤに適用する場合、該タイヤは、上記ポリマー組成物を用いて通常の方法により製造される。すなわち、必要に応じて各種材料を配合したポリマー組成物を、未加硫の段階でタイヤ部材の形状に合わせて押し出し加工し、他のタイヤ部材とともに、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤを形成した後、加硫機中で加熱加圧してタイヤ(空気入りタイヤ等)を製造できる。
上記ポリマー組成物をタイヤに用いる場合、各種タイヤ部材、例えば、トレッド(キャップトレッド)、ベーストレッド、アンダートレッド、サイドウォール、クリンチエイペックス、ビードエイペックス、ブレーカークッションゴム、カーカスコード被覆用ゴム、インスレーション、チェーファー、インナーライナー等や、ランフラットタイヤのサイド補強層等に適用できる。なかでも、耐衝撃性、耐久性等に優れているので、トレッド、サイドウォール等に好適に適用できる。
上記空気入りタイヤは、乗用車用タイヤ、大型乗用車用、大型SUV用タイヤ、トラック、バスなどの重荷重用タイヤ、ライトトラック用タイヤ、二輪自動車用タイヤ、ランフラットタイヤ、競技用タイヤに好適に使用可能である。特に、乗用車用タイヤとしてより好適に使用できる。
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
以下、実施例及び比較例で使用した各種薬品について、まとめて説明する。
ミクロフィブリル化植物繊維:(株)スギノマシン製のバイオマスナノファイバー(製品名「BiNFi-s セルロース」、固形分2質量%、水分98質量%、平均繊維径10~50nm、平均繊維長2~5μm)
オイル:日清オイリオ(株)製の大豆油(各特性を表1に示す。なお、表1中の脂肪酸の含有量は、構成脂肪酸100質量%中の各脂肪酸の含有量(質量%)を意味する。)
有機酸アミン1:カルボン酸アミン塩(Elementis社製FX600)
有機酸アミン2:脂肪酸アミン塩(キレスト(株)製キレスライトWR-6)
NRラテックス:Muhibbah LATEKS社から入手したフィールドラテックスを使用
SBRラテックス:日本ゼオン(株)製のLX110(E-SBR、ビニル含量18質量%、スチレン含量:37.5質量%、ゴムラテックス中のゴム成分の濃度40.5質量%)
NR:TSR20
SBR:日本ゼオン(株)製の市販品(S-SBR、スチレン含量41質量%)
カーボンブラック:三菱ケミカル(株)製のダイアブラックN550(N2SA41m2/g)
老化防止剤:大内新興化学工業(株)製のノクラック6C
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
ステアリン酸:日油(株)製の椿
硫黄:日本乾溜工業(株)製のセイミ硫黄
加硫促進剤:大内新興化学工業(株)製のノクセラーNS
熱可塑性樹脂:クラレ社製Hybrar 7311F
(樹脂名等)
ミクロフィブリル化植物繊維:(株)スギノマシン製のバイオマスナノファイバー(製品名「BiNFi-s セルロース」、固形分2質量%、水分98質量%、平均繊維径10~50nm、平均繊維長2~5μm)
オイル:日清オイリオ(株)製の大豆油(各特性を表1に示す。なお、表1中の脂肪酸の含有量は、構成脂肪酸100質量%中の各脂肪酸の含有量(質量%)を意味する。)
有機酸アミン1:カルボン酸アミン塩(Elementis社製FX600)
有機酸アミン2:脂肪酸アミン塩(キレスト(株)製キレスライトWR-6)
NRラテックス:Muhibbah LATEKS社から入手したフィールドラテックスを使用
SBRラテックス:日本ゼオン(株)製のLX110(E-SBR、ビニル含量18質量%、スチレン含量:37.5質量%、ゴムラテックス中のゴム成分の濃度40.5質量%)
NR:TSR20
SBR:日本ゼオン(株)製の市販品(S-SBR、スチレン含量41質量%)
カーボンブラック:三菱ケミカル(株)製のダイアブラックN550(N2SA41m2/g)
老化防止剤:大内新興化学工業(株)製のノクラック6C
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
ステアリン酸:日油(株)製の椿
硫黄:日本乾溜工業(株)製のセイミ硫黄
加硫促進剤:大内新興化学工業(株)製のノクセラーNS
熱可塑性樹脂:クラレ社製Hybrar 7311F
(樹脂名等)
<混合液の作製>
ミクロフィブリル化植物繊維500gに純水1000gを添加し、ミクロフィブリル化植物繊維の0.5質量%(固形分濃度)懸濁液を作製し、高速ホモジナイザー(IKAジャパン社製の「T50」、回転数:8000rpm)で約5分撹拌して均一な水分散液を調製した。
表2の配合処方に従って、オイル、上記調製した水分散液(ミクロフィブリル化植物繊維の乾燥質量(固形分)換算)、有機酸アミン1~2を混合し、更にトルエンをオイル100質量部に対して100質量部添加して、混合した。得られた混合物に塩酸を少量添加し、80℃に加熱して共沸させて水分を除去した。水分除去後の混合物を高速ホモジナイザー(IKAジャパン社製の「T50」、回転数:8000rpm)を用いて50℃で5分撹拌、混合して、混合液1~3を調製した。
ミクロフィブリル化植物繊維500gに純水1000gを添加し、ミクロフィブリル化植物繊維の0.5質量%(固形分濃度)懸濁液を作製し、高速ホモジナイザー(IKAジャパン社製の「T50」、回転数:8000rpm)で約5分撹拌して均一な水分散液を調製した。
表2の配合処方に従って、オイル、上記調製した水分散液(ミクロフィブリル化植物繊維の乾燥質量(固形分)換算)、有機酸アミン1~2を混合し、更にトルエンをオイル100質量部に対して100質量部添加して、混合した。得られた混合物に塩酸を少量添加し、80℃に加熱して共沸させて水分を除去した。水分除去後の混合物を高速ホモジナイザー(IKAジャパン社製の「T50」、回転数:8000rpm)を用いて50℃で5分撹拌、混合して、混合液1~3を調製した。
<ゴム・ミクロフィブリル化植物繊維複合体(ウェットマスターバッチ)の作製>
表3の配合処方に従って、ゴム・ミクロフィブリル化植物繊維複合体を製造した。
具体的には、上記調製した水分散液(ミクロフィブリル化植物繊維の水分散液)、NRラテックス(ゴム(固形分)換算)又はSBRラテックス(ゴム(固形分)換算)を、高速ホモジナイザーを用いて室温で5分攪拌し、pH10.2の配合ラテックスを得た。次いで、室温下で2質量%ギ酸水溶液を加え、pH3~4に調整し、凝固物を得た。得られた凝固物をろ過し、乾燥してゴム・ミクロフィブリル化植物繊維複合体(WB1、2)を得た。
表3の配合処方に従って、ゴム・ミクロフィブリル化植物繊維複合体を製造した。
具体的には、上記調製した水分散液(ミクロフィブリル化植物繊維の水分散液)、NRラテックス(ゴム(固形分)換算)又はSBRラテックス(ゴム(固形分)換算)を、高速ホモジナイザーを用いて室温で5分攪拌し、pH10.2の配合ラテックスを得た。次いで、室温下で2質量%ギ酸水溶液を加え、pH3~4に調整し、凝固物を得た。得られた凝固物をろ過し、乾燥してゴム・ミクロフィブリル化植物繊維複合体(WB1、2)を得た。
[実施例及び比較例]
<ゴムサンプルの作製>
表4~5に示す配合処方に従い、1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の材料を150℃で4分間混練りした。次に、オープンロールを用いて、得られた混練り物に硫黄及び加硫促進剤を添加して80℃で4分間練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を170℃で20分間プレス成形し(加硫)、ゴムサンプル(加硫ゴム組成物)を作製した。
<ゴムサンプルの作製>
表4~5に示す配合処方に従い、1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の材料を150℃で4分間混練りした。次に、オープンロールを用いて、得られた混練り物に硫黄及び加硫促進剤を添加して80℃で4分間練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を170℃で20分間プレス成形し(加硫)、ゴムサンプル(加硫ゴム組成物)を作製した。
<樹脂組成物の作製>
表6に示す配合処方に従い、材料を2軸押出機で混練、成形し、樹脂組成物(試験片)を得た。
表6に示す配合処方に従い、材料を2軸押出機で混練、成形し、樹脂組成物(試験片)を得た。
<評価項目及び試験方法>
前記ゴムサンプルの作製で製造されたゴムサンプルから採取した試験片(加硫ゴム組成物)、前記樹脂組成物の作製で製造された樹脂組成物から採取した試験片について、下記の物性測定、評価を行った。結果を表4~6に示した。表4、5、6の基準比較例は、それぞれ比較例1-1、2-1、3-1である。
前記ゴムサンプルの作製で製造されたゴムサンプルから採取した試験片(加硫ゴム組成物)、前記樹脂組成物の作製で製造された樹脂組成物から採取した試験片について、下記の物性測定、評価を行った。結果を表4~6に示した。表4、5、6の基準比較例は、それぞれ比較例1-1、2-1、3-1である。
(粘弾性試験)
押出方向、押出方向に直行する方向に採取した試験片(サイズ:縦20mm、横3mm、厚さ2mm)を用い、GABO社製イプレクサーを用いて、温度70℃、周波数10Hz、初期歪10%及び動歪1%の条件下で、押出方向の複素弾性率E*a(MPa)、押出方向の直交方向の複素弾性率E*b(MPa)を測定した。
押出方向、押出方向に直行する方向に採取した試験片(サイズ:縦20mm、横3mm、厚さ2mm)を用い、GABO社製イプレクサーを用いて、温度70℃、周波数10Hz、初期歪10%及び動歪1%の条件下で、押出方向の複素弾性率E*a(MPa)、押出方向の直交方向の複素弾性率E*b(MPa)を測定した。
(引張試験)
JIS K6251:2017「加硫ゴム及び熱可塑性ゴム-引張特性の求め方」に従って7号ダンベルサンプルを用いて引張試験を行い(標準試験温度(23±2℃))、押出方向伸長時の破断応力TBa(MPa)、押出方向伸長時における破断時伸びの50%伸長時の応力FBa(MPa)を測定した。
JIS K6251:2017「加硫ゴム及び熱可塑性ゴム-引張特性の求め方」に従って7号ダンベルサンプルを用いて引張試験を行い(標準試験温度(23±2℃))、押出方向伸長時の破断応力TBa(MPa)、押出方向伸長時における破断時伸びの50%伸長時の応力FBa(MPa)を測定した。
(耐衝撃性(衝撃強さ/Izod衝撃試験))
各ゴムサンプル(試験片)、各樹脂組成物(試験片)について、Izod衝撃試験機((株)東洋精機製作所製)を用いてIzod衝撃試験を実施した(ミクロフィブリル化植物繊維の配向方向に垂直な方向(押出方向に直行する方向)に衝撃入力)。試験片中央部に深さ2mmの切り欠き(ノッチ)を挿入した。5.5J-R試験では5.5Jのハンマーを用いてノッチと反対側を打撃し、ノッチのない成形品表面から亀裂を進展させ、その時の衝撃強度を算出した。基準比較例を100とし、各試験片を指数で表示した。指数が大きいほど、耐衝撃性(衝撃強さ)が大きい。
各ゴムサンプル(試験片)、各樹脂組成物(試験片)について、Izod衝撃試験機((株)東洋精機製作所製)を用いてIzod衝撃試験を実施した(ミクロフィブリル化植物繊維の配向方向に垂直な方向(押出方向に直行する方向)に衝撃入力)。試験片中央部に深さ2mmの切り欠き(ノッチ)を挿入した。5.5J-R試験では5.5Jのハンマーを用いてノッチと反対側を打撃し、ノッチのない成形品表面から亀裂を進展させ、その時の衝撃強度を算出した。基準比較例を100とし、各試験片を指数で表示した。指数が大きいほど、耐衝撃性(衝撃強さ)が大きい。
(低燃費性)
各ゴムサンプル(加硫ゴム組成物)について、GABO社製イプレクサーを用いて、温度70℃、周波数10Hz、初期歪10%及び動歪1%の条件下で、損失正接(tanδ)を測定し、基準比較例を100としたときの指数で表示した(ミクロフィブリル化植物繊維の配向方向(押出方向)に伸長変形)。指数が大きいほど、低燃費性に優れる。
各ゴムサンプル(加硫ゴム組成物)について、GABO社製イプレクサーを用いて、温度70℃、周波数10Hz、初期歪10%及び動歪1%の条件下で、損失正接(tanδ)を測定し、基準比較例を100としたときの指数で表示した(ミクロフィブリル化植物繊維の配向方向(押出方向)に伸長変形)。指数が大きいほど、低燃費性に優れる。
(耐屈曲亀裂成長試験)
各ゴムサンプル(加硫ゴム組成物)及び各樹脂組成物を用い、JIS K6260「加硫ゴム及び熱可塑性ゴム-デマッチャ屈曲亀裂試験方法」に基づいて各試験片を作製し、屈曲亀裂成長試験を行い、70%伸張を100万回繰り返してゴムシートを屈曲させたのち、発生した亀裂の長さを測定した(ミクロフィブリル化植物繊維の配向方向に垂直な方向(押出方向に直行する方向)に屈曲)。基準比較例の測定値(長さ)の逆数を100とし、指数表示した。指数が大きいほど、亀裂の成長が抑制され、耐屈曲亀裂成長性に優れることを示す。
各ゴムサンプル(加硫ゴム組成物)及び各樹脂組成物を用い、JIS K6260「加硫ゴム及び熱可塑性ゴム-デマッチャ屈曲亀裂試験方法」に基づいて各試験片を作製し、屈曲亀裂成長試験を行い、70%伸張を100万回繰り返してゴムシートを屈曲させたのち、発生した亀裂の長さを測定した(ミクロフィブリル化植物繊維の配向方向に垂直な方向(押出方向に直行する方向)に屈曲)。基準比較例の測定値(長さ)の逆数を100とし、指数表示した。指数が大きいほど、亀裂の成長が抑制され、耐屈曲亀裂成長性に優れることを示す。
(振動性能)
各ゴムサンプル(加硫ゴム組成物)及び各樹脂組成物について、JIS K7391 3.3中央加振法に準拠し、振動性能を評価した。基準比較例の振動性能を100とし、指数表示した。指数が大きいほど、振動性能に優れることを示す。
各ゴムサンプル(加硫ゴム組成物)及び各樹脂組成物について、JIS K7391 3.3中央加振法に準拠し、振動性能を評価した。基準比較例の振動性能を100とし、指数表示した。指数が大きいほど、振動性能に優れることを示す。
(曲げ弾性率)
各樹脂組成物(試験片)について、防湿容器中で23℃±2℃で24時間以上保持した。この試験片を防湿容器から取り出した後、速やか(15分以内)に、曲げ弾性率(MPa)をISO178に準じて測定した(ミクロフィブリル化植物繊維の配向方向に垂直な方向(押出方向に直行する方向)の曲げ弾性率を測定)。測定は、温度23℃、湿度50%RHで行った。基準比較例を100とし、各試験片を指数で表示した。指数が大きいほど、曲げ弾性率が大きい。
各樹脂組成物(試験片)について、防湿容器中で23℃±2℃で24時間以上保持した。この試験片を防湿容器から取り出した後、速やか(15分以内)に、曲げ弾性率(MPa)をISO178に準じて測定した(ミクロフィブリル化植物繊維の配向方向に垂直な方向(押出方向に直行する方向)の曲げ弾性率を測定)。測定は、温度23℃、湿度50%RHで行った。基準比較例を100とし、各試験片を指数で表示した。指数が大きいほど、曲げ弾性率が大きい。
(曲げ強度)
各樹脂組成物(試験片)について、JIS Z 2248に準拠する試験方法で曲げ強度(kgf/mm2)を測定した(ミクロフィブリル化植物繊維の配向方向に垂直な方向(押出方向に直行する方向)の曲げ強度を測定)。即ち、スパン間距離を200mmとし、2つの支えは円形でその半径が5mm、中間押金具は半径が5mmの半円断面の、3点曲げ方式とした。試験体は補強面を下とし、クロスヘッド速度は2mm/分とした。基準比較例を100とし、各試験片を指数で表示した。指数が大きいほど、曲げ強度が大きい。
各樹脂組成物(試験片)について、JIS Z 2248に準拠する試験方法で曲げ強度(kgf/mm2)を測定した(ミクロフィブリル化植物繊維の配向方向に垂直な方向(押出方向に直行する方向)の曲げ強度を測定)。即ち、スパン間距離を200mmとし、2つの支えは円形でその半径が5mm、中間押金具は半径が5mmの半円断面の、3点曲げ方式とした。試験体は補強面を下とし、クロスヘッド速度は2mm/分とした。基準比較例を100とし、各試験片を指数で表示した。指数が大きいほど、曲げ強度が大きい。
表4、5から、E*a/E*b≧1.3及びTBa/FBa≧2.6の上記式(1)及び(2)を満たす実施例のゴム組成物は、ミクロフィブリル化植物繊維の配向性、分散性が良好で、耐衝撃性、低燃費性、耐屈曲亀裂成長性の総合性能(耐衝撃性、低燃費性、耐屈曲亀裂成長性の各指数の総和)に優れていた。また、振動性能も良好であった。
表6から、上記式(1)及び(2)を満たす実施例の樹脂組成物は、ミクロフィブリル化植物繊維の配向性、分散性が良好で、耐衝撃性、曲げ弾性率、曲げ強度、耐屈曲亀裂成長性の総合性能(耐衝撃性、曲げ弾性率、曲げ強度、耐屈曲亀裂成長性の各指数の総和)に優れていた。また、振動性能も良好であった。
Claims (13)
- ポリマー及びミクロフィブリル化植物繊維を含み、
押出方向の複素弾性率E*a(MPa)と該押出方向の直交方向の複素弾性率E*b(MPa)との比(E*a/E*b)が下記式(1)、押出方向伸長時の破断応力TBa(MPa)と該押出方向伸長時における破断時伸びの50%伸長時の応力FBa(MPa)との比(TBa/FBa)が下記式(2)を満たすポリマー組成物。
E*a/E*b≧1.3 (1)
TBa/FBa≧2.6 (2) - E*a/E*b≧1.5を満たす請求項1記載のポリマー組成物。
- E*a/E*b≧2.0を満たす請求項1記載のポリマー組成物。
- TBa/FBa≧3.0を満たす請求項1~3のいずれかに記載のポリマー組成物。
- TBa/FBa≧3.4を満たす請求項1~3のいずれかに記載のポリマー組成物。
- 前記ポリマー100質量部に対して、前記ミクロフィブリル化植物繊維を0.5~30質量部含む請求項1~5のいずれかに記載のポリマー組成物。
- 前記ポリマー組成物中における前記ミクロフィブリル化植物繊維の平均アスペクト比が10~1000である請求項1~6のいずれかに記載のポリマー組成物。
- 前記ポリマー組成物中における前記ミクロフィブリル化植物繊維の平均繊維径が10μm以下である請求項1~7のいずれかに記載のポリマー組成物。
- ミクロフィブリル化植物繊維、オイル及び有機酸アミンを含む混合液を調製する工程1と、該混合液及びポリマーを含むポリマー組成物を作製する工程2とを含む製造方法により作製される請求項1~8のいずれかに記載のポリマー組成物。
- 前記工程1は、前記オイルが植物由来のグリセロール脂肪酸トリエステル及び/又は植物由来のグリセロール脂肪酸トリエステルをケン化処理して得られたものを含み、前記有機酸アミンが脂肪族カルボン酸、脂環式カルボン酸及び芳香族カルボン酸からなる群より選択される少なくとも1種を含む請求項9記載のポリマー組成物。
- 前記有機酸アミンが脂肪族カルボン酸を含む請求項10記載のポリマー組成物。
- 前記ポリマーは、天然ゴム、ブタジエンゴム及びスチレンブタジエンゴムからなる群より選択される少なくとも1種のゴムを含む請求項1~11のいずれかに記載のポリマー組成物。
- カーボンブラック及びシリカからなる群より選択される少なくとも1種を含む請求項1~12のいずれかに記載のポリマー組成物。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20890543.0A EP4063446A4 (en) | 2019-11-20 | 2020-10-21 | POLYMER COMPOSITION |
CN202080075949.1A CN114641539A (zh) | 2019-11-20 | 2020-10-21 | 聚合物组合物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-209817 | 2019-11-20 | ||
JP2019209817A JP7532764B2 (ja) | 2019-11-20 | 2019-11-20 | ポリマー組成物 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021100394A1 true WO2021100394A1 (ja) | 2021-05-27 |
Family
ID=75964219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/039532 WO2021100394A1 (ja) | 2019-11-20 | 2020-10-21 | ポリマー組成物 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4063446A4 (ja) |
JP (1) | JP7532764B2 (ja) |
CN (1) | CN114641539A (ja) |
WO (1) | WO2021100394A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4414370A (en) | 1981-01-09 | 1983-11-08 | S. C. Johnson & Son, Inc. | Process for continuous bulk copolymerization of vinyl monomers |
JPS596207A (ja) | 1982-06-15 | 1984-01-13 | エス・シ−・ジヨンソン・アンド・サン・インコ−ポレ−テツド | バルク重合方法とポリマ−生成物 |
JPH01313522A (ja) | 1988-04-26 | 1989-12-19 | S C Johnson & Son Inc | 環状エステル修飾アクリル系ポリマーの触媒塊状製造方法 |
US5010166A (en) | 1987-03-05 | 1991-04-23 | S. C. Johnson & Son, Inc. | Process and apparatus for producing polyol polymers and polyol polymers so produced |
JPH0558005B2 (ja) | 1984-02-29 | 1993-08-25 | Johnson & Son Inc S C | |
JP2009202865A (ja) | 2008-02-01 | 2009-09-10 | Sumitomo Rubber Ind Ltd | 空気入りタイヤ |
JP2013253222A (ja) | 2012-05-09 | 2013-12-19 | Sumitomo Rubber Ind Ltd | ゴム組成物及び空気入りタイヤ |
JP2015010136A (ja) * | 2013-06-27 | 2015-01-19 | 住友ゴム工業株式会社 | タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ |
JP2019156868A (ja) * | 2018-03-07 | 2019-09-19 | 住友ゴム工業株式会社 | ミクロフィブリル化植物繊維・ゴム複合体の製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6950169B2 (ja) * | 2016-11-16 | 2021-10-13 | 住友ゴム工業株式会社 | タイヤ用ゴム組成物及びタイヤ |
JP6992308B2 (ja) * | 2017-08-01 | 2022-01-13 | 住友ゴム工業株式会社 | ゴム組成物及び空気入りタイヤ |
-
2019
- 2019-11-20 JP JP2019209817A patent/JP7532764B2/ja active Active
-
2020
- 2020-10-21 CN CN202080075949.1A patent/CN114641539A/zh active Pending
- 2020-10-21 EP EP20890543.0A patent/EP4063446A4/en active Pending
- 2020-10-21 WO PCT/JP2020/039532 patent/WO2021100394A1/ja unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4414370A (en) | 1981-01-09 | 1983-11-08 | S. C. Johnson & Son, Inc. | Process for continuous bulk copolymerization of vinyl monomers |
JPS596207A (ja) | 1982-06-15 | 1984-01-13 | エス・シ−・ジヨンソン・アンド・サン・インコ−ポレ−テツド | バルク重合方法とポリマ−生成物 |
JPH0558005B2 (ja) | 1984-02-29 | 1993-08-25 | Johnson & Son Inc S C | |
US5010166A (en) | 1987-03-05 | 1991-04-23 | S. C. Johnson & Son, Inc. | Process and apparatus for producing polyol polymers and polyol polymers so produced |
JPH01313522A (ja) | 1988-04-26 | 1989-12-19 | S C Johnson & Son Inc | 環状エステル修飾アクリル系ポリマーの触媒塊状製造方法 |
JP2009202865A (ja) | 2008-02-01 | 2009-09-10 | Sumitomo Rubber Ind Ltd | 空気入りタイヤ |
JP2013253222A (ja) | 2012-05-09 | 2013-12-19 | Sumitomo Rubber Ind Ltd | ゴム組成物及び空気入りタイヤ |
JP2015010136A (ja) * | 2013-06-27 | 2015-01-19 | 住友ゴム工業株式会社 | タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ |
JP2019156868A (ja) * | 2018-03-07 | 2019-09-19 | 住友ゴム工業株式会社 | ミクロフィブリル化植物繊維・ゴム複合体の製造方法 |
Non-Patent Citations (2)
Title |
---|
See also references of EP4063446A4 |
TOAGOSEI CO., LTD., TREND, vol. 3, 2000, pages 42 - 45 |
Also Published As
Publication number | Publication date |
---|---|
EP4063446A4 (en) | 2022-12-28 |
JP2021080389A (ja) | 2021-05-27 |
EP4063446A1 (en) | 2022-09-28 |
CN114641539A (zh) | 2022-06-17 |
JP7532764B2 (ja) | 2024-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3757159B1 (en) | Nanocellulose/surfactant composite | |
CN106167558B (zh) | 橡胶组合物、轮胎用橡胶组合物和充气轮胎 | |
JP7081222B2 (ja) | ミクロフィブリル化植物繊維・ゴム複合体の製造方法 | |
JP7243060B2 (ja) | 分散体、製造方法、ゴム組成物及び空気入りタイヤ | |
JP6992308B2 (ja) | ゴム組成物及び空気入りタイヤ | |
EP3623416B1 (en) | Tire rubber composition and tire | |
JP6234352B2 (ja) | タイヤ用ゴム組成物及びそれを用いて製造したタイヤ | |
JP6348369B2 (ja) | ゴム組成物及び空気入りタイヤ | |
JP2021001253A (ja) | ゴム・フィラー複合体の製造方法 | |
JP7172078B2 (ja) | ゴム/フィラー複合体の製造方法 | |
JP7532764B2 (ja) | ポリマー組成物 | |
JP7443912B2 (ja) | タイヤ用ゴム組成物 | |
JP7501084B2 (ja) | タイヤ用ゴム組成物 | |
JP7342431B2 (ja) | ゴム組成物及び空気入りタイヤ | |
JP7243061B2 (ja) | 分散体、製造方法、ゴム組成物及び空気入りタイヤ | |
JP5912934B2 (ja) | タイヤ用ゴム組成物及び空気入りタイヤ | |
JP7255124B2 (ja) | フィラー・ゴム複合体 | |
JP2024089229A (ja) | エラストマー組成物及びタイヤ | |
JP2024061608A (ja) | タイヤ | |
JP2024060814A (ja) | タイヤ | |
JP2023082931A (ja) | タイヤ用ゴム組成物及びタイヤ | |
JP6378131B2 (ja) | 空気入りタイヤ | |
JP6378133B2 (ja) | ランフラットタイヤ | |
WO2022080264A1 (ja) | 水添石油樹脂、ゴム用添加剤、未架橋ゴム組成物、架橋ゴム及びタイヤ | |
JP2024149371A (ja) | ゴム組成物及びタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20890543 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020890543 Country of ref document: EP Effective date: 20220620 |