WO2021098398A1 - 样本分析仪及样本分析方法 - Google Patents

样本分析仪及样本分析方法 Download PDF

Info

Publication number
WO2021098398A1
WO2021098398A1 PCT/CN2020/119668 CN2020119668W WO2021098398A1 WO 2021098398 A1 WO2021098398 A1 WO 2021098398A1 CN 2020119668 W CN2020119668 W CN 2020119668W WO 2021098398 A1 WO2021098398 A1 WO 2021098398A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
sample
detection
syringe
pipeline
Prior art date
Application number
PCT/CN2020/119668
Other languages
English (en)
French (fr)
Inventor
刘斌
寻文鹏
李朝阳
易秋实
叶燚
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN202080072922.7A priority Critical patent/CN114556082A/zh
Publication of WO2021098398A1 publication Critical patent/WO2021098398A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/04Investigating sedimentation of particle suspensions
    • G01N15/05Investigating sedimentation of particle suspensions in blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56966Animal cells
    • G01N33/56972White blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/726Devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/80Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood groups or blood types or red blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • G01N2015/012Red blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • G01N2015/016White blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/04Investigating sedimentation of particle suspensions
    • G01N15/05Investigating sedimentation of particle suspensions in blood
    • G01N2015/055Investigating sedimentation of particle suspensions in blood for hematocrite determination

Definitions

  • This application relates to the technical field of medical equipment, in particular to a sample analyzer and a sample analysis method.
  • the red blood cells are dispersed and suspended due to the flow of blood and the mutual repulsion of the negative charges on the surface of the red blood cells.
  • the red blood cells When the isolated blood is left standing, the red blood cells will sink due to gravity.
  • the type and content of the protein in the plasma will change, which will change the charge balance in the blood, reduce the negative charge on the surface of the red blood cells, and then make the red blood cells form a money-like shape and accelerate the sedimentation. Therefore, the rate of red blood cell sedimentation within 1 hour, that is, the Erythrocyte Sedimentation Rate (ESR), can be used to assist in disease assessment.
  • ESR Erythrocyte Sedimentation Rate
  • ESR is widely used in the treatment and monitoring of infectious diseases, acute and chronic inflammation, rheumatism, connective tissue diseases, cancer and Hodgkin's disease.
  • red blood cell sedimentation rate There are currently known methods for predicting erythrocyte sedimentation rate by measuring the erythrocyte aggregation index. These methods indicate that there is a good correlation between the erythrocyte aggregation index and the erythrocyte sedimentation rate parameter.
  • the red blood cells In order to measure the red blood cell aggregation index, the red blood cells must first be deaggregated, that is, the red blood cells are presented in a single dispersed state, and then the light transmittance change during the aggregation of the single dispersed red blood cells to the aggregated state is measured to obtain the aggregation index or red blood cell sedimentation rate. (ESR).
  • Alifax Company discloses a device that uses a peristaltic pump to depolymerize red blood cells.
  • the peristaltic pump draws blood into the capillary.
  • the peristaltic pump stops immediately and the red blood cells regroup, and the light transmittance curve during the aggregation process is measured.
  • ESR erythrocyte sedimentation rate
  • the blood in order to homogenize the red blood cells, the blood needs to flow through a long capillary tube, which causes the blood to be diluted by the diluent in the capillary tube, which reduces the accuracy of ESR measurement.
  • the measurement accuracy is to be improved in this case, it is necessary to greatly increase the blood volume of the ESR. Due to the high blood viscosity, significant residual loss occurs when blood flows in the capillary tube, and the residual blood loss is proportional to the length of the capillary tube through which the blood flows, resulting in increased cleaning time, cleaning fluid consumption, and contamination rate of the pipeline. At the same time, it also leads to an increase in reagent costs.
  • the purpose of this application is to provide a sample analyzer that integrates routine blood testing and erythrocyte sedimentation rate (erythrocyte sedimentation rate ESR) testing and a corresponding sample analysis method, which can improve the efficiency of batch sample testing, thereby satisfying sample analysis The requirements of the instrument on the detection speed.
  • ESR erythrocyte sedimentation rate
  • the first aspect of this application provides a sample analyzer
  • erythrocyte sedimentation rate detection module Including erythrocyte sedimentation rate detection module, blood routine detection module and sampling distribution module;
  • the sampling and distribution module is configured to collect a blood sample, and allocate a first part of the blood sample to the erythrocyte sedimentation rate detection module and a second part of the blood sample to the blood routine detection module; the erythrocyte sedimentation rate
  • the detection module includes an erythrocyte sedimentation rate detection pipeline and an erythrocyte sedimentation rate optical detection device.
  • the erythrocyte sedimentation rate detection pipeline is configured to provide a detection place for the first part of the blood sample to be distributed, and the erythrocyte sedimentation rate optical detection device is configured to detect the erythrocyte sedimentation rate.
  • the first part of the blood sample in the pipeline is irradiated with light, and the erythrocyte sedimentation rate of the blood sample is detected by detecting the degree of absorption or scattering of the light by the first part of the blood sample.
  • the blood routine detection module includes a routine blood reaction tank and The routine blood test device, the routine blood reaction tank is set to provide a place for the second part of the blood sample to be dispensed to react with the reagents, and the routine blood test device is set up for the second part of the blood sample in the routine blood reaction tank.
  • the blood sample to be tested obtained by reacting two parts of the blood sample with the reagent is subjected to routine blood test; wherein, the erythrocyte sedimentation rate detection pipeline and the power supply pipeline are arranged independently of each other, and the erythrocyte sedimentation rate detection module further includes the erythrocyte sedimentation rate detection tube A first syringe connected to a circuit, the first syringe is configured to drive the first part of the blood sample into the erythrocyte sedimentation rate detection pipeline and flow in the erythrocyte sedimentation rate detection pipeline; the sampling distribution module includes a sampling A needle, a power supply line, and a second syringe connected to the end of the sampling needle far away from the needle through the power supply line, and the second syringe is configured to drive the sampling needle through the power supply line
  • the blood sample is aspirated, and the second syringe and the first syringe are not the same syringe.
  • the second aspect of the present application provides a sample analysis method, the sample analysis method includes
  • the second syringe of the sampling distribution module drives the sampling needle through the power supply line to suck the blood sample in the sample container, and distributes the first part of the blood sample to the erythrocyte sedimentation rate detection module and the The second part of the blood sample is allocated to the blood routine testing module;
  • the first syringe of the erythrocyte sedimentation rate detection module sucks the first part of the blood sample into the erythrocyte sedimentation rate detection pipeline of the erythrocyte sedimentation rate detection module, and the erythrocyte sedimentation rate optical detection device of the erythrocyte sedimentation rate detection module
  • the first part of the blood sample is irradiated with light and the degree of absorption or scattering of the light by the first part of the blood sample is detected to detect the erythrocyte sedimentation rate of the first part of the blood sample, wherein the second syringe and The first syringe is not the same syringe;
  • Blood routine detection step the blood routine detection module detects the blood routine parameters of the second part of the blood sample.
  • the erythrocyte sedimentation rate detection pipeline and the power supply pipeline are arranged independently of each other, that is, an independent branch relative to the power supply pipeline, and the erythrocyte sedimentation rate detection pipeline is connected to the first syringe ,
  • the power supply line is connected with the second syringe, so that the flow path of the ESR detection line is different from the flow path of the power supply line.
  • the routine blood test module and the erythrocyte sedimentation rate test module start the test.
  • the second syringe drives the sampling needle through the power supply line to draw the next blood sample to the sampling needle in preparation for the next round of blood sample distribution, thereby improving the efficiency of batch detection.
  • Fig. 1 is a schematic structural diagram of a first embodiment of a sample analyzer provided in the first aspect of the present application;
  • FIG. 2 is a schematic structural diagram of a second embodiment of the sample analyzer provided in the first aspect of the present application.
  • FIG. 3 is a schematic structural diagram of a third embodiment of the sample analyzer provided in the first aspect of the application.
  • FIG. 4 is a schematic structural diagram of a fourth embodiment of the sample analyzer provided in the first aspect of the application.
  • FIG. 5 is a detection timing diagram of the sample analyzer shown in FIG. 4;
  • FIG. 6 is a schematic diagram of a liquid circuit structure of the sample analyzer provided in the first aspect of the application.
  • Fig. 7 is a schematic structural diagram of a fifth embodiment of the sample analyzer provided in the first aspect of the present application.
  • FIG. 8 is a schematic structural diagram of a sixth embodiment of the sample analyzer provided in the first aspect of the application.
  • FIGS. 9 and 10 are schematic structural diagrams of the seventh embodiment of the sample analyzer provided in the first aspect of the present application.
  • FIG. 11 is an absorbance curve diagram of an erythrocyte sedimentation rate detection process of the sample analyzer provided in the first aspect of the present application;
  • FIG. 12 and FIG. 13 are different detection sequence diagrams of the sample analyzer provided in the first aspect of the present application.
  • a first aspect of the present application provides a sample analyzer, which includes an erythrocyte sedimentation rate detection module 10, a blood routine detection module 20, and a sampling distribution module 30.
  • the sampling and distribution module 30 is used to collect blood samples, and distribute the first part of the blood sample (that is, the first part of blood sample) to the erythrocyte sedimentation rate detection line 11 of the erythrocyte sedimentation rate detection module 10 and the second part of the blood sample (that is, the second part of blood).
  • the sample is allocated to the blood routine detection module 20.
  • the sampling distribution module may be configured to distribute the first part and the second part of the blood sample sequentially, or it may be configured to distribute the first part and the second part of the blood sample at the same time, and the distribution order is not limited.
  • the sampling distribution module 30 can allocate the first part of the blood sample to the erythrocyte sedimentation rate detection pipeline of the erythrocyte sedimentation rate detection module 10 by adopting a method of collecting once, distributing in two or by collecting and distributing in two times. 11 and the second part of the blood sample is allocated to the blood routine reaction pool 21 of the blood routine detection module 20.
  • the method of one-time collection and two-time distribution is as follows: after the sampling distribution module 30 collects the blood sample, the sampling distribution module 30 first distributes a part of the collected blood sample (that is, the first part of the blood sample) to the blood sedimentation detection module 10 The erythrocyte sedimentation rate detection pipeline 11, and then distribute another part of the collected blood sample (ie the second part of the blood sample) to the blood routine reaction pool 21 of the blood routine detection module 20, or the sampling distribution module 30 first distributes the collected blood sample Part of the blood sample (that is, the second part of the blood sample) is allocated to the blood routine reaction pool 21 of the blood routine test module 20, and the other part of the collected blood sample (that is, the first part of blood sample) is allocated to the blood sedimentation test of the blood sedimentation test module 10.
  • the method of collecting and distributing in two times is as follows: the sampling and distribution module 30 first collects a part of the blood sample and allocates a part of the collected blood sample to the erythrocyte sedimentation rate detection line 11 of the erythrocyte sedimentation rate detection module 10 or the blood routine of the blood routine detection module 20 The reaction pool 21; the sampling distribution module 30 collects another part of the blood sample and distributes the other part of the collected blood sample to the blood routine reaction pool 21 of the blood routine detection module 20 or the blood sedimentation detection line 11 of the blood sedimentation detection module 10.
  • the erythrocyte sedimentation rate detection module 10 includes an erythrocyte sedimentation rate detection pipeline 11 and an erythrocyte sedimentation rate optical detection device 12.
  • the erythrocyte sedimentation rate detection pipeline 11 is used to provide a detection place for the first part of the blood sample to be distributed, and the erythrocyte sedimentation rate detection device 12 is used to detect the blood sedimentation detection pipeline.
  • the first part of the blood sample in 11 is irradiated with light and the degree of absorption or scattering of the light by the first part of the blood sample allocated to the erythrocyte sedimentation detection tube 11 is detected to detect the red blood cell sedimentation rate of the blood sample.
  • the erythrocyte sedimentation rate optical detection device 12 the first part of the blood sample does not shift in the erythrocyte sedimentation rate detection pipeline 11, that is, remains stationary.
  • the blood routine detection module 20 includes a blood routine reaction tank 21 and a blood routine detection device (not shown in FIG. 1).
  • the blood routine reaction tank 21 is used to provide a place for mixing the second part of the blood sample to be mixed with the reagents.
  • the routine detection device performs routine blood detection on the blood sample to be tested obtained by mixing the second part of the blood sample and the reagent in the routine blood reaction tank 21.
  • the blood routine detection device may be at least one of an optical detection unit, an impedance detection unit, and a hemoglobin detection unit.
  • the blood routine reaction cell may include at least one of an optical reaction cell, an impedance detection reaction cell, and a hemoglobin detection reaction cell.
  • the blood routine testing module 20 When the blood routine testing module 20 performs routine blood testing on a blood sample, the blood sample and corresponding reagents (such as diluents and/or hemolytic agents and/or stains, etc.) can be added to the routine blood reaction tank 21, by The blood routine detection device measures the blood sample in the routine blood reaction tank 21 to obtain at least one routine blood parameter, which can include five classification results of WBC (White blood cell, white blood cell), WBC count and morphological parameters, and HGB (Hemoglobin, hemoglobin) function measurement, RBC (Red blood cell, red blood cell) and PLT (blood platelet, platelet) count and at least one or more combinations of morphological parameters, in the actual routine blood test process, according to needs
  • the increase or decrease of routine blood test items is not limited here.
  • the sample analyzer provided by the embodiment of the application is provided with an erythrocyte sedimentation rate detection module 10 and a routine blood sedimentation detection module 20.
  • the erythrocyte sedimentation rate detection module 10 can detect the erythrocyte sedimentation rate of blood through the erythrocyte sedimentation rate detection pipeline 11 and the erythrocyte sedimentation rate optical detection device 12, and the blood routine detection module 20 It can detect blood routine parameters, so that the sample analyzer provided by this application can detect both the red blood cell sedimentation rate and blood routine.
  • one device can achieve two blood test items with diverse functions. It is more convenient to use.
  • the sample analyzer further includes a liquid path support module 40 for providing liquid path support for the sample distribution module 30, the erythrocyte sedimentation rate detection module 10 and the blood routine detection module 20.
  • the liquid path support module 40 performs liquid path support by providing liquid to the sampling distribution module 30, the erythrocyte sedimentation rate detection module 10, and the blood routine detection module 20.
  • the liquid path support module 40 can provide cleaning solutions to the sampling distribution module 30, the erythrocyte sedimentation rate detection module 10, and the blood routine detection module 20 respectively to clean the sampling needle 31, the erythrocyte sedimentation rate detection line 11, and the routine blood reaction tank 21, respectively. Avoid contaminating the blood sample to be tested, leading to inaccurate test results.
  • the erythrocyte sedimentation rate detection module 10 and the routine blood detection module 20 include reagent addition, reaction mixing, measurement actions, cleaning and maintenance, etc., which are all assisted by the liquid path support module.
  • the sample analyzer also includes a control module 50, which is connected to the sampling distribution module 30, the erythrocyte sedimentation rate detection module 10, the blood routine detection module 20, and the liquid path support module 40, respectively, and the control module 50 is used to control the sampling distribution module respectively 30.
  • the actions of the erythrocyte sedimentation rate detection module 10, the blood routine detection module 20, and the liquid path support module 40 so that the sampling distribution module 30, the erythrocyte sedimentation rate detection module 10, the blood routine detection module 20, and the liquid path support module 40 cooperate with each other to complete Detection of erythrocyte sedimentation rate and blood routine parameters.
  • control module 50 may include a processor and a memory.
  • the processor can be a CPU, GPU or other chips with computing capabilities.
  • the memory is loaded with various computer programs for the processor to execute, such as an operating system and application programs, and data required to execute the computer programs.
  • the erythrocyte sedimentation rate detection module 10 further includes a first power device 14 (also referred to as an erythrocyte sedimentation power device) 14 connected to the erythrocyte sedimentation rate detection pipeline 11, and its first end 111 here, and the first power device 14 It is configured to drive the first part of blood sample to flow in the erythrocyte sedimentation rate detection tube 11 and make the first part of blood sample flow to the detection area 113 in the erythrocyte sedimentation rate detection tube 11 and then stop moving and keep it still, so that the erythrocyte sedimentation rate optical detection device 12 is The erythrocyte sedimentation rate of a part of the blood sample is tested.
  • a first power device 14 also referred to as an erythrocyte sedimentation power device
  • the first power device 14 is not only used to drive the first part of the blood sample into the erythrocyte sedimentation rate detection pipeline 11, but also to ensure that the blood sample in the erythrocyte sedimentation rate detection pipeline 11 remains stationary during the detection of the erythrocyte sedimentation rate. .
  • the working process of detecting ESR is as follows: the first power device 14 drives the first part of blood sample to flow into the erythrocyte sedimentation rate detection tube 11, when the first part of blood sample flows to the erythrocyte sedimentation rate detection tube After the specific position (detection area 113) of 11, the first power device 14 suddenly stops and instantaneously interrupts the flow of the first part of the blood sample in the erythrocyte sedimentation rate detection tube 11, which causes the first part of blood sample to suddenly decelerate (or stop flowing) at this time ), followed by aggregation and precipitation of red blood cells.
  • the control module 50 is configured to immediately stop the driving of the first power device 14 after controlling the first power device 14 to drive the first part of the blood sample to the detection area 113 of the erythrocyte sedimentation rate detection tube 11, so that the first part The blood sample remains stationary in the detection area 113 so that the erythrocyte sedimentation rate optical detection device 12 detects the red blood cell aggregation rate of the first part of the blood sample, so as to obtain the red blood cell sedimentation rate.
  • the sample analyzer provided in the embodiment of the present application can limit the length of the erythrocyte sedimentation rate detection pipeline 11, which can not only reduce the volume of the entire instrument, but also reduce the amount of blood and cleaning required for detection and analysis.
  • the amount of cleaning solution used in the erythrocyte sedimentation rate detection pipeline 11 greatly reduces the cost of a sample analyzer that integrates ESR detection and blood routine detection.
  • the first power device 14 may also drive the first part of the blood sample to flow in the erythrocyte sedimentation rate detection tube 11 after detecting the erythrocyte sedimentation rate to discharge the erythrocyte sedimentation rate detection tube 11 in preparation for the next detection.
  • the first power device 14 may be a pump or a syringe or other pressure source that can provide power.
  • the use of a peristaltic pump as the fluid power source of the erythrocyte sedimentation rate detection module 10 will result in a substantial increase in blood consumption.
  • the residual amount of blood samples in the erythrocyte sedimentation rate detection pipeline increases, which not only leads to waste of blood samples, but also increases the difficulty and amount of cleaning of the detection pipeline, which in turn also increases The possibility of cross-contamination.
  • the liquid volume of the peristaltic pump can be large or small, and the accuracy is poor.
  • the first power unit 14 is configured as a first syringe.
  • This structural solution is not only conducive to the rapid and accurate detection of ESR (due to the precise quantification of the syringe, the blood sample can be accurately drawn into the detection area 113 of the erythrocyte sedimentation rate detection pipeline 11), but also conducive to the simplicity of the erythrocyte sedimentation rate detection module 10 And it is integrated into the existing blood routine analyzer at low cost, and basically does not increase or rarely increases the volume of the blood routine analyzer.
  • the sampling distribution module 30 may include a sampling needle 31 and a driving device (not shown).
  • the driving device is used to drive the sampling needle 31 to move, so that the sampling needle 31 collects the blood sample and allocates a part of the blood sample to the blood routine reaction pool 21 of the blood routine detection module 20.
  • the blood sample is usually stored in a test tube 100, and the top of the test tube 100 is provided with a cap for sealing.
  • the driving device drives the sampling needle 31 to move above the corresponding test tube 100, and drives the sampling needle 31 to pierce the cap of the test tube with its needle tip or one end of the needle 311, and then extend into the test tube to suck the blood sample in the test tube to collect blood sample.
  • the sampling distribution module 30 may further include a second power device (also referred to as a sampling power device) connected to the end 312 of the sampling needle 31 away from the needle 311 through the power supply line 32. ) 33 (that is, the power supply line 32 is used to connect the end 312 of the sampling needle 31 far from the needle 311 to the second power device 33), and the second power device 33 is used to drive the power line 31 through the power line 31.
  • the sampling needle 31 sucks or discharges the blood sample through the needle 311.
  • the second power device 33 is used to provide negative pressure to the sampling needle 31 through the power supply line 32 to suck blood samples and to provide positive pressure to discharge the blood samples.
  • the second power device 33 may be a pump or a syringe or other pressure source capable of providing power, such as a positive and negative air pressure source. It is particularly advantageous here if the second power unit 33 is configured as a second syringe.
  • the sampling distribution module 30 may further include a sampling needle 31, a blood separation valve 36 and a power supply line 32.
  • the power supply pipeline 32 includes a front pipeline and a rear pipeline.
  • the blood separation valve 36 is connected to the sampling needle 31 through the front pipeline and is connected to the first syringe through the rear pipeline.
  • the first syringe is used to drive the sampling needle 31 to collect.
  • the blood sample is taken and the collected blood sample is drawn into the blood separation valve 36 through the front line, wherein the blood separation valve 36 is used to distribute the second part of the blood sample to the blood routine detection module 20.
  • the blood separation valve 36 includes a liquid inlet, a first liquid separation opening, a second liquid separation opening, and a liquid outlet.
  • the liquid inlet is connected to the sampling needle 31 through the front pipeline, and the first power The device 14 drives the blood sample collected by the sampling needle 31 to flow into the blood separation valve 36 through the liquid inlet.
  • the first dispensing port is used for the first part of the blood sample distributed by the blood separation valve 36 to flow into the erythrocyte sedimentation rate detection pipeline; the second dispensing port is connected with the blood routine detection pool, the The second liquid separation port is used for the second part of the blood sample distributed by the blood separation valve 36 to flow into the blood routine detection pool.
  • the liquid outlet is connected to the first power device 14 through the rear pipeline, and the first power device 14 drives the blood sample in the blood separation valve 36 to flow from the liquid outlet to the rear tube In the road.
  • the first power device 14 and the second power device 33 may be the same power device, especially the first syringe and the second syringe are the same syringe. Since the second syringe used for blood routine quantitative blood separation usually requires a relatively high accuracy, using the second syringe as the first syringe at the same time can not only achieve fast and accurate detection of ESR, but also can further reduce the cost of sample analysis.
  • the second end 112 of the ESR detection tube 11 opposite to the first end 111 may be connected to the end 312 of the sampling needle 31 far from the needle 311.
  • an exemplary specific working process of the blood distribution of the sample analyzer may be: the control module 50 controls the second power device 33 to drive the sampling needle 31 to distribute the second part of the blood sample to the routine blood reaction cell through the needle 311 21. Then control the first power device 14 to draw the first part of blood sample from the end 312 of the sampling needle 31 away from the needle 311 into the erythrocyte sedimentation rate test tube 11, where the first part of blood sample and the second part of blood sample are the same blood Different parts of the sample.
  • the sample collected by the sampling module follows the blood sample circuit during measurement. Flow, first go through the ESR module for ESR measurement, and then go through the cell counting module for routine blood measurement.
  • the blood sample must first flow through the ESR module, and then through the blood routine module, so that the blood sample to be tested for routine blood flow through more diluent areas, leading to the blood sample being diluted and contaminated, resulting in blood routine Inaccurate detection.
  • a part of the power supply line 32 may be the ESR detection line 11.
  • the part of the power supply line 32 close to the sampling needle 31 is set as the erythrocyte sedimentation rate detection line 11.
  • the second power device 33 is preferably used as the first power device 14 and is further used to suck a part of the blood sample in the sampling needle 31 (that is, the first part of blood sample A) into the erythrocyte sedimentation rate detection pipeline 11.
  • the sampling needle 31 still distributes a part of the blood sample (that is, the second part of blood sample B) in the sampling needle 31 to the blood routine reaction pool 21 through the needle 311 to perform blood routine parameter detection.
  • the second power device 33 is reused as the first power device 14, especially the first syringe, and the power supply line 32 of the sampling needle 31 is reused as
  • the erythrocyte sedimentation rate detection pipeline 11 does not need to be additionally provided with a reaction tank and a power device, so the structure is simple and the cost is reduced.
  • the second syringe 33 is respectively connected to the power supply line 32 and the diluent storage portion 35 through the control valve 34.
  • the second syringe 33 draws diluent from the diluent storage portion 35; when the control valve 34 connects the second syringe 33 with the power supply line 32, The second syringe 33 provides suction power or discharge power for the sampling needle 31 through the power supply line 32.
  • the erythrocyte sedimentation rate detection pipeline 11 can be directly coupled to the back-end pipeline of the sampling needle 31, that is, the power supply pipeline 32, so that it can be achieved without increasing the complexity of the instrument and changing as little as possible.
  • the second power device 33 especially the second syringe
  • the first power device 14 especially the first syringe
  • the sampling needle 31 for example, first moves to the blood routine reaction pool 21 of the blood routine detection module 20 for blood separation (blood segment B). After the blood separation is completed, it is necessary to ensure that there is still a blood sample (blood segment A) in the erythrocyte sedimentation rate test tube 11 ), or ensure that there is still a blood sample (blood segment A) in the sampling needle 31 that can be sucked to the erythrocyte sedimentation rate detection line 11. Then, the ESR test and the blood routine test are started at the same time or in time sharing, and it is ensured that during the ESR test, the blood sample in the erythrocyte sedimentation rate test tube 11 does not shift. When the test is completed, the pipeline is cleaned.
  • the erythrocyte sedimentation rate detection pipeline and the power supply pipeline 32 are arranged independently of each other, that is, the erythrocyte sedimentation rate detection pipeline is not arranged in a part of the power supply pipeline 32, nor is it connected with The power supply pipeline 32 is directly coupled, but is an independent branch relative to the power supply pipeline 32.
  • the erythrocyte sedimentation rate detection pipeline is connected to the first power device 14 (especially the first syringe), and the power supply pipeline 32 is connected to the second power device 33 (especially the second syringe) so that the flow path and power of the erythrocyte sedimentation detection pipeline are connected.
  • the flow path of the supply line 32 is different.
  • the first part of the blood sample is allocated to the erythrocyte sedimentation rate detection module 10 (the first part of the blood sample is transported to the branch of the erythrocyte sedimentation rate detection pipeline) and the second part of the blood sample is allocated to the blood sedimentation detection circuit.
  • the routine blood detection module 20 and the erythrocyte sedimentation rate detection module 10 start the detection.
  • the erythrocyte sedimentation rate detection pipeline performs erythrocyte sedimentation rate detection under the action of the first power device 14 (especially the first syringe).
  • the second power device 33 (especially the second syringe) can drive the sampling needle 31 through the power supply line 32 to draw the next blood sample to the sampling needle 31 , In order to carry out the next round of blood sample distribution, which can improve the efficiency of batch testing.
  • the connection method of the erythrocyte sedimentation detection pipeline can be, but is not limited to, the following methods: the side wall of the sampling needle 31 is provided with a side opening, the side opening is in communication with the inner cavity of the sampling needle 31, and the first end of the erythrocyte sedimentation detection pipeline is connected to the The side opening of the sampling needle 31 is connected.
  • the connection method of the erythrocyte sedimentation rate detection pipeline can also be: the end of the sampling needle 31 far from the needle is provided with a three-way connector (not shown in the figure), and the three-way connector at least includes a first interface, a second interface, and a third interface.
  • the power supply pipeline 32 is connected to the first interface, the erythrocyte sedimentation rate detection pipeline is connected to the second interface, and the sampling needle is connected to the third interface.
  • the three-way joint may also be a three-way valve.
  • the connection mode of the erythrocyte sedimentation rate detection pipeline may also be as follows: the erythrocyte sedimentation rate detection pipeline is connected to the power supply pipeline 32, and the erythrocyte sedimentation rate detection pipeline serves as a branch of the power supply pipeline 32.
  • the first syringe draws the first part of the blood sample in the sampling needle 31 to the branch pipeline of the erythrocyte sedimentation rate detection pipeline for detection.
  • connection method of the erythrocyte sedimentation rate detection pipeline includes but is not limited to the above-mentioned connection methods, as long as it can achieve that the erythrocyte sedimentation rate detection supply pipeline and the power supply pipeline 32 are independent of each other, so that the power supply pipeline 32 is not occupied during the erythrocyte sedimentation rate detection. It does not interfere with the sampling of the next sample.
  • the sampling distribution module 30 may further include a blood separation valve 36, which includes: a liquid inlet, a first liquid dispensing port, a second liquid dispensing port, and a liquid outlet.
  • the liquid inlet is connected to the sampling needle 31 through the front pipeline, and the second power device 33 (especially the second syringe) drives the blood sample collected by the sampling needle 31 through the liquid inlet It flows into the blood separation valve 36.
  • the first liquid separation port is connected to the erythrocyte sedimentation rate detection pipeline, and the first liquid separation port is used for the first part of the blood sample distributed by the blood separation valve 36 to flow into the erythrocyte sedimentation rate detection pipeline.
  • the second liquid separation port is connected to the routine blood detection pool, and the second liquid separation opening is used for the second part of the blood sample distributed by the blood separation valve 36 to flow into the routine blood detection pool;
  • the port is connected to the second power device 33 through the rear pipeline, and the second power device 33 drives the blood sample in the blood separation valve 36 to flow from the liquid outlet to the rear pipeline .
  • An exemplary specific working process of the blood distribution of the sample analyzer shown in FIG. 4 is as follows: under the control of the control module 50,
  • the driving device first drives the sampling needle 31 to move to the test tube 100 loaded with the blood sample.
  • the second power device 33 provides a negative pressure to the sampling needle 31 for the second syringe, so that the sampling needle 31 sucks the blood sample in the test tube until the blood sample flows into the erythrocyte sedimentation rate detection tube 11.
  • the driving device drives the sampling needle 31 to move above the routine blood reaction tank 21, and the second syringe 33 provides positive pressure to the sampling needle 31 to drip a part of the blood sample in the sampling needle 31 into the routine blood reaction tank 21 through the needle 311 In order to detect blood routine parameters.
  • the second power device 33 provides negative pressure to the sampling needle 31, and sucks a part of the blood sample remaining in the sampling needle 31 into the ESR detection pipeline 11 to perform the red blood cell sedimentation rate detection.
  • the sampling needle 31 distributes blood to the routine blood reaction pool 21, it is ensured that there is still a blood sample in the erythrocyte sedimentation rate detection tube 11 for the erythrocyte sedimentation detection module 10 to perform the detection, so that the second power device 33 does not need to move the sampling needle 31 into A part of the remaining blood sample is drawn into the erythrocyte sedimentation rate detection tube 11.
  • the first power device 14 and the second power device 33 are independent power devices, that is, the first power device 14 and the second power device 33 are not the same injector.
  • the first syringe and the second syringe are independent syringes, so that different syringes can be used for different scenarios.
  • the erythrocyte sedimentation rate detection usually requires a syringe with a flow rate of 100uL/S (higher flow rate requirements) in order to better realize the red blood cell depolymerization process described in detail later.
  • the sampling and separation of blood does not require a large flow rate (high accuracy requirements).
  • the flow rate of the first syringe (ie, the erythrocyte sedimentation power device) can be greater than the flow rate of the second syringe (ie, the sampling power device).
  • the ESR detection line is connected to the first syringe, and the power supply line 32 is connected to the second syringe, so that the flow path of the ESR detection line is It is different from the flow path of the power supply line 32.
  • the second power The device 33 (especially the second syringe) drives the sampling needle 31 through the power supply line 32 to draw the next blood sample to the sampling needle 31 to prepare for the next round of blood sample distribution, thereby improving the efficiency of batch testing.
  • the blood routine detection module 20 includes an optical channel reaction cell, an optical detection unit, a third syringe, a fourth syringe 23, and a delivery pipeline assembly.
  • the optical channel reaction cell is used to provide a reaction place for the sample to be tested and the reagent to prepare an optical detection sample.
  • the optical detection unit includes a flow chamber and an optical detection element.
  • the flow chamber has a diluent inlet, a sample inlet, a first outlet, and a detection area for the optical detection sample to pass under the diluent.
  • the diluent inlet, the sample inlet, and the first outlet are respectively communicated with the detection area, and the optical detection element is used to detect the optical detection sample that is entrapped by the diluent and passed through the detection area.
  • the displacement of the third syringe is greater than the displacement of the fourth syringe 23.
  • the delivery pipeline assembly includes a first diluent delivery pipeline and an optical sample preparation pipeline, one end of the first diluent delivery pipeline is connected to the diluent supply device, and the other end of the first diluent delivery pipeline is connected to The diluent inlet of the optical detection unit is connected, the first end of the optical sample preparation pipeline is connected with the optical channel reaction cell, and the second end of the optical preparation pipeline is connected with the sample inlet of the optical detection unit.
  • the third syringe is connected to the optical sample preparation pipeline for driving the optical detection sample to be transported from the optical sample preparation pipeline to the flow chamber.
  • the fourth syringe 23 is connected to the first diluent delivery pipeline for driving the diluent to be delivered from the diluent supply device to the flow chamber, and the fourth syringe 23 is also connected to the optical sample preparation pipeline. Connected to drive the optical detection sample to be transported from the optical channel reaction cell to the optical sample preparation pipeline.
  • the blood routine reaction tank 21 may include a first optical reaction tank 211 for white blood cell detection and/or a second optical reaction tank 212 for red blood cell detection (for example, reticulocyte detection), and the blood routine detection device includes an optical detection unit. twenty four.
  • the fourth syringe 23 is also configured to suck the blood sample to be tested in the first optical reaction cell 211 and/or the second optical reaction cell 212 into the sample preparation pipeline 27 for optical detection.
  • the third syringe is configured to push the blood sample to be tested in the sample preparation pipeline 27 for optical detection to the optical detection unit 24.
  • the second syringe and the third syringe are the same syringe.
  • the blood routine detection module 20 also includes: a hemoglobin detection unit 26, which is used to provide a reaction place for the test sample and reagents to prepare a hemoglobin test sample, and to test the hemoglobin test sample Perform hemoglobin concentration detection.
  • the delivery pipeline assembly further includes a second diluent delivery pipeline and a fifth syringe.
  • the fifth syringe and the fourth syringe 23 are the same syringe.
  • One end of the second diluent delivery pipeline is connected to the diluent supply device, the other end of the second diluent delivery pipeline is connected to the hemoglobin detection unit 26, and the fourth syringe 23 is also connected to the The second diluent delivery pipeline is connected to drive the diluent to be delivered to the hemoglobin detection unit 26.
  • the blood routine detection module 20 further includes an impedance detection unit 25.
  • the delivery pipeline assembly further includes an impedance counting sample preparation pipeline, a sixth syringe, and a seventh syringe.
  • the sixth syringe and the fourth syringe 23 are the same syringe
  • the seventh syringe and the third syringe are the same syringe.
  • One end of the impedance counting sample preparation pipeline is connected to the hemoglobin detection unit 26, and the other end of the impedance counting sample preparation pipeline is connected to the impedance detection unit 25.
  • the fourth syringe 23 is connected to the sample preparation pipeline to drive the sample in the hemoglobin detection unit 26 to be transported into the impedance counting sample preparation pipeline.
  • the third syringe is connected to the impedance counting sample preparation pipeline to drive the sample of the impedance counting sample preparation pipeline to be transported to the impedance detection unit 25 for sheath flow impedance detection.
  • the blood routine reaction cell 21 may further include an impedance detection reaction tank 213 for red blood cell and/or platelet detection, and the blood routine detection device includes an impedance detection unit 25.
  • the third syringe and the second syringe are the same syringe.
  • the fourth syringe 23 is also configured to suck the blood sample to be tested in the impedance detection reaction cell into the sample preparation pipeline for impedance detection.
  • the second syringe 33 is also configured to push the blood sample to be tested in the sample preparation pipeline for impedance counting to the impedance detection unit 25 for sheath flow impedance detection.
  • the blood routine detection device may include a hemoglobin detection unit 26.
  • the fourth syringe 23 is also configured to suck the blood sample to be tested into the sample preparation pipeline for hemoglobin detection, and the second syringe 33 is also configured to be able to transfer the blood sample to the sample preparation tube for hemoglobin detection.
  • the blood sample to be tested in the road is pushed to the hemoglobin detection unit 26.
  • the range of the second syringe 33 is slightly upgraded. More preferably, the range of the second syringe 33 is between 100 uL and 300 uL, for example, 250 uL. Since the second syringe 33 has a larger measuring range, it is beneficial to improve the quantitative accuracy of the second syringe 33 on the one hand, and on the other hand, it is beneficial to select a motor with a smaller step as the driving motor for the second syringe 33, for example, for a 250uL second syringe 33 You can choose a motor whose step is half of the motor step used for 100uL syringes as the drive motor, which can take into account the requirements of quantitative accuracy and quantitative volume at the same time; at the same time, the motor can run at high speed to meet the high-speed suction and discharge flow of the second syringe 33 during the erythrocyte sedimentation rate test. Demand.
  • the measuring range of the fourth syringe 23 is milli
  • the erythrocyte sedimentation rate detection module 10 further includes an erythrocyte sedimentation reaction tank 13 independent of the routine blood reaction tank 21, The erythrocyte sedimentation reaction tank 13 is connected to one end of the erythrocyte sedimentation detection pipeline 11, and the erythrocyte sedimentation reaction tank 13 is used to receive the first part of the blood sample distributed by the sampling needle 31.
  • the first power device 14, especially the first syringe, is used to drive the first part of the blood sample in the erythrocyte sedimentation reaction tank 13 to flow into the erythrocyte sedimentation rate detection tube 11, and to make the first part of the blood sample flow to the detection area in the erythrocyte sedimentation rate detection tube 11 Then stop moving and keep it still, so that the erythrocyte sedimentation rate optical detection device 12 detects the erythrocyte sedimentation rate of the first part of the blood sample.
  • an exemplary specific working process of the blood distribution of the sample analyzer is as follows: under the control of the control module 50, the driving device first drives the sampling needle 31 to move to the position where the blood sample is loaded. Test tube office.
  • the second power device 33 especially the second syringe, provides negative pressure to the sampling needle 31 so that the sampling needle 31 can suck the blood sample in the test tube.
  • the driving device first drives the sampling needle 31 to move above the ESR reaction tank 13, and the second power device 33 provides positive pressure to the sampling needle 31 to drip the first part of the blood sample in the sampling needle 31 into the ESR reaction tank 13.
  • the first power device 14 especially the first syringe, draws the blood sample from the ESR reaction tank 13 into the ESR detection pipeline 11 to detect the red blood cell sedimentation rate.
  • the driving device then drives the sampling needle 31 to move above the routine blood reaction tank 21, and the second power device 33 provides positive pressure to the sampling needle 31 to drip the second part of the blood sample in the sampling needle 31 into the routine blood reaction tank 21 to detect blood routine parameters.
  • the driving device first drives the sampling needle 31 to move above the blood routine reaction tank 21, and the second power device 33 provides positive pressure to the sampling needle 31 to drip the second part of the blood sample in the sampling needle 31 into the blood routine
  • the reaction tank 21 is used to detect blood routine parameters.
  • the driving device then drives the sampling needle 31 to move above the erythrocyte sedimentation reaction tank 13, and the second power device 33 provides positive pressure to the sampling needle 31 to drip the first part of the blood sample in the sampling needle 31 into the erythrocyte sedimentation reaction tank 13.
  • the first power device 14 draws the blood sample from the ESR reaction tank 13 into the ESR detection pipeline 11 to detect the red blood cell sedimentation rate.
  • the sampling needle 31 after the sampling needle 31 distributes the blood samples to the erythrocyte sedimentation rate detection module 10 and the blood routine detection module 20, the sampling needle 31 can be cleaned in preparation for collecting the next blood sample.
  • the first power device 14 is used to drive the erythrocyte sedimentation rate back and forth.
  • the first part of the blood sample in the tube 11 is detected.
  • the first power device 14 is configured as the first syringe, since the movement speed and the movement direction of the syringe can be flexibly set, the blood sample can be flexibly disaggregated and the blood volume can be saved.
  • the number of reciprocations can be reduced to achieve the depolymerization effect.
  • control module 50 is configured to control the first power device 14, especially the first syringe, of the erythrocyte sedimentation rate detection module 10 during the detection of the erythrocyte sedimentation rate detection module 10, such that:
  • the first power device 14 drives the first part of blood samples to flow back and forth in the erythrocyte sedimentation rate detection tube 11 for a predetermined number of times;
  • the first power device 14 stop driving immediately after driving the first part of blood sample to the detection area 113 of the erythrocyte sedimentation rate detection tube 11, so that the first part of blood sample is in the detection area 113 of the erythrocyte sedimentation rate detection tube 11 Keep it still, so that the erythrocyte sedimentation rate optical detection device 12 detects the erythrocyte aggregation rate of the first part of the blood sample, so as to obtain the erythrocyte sedimentation rate.
  • the elastic deformation coefficient of the pipeline from the sampling needle 31 to the first power device 14, especially the first syringe should be designed to ensure the shear force in the pipeline when the first power device 14 performs reciprocating depolymerization. Meet the requirements. More preferably, there is no adapter in the above-mentioned pipeline, so as to eliminate the influence of the adapter on the elastic deformation.
  • control module 50 is configured to make the first power device 14 execute when the first power device 14, especially the first syringe, drives the first part of the blood sample to flow back and forth in the erythrocyte sedimentation detection tube 11 for a predetermined number of times. The following actions for the predetermined number of times:
  • the first part of the blood sample is driven at the second speed to flow in the erythrocyte sedimentation rate detection tube 11 in a second direction opposite to the first direction for a second stroke.
  • the first speed is the same as the second speed
  • the first stroke is the same as the second stroke.
  • control module 50 can also control the first power device 14, especially the first syringe, according to the blood routine parameters measured by the blood routine detection module 20.
  • control module 50 is configured to first start the blood routine detection module 20 to detect the blood routine parameters of the second part of the blood sample, and then start the blood sedimentation detection module 10 to perform the blood routine parameter detection on the first part of the blood sample after the blood routine detection module 20 ends the blood routine parameter detection. Detection of erythrocyte sedimentation rate.
  • control module 50 is further configured to adjust the first speed, the second speed, the first stroke, the second stroke, and the predetermined number of times during the detection of the erythrocyte sedimentation rate detection module 10 according to the at least one blood routine parameter measured by the blood routine detection module 20 At least one of them.
  • the blood routine detection module 10 includes a red blood cell detection unit or an impedance detection unit 25 for detecting a hematocrit (HCT), and the at least one blood routine parameter includes the hematocrit.
  • the hematocrit value is obtained by the red blood cell detection unit of the blood routine detection module 10 and transmitted to the control module 50, and the control module 50 calculates the deaggregation speed (first speed, second speed) and stroke that need to be adjusted. (First stroke, second stroke), time and/or number of reciprocations, etc., and control the first power device 14, especially the first syringe accordingly, so as to achieve a better depolymerization effect, thereby obtaining better erythrocyte sedimentation rate results. Sex. When the hematocrit is high and the blood viscosity increases, a higher disaggregation power or disaggregation time is required to obtain good deaggregation performance.
  • the first syringe 14 drives the sampling needle 31 to suck the blood sample
  • the sampling needle 31 distributes the blood sample to the routine blood detection module 20, for example, the sampling needle 31 moves to the routine blood reaction tank under the driving of the driving device, and distributes blood into the routine blood reaction tank under the driving of the first syringe 14;
  • the first syringe 14 draws the blood sample to the ESR detection area 113;
  • the first syringe 14 draws the blood sample in the ESR detection area at a first speed according to the sample HCT and moves for a first stroke;
  • the first syringe 14 reversely pushes the blood sample to move for a second stroke at the same second speed as the first speed according to the sample HCT, and the first stroke is equal to the second stroke;
  • the first syringe 14 draws and pushes the blood sample back and forth for a specified number of times, so as to homogenize the blood and make the red blood cells as dispersed as possible;
  • the first syringe 14 is stopped quickly. For example, when a stepper motor is used, the first syringe 14 can be stopped quickly, and then the movement of the blood sample is stopped quickly. Then the red blood cells in the blood sample gather in the detection area 113, causing light transmission. Rate change
  • FIG. 11 is the light transmittance change curve of the above process, where t1 is the moment when the reciprocating inhalation and expelling depolymerization starts, and t2 is the moment when the first syringe 14 stops suddenly.
  • the first syringe 14 drives the blood sample in the erythrocyte sedimentation rate detection tube 11 to reciprocate five times.
  • the at least one blood routine parameter may also include information about whether the blood sample is a chyle blood sample.
  • the time for the erythrocyte sedimentation rate detection module 10 to detect the erythrocyte sedimentation rate of the first part of blood sample and the time for the blood routine detection module 20 to detect the blood routine parameter of the second part of blood sample overlap.
  • the erythrocyte sedimentation rate detection module 10 and the blood routine detection module 20 are connected in series to perform corresponding erythrocyte sedimentation rate detection and blood routine detection.
  • the sample analyzer provided in the embodiment of the present application includes an erythrocyte sedimentation rate detection that can be independently detected.
  • the module 10 and the blood routine detection module 20 do not need to wait for the detection of the previous detection module to complete the detection of the next detection module, so that the erythrocyte sedimentation rate detection module 10 can detect the erythrocyte sedimentation rate of the first part of the blood sample and the blood routine detection module 20
  • the time for detecting the blood routine parameters of the second part of the blood sample overlaps, so that the erythrocyte sedimentation rate detection module 10 and the blood routine detection module 20 can perform parallel detection in time, so as to shorten the total time for detecting two items.
  • the sample analyzer provided in the embodiment of the present application is also provided with a sampling distribution module 30 for collecting blood samples.
  • the sampling distribution module 30 can distribute the first part of the blood sample to the erythrocyte sedimentation rate detection line 11 of the erythrocyte sedimentation rate detection module 10 and the blood
  • the second part of the sample is allocated to the blood routine detection module 20, that is, the sampling distribution module 30 allocates different parts of the same blood sample to the blood sedimentation detection module 10 and the blood routine detection module 20 respectively, so that the blood sedimentation detection module 10 and the blood routine detection module
  • the 20 can be tested independently and in parallel, and there is no need to wait for the detection of the previous detection module to complete the detection of the next detection module.
  • the overall detection time is short, and the detection efficiency is high.
  • control module 50 may be configured to control the sampling distribution module 30 to first distribute a part of the blood sample to the blood routine detection module 20 as the second part of the blood sample, and then distribute 10 the other part of the blood sample to the erythrocyte sedimentation rate detection module 10 as the second part of the blood sample. The first part of the blood sample.
  • FIG. 12 shows a working sequence diagram of a sample analyzer according to an embodiment of the present application.
  • the sampling and distribution module 30 first collects a blood sample, and then distributes the first part of the blood sample to the erythrocyte sedimentation rate detection module 10. While the sampling distribution module 30 distributes the second part of the blood sample to the routine blood test module 20, the erythrocyte sedimentation rate detection module 10 starts to detect the erythrocyte sedimentation rate of the first part of the blood sample. After the sampling distribution module 30 distributes the second part of the blood sample to the routine blood test module 20, the routine blood test module 20 starts to perform routine blood test on the second part of the blood sample.
  • FIG. 13 shows another working sequence diagram of the sample analyzer according to an embodiment of the present application.
  • the difference from FIG. 12 is that after the sampling distribution module 30 distributes the first part of the blood sample to the erythrocyte sedimentation rate detection module 10 and the second part of the blood sample to the blood routine detection module 20, the erythrocyte sedimentation rate detection module 10 and the blood routine detection module 20 At the same time, the corresponding erythrocyte sedimentation rate test and blood routine test were started.
  • the erythrocyte sedimentation rate detection module 10 and the routine blood detection module 20 need to be cleaned after the detection is completed to perform the next detection, so as to prevent the residue of the previous blood sample from affecting the detection result of the next blood sample.
  • the sampling distribution module 30 also needs to be cleaned to collect the next blood sample to be tested.
  • the first syringe, the second syringe, the third syringe, and/or the fourth syringe 23 include a stepping motor, a screw nut assembly, a cylinder, and a piston provided in the cylinder.
  • the cylinder contains liquid
  • the screw nut assembly is connected with the piston
  • the stepping motor drives the screw nut assembly to move the piston in the cylinder.
  • the erythrocyte sedimentation rate optical detection device 12 includes a light emitter 121 and a light receiver 122.
  • the light transmitter 121 and the light receiver 122 are respectively located on both sides of the detection area of the detection pipeline 11.
  • the light emitter 121 is used to illuminate the first part of the blood sample in the detection zone.
  • the light receiver 122 is used to detect the change of the light emitted by the light emitter 121 after irradiating the first part of the blood sample (for example, receiving the light transmitted and/or scattered by the first part of the blood sample), and by detecting the amount of light received How much to detect the degree of absorption or scattering of light by the first part of the blood sample.
  • the first power device 14 drives the first part of the blood sample to flow into the detection tube 11, and stops the movement after the first part of the blood sample flows to the detection area, and then keeps the first part of the blood sample in place. move.
  • the light emitter 121 irradiates the first part of the blood sample in the detection area, and the light receiver 122 detects the degree to which the light emitted by the light emitter 121 is scattered or transmitted after irradiating the first part of the blood sample in the detection area, that is, through the detection light receiver 122 The amount of light received is used to detect the red blood cell sedimentation rate.
  • the scattering or transmission of the light irradiated on the blood sample will change. Therefore, it is possible to detect the transmission or scattering of light after the irradiated blood sample is received. To detect the degree of light scattering or absorption of the first part of the blood sample, so as to measure the red blood cell sedimentation rate.
  • the number of the optical receiver 122 is one or more, which is not limited here.
  • the detection pipeline 11 is made of a hose, and the detection area of the detection pipeline 11 is made of a light-transmitting material. Therefore, the detection pipeline 11 can be arbitrarily arranged flexibly, for example, it can be arranged vertically, horizontally, or inclinedly, or arranged in a curved manner, which is not limited.
  • the detection pipeline 11 is configured as a capillary tube.
  • the erythrocyte sedimentation rate detection tube 11 is made of FEP (Fluorinated ethylene propylene, fluorinated ethylene propylene copolymer).
  • FEP Fluorinated ethylene propylene, fluorinated ethylene propylene copolymer
  • the erythrocyte sedimentation rate detection module 10 provided by the sample analyzer provided in the present application detects the red blood cell sedimentation rate by detecting the degree of light scattering or absorption of the red blood cells in the blood sample during the aggregation process (that is, the ESR is achieved by detecting the aggregation speed of the red blood cells. Detection), compared to the detection method of waiting for the red blood cells to settle naturally under the action of gravity (Weiman's method), the detection speed is faster, the red blood cell sedimentation rate detection can be completed in a short time (for example, 20s), and the blood consumption is less. Only about 100uL.
  • the hard detection tube must be installed in a straight line and installed vertically or slightly inclined, which tends to make the instrument too large.
  • the installation angle of the detection pipeline 11 provided in the embodiment of the present application is not limited, and can be flexibly adjusted according to the settings of other structures inside the sample analyzer, so that the overall volume of the sample analyzer can be reduced, and the sample analyzer occupies a small space. .
  • the erythrocyte sedimentation rate detection module 10 may further include a temperature sensor 15 and a heater 16 arranged near the detection area 113 of the erythrocyte sedimentation rate detection pipeline 11 that are communicatively connected with the control module 50.
  • the sensor 15 is used to detect the temperature value of the blood sample in the erythrocyte sedimentation rate detection tube 11 and transmit the temperature value to the control module 50.
  • the control module 50 is configured to control the heater 16 to detect the erythrocyte sedimentation rate when the temperature value is less than a predetermined temperature. The blood sample in the tube 11 is heated.
  • the second aspect of the present application also provides a sample analysis method.
  • the sample analysis method may include the following steps:
  • Sampling distribution step S200 the second syringe of the sampling distribution module 30 drives the sampling needle through the power supply line 32 to collect the blood sample in the sample container 100, and distributes the first part of the blood sample to the erythrocyte sedimentation rate detection module 10 and the blood sample The second part is allocated to the blood routine detection module 20;
  • Erythrocyte sedimentation rate detection step S210 the first part of the blood sample is sucked into the erythrocyte sedimentation rate detection pipeline of the erythrocyte sedimentation rate detection module 10 by the first syringe of the erythrocyte sedimentation rate detection module 10, and the erythrocyte sedimentation rate detection module 10
  • the erythrocyte sedimentation rate optical detection device irradiates the first part of the blood sample with light and detects the degree of absorption or scattering of the light by the first part of the blood sample to detect the erythrocyte sedimentation rate of the first part of the blood sample.
  • the erythrocyte sedimentation rate detection pipeline and the power supply pipeline are arranged independently of each other, and the second syringe and the first syringe are not the same syringe.
  • Routine blood detection step S220 Routine blood detection module 20 performs blood routine parameter detection on the second part of the blood sample.
  • the erythrocyte sedimentation rate optical detection device 12 of the erythrocyte sedimentation rate detection module irradiates the first part of the blood sample with light and detects the degree of absorption or scattering of light by the first part of the blood sample to The erythrocyte sedimentation rate of the first part of the blood sample is detected.
  • the erythrocyte sedimentation power device immediately stops driving after driving the first part of the blood sample to the detection area 113 of the erythrocyte sedimentation rate detection tube 11, so that the blood sample The first part is kept still in the detection zone 113, so that the erythrocyte sedimentation rate optical detection device 12 detects the red blood cell aggregation rate of the first part of the blood sample, so as to obtain the red blood cell sedimentation rate.
  • the sampling allocation step S200 includes:
  • the driving device of the sampling distribution module 30 drives the sampling needle 31 of the sampling distribution module 30 to move to the sample container 100;
  • the driving device drives the sampling needle 31 to move to the blood routine detection module 20;
  • the second power device 33 drives the sampling needle 31 through the power supply line 32 to distribute the second part of the blood sample to the blood routine detection module 20.
  • the driving device drives the sampling needle 31 to move to the sample container 100, and the first syringe 14 drives the sampling needle 31 through the power supply line 32 to suck and sample the blood sample in the container 100.
  • the driving device drives the sampling needle 31 to move above the routine blood reaction pool 21, and the first syringe 14 drives the sampling needle 31 through the power supply line 32 to distribute a part of the collected blood sample to the routine blood reaction pool 21 to Detect blood routine parameters.
  • the first syringe 14 drives the remaining blood sample in the sampling needle 31 to flow into the blood sedimentation detection tube 11 directly connected to one end of the sampling needle 31 to detect the red blood cell sedimentation rate.
  • S300, S310, S320, and S330 are implemented in sequence.
  • the third syringe 23 draws the diluent into the routine blood detection module 20 through the diluent supply line 22, so as to The second part of the blood sample is processed.
  • first power unit 14 and the third syringe 23 configured as the first syringe may also be the same syringe.
  • the erythrocyte sedimentation rate optical detection device 12 performs the first part of the blood sample Before the red blood cell sedimentation rate test, include:
  • the first power device 14 especially the first syringe, drives the first part of the blood sample to flow back and forth in the erythrocyte sedimentation rate detection tube 11 for a predetermined number of times;
  • the first power device 14 stop driving immediately after driving the first part of the blood sample to the detection area 113 of the erythrocyte sedimentation rate detection tube 11, so that the first part of the blood sample is in the detection area of the erythrocyte sedimentation rate detection tube 11.
  • the erythrocyte sedimentation rate optical detection device 12 detects the erythrocyte aggregation rate of the first part of the blood sample, so as to obtain the erythrocyte sedimentation rate.
  • the first power device 14, especially the first syringe, driving the first part of the blood sample to flow back and forth in the erythrocyte sedimentation rate detection tube 11 for a predetermined number of times includes repeating the following steps for the predetermined number of times:
  • the first power device 14 drives the first part of the blood sample to flow in the erythrocyte sedimentation rate detection tube 11 for a first stroke in a first direction at a first speed;
  • the first power device 14 drives the first part of the blood sample at the second speed to flow in the erythrocyte sedimentation detection tube 11 in a second direction opposite to the first direction for a second stroke.
  • the first speed is the same as the second speed
  • the first stroke is the same as the second stroke
  • the erythrocyte sedimentation rate detection process can be adjusted according to blood routine parameters.
  • the blood routine parameter detection of the blood routine detection module 20 is started first, and the erythrocyte sedimentation rate detection of the blood sedimentation detection module 10 is started after the blood routine detection module 20 ends the blood routine parameter detection.
  • the first power device 14, especially the first syringe, driving the first part of the blood sample to flow back and forth in the erythrocyte sedimentation rate detection pipeline 11 for a predetermined number of times includes: measuring according to the routine blood detection module 20 To adjust at least one of the first speed, the second speed, the first stroke, the second stroke, and the predetermined number of times. It is particularly advantageous that the at least one blood routine parameter includes hematocrit.
  • the time when the erythrocyte sedimentation rate detection module 10 starts to detect the erythrocyte sedimentation rate of the first part of the blood sample is the same or different from the time when the blood routine detection module 20 starts to detect the blood routine parameters of the second part of the blood sample.
  • the sample analysis method includes:
  • the blood routine detection module 20 firstly start the blood routine detection module 20 to detect the blood routine parameters of the second part of the blood sample, and then start the blood sedimentation detection module 10 to detect the erythrocyte sedimentation rate of the first part of the blood sample.
  • the sampling allocation step S200 includes:
  • the sampling distribution module 30 collects blood samples.
  • the sampling distribution module 30 first distributes a part of the collected blood sample to the erythrocyte sedimentation rate detection module 10, and then distributes another part of the collected blood sample to the blood routine detection module 20;
  • the sampling distribution module 30 first distributes a part of the collected blood sample to the blood routine detection module 20, and then distributes another part of the collected blood sample to the erythrocyte sedimentation rate detection module 10.
  • the sampling allocation step S200 includes:
  • the sampling distribution module 30 first collects a part of the blood sample and distributes a part of the collected blood sample to the erythrocyte sedimentation rate detection module 10 or the blood routine detection module 20.
  • the sampling and distribution module 30 collects another part of the blood sample and distributes the other part of the collected blood sample to the blood routine detection module 20 or the erythrocyte sedimentation rate detection module 10.
  • the sampling and distribution module 30 first distributes a blood sample to the blood routine detection module 20 and starts the routine blood test, and then the sampling distribution module 30 distributes the blood sample to the blood sedimentation detection module 10 and starts the red blood cell sedimentation rate detection. Since the ESR detection method used in the present application is faster than the blood routine detection speed, the blood routine detection module 20 is allocated blood samples first and the blood routine detection is started to facilitate the production of the total detection report as soon as possible.
  • the sampling allocation step S200 includes:
  • the driving device drives the sampling needle 31 to move to the sample container to collect blood samples in the sample container.
  • the driving device drives the sampling needle 31 to move to the erythrocyte sedimentation rate detection module 10 and the blood routine detection module 20 respectively to allocate the first part of the blood sample to the erythrocyte sedimentation rate detection module 10 and the second part of the blood sample to the blood routine detection module 20.
  • the sample analysis method includes:
  • the driving device drives the sampling needle 31 to move to the sample container to collect a blood sample in the sample container.
  • the driving device drives the sampling needle 31 to move above the erythrocyte sedimentation reaction tank 13, and the sampling needle 31 drops the first part of the blood sample into the erythrocyte sedimentation reaction tank 13.
  • the first power device 14 especially the first syringe, drives the first part of the blood sample in the ESR reaction tank 13 to flow into the ESR detection pipeline 11, and stops the movement of the first part of the blood sample after flowing to the detection area and keeps it still .
  • the erythrocyte sedimentation rate optical detection device 12 illuminates the first part of the blood sample in the erythrocyte sedimentation rate detection pipeline 11, and detects the red blood cell sedimentation rate by detecting the degree of absorption or scattering of the light by the first part of the blood sample.
  • the driving device drives the sampling needle 31 to move above the routine blood reaction tank 21, and the sampling needle 31 drops the second part of the blood sample into the routine blood reaction tank 21.
  • the blood routine detection device performs routine blood parameter detection on the second part of the blood sample in the routine blood reaction tank 21.
  • step S410 is implemented before or after step S440.
  • Steps S420 and S430 are implemented before or after step S450.
  • the sample analysis method further includes: cleaning the sampling needle 31.
  • the time for the erythrocyte sedimentation rate detection module 10 to detect the erythrocyte sedimentation rate of the first part of the blood sample and the time for the blood routine detection module 20 to detect the blood routine parameter of the second part of the blood sample overlap, so that the erythrocyte sedimentation rate detection module 10 and the blood routine testing module 20 can perform parallel testing in time to shorten the total time for testing two items.
  • sample analyzer method further includes correcting the erythrocyte sedimentation rate according to the result of the blood routine parameter. As a result, more accurate red blood cell sedimentation rate detection results can be obtained.
  • sample analysis method provided in the second aspect of the present application is especially applied to the above-mentioned sample analyzer provided in the first aspect of the present application.
  • the advantages and more embodiments of the sample analysis method of the present application can be referred to the above description of the sample analyzer, which will not be repeated here.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Zoology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种样本分析仪和样本分析方法,该分析仪的采样分配模块(30)的第二注射器(33)通过动力供应管路(32)驱动血液样本的第一部分分配给血沉检测模块(10)以及驱动血液样本的第二部分分配给血常规检测模块(20);血沉检测模块(10)的第一注射器(14)驱动第一部分血液样本在血沉检测管路(11)中流动并使其停止在血沉检测管路(11)的检测区(113)中以检测红细胞沉降率;血常规检测模块(20)对第二部分血液样本进行血常规参数检测;第一注射器(14)与第二注射器(33)不是同一个注射器,且血沉检测管路(11)独立于动力供应管路(32),在前一血液样本分配完成后,且血常规检测模块(20)和血沉检测模块检测(10)时,第二注射器(33)通过动力供应管路(32)驱动采样针(31)准备进行下一轮的血液样本的采集与分配,从而可以提升批量检测的效率。

Description

样本分析仪及样本分析方法 技术领域
本申请涉及医疗设备技术领域,具体涉及一种样本分析仪及样本分析方法。
背景技术
在体内的血液中,因为血液的流动以及红细胞表面负电荷的相互排斥,红细胞呈分散悬浮状态。而离体的血液在静置时,红细胞会因重力作用而下沉。当处于病理状态时,血浆中蛋白的种类与含量会发生变化,将改变血液中电荷的平衡,使红细胞表面负电荷减少,进而使红细胞形成缗钱状而加快沉降。因此,可以通过检测红细胞在1小时内沉降的速率,即红细胞沉降率(Erythrocyte sedimentation rate,ESR),来辅助病症评估。
尽管ESR在诊断上的灵敏度和特异性不高,但它依然被认为是一种可靠的、间接的急性时相炎症反应因子,在临床中有着长期广泛的应用。例如,ESR广泛应用于感染性疾病、急慢性炎症、风湿病、结缔组织病、癌症及霍奇金病等病程的治疗与监控。
目前已知一些通过测量红细胞聚集指数来预测红细胞沉降率的方法,这些方法表明了红细胞聚集指数与红细胞沉降率参数间存在较好的相关性。为了测量红细胞聚集指数,首先要对红细胞进行解聚,亦即让红细胞呈现单个分散状态,然后测量单个分散的红细胞聚集到聚集状态过程中的透光率变化,进而获得聚集指数或者说红细胞沉降率(ESR)。
为了对红细胞进行解聚,Alifax公司公开了一种采用蠕动泵对红细胞进行解聚的装置,蠕动泵抽取血液进入毛细管内部。当血液在毛细管内部流动、红细胞受到剪切力作用时,红细胞的聚集状态被破坏,待红细胞分散变得均匀后,蠕动泵立即停止,红细胞会重新聚集起来,测量聚集过程中的透光率曲线来测量红细胞沉降率(ESR)。
然而,采用蠕动泵进行解聚的过程中,为了使得红细胞达到均匀化状态,血液需要流经较长毛细管,导致血液在毛细管中被稀释液稀释,降低ESR的测量精度。而如果在该情况下要提高测量精度,则需要大幅提高ESR的用血量。由于血液粘度较高,血液在毛细管中流动时会产生显著的残留损失,而血液残留损失与血液流经的毛细管的长度成正比,导致管路的清洗时间、清洗液消耗量、污染率增加,同时也导致试剂成本增加。
发明内容
因此,本申请的目的在于提供一种集成了血常规检测和血沉(红细胞沉降率ESR)检 测的样本分析仪以及一种相应的样本分析方法,其能够提升批量样本检测的效率,从而满足样本分析仪在检测速度上的要求。
为了实现本申请的目的,本申请第一方面提供了一种样本分析仪,
包括血沉检测模块、血常规检测模块和采样分配模块;
所述采样分配模块设置用于采集血液样本,并将所述血液样本的第一部分分配给所述血沉检测模块以及将所述血液样本的第二部分分配给所述血常规检测模块;所述血沉检测模块包括血沉检测管路和血沉光学检测装置,所述血沉检测管路设置用于为被分配的第一部分血液样本提供检测场所,所述血沉光学检测装置设置用于对分配至所述血沉检测管路中的第一部分血液样本进行光照射并且通过检测所述第一部分血液样本对光的吸收或散射程度来检测所述血液样本的红细胞沉降率,所述血常规检测模块包括血常规反应池和血常规检测装置,所述血常规反应池设置用于为被分配的第二部分血液样本提供与试剂反应的场所,所述血常规检测装置设置用于对所述血常规反应池中所述第二部分血液样本与试剂反应得到的待测血液样本进行血常规检测;其中,所述血沉检测管路与所述动力供应管路相互独立设置,所述血沉检测模块还包括与所述血沉检测管路相连接的第一注射器,所述第一注射器设置用于驱动所述第一部分血液样本进入至所述血沉检测管路,并在所述血沉检测管路中流动;所述采样分配模块包括采样针、动力供应管路以及通过所述动力供应管路与所述采样针的远离针头的一端连接的第二注射器,所述第二注射器设置用于通过所述动力供应管路驱动所述采样针抽吸所述血液样本,所述第二注射器与所述第一注射器不是同一个注射器。
本申请第二方面提供了一种样本分析方法,所述样本分析方法包括
采样分配步骤:由采样分配模块的第二注射器通过动力供应管路驱动所述采样针吸取所述样本容器中的血液样本,并且将所述血液样本的第一部分分配给血沉检测模块以及将所述血液样本的第二部分分配给血常规检测模块;
红细胞沉降率检测步骤:由所述血沉检测模块的第一注射器将所述血液样本的第一部分抽吸到所述血沉检测模块的血沉检测管路中,由所述血沉检测模块的血沉光学检测装置对所述血液样本的第一部分进行光照射并检测所述血液样本的第一部分对光的吸收或散射程度,以检测所述血液样本的第一部分的红细胞沉降率,其中,所述第二注射器与所述第一注射器不是同一个注射器;
血常规检测步骤:由所述血常规检测模块对所述血液样本的第二部分的血常规参数进行检测。
在本申请提供的样本分析仪和样本分析方法中,血沉检测管路与动力供应管路相互独立设置,即为相对于动力供应管路的一个独立分支,且血沉检测管路与第一注射器连接,动力供应管路与第二注射器连接,以使得血沉检测管路的流路与动力供应管路的流路不同。这样,在第二注射器的作用下,血液样本的第一部分血液样本分配给血沉检测模块,第二部分血液样本则分配给血常规检测模块。在第一部分血液样本和第二部分血液样本分配完成后,血常规检测模块和血沉检测模块启动检测。同时,第二注射器通过动力供应管路驱动采样针将下一个血液样本抽吸至采样针,以准备进行下一轮的血液样本分配,从而可以提升批量检测的效率。
附图说明
本申请上述和/或附加方面的优点和特征从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请第一方面提供的样本分析仪的第一实施例的结构示意图;
图2是本申请第一方面提供的样本分析仪的第二实施例的结构示意图;
图3是本申请第一方面提供的样本分析仪的第三实施例的结构示意图;
图4是本申请第一方面提供的样本分析仪的第四实施例的结构示意图;
图5是图4所示的样本分析仪的一种检测时序图;
图6是本申请第一方面提供的样本分析仪的一种液路结构示意图;
图7是本申请第一方面提供的样本分析仪的第五实施例的结构示意图;
图8是本申请第一方面提供的样本分析仪的第六实施例的结构示意图;
图9和10是本申请第一方面提供的样本分析仪的第七实施例的结构示意图;
图11是本申请第一方面提供的样本分析仪的一种血沉检测过程的吸光度曲线图;
图12和图13是本申请第一方面提供的样本分析仪的不同检测时序图;
图14至图16是本申请第二方面提供的样本分析方法的不同实施例的示意流程图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本 申请保护的范围。
请参考图1,本申请第一方面提供一种样本分析仪,包括血沉检测模块10、血常规检测模块20和采样分配模块30。
采样分配模块30用于采集血液样本,并将血液样本的第一部分(即第一部分血液样本)分配给血沉检测模块10的血沉检测管路11以及将血液样本的第二部分(即第二部分血液样本)分配给血常规检测模块20。此时,采样分配模块可以配置为先后分配血液样本的第一部分和第二部分,也可以配置为同时分配血液样本的第一部分和第二部分,对分配次序不做限定。
在一些实施例中,采样分配模块30可以通过采用一次采集、分两次分配的方式或者通过分两次采集并分配的方式实现将血液样本的第一部分分配给血沉检测模块10的血沉检测管路11以及将血液样本的第二部分分配给血常规检测模块20的血常规反应池21。
具体地,一次采集、分两次分配的方式为:采样分配模块30采集血液样本后,采样分配模块30先将所采集的血液样本的一部分(即第一部分血液样本)分配给血沉检测模块10的血沉检测管路11、再将所采集的血液样本的另一部分(即第二部分血液样本)分配给血常规检测模块20的血常规反应池21,或采样分配模块30先将所采集的血液样本的一部分(即第二部分血液样本)分配给血常规检测模块20的血常规反应池21、再将所采集的血液样本的另一部分(即第一部分血液样本)分配给血沉检测模块10的血沉检测管路11。
分两次采集并分配的方式为:采样分配模块30先采集血液样本的一部分并将采集到的血液样本的一部分分配给血沉检测模块10的血沉检测管路11或血常规检测模块20的血常规反应池21;采样分配模块30再采集血液样本的另一部分并将采集到的血液样本的另一部分分配给血常规检测模块20的血常规反应池21或血沉检测模块10的血沉检测管路11。
血沉检测模块10包括血沉检测管路11和血沉光学检测装置12,血沉检测管路11用于为被分配的第一部分血液样本提供检测场所,血沉光学检测装置12用于对分配至血沉检测管路11中的第一部分血液样本进行光照射并且检测分配至血沉检测管路11中的第一部分血液样本对光的吸收或散射程度来检测血液样本的红细胞沉降率。在血沉光学检测装置12进行红细胞沉降率检测时,第一部分血液样本在血沉检测管路11中不发生位移,即保持静止不动。
血常规检测模块20包括血常规反应池21和血常规检测装置(图1未示出),血常规反应池21用于为被分配的第二部分血液样本提供与试剂混合的场所,所述血常规检测装置对血常规反应池21中第二部分血液样本与试剂混合得到的待测血液样本进行血常规检测。
本领域技术人员能够理解,血常规检测装置可以为光学检测单元、阻抗检测单元和血红蛋白检测单元中的至少一个。相应地,血常规反应池可以包括光学反应池、阻抗检测反应池和血红蛋白检测反应池中的至少一个。在血常规检测模块20对血液样本进行血常规检测时,可以将血液样本和相应的试剂(例如稀释液和/或溶血剂和/或染色剂等等)加入到血常规反应池21中,由血常规检测装置对血常规反应池21中的血液样本进行测量,以获得至少一种血常规参数,血常规参数可以包括WBC(White blood cell,白细胞)五分类结果、WBC计数和形态参数、HGB(Hemoglobin,血红蛋白)的功能测量、RBC(Red blood cell,红细胞)以及PLT(blood platelet,血小板)计数和形态参数中的至少一种或多种组合,在实际血常规检测过程中,可以根据需要增加或减少血常规检测项目,在此不做限定。
本申请实施例提供的样本分析仪设置有血沉检测模块10和血常规检测模块20,血沉检测模块10能够通过血沉检测管路11和血沉光学检测装置12检测血液的红细胞沉降率,血常规检测模块20能够检测血常规参数,进而使得本申请提供的样本分析仪既能够检测红细胞沉降率,又能够检测血常规,在临床实际应用中,一台设备即可实现两个血液检测项目,功能多样,使用更加方便。
在一些实施例中,请参考图2,样本分析仪还包括液路支持模块40,用于为釆样分配模块30、血沉检测模块10和血常规检测模块20提供液路支持。具体地,液路支持模块40通过给采样分配模块30、血沉检测模块10和血常规检测模块20提供液体来进行液路支持。例如,液路支持模块40可以分别给采样分配模块30、血沉检测模块10和血常规检测模块20提供清洗液,以分别对采样针31、血沉检测管路11和血常规反应池21进行清洗,避免污染待检测的血液样本、导致检测结果不准确。例如,血沉检测模块10和血常规检测模块20的试剂加样、反应混匀、测量动作、清洗维护等均由液路支持模块辅助完成。
此外,样本分析仪还包括控制模块50,控制模块50分别与采样分配模块30、血沉检测模块10、血常规检测模块20和液路支持模块40相连接,控制模块50用于分别控制采样分配模块30、血沉检测模块10、血常规检测模块20和液路支持模块40的动 作,以使采样分配模块30、血沉检测模块10、血常规检测模块20和液路支持模块40之间相互配合、完成对红细胞沉降率和血常规参数的检测。
在此,控制模块50可以包括处理器和存储器。处理器可以为CPU,GPU或其它具有运算能力的芯片。存储器中装有操作系统和应用程序等供处理器执行的各种计算机程序及执行该计算机程序所需的数据。
如图1所示,血沉检测模块10还包括与血沉检测管路11、在此与其第一端111相连接的第一动力装置14(也可以称为血沉动力装置)14,第一动力装置14设置用于驱动第一部分血液样本在血沉检测管路11中流动并使第一部分血液样本流动到血沉检测管路11内的检测区113后停止运动并保持不动,以便血沉光学检测装置12对第一部分血液样本的红细胞沉降率进行检测。也就是说,第一动力装置14不仅用于将第一部分血液样本驱动到血沉检测管路11中,还用于保证在进行红细胞沉降率检测时使得血沉检测管路11中的血液样本保持不动。
在一个具体的示例中,本申请实施例提供的检测ESR的工作过程如下:第一动力装置14驱动第一部分血液样本流动到血沉检测管路11中,当第一部分血液样本流动到血沉检测管路11的特定位置(检测区113)后,第一动力装置14突然停止并瞬时中断血沉检测管路11中第一部分血液样本的流动,从而导致第一部分血液样本在此时突然发生减速(或停止流动),随后发生红细胞的聚集和沉淀。在红细胞发生聚集和沉淀的过程中,将导致血沉光学检测装置12检测到的信号的变化,从而获得用于确定ESR的信息。也就是说,控制模块50配置用于在控制第一动力装置14将第一部分血液样本驱动到血沉检测管路11的检测区113后立即停止第一动力装置14的驱动,从而使所述第一部分血液样本在检测区113中保持不动,以便血沉光学检测装置12对所述第一部分血液样本的红细胞聚集速率进行检测,从而获得红细胞沉降率。
相对于现有技术中的魏氏法,本申请实施例提供的样本分析仪可以限制血沉检测管路11的长度,不仅可以减少整个仪器的体积,还可以减少检测分析所需要的血液量、清洗血沉检测管路11的清洗液的用量,进而大大降低了集成ESR检测和血常规检测的样本分析仪的成本。
在一些实施例中,第一动力装置14还可以在检测完红细胞沉降率后驱动第一部分血液样本在血沉检测管路11内流动以排出血沉检测管路11,为下一次检测做准备。
第一动力装置14可以为泵或注射器或其他能提供动力的压力源。
如在背景技术中所描述的,采用蠕动泵作为血沉检测模块10的液体动力源将导致 大幅增加用血量。此外,由于此时需要较长的血沉检测管路,导致血样在血沉检测管路流动时的残留量增加,这不仅导致血样浪费,也增加了检测管路的清洗难度以及清洗量,进而也增加了交叉污染的可能性。而且,蠕动泵传输液体的液量可大可小,精度差,适合于液体定量低要求的场合,但无法适用于血球测量领域的高精度定量(数微升级)分样要求。另外,在集成了血常规检测和ESR检测的一体机中,采用蠕动泵作为血沉检测模块10的液体动力源将将会导致在采样分配模块30中需要设置两个动力源,即,一个用于驱动采样部吸取和排放样本,另一个蠕动泵作为血沉检测模块10的液体动力源,这在布置蠕动泵与采样分配模块30时存在技术上的困难,因为蠕动泵与采样分配模块30难以共同存在血液分析仪中,而且会极大地提高了一体机的成本、体积和构造复杂度。
因此特别有利的是,如图3所示,第一动力装置14构造为第一注射器。该构造方案不仅有利于快速且精确地检测ESR(由于注射器的精确定量作用,能够将血液样本精确地抽吸到血沉检测管路11的检测区113中),而且有利于将血沉检测模块10简单且低成本地集成到现有的血常规分析仪中,而且基本上不增加或很少增加血常规分析仪的体积。
在一些实施例中,请参考图1和图3,采样分配模块30可以包括采样针31和驱动装置(图未示出)。驱动装置用于驱动采样针31运动,以便采样针31釆集血液样本并将血液样本的一部分分配给血常规检测模块20的血常规反应池21。
如图3所示,血液样本通常储存于试管100中,并且试管100的顶端设有用于密封的盖子。驱动装置驱动采样针31移动到对应试管100的上方,并驱动采样针31以其针尖或针头311的一端刺破试管的盖子,然后伸入到试管中,吸取试管内的血液样本,以采集血液样本。
在一些实施例中,如图3所示,采样分配模块30还可以包括通过动力供应管路32与采样针31的远离针头311的一端312连接的第二动力装置(也可以称为采样动力装置)33(也就是说,动力供应管路32设置用于采样针31的远离针头311的一端312与第二动力装置33连接),第二动力装置33用于通过所述动力管路31驱动所述采样针31通过针头311抽吸或排放血液样本。进一步地,第二动力装置33用于通过动力供应管路32为采样针31提供负压以吸取血液样本以及提供正压以排放血液样本。第二动力装置33可以为泵或注射器或其他能提供动力的压力源、例如正负气压源。在此特别有利的是,第二动力装置33构造为第二注射器。
在一些实施例中,如图9和10所示,采样分配模块30还可以包括采样针31、分血阀36和动力供应管路32。动力供应管路32包括前管路和后管路,分血阀36通过前管路与采样针31连接并且通过后管路与第一注射器连接,第一注射器用于驱动所述采样针31采集血液样本并且将所采集的血液样本通过所述前管路抽取到所述分血阀36中,其中分血阀36用于将血液样本的第二部分血液样本分配给血常规检测模块20。其中,分血阀36包括进液口、第一分液口、第二分液口和出液口,进液口通过所述前管路与所述采样针31相连接,所述第一动力装置14驱动所述采样针31采集的血液样本通过所述进液口流入到所述分血阀36内。所述第一分液口用于所述分血阀36分配的所述第一部分血液样本流入到所述血沉检测管路内;第二分液口与所述血常规检测池相连接,所述第二分液口用于所述分血阀36分配的所述第二部分血液样本流入到所述血常规检测池内。出液口通过所述后管路与所述第一动力装置14相连接,所述第一动力装置14驱动所述分血阀36中的血液样本从所述出液口流动到所述后管路中。
在一些实施例中,如图3和4所示,第一动力装置14和第二动力装置33可以为同一动力装置,尤其是第一注射器和第二注射器为同一注射器。由于用于血常规的定量分血的第二注射器通常精度要求比较高,将第二注射器同时用作第一注射器不仅能够实现ESR的快速且精确额检测,而且能够进一步降低样本分析的成本。
在一些实施例中,如图1、3和4所示,血沉检测管路11的与第一端111相对置的第二端112可以与采样针31的远离针头311的一端312连接。此时优选地,样本分析仪的血液分配的一个示例性的具体工作过程可以为:控制模块50控制第二动力装置33驱动采样针31通过针头311将第二部分血液样本分配到血常规反应池21,然后控制第一动力装置14将第一部分血液样本从采样针31的远离针头311的一端312抽吸到血沉检测管路11中,其中,第一部分血液样本与第二部分血液样本为同一血液样本的不同部分。在Alifax公司的专利CN1864060B中公开的串联地集成ESR模块和细胞计数模块的方法中,由于ESR模块与细胞计数模块串联布置于一条血样回路上,在测量时,由采样模块采集的样本沿血样回路流动,首先经过ESR模块进行ESR测量,然后经过细胞计数模块进行血常规测量。但在该方案中血样必须首先流经ESR模块,后续再经过血常规模块,使得要进行血常规检测的血样流经了较多的稀释液区域,导到血样受到稀释及污染,从而导致血常规检测不准确。因此,通过先后给血常规检测模块20和血沉检测模块10分配同一血液样本的完全不同的部分,能够实现在集成了血常规检测和血沉检测的情况下降低对用于血常规检测的血段的污染,从而提高血常规 检测的准确性,此外有利于实现血常规检测模块20和血沉检测模块10的并行检测。
在一些实施例中,在图3和4所示的实施例中,动力供应管路32的一部分可以为血沉检测管路11。例如,将动力供应管路32靠近采样针31的部分设置为血沉检测管路11。此时,第二动力装置33优选用作第一动力装置14并进一步用于将采样针31中的血液样本的一部分(即为第一部分血液样本A)抽吸至血沉检测管路11中。而采样针31仍然通过针头311将采样针31中的一部分血液样本(即第二部分血液样本B)分配到血常规反应池21,以进行血常规参数检测。也就是说,在该实施例中,第二动力装置33、尤其是第二注射器被复用为第一动力装置14、尤其是第一注射器且采样针31的动力供应管路32被复用为血沉检测管路11,不用另外设置反应池和动力装置,因此结构简单,而且降低了成本。在此可以理解的,第二注射器33通过控制阀34分别与动力供应管路32以及稀释液存储部35连接。当控制阀34将第二注射器33与稀释液存储部35连通时,第二注射器33从稀释液存储部35抽取稀释液;当控制阀34将第二注射器33与动力供应管路32连通时,第二注射器33通过动力供应管路32来为采样针31提供抽吸动力或排放动力。
也就是说,血沉检测管路11在结构上可以直接与采样针31后端管路、即动力供应管路32直接耦合,由此能够实现在不增加仪器复杂程度以及尽可能改动小的情况下简单地将血沉检测模块10集成到现有的血液分析仪中。如图5所示的工作时序图,第二动力装置33(尤其是第二注射器)或者说第一动力装置14(尤其是第一注射器)驱动采样针31将血液样本抽吸至采样针31内直至血液样本流动至血沉检测管路11中。然后,采样针31例如首先运动至血常规检测模块20的血常规反应池21进行分血(血段B),分血完成后需要保证血沉检测管路11内仍然还有血液样本(血段A),或者保证采样针31内仍然还有血液样本(血段A)能够被抽吸至血沉检测管路11。然后同时或分时启动ESR检测与血常规检测,并且保证ESR检测时,血沉检测管路11内的血样不发生位移。当检测完成后进行管路清洗。
在一些优选的实施例中,如图8所示,血沉检测管路与动力供应管路32相互独立设置,也就是说,血沉检测管路并非设置在动力供应管路32的一部分,也不是与动力供应管路32直接耦合,而是相对于动力供应管路32的一个独立分支。血沉检测管路与第一动力装置14(尤其是第一注射器)连接,动力供应管路32与第二动力装置33(尤其是第二注射器)连接,以使得血沉检测管路的流路与动力供应管路32的流路不同。这样,在第二动力装置33的作用下,血液样本的第一部分血液样本分配给血沉检 测模块10(第一部分血液样本被输送至血沉检测管路这一分支)及第二部分血液样本分配给血常规检测模块20之后,血常规检测模块20和血沉检测模块10启动检测。其中,血沉检测管路在第一动力装置14(尤其是第一注射器)的作用下进行血沉检测。由于血沉检测管路相对于动力供应管路32独立,因此,测试血沉的时候,不会占用采样的管路。上一个血液样本的第一部分和第二部分分配完成后,第二动力装置33(尤其是第二注射器)即可通过动力供应管路32驱动采样针31将下一个血液样本抽吸至采样针31,以进行下一轮的血液样本分配,从而可以提升批量检测的效率。血沉检测管路的连接方式可以但不仅限于以下的方式:采样针31的侧壁开设有一侧开口,所述侧开口与所述采样针31内腔连通,血沉检测管路的第一端与所述采样针31的侧开口连接。血沉检测管路的连接方式还可以是:采样针31的远离针头的一端设有三通接头(图中未示出),三通接头至少包括第一接口、第二接口和第三接口,所述动力供应管路32与所述第一接口连接,所述血沉检测管路与所述第二接口连接,采样针与第三接口连通。在其他的变形实施例中,三通接头也可以是三通阀。血沉检测管路的连接方式也可以是:血沉检测管路与动力供应管路32连通,血沉检测管路作为动力供应管路32的分支。在血样分配时,第一注射器将采样针31中的第一部分血液样本抽取到血沉检测管路这一分支管路中进行检测。应当说明的是,血沉检测管路的连接方式包括但不仅限于上述的连接方式,只要其能够达到血沉检测供应管路与动力供应管路32相互独立,使得血沉检测时不占用动力供应管路32的资源,从而不会干涉下一个样本的采样即可。
在一些实施例中,如图9和10所示,采样分配模块30还可以包括分血阀36,分血阀36包括:进液口、第一分液口、第二分液口和出液口,进液口通过所述前管路与所述采样针31相连接,所述第二动力装置33(尤其是第二注射器)驱动所述采样针31采集的血液样本通过所述进液口流入到所述分血阀36内。第一分液口与所述血沉检测管路相连接,所述第一分液口用于所述分血阀36分配的所述第一部分血液样本流入到所述血沉检测管路内。第二分液口与所述血常规检测池相连接,所述第二分液口用于所述分血阀36分配的所述第二部分血液样本流入到所述血常规检测池内;出液口通过所述后管路与所述第二动力装置33相连接,所述第二动力装置33驱动所述分血阀36中的血液样本从所述出液口流动到所述后管路中。
图4所示的样本分析仪的血液分配的一个示例性的具体工作过程如下:在控制模块50的控制下,
驱动装置首先驱动采样针31移动至装载有血液样本的试管100处。
第二动力装置33、在此为第二注射器给采样针31提供负压,以便采样针31吸取试管中的血液样本,直至血液样本流动至血沉检测管路11内。
驱动装置驱动采样针31移动到血常规反应池21的上方,第二注射器33给采样针31提供正压,以将采样针31中的血液样本的一部分通过针头311滴入到血常规反应池21内,以检测血常规参数。
接着,第二动力装置33给采样针31提供负压,将采样针31内剩余的血液样本的一部分抽吸到血沉检测管路11内,以进行红细胞沉降率检测。或者也可以在采样针31给血常规反应池21分血之后,保证血沉检测管路11内仍然存在血液样本供血沉检测模块10进行检测,从而不必再通过第二动力装置33将采样针31内剩余的血液样本的一部分抽吸到血沉检测管路11内。
当然,优选的实施例中,第一动力装置14和第二动力装置33为彼此独立的动力装置,即第一动力装置14和第二动力装置33不是同一个注射器。特别是,第一注射器和第二注射器为彼此独立的注射器,由此能够针对不同的场景采用不同的注射器。血沉检测通常需要流量为100uL/S级别的注射器(对流速要求较高),以便更好地实现后面还要详细描述的红细胞解聚过程。而采样分血则不需要大流量(对精确度要求较高),就此而言,第一注射器(即血沉动力装置)的流速可以大于第二注射器(即采样动力装置)的流速。此外,基于血沉检测管路相对于动力供应管路32的一个独立分支,且血沉检测管路与第一注射器连接,动力供应管路32与第二注射器连接,以使得血沉检测管路的流路与动力供应管路32的流路不同。这样,在血液样本的第一部分血液样本分配给血沉检测模块10(第一部分血液样本被输送至血沉检测管路这一分支)及第二部分血液样本分配给血常规检测模块20之后,第二动力装置33(尤其是第二注射器)通过动力供应管路32驱动采样针31将下一个血液样本抽吸至采样针31,以进行下一轮的血液样本分配准备,从而可以提升批量检测的效率。
在一些实施例中,如图6所示,血常规检测模块20包括光学通道反应池、光学检测单元、第三注射器、第四注射器23及输送管路组件。所述光学通道反应池用于为所述待测样本和试剂提供反应场所,以制备得到光学检测样本。所述光学检测单元包括流动室和光学检测元件,所述流动室具有稀释液入口、样本入口、第一出口和用于供所述光学检测样本在稀释液裹挟下通过的检测区。所述稀释液入口、所述样本入口、所述第一出口分别与所述检测区连通,光学检测元件用于对由所述稀释液裹挟通过所 述检测区的所述光学检测样本进行检测。第三注射器的排量大于第四注射器23的排量。输送管路组件包括第一稀释液输送管路和光学样本准备管路,所述第一稀释液输送管路的一端与稀释液提供装置连接,所述第一稀释液输送管路的另一端与光学检测单元的稀释液入口连接,所述光学样本准备管路的第一端与光学通道反应池连接,所述光学准备管路的第二端与所述光学检测单元的样本入口连接。其中,所述第三注射器与所述光学样本准备管路连接以用于驱动所述光学检测样本从所述光学样本准备管路内输送至所述流动室内。所述第四注射器23与第一稀释液输送管路连接以用于驱动稀释液从所述稀释液提供装置输送至所述流动室,所述第四注射器23还与所述光学样本准备管路连接以用于驱动所述光学检测样本从所述光学通道反应池内输送至所述光学样本准备管路内。
例如,血常规反应池21可以包括用于白细胞检测的第一光学反应池211和/或用于红细胞检测(例如网织红细胞检测)的第二光学反应池212,血常规检测装置包括光学检测单元24。第四注射器23还设置为能将在第一光学反应池211和/或第二光学反应池212中的待测血液样本抽吸到用于光学检测的样本准备管路27中。第三注射器设置为能将在用于光学检测的样本准备管路27中的待测血液样本推送到光学检测单元24中。此外,第二注射器与第三注射器为同一个注射器。
此外,血常规检测模块20还包括:血红蛋白检测单元26,所述血红蛋白检测单元26用于为所述待测样本和试剂提供反应场所以制备得到血红蛋白检测样本、以及用于对所述血红蛋白检测样本进行血红蛋白浓度检测。所述输送管路组件还包括第二稀释液输送管路、第五注射器。为了使得管路整体简洁、小型化,在一些优选的实施例中,第五注射器与第四注射器23为同一个注射器。所述第二稀释液输送管路的一端与所述稀释液提供装置连接,所述第二稀释液输送管路的另一端与所述血红蛋白检测单元26连接,所述第四注射器23还与所述第二稀释液输送管路连接以用于驱动所述稀释液输送至所述血红蛋白检测单元26内。
进一步地,所述血常规检测模块20还包括阻抗检测单元25。所述输送管路组件还包括阻抗计数样本准备管路、第六注射器、第七注射器。为了进一步使得管路整体简洁、小型化,在一些优选的实施例中,第六注射器与第四注射器23为同一个注射器,第七注射器与第三注射器为同一个注射器。所述阻抗计数样本准备管路的一端与所述血红蛋白检测单元26连接,所述阻抗计数样本准备管路的另一端与阻抗检测单元25连接。第四注射器23与所述样本准备管路连接以驱动所述血红蛋白检测单元26中的 样本输送至所述阻抗计数样本准备管路中。第三注射器与所述阻抗计数样本准备管路连接,以驱动所述阻抗计数样本准备管路的样本输送至所述阻抗检测单元25中进行鞘流阻抗检测。
参见图6,血常规反应池21还可以包括用于红细胞和/或血小板检测的阻抗检测反应池213,所述血常规检测装置包括阻抗检测单元25。其中第三注射器与第二注射器为同一个注射器,此时,第四注射器23还设置为能将阻抗检测反应池中的待测血液样本抽吸到用于阻抗检测的样本准备管路中,第二注射器33还设置为能将在所述用于阻抗计数样本准备管路中的待测血液样本推送到阻抗检测单元25中进行鞘流阻抗检测。备选地或附加地,血常规检测装置可以包括血红蛋白检测单元26。此时,第四注射器23还设置为能将待测血液样本抽吸到用于血红蛋白检测的样本准备管路中,第二注射器33还设置为能将在所述用于血红蛋白检测的样本准备管路中的待测血液样本推送到血红蛋白检测单元26中。
优选地,第二注射器33的量程为微升级。更为优选地,第二注射器33的量程在100uL~300uL之间,例如为250uL。由于第二注射器33的量程较大,一方面利于提升第二注射器33的定量精度,另一方面利于针对第二注射器33选择步距更小的电机作为驱动电机,例如,对于250uL的第二注射器33可选择步距为用于100uL注射器的电机步距一半的电机作为驱动电机,这样可同时兼顾定量精度和定量体积的要求;同时电机能高速运行,满足血沉测试时第二注射器33高速吸排流量的需求。优选地,第四注射器23的量程为毫升级,例如为10mL。
本领域技术人员可以理解的,第二注射器33和第四注射器23的上述各个功能可以通过阀控制技术来实现。
在一些备选的实施例中,请参考图7,不同于血沉检测管路11直接与采样针31连接的实施例,血沉检测模块10还包括独立于血常规反应池21的血沉反应池13,血沉反应池13与血沉检测管路11的一端相连接,血沉反应池13用于接收采样针31分配的第一部分血液样本。第一动力装置14、尤其是第一注射器用于驱动血沉反应池13中的第一部分血液样本流动到血沉检测管路11中,并使第一部分血液样本流动到血沉检测管路11内的检测区后停止运动并保持不动,以便血沉光学检测装置12对第一部分血液样本的红细胞沉降率进行检测。
在图7所示的实施例中,本申请提供的样本分析仪的血液分配的一个示例性具体工作过程如下:在控制模块50的控制下驱动装置首先驱动采样针31移动至装载有血 液样本的试管处。
第二动力装置33、尤其是第二注射器给采样针31提供负压,以便采样针31吸取试管中的血液样本。
然后,驱动装置先驱动采样针31移动到血沉反应池13的上方,第二动力装置33给采样针31提供正压,以将采样针31中的血液样本的第一部分滴入到血沉反应池13内。接着,第一动力装置14、尤其是第一注射器将血沉反应池13的血液样本抽吸到血沉检测管路11内,以检测红细胞沉降率。驱动装置再驱动采样针31移动到血常规反应池21的上方,第二动力装置33给采样针31提供正压,以将采样针31中的血液样本的第二部分滴入到血常规反应池21内,以检测血常规参数。
或者,驱动装置先驱动采样针31移动到血常规反应池21的上方,第二动力装置33给采样针31提供正压,以将采样针31中的血液样本的第二部分滴入到血常规反应池21内,以检测血常规参数。驱动装置再驱动采样针31移动到血沉反应池13的上方,第二动力装置33给采样针31提供正压,以将采样针31中的血液样本的第一部分滴入到血沉反应池13内。接着,第一动力装置14将血沉反应池13的血液样本抽吸到血沉检测管路11内,以检测红细胞沉降率。
在本实施例中,采样针31将血液样本分别分配给血沉检测模块10和血常规检测模块20后,即可清洗采样针31,以为采集下一份血液样本做准备。
为了在血沉光学检测装置12检测红细胞沉降率之前使得血沉检测管路11的第一部分血液样本中的红细胞尽可能处于分散状态,以便更加准确地测量红细胞沉降率,采用第一动力装置14往复驱动血沉检测管路11的第一部分血液样本。特别是在第一动力装置14构造为第一注射器的情况下,由于可灵活地设定注射器的运动速度以及运动方向,能够灵活地对血样进行解聚,而且能够节约血量。特别是在使用大流量高速注射器的情况下,可以减少往复次数,以达到解聚效果。
因此,在一些实施例中,控制模块50配置为在血沉检测模块10的检测期间控制血沉检测模块10的第一动力装置14、尤其是第一注射器,使得:
第一动力装置14驱动所述第一部分血液样本在血沉检测管路11中来回流动预定次数;
然后使第一动力装置14在将所述第一部分血液样本驱动到血沉检测管路11的检测区113后立即停止驱动,从而使所述第一部分血液样本在血沉检测管路11的检测区113中保持不动,以便血沉光学检测装置12对第一部分血液样本的红细胞聚集速率进 行检测,从而获得红细胞沉降率。
优选地,从采样针31到第一动力装置14、尤其是第一注射器之间的管路的弹性形变系数应设计成保证在第一动力装置14执行往复解聚时管路内的剪切力达到要求。更优选地,上述管路中也没有转接头,以消除转接头对弹性形变的影响。
在一个具体的实施例中,控制模块50配置为在控制第一动力装置14、尤其是第一注射器驱动第一部分血液样本在血沉检测管路11中来回流动预定次数时使第一动力装置14执行所述预定次数的下列动作:
以第一速度驱动第一部分血液样本在血沉检测管路11中沿第一方向流动第一行程;
然后,以第二速度驱动第一部分血液样本在血沉检测管路11中沿反向于第一方向的第二方向流动第二行程。
优选地,第一速度与第二速度相同,第一行程与第二行程相同。由此能够实现第一动力装置14、尤其是第一注射器的简单控制。
进一步地,控制模块50还可以根据血常规检测模块20测得的血常规参数来控制第一动力装置14、尤其是第一注射器。此时,控制模块50配置为先启动血常规检测模块20对第二部分血液样本的血常规参数检测,在血常规检测模块20结束血常规参数检测后再启动血沉检测模块10对第一部分血液样本的红细胞沉降率检测。然后,控制模块50进一步配置为在血沉检测模块10的检测期间根据血常规检测模块20测得的至少一个血常规参数来调整第一速度、第二速度、第一行程、第二行程以及预定次数中的至少一个。
优选地,血常规检测模块10包括用于检测红细胞压积(HCT)的红细胞检测单元或阻抗检测单元25,所述至少一个血常规参数包括所述红细胞压积。也就是说,由血常规检测模块10的红细胞检测单元获得红细胞比容值并将其传输给控制模块50,控制模块50计算出需要调整的解聚速度(第一速度、第二速度)、行程(第一行程、第二行程)、时间和/或往复次数等并据此控制第一动力装置14、尤其是第一注射器,以便性能更优的解聚效果,进而获得更好的血沉结果一致性。当红细胞压积高时,血液黏度升高,则需要采用更高的解聚动力或者解聚时间,以获得良好的解聚性能。
在第一注射器14和第二注射器33为同一注射器并且血沉检测管路11为动力供应管路32的一部分的情况下,采用往复吸吐解聚的一种示例性流程如下:在控制模块50的控制下,
第一注射器14驱动采样针31吸取血样;
采样针31分配血样给血常规检测模块20,例如采样针31在驱动装置的驱动下运动到血常规反应池上,在第一注射器14的驱动下向血常规反应池中分血;
第一注射器14抽拉血样至ESR检测区113;
第一注射器14根据样本HCT以第一速度在ESR检测区抽拉血样运动第一行程;
第一注射器14根据样本HCT以与第一速度相同的第二速度反向推动血样运动第二行程,第一行程等于第二行程;
第一注射器14来回抽拉和推动血样指定次数,以使血液均匀化并使得红细胞尽可能呈分散状态;
第一注射器14迅速停止,例如在采用步进电机驱动的情况下可以急速地停止第一注射器14,进而急速地停止血样的运动,然后血样中的红细胞在检测区113内发生聚集,引起透光率变化;
对第一注射器14急停后的曲线作积分,与ESR值对应,建立关联关系,最后报告红细胞沉降率值。
图11为上述过程的透光率变化曲线,其中,t1为开始往复吸吐解聚的时刻,t2为第一注射器14的急停时刻。在此,第一注射器14驱动血沉检测管路11中的血液样本往复运动5次。
当然,所述至少一个血常规参数也可以包括关于血液样本是否为乳糜血样本的信息。
在一些实施例中,血沉检测模块10检测第一部分血液样本的红细胞沉降率的时间与血常规检测模块20检测第二部分血液样本的血常规参数的时间有交叠。
与现有技术中将血沉检测模块10和血常规检测模块20串联起来先后进行相应的红细胞沉降率检测和血常规检测不同,本申请实施例提供的样本分析仪包括可分别独立进行检测的血沉检测模块10和血常规检测模块20,无需等待上一检测模块检测结束后才能进行下一检测模块的检测,进而可以使血沉检测模块10检测第一部分血液样本的红细胞沉降率的时间与血常规检测模块20检测第二部分血液样本的血常规参数的时间有交叠,从而使得血沉检测模块10和血常规检测模块20在时间上可以进行并行检测,以缩短检测两个项目的总时长。
而且本申请实施例提供的样本分析仪还设置了用于采集血液样本的采样分配模块30,采样分配模块30可以将血液样本的第一部分分配给血沉检测模块10的血沉检测 管路11以及将血液样本的第二部分分配给血常规检测模块20,即采样分配模块30给血沉检测模块10和血常规检测模块20分别分配同一份血液样本的不同部分,进而使得血沉检测模块10和血常规检测模块20之间可分别独立并行检测,无需等待上一检测模块检测结束后才能进行下一检测模块的检测,总体检测时间短,从而检测效率高。例如,控制模块50可以配置为控制采样分配模块30先给血常规检测模块20分配所述血液样本的一部分作为第二部分血液样本,再给血沉检测模块10分配10所述血液样本的另一部分作为第一部分血液样本。
请参考图12,图12示出本申请一实施例的样本分析仪的工作时序图。采样分配模块30首先采集血液样本,然后将血液样本的第一部分分配给血沉检测模块10。在采样分配模块30将血液样本的第二部分分配给血常规检测模块20的同时,血沉检测模块10开始对血液样本的第一部分进行红细胞沉降率检测。在采样分配模块30将血液样本的第二部分分配给血常规检测模块20之后,血常规检测模块20开始对血液样本的第二部分进行血常规检测。
请参考图13,图13示出本申请一实施例的样本分析仪的另一工作时序图。与图12不同的是,在采样分配模块30将血液样本的第一部分分配给血沉检测模块10以及将血液样本的第二部分分配给血常规检测模块20之后,血沉检测模块10和血常规检测模块20同时开始相应的红细胞沉降率检测和血常规检测。
此外,血沉检测模块10和血常规检测模块20在检测结束后,均需要进行清洗,以进行下一次检测,避免上一份待测血液样本的残留影响下一份待测血液样本的检测结果。采样分配模块30也需要清洗,以采集下一份待测血液样本。
在一些实施例中,上述第一注射器、第二注射器、第三注射器和/或第四注射器23包括步进电机、丝杆螺母组件、缸体和设置在该缸体中的活塞,在所述缸体中容纳液体,所述丝杆螺母组件与所述活塞相连,所述步进电机通过驱动所述丝杆螺母组件来使所述活塞在所述缸体中运动。
在一些实施例中,请参考图1、3和图7,血沉光学检测装置12包括光发射器121和光接收器122。光发射器121和光接收器122分别位于检测管路11的检测区的两侧。光发射器121用于照射检测区内的血液样本的第一部分。光接收器122用于检测光发射器121发射的光经照射第一部分血液样本后的变化量(例如接收被第一部分血液样本透射的光和/或散射的光),通过检测接收到的光的多少来检测第一部分血液样本对光的吸收或散射程度。
在启动血沉检测模块10进行检测时,第一动力装置14驱动第一部分血液样本流动到检测管路11内,并使第一部分血液样本流动到检测区后停止运动,然后使第一部分血液样本保持不动。光发射器121照射检测区内的第一部分血液样本,光接收器122检测光发射器121发射的光经照射检测区内的第一部分血液样本后散射或透射的程度,即,通过检测光接收器122接收到的光的量来检测红细胞沉降率。
由于血液样本中的红细胞在聚集(形成缗钱状)的过程中,照射在血液样本上的光的散射或透射会发生变化,因此,就能够通过检测接收经照射血液样本后透射或散射光的量来检测第一部分血液样本对光散射或吸收的程度,从而测出红细胞沉降率。
光接收器122的数量为一个或多个,在此不做限定。
在本申请一实施例中,检测管路11由软管制成,检测管路11的检测区由透光材料制成。因此,检测管路11可以任意灵活设置,例如可以竖直、水平或倾斜设置,也可以弯曲设置,此不做限定。
在本申请一实施例中,检测管路11构成为毛细管。
在本申请一实施例中,血沉检测管路11由FEP(Fluorinated ethylene propylene,氟乙烯丙烯共聚物)制成。当血沉检测管路11为动力供应管路32的一部分时,动力供应管路32由FEP制成。
由于本申请提供的样本分析仪设置的血沉检测模块10是通过检测血液样本中的红细胞在聚集的过程中对光的散射或吸收程度来检测红细胞沉降率的(即通过检测红细胞聚集速度来实现ESR检测),相对于等待红细胞根据重力作用自然沉降的检测方式(魏氏法),检测速度更快,能够在很短的时间(例如20s)内完成红细胞沉降率检测,而且耗血量更少,只有约100uL。此外,对于魏氏法而言,必须使硬质检测管直线设置并且竖直或稍微倾斜设置,由此容易使得仪器体积过大。而本申请实施例提供的检测管路11的设置角度不受限制,能够根据样本分析仪内部其他结构的设置做出灵活调整,从而能够减小样本分析仪的整体体积,样本分析仪占用空间小。
此外,在一些实施例中,如图2所示,血沉检测模块10还可以包括与控制模块50通信连接的设置在血沉检测管路11的检测区113附近的温度传感器15和加热器16,温度传感器15用于检测血沉检测管路11中的血液样本的温度值并将该温度值传输给控制模块50,控制模块50配置用于当所述温度值小于预定温度时控制加热器16对血沉检测管路11中的血液样本进行加热。
本申请第二方面还提供一种样本分析方法,如图14所示,所述样本分析方法可以包括下列步骤:
采样分配步骤S200:由采样分配模块30的第二注射器通过动力供应管路32驱动采样针采集样本容器100中的血液样本,并且将血液样本的第一部分分配给血沉检测模块10以及将血液样本的第二部分分配给血常规检测模块20;
红细胞沉降率检测步骤S210:由所述血沉检测模块10的第一注射器将所述血液样本的第一部分抽吸到所述血沉检测模块10的血沉检测管路中,由所述血沉检测模块10的血沉光学检测装置对所述血液样本的第一部分进行光照射并检测所述血液样本的第一部分对光的吸收或散射程度,以检测所述血液样本的第一部分的红细胞沉降率。其中,所述血沉检测管路与所述动力供应管路相互独立设置,所述第二注射器与所述第一注射器不是同一个注射器。
血常规检测步骤S220:血常规检测模块20对所述血液样本的第二部分进行血常规参数检测。
优选地,在红细胞沉降率检测步骤S210中,由血沉检测模块10的第一动力装置(也可以称为血沉动力装置)14、尤其是第一注射器将所述血液样本的第一部分抽吸到血沉检测模块10的血沉检测管路11中,由血沉检测模块的血沉光学检测装置12对所述血液样本的第一部分进行光照射并检测所述血液样本的第一部分对光的吸收或散射程度,以检测所述血液样本的第一部分的红细胞沉降率。
在一些实施例中,在红细胞沉降率检测步骤S210中,血沉动力装置在将所述血液样本的第一部分驱动到血沉检测管路11的检测区113后立即停止驱动,从而使所述血液样本的第一部分在检测区中113保持不动,以便血沉光学检测装置12对所述血液样本的第一部分的红细胞聚集速率进行检测,从而获得红细胞沉降率。
在一些实施例中,如图15所示,采样分配步骤S200包括:
由采样分配模块30的驱动装置驱动采样分配模块30的采样针31运动至样本容器100;
由采样分配模块30的第二动力装置(也可以称为采样动力装置)33、尤其是第二注射器通过动力供应管路32驱动采样针31吸取样本容器100中的血液样本;
由所述驱动装置驱动采样针31运动至血常规检测模块20;
由第二动力装置33通过动力供应管路32驱动采样针31将所述血液样本的第二部分分配给血常规检测模块20。
S300,驱动装置驱动采样针31运动至样本容器100,由第一注射器14通过动力供应管路32驱动采样针31吸取样本容器100中的血液样本。
S310,驱动装置驱动采样针31移动到血常规反应池21的上方,由第一注射器14通过动力供应管路32驱动采样针31将所采集的血液样本的一部分分配给血常规反应池21,以检测血常规参数。
S320,第一注射器14驱动采样针31内剩余的血液样本流动到与采样针31的一端直接连接的血沉检测管路11内,以检测红细胞沉降率。
S330,在检测完红细胞沉降率后,清洗采样针31。
在该实施例中,S300、S310、S320以及S330按顺序先后实施。
在一些实施例中,在血常规检测步骤S220中,在对血常规参数进行检测之前,由第三注射器23通过稀释液供应管路22将稀释液抽吸到血常规检测模块20中,以便对所述血液样本的第二部分进行处理。
在此,构造为第一注射器的第一动力装置14与第三注射器23也可以为同一注射器。
在一些实施例中,在红细胞沉降率检测步骤S210中,在将所述血液样本的第一部分抽吸到血沉检测管路11中之后并在血沉光学检测装置12对所述血液样本的第一部分进行红细胞沉降率检测之前,包括:
第一动力装置14、尤其是第一注射器驱动所述血液样本的第一部分在血沉检测管路11中来回流动预定次数;
然后使第一动力装置14在将所述血液样本的第一部分驱动到血沉检测管路11的检测区113后立即停止驱动,从而使所述血液样本的第一部分在血沉检测管路11的检测区113中保持不动,以便血沉光学检测装置12对所述血液样本的第一部分的红细胞聚集速率进行检测,从而获得红细胞沉降率。
进一步地,第一动力装置14、尤其是第一注射器驱动所述血液样本的第一部分在血沉检测管路11中来回流动预定次数包括重复所述预定次数的下列步骤:
第一动力装置14以第一速度驱动所述血液样本的第一部分在血沉检测管路11中沿第一方向流动第一行程;
然后,第一动力装置14以第二速度驱动所述血液样本的第一部分在血沉检测管路11中沿反向于第一方向的第二方向流动第二行程。
优选地,所述第一速度与所述第二速度相同,所述第一行程与所述第二行程相同。
进一步地还可以根据血常规参数来调整血沉检测过程。此时,先启动血常规检测模块20的血常规参数检测,在血常规检测模块20结束血常规参数检测后再启动血沉检测模块10的红细胞沉降率检测。在红细胞沉降率检测步骤S210过程中,第一动力装置14、尤其是第一注射器驱动所述血液样本的第一部分在血沉检测管路11中来回流动预定次数包括:根据血常规检测模块20测得的至少一个血常规参数来调整所述第一速度、所述第二速度、所述第一行程、所述第二行程以及所述预定次数中的至少一个。特别有利的是,所述至少一个血常规参数包括红细胞压积。
在一些实施例中,血沉检测模块10启动检测血液样本的第一部分的红细胞沉降率的时间与血常规检测模块20启动检测第二部分血液样本的血常规参数的时间相同或不相同。
在一些实施例中,所述样本分析方法包括:
先启动血沉检测模块10对血液样本的第一部分的红细胞沉降率的检测,后启动血常规检测模块20对血液样本的第二部分的血常规参数的检测;
或先启动血常规检测模块20对血液样本的第二部分的血常规参数的检测,后启动血沉检测模块10对血液样本的第一部分的红细胞沉降率的检测。
在一些实施例中,采样分配步骤S200包括:
采样分配模块30采集血液样本。
采样分配模块30先将所采集的血液样本的一部分分配给血沉检测模块10、再将所采集的血液样本的另一部分分配给血常规检测模块20;
或采样分配模块30先将所采集的血液样本的一部分分配给血常规检测模块20、再将所采集的血液样本的另一部分分配给血沉检测模块10。
在一些实施例中,采样分配步骤S200包括:
采样分配模块30先采集血液样本的一部分并将采集到的血液样本的一部分分配给血沉检测模块10或血常规检测模块20。
采样分配模块30再采集血液样本的另一部分并采集到的血液样本的另一部分分配给血常规检测模块20或血沉检测模块10。
优选地,采样分配模块30先给血常规检测模块20分配血液样本并启动血常规检测,然后采样分配模块30再给血沉检测模块10分配血液样本并启动红细胞沉降率检测。由于本申请所使用的ESR检测方法速度快于血常规检测速度,因此先给血常规检测模块20分配血液样本并启动血常规检测有利于尽快出总检测报告。
在一些实施例中,采样分配步骤S200包括:
驱动装置驱动采样针31运动至样本容器,以采集样本容器中的血液样本。
驱动装置驱动采样针31分别运动至血沉检测模块10和血常规检测模块20,以将血液样本的第一部分分配给血沉检测模块10以及将血液样本的第二部分分配给血常规检测模块20。
在一些备选的实施例中,请参考图16,样本分析方法包括:
S400,驱动装置驱动采样针31运动至样本容器,以采集样本容器中的血液样本。
S410,驱动装置驱动采样针31移动到血沉反应池13的上方,采样针31将第一部分血液样本滴入到血沉反应池13内。
S420,第一动力装置14、尤其是第一注射器驱动血沉反应池13内的第一部分血液样本流入到血沉检测管路11内,并使第一部分血液样本流动到检测区后停止运动并保持不动。
S430,血沉光学检测装置12对血沉检测管路11内的第一部分血液样本进行光照,并通过检测第一部分血液样本对光的吸收或散射程度来检测红细胞沉降率。
S440,驱动装置驱动采样针31移动到血常规反应池21的上方,采样针31将第二部分血液样本滴入到血常规反应池21内。
S450,血常规检测装置对血常规反应池21内的第二部分血液样本进行血常规参数检测。
在本申请实施例中,步骤S410在步骤S440之前或之后实施。步骤S420和S430在步骤S450之前或之后实施。
进一步地,在步骤S410和步骤S440之后,样本分析方法还包括:清洗采样针31。
在一些实施例中,血沉检测模块10检测血液样本的第一部分的红细胞沉降率的时间与血常规检测模块20检测血液样本的第二部分的血常规参数的时间有交叠,从而使得血沉检测模块10和血常规检测模块20在时间上可以进行并行检测,以缩短检测两个项目的总时长。此时,通过采样分配模块30将同一份血液样本的不同部分(即血液样本的第一部分与血液样本的第二部分完全不同)分配给血沉检测模块10和血常规检测模块20,使得血沉检测模块10和血常规检测模块20之间可分别独立并行检测,无需等上一检测模块检测结束后才能进行下一检测模块的检测,总体检测时间短,从而提高了检测效率。
进一步地,所述样本分析仪方法还包括根据所述血常规参数的结果来修正所述红 细胞沉降率。由此能够获得更加准确的红细胞沉降率检测结果。
本申请第二方面提供的样本分析方法尤其是应用于上述本申请第一方面提供的样本分析仪。本申请的样本分析方法的优点和更多实施例可参考上述对样本分析仪的描述,在此不再赘述。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上在说明书、附图以及权利要求中所提及的特征,只要在本申请内是有意义的,均可任意相互组合。针对按照本申请的样本分析仪所描述的特征和优点以相应的方式适用于按照本申请的样本分析方法,反之亦然。
以上仅是本申请的具体实施方式,使本领域技术人员能够理解或实现本申请。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (25)

  1. 一种样本分析仪,其特征在于,包括血沉检测模块、血常规检测模块和采样分配模块;
    所述采样分配模块设置用于采集血液样本,并将所述血液样本的第一部分分配给所述血沉检测模块以及将所述血液样本的第二部分分配给所述血常规检测模块;
    所述血沉检测模块包括血沉检测管路和血沉光学检测装置,所述血沉检测管路设置用于为被分配的第一部分血液样本提供检测场所,所述血沉光学检测装置设置用于对分配至所述血沉检测管路中的第一部分血液样本进行光照射并且通过检测所述第一部分血液样本对光的吸收或散射程度来检测所述血液样本的红细胞沉降率;
    所述血常规检测模块包括血常规反应池和血常规检测装置,所述血常规反应池设置用于为被分配的第二部分血液样本提供与试剂反应的场所,所述血常规检测装置设置用于对所述血常规反应池中所述第二部分血液样本与试剂反应得到的待测血液样本进行血常规检测;
    其中,所述采样分配模块包括采样针、动力供应管路以及第二注射器,所述第二注射器通过所述动力供应管路与所述采样针的远离针头的一端连接,所述第二注射器设置用于通过所述动力供应管路驱动所述采样针抽吸所述血液样本,所述血沉检测模块还包括与所述血沉检测管路相连接的第一注射器,所述第一注射器设置用于驱动所述第一部分血液样本进入至所述血沉检测管路,并在所述血沉检测管路中流动;所述血沉检测管路与所述动力供应管路相互独立设置,所述第二注射器与所述第一注射器不是同一个注射器。
  2. 根据权利要求1所述的样本分析仪,其特征在于,所述第二注射器通过所述动力供应管路驱动所述采样针抽吸或排放所述血液样本,以将所述血液样本的第一部分分配给所述血沉检测模块以及将所述血液样本的第二部分分配给所述血常规检测模块。
  3. 根据权利要求1所述的样本分析仪,其特征在于,所述采样分配模块还包括分血阀,所述动力供应管路包括前管路和后管路,所述分血阀通过前管路与所述采样针连接并且通过后管路与所述第二注射器连接,所述第二注射器用于驱动所述采样针采集血液样本并且将所采集的血液样本通过所述前管路抽取到所述分血阀中,其中所述分血阀用于至少将所述血液样本的第二部分血液样本分配给所述血常规检测模块。
  4. 根据权利要求1至3任一项所述的样本分析仪,其特征在于,所述血沉检测管路从所述动力供应管路分支而出,并且所述血沉检测管路的第一端通过所述动力供应管路与所述采样针的远离针头的一端连接。
  5. 根据权利要求1至3任一项所述的样本分析仪,其特征在于,所述采样针的侧壁开设有一侧开口,所述侧开口与所述采样针内腔连通,所述血沉检测管路的第一端与所述采样针的侧开口连接。
  6. 根据权利要求1至3任一项所述的样本分析仪,其特征在于,所述采样针的远离针头的一端设有三通接头,所述三通接头包括第一接口、第二接口及第三接口,所述动力供应管路与所述第一接口连接,所述血沉检测管路与所述第二接口连接,所述采样针与所述第三接口连接。
  7. 根据权利要求3所述的样本分析仪,其特征在于,所述分血阀包括:
    进液口,通过所述前管路与所述采样针相连接,所述第二注射器驱动所述采样针采集的血液样本通过所述进液口流入到所述分血阀内;
    第一分液口,与所述血沉检测管路相连接,所述第一分液口用于所述分血阀分配的所述第一部分血液样本流入到所述血沉检测管路内;
    第二分液口,与所述血常规检测池相连接,所述第二分液口用于所述分血阀分配的所述第二部分血液样本流入到所述血常规检测池内;
    出液口,通过所述后管路与所述第二注射器相连接,所述第二注射器驱动所述分血阀中的血液样本从所述出液口流动到所述后管路中。
  8. 根据权利要求1至7中任一项所述的样本分析仪,其特征在于,所述血常规检测模块包括:
    光学通道反应池,所述光学通道反应池用于为所述待测样本和试剂提供反应场所,以制备得到光学检测样本;
    光学检测单元,所述光学检测单元包括流动室和光学检测元件,所述流动室具有稀释液入口、样本入口、第一出口和用于供所述光学检测样本在稀释液裹挟下通过的检测区,所述稀释液入口、所述样本入口、所述第一出口分别与所述检测区连通,光学检测元件用于对由所述稀释液裹挟通过所述检测区的所述光学检测样本进行检测;
    第三注射器及排量大于所述第三注射器的第四注射器;
    输送管路组件,包括第一稀释液输送管路和光学样本准备管路,所述第一稀释液输送管路的一端与稀释液提供装置连接,所述第一稀释液输送管路的另一端与光学检 测单元的稀释液入口连接,所述光学样本准备管路的第一端与光学通道反应池连接,所述光学样本准备管路的第二端与所述光学检测单元的样本入口连接;
    其中,所述第三注射器与所述光学样本准备管路连接以用于驱动所述光学检测样本从所述光学样本准备管路内输送至所述流动室内;
    所述第四注射器与第一稀释液输送管路连接以用于驱动稀释液从所述稀释液提供装置输送至所述流动室,所述第四注射器还与所述光学样本准备管路连接以用于驱动所述光学检测样本从所述光学通道反应池内输送至所述光学样本准备管路内。
  9. 根据权利要求8所述的样本分析仪,其特征在于,所述血常规检测模块还包括:血红蛋白检测单元,所述血红蛋白检测单元用于为所述待测样本和试剂提供反应场所以制备得到血红蛋白检测样本、以及用于对所述血红蛋白检测样本进行血红蛋白浓度检测;所述输送管路组件还包括第二稀释液输送管路、第五注射器,所述第二稀释液输送管路的一端与所述稀释液提供装置连接,所述第二稀释液输送管路的另一端与所述血红蛋白检测单元连接,所述第五注射器还与所述第二稀释液输送管路连接,以用于驱动所述稀释液输送至所述血红蛋白检测单元内。
  10. 根据权利要求9所述的样本分析仪,其特征在于,所述第五注射器与所述第四注射器为同一个注射器。
  11. 根据权利要求9所述的样本分析仪,其特征在于,所述血常规检测模块包括阻抗检测单元;所述输送管路组件还包括阻抗计数样本准备管路、第六注射器、第七注射器,所述阻抗计数样本准备管路的一端与所述血红蛋白检测单元连接,所述阻抗计数样本准备管路的另一端与阻抗检测单元连接,所述第六注射器通过所述阻抗计数样本准备管路与所述血红蛋白检测单元连接,用于驱动所述血红蛋白检测单元中的样本输送至所述阻抗计数样本准备管路中;所述第七注射器与所述阻抗计数样本准备管路连接以驱动所述阻抗计数样本准备管路中的样本进入所述阻抗技术检测装置中进行鞘流阻抗检测。
  12. 根据权利要求11所述的样本分析仪,其特征在于,所述第六注射器与所述第四注射器为同一个注射器,所述第七注射器与所述第三注射器为同一个注射器。
  13. 根据权利要求8至12中任一项所述的样本分析仪,其特征在于,所述第二注射器和所述第三注射器为同一注射器。
  14. 根据权利要求1至13中任一项所述的样本分析仪,其特征在于,所述样本分析仪还包括与所述血沉检测模块、所述血常规检测模块和所述采样分配模块控制连接 的控制模块。
  15. 根据权利要求14所述的样本分析仪,其特征在于,所述控制模块配置为控制所述血沉检测模块的第一注射器,使得:
    所述第一注射器驱动所述第一部分血液样本在所述血沉检测管路中来回流动预定次数;
    然后使所述第一注射器停止,从而使所述第一部分血液样本在所述血沉检测管路的检测区中保持不动,以便所述血沉光学检测装置对所述第一部分血液样本的红细胞聚集速率进行检测。
  16. 根据权利要求15所述的样本分析仪,其特征在于,所述控制模块配置为在控制所述第一注射器驱动所述第一部分血液样本在所述血沉检测管路中来回流动预定次数时使所述第一注射器执行所述预定次数的下列动作:
    以第一速度驱动所述第一部分血液样本在所述血沉检测管路中沿第一方向流动第一行程;
    然后,以第二速度驱动所述第一部分血液样本在所述血沉检测管路中沿反向于第一方向的第二方向流动第二行程。
  17. 根据权利要求16所述的样本分析仪,其特征在于,所述第一速度与所述第二速度相同,所述第一行程与所述第二行程相同。
  18. 根据权利要求17所述的样本分析仪,其特征在于,所述血常规检测模块包括用于检测红细胞压积的红细胞检测单元;
    所述第一速度、所述第二速度、所述第一行程和所述第二行程中的至少一个根据所述红细胞压积来设置。
  19. 根据权利要求14至18中任一项所述的样本分析仪,其特征在于,所述控制模块配置为当所述采样分配模块将前一个样本的第一部分血液样本分配给所述血沉检测模块、将第二部分血液样本分别分配给所述血常规检测模块后,控制所述采样分配模块吸取下一个样本并进行下一轮血液样本分配。
  20. 根据权利要求1至19中任一项所述的样本分析仪,其特征在于,所述第一注射器和/或所述第二注射器和/或所述第三注射器和/或第四注射器包括步进电机、丝杆螺母组件、缸体和设置在该缸体中的活塞,在所述缸体中容纳液体,所述丝杆螺母组件与所述活塞相连,所述步进电机通过驱动所述丝杆螺母组件来使所述活塞在所述缸体中运动。
  21. 一种样本分析方法,其特征在于,所述样本分析方法包括:
    采样分配步骤:由采样分配模块的第二注射器通过动力供应管路驱动采样针吸取所述样本容器中的血液样本,并且将所述血液样本的第一部分分配给血沉检测模块以及将所述血液样本的第二部分分配给血常规检测模块;
    红细胞沉降率检测步骤:由所述血沉检测模块的第一注射器将所述血液样本的第一部分抽吸到所述血沉检测模块的血沉检测管路中,由所述血沉检测模块的血沉光学检测装置对所述血液样本的第一部分进行光照射并检测所述血液样本的第一部分对光的吸收或散射程度,以检测所述血液样本的第一部分的红细胞沉降率,其中,所述血沉检测管路与所述动力供应管路相互独立设置,所述第二注射器与所述第一注射器不是同一个注射器;
    血常规检测步骤:由所述血常规检测模块对所述血液样本的第二部分的血常规参数进行检测。
  22. 根据权利要求21所述的样本分析方法,其特征在于,在所述血常规检测步骤中包括光学检测步骤,所述光学检测步骤包括:通过第一试剂提供装置为光学通道反应池提供试剂,以通过所述光学通道反应池制备光学检测样本;通过第三注射器驱动所述光学检测样本从所述光学通道反应池内输送至光学样本准备管路内;通过所述第三注射器驱动稀释液从所述稀释液提供装置输送至流动室内,同时通过第四注射器驱动所述光学检测样本输送至所述流动室内,以使所述稀释液裹挟所述光学检测样本通过所述流动室的检测区;通过光学检测元件对由所述稀释液裹挟通过所述检测区的所述光学检测样本进行检测。
  23. 根据权利要求22所述的样本分析方法,其特征在于,在所述血常规检测步骤中包括血红蛋白检测步骤,所述血红蛋白检测步骤包括通过所述第三注射器将第二试剂提供装置提供的稀释液输送至所述血红蛋白检测单元提供试剂,以通过所述血红蛋白检测单元制备血红蛋白检测样本;通过所述血红蛋白检测单元对所述血红蛋白检测样本进行血红蛋白浓度检测。
  24. 根据权利要求23所述的样本分析方法,其特征在于,在所述血常规检测步骤中包括阻抗计数检测步骤,所述阻抗计数检测步骤包括:通过所述血红蛋白检测单元制备所述阻抗计数检测样本;通过所述第三注射器驱动所述阻抗计数检测样本从所述血红蛋白检测单元输送至阻抗计数样本准备管路;通过所述第四注射器驱动所述阻抗计数检测样本从所述阻抗计数样本准备管路输送至所述阻抗计数检测装置内进行鞘流阻 抗检测。
  25. 根据权利要求21至24中任一项所述的样本分析方法,其特征在于,所述第二注射器和所述第三注射器为同一注射器。
PCT/CN2020/119668 2019-11-18 2020-09-30 样本分析仪及样本分析方法 WO2021098398A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080072922.7A CN114556082A (zh) 2019-11-18 2020-09-30 样本分析仪及样本分析方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2019/119181 2019-11-18
PCT/CN2019/119181 WO2021097610A1 (zh) 2019-11-18 2019-11-18 样本分析仪及样本分析方法

Publications (1)

Publication Number Publication Date
WO2021098398A1 true WO2021098398A1 (zh) 2021-05-27

Family

ID=72536612

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/CN2019/119181 WO2021097610A1 (zh) 2019-11-18 2019-11-18 样本分析仪及样本分析方法
PCT/CN2020/119436 WO2021098396A1 (zh) 2019-11-18 2020-09-30 样本分析仪及样本分析方法
PCT/CN2020/119424 WO2021098394A1 (zh) 2019-11-18 2020-09-30 样本分析仪及样本分析方法
PCT/CN2020/119668 WO2021098398A1 (zh) 2019-11-18 2020-09-30 样本分析仪及样本分析方法

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/CN2019/119181 WO2021097610A1 (zh) 2019-11-18 2019-11-18 样本分析仪及样本分析方法
PCT/CN2020/119436 WO2021098396A1 (zh) 2019-11-18 2020-09-30 样本分析仪及样本分析方法
PCT/CN2020/119424 WO2021098394A1 (zh) 2019-11-18 2020-09-30 样本分析仪及样本分析方法

Country Status (3)

Country Link
EP (1) EP4063825A4 (zh)
CN (4) CN111712703B (zh)
WO (4) WO2021097610A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021097610A1 (zh) * 2019-11-18 2021-05-27 深圳迈瑞生物医疗电子股份有限公司 样本分析仪及样本分析方法
CN114441390A (zh) * 2020-10-30 2022-05-06 深圳市瑞图生物技术有限公司 一种并发时序控制方法及精子质量分析仪、存储介质
CN116183452A (zh) * 2021-11-25 2023-05-30 深圳迈瑞生物医疗电子股份有限公司 血沉测量系统、设备、方法和计算机可读存储介质
CN116818618A (zh) * 2022-03-21 2023-09-29 深圳迈瑞生物医疗电子股份有限公司 血液样本分析仪及其控制方法
FR3134627A1 (fr) 2022-04-15 2023-10-20 Horiba Abx Sas Dispositif d'étalement ou coloration et de détermination de vitesse de sédimentation
FR3134625A1 (fr) * 2022-04-15 2023-10-20 Horiba Abx Sas Dispositif et méthode de détermination de vitesse de sédimentation
FR3134626A1 (fr) 2022-04-15 2023-10-20 Horiba Abx Sas Dispositif et méthode de numération de formule sanguine et de détermination de vitesse de sédimentation
CN118050290A (zh) * 2022-11-16 2024-05-17 深圳迈瑞生物医疗电子股份有限公司 血沉检测装置以及血沉检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1864060A (zh) * 2003-09-03 2006-11-15 塞尔分析系统有限公司 用于血液分析的集成仪器和相关方法
CN101529243A (zh) * 2006-10-26 2009-09-09 贝克曼考尔特公司 用于在自动分析仪中吸出和分配液体的装置
CN102539792A (zh) * 2010-12-31 2012-07-04 深圳迈瑞生物医疗电子股份有限公司 一种血样吸取检测方法、装置及血液处理设备
CN208621631U (zh) * 2018-04-25 2019-03-19 深圳迈瑞生物医疗电子股份有限公司 一种样本分析系统
CN109991430A (zh) * 2017-12-30 2019-07-09 深圳迈瑞生物医疗电子股份有限公司 样本分析仪及样本分析方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2942466A1 (de) * 1979-10-20 1981-04-30 Ernst Leitz Wetzlar Gmbh, 6330 Wetzlar Verfahren zur bestimmung eines einer blutsenkung entsprechenden messwertes
US4848900A (en) * 1987-06-22 1989-07-18 Kuo Cheng Deng Computerized automatic monitoring and recording system of erythrocyte sedimentation process
JP2579788Y2 (ja) * 1992-04-02 1998-08-27 テルモ株式会社 血沈測定器具
CN2123074U (zh) * 1992-04-03 1992-11-25 天津中医学院 激光细胞聚集测定仪
JPH064668U (ja) * 1992-06-22 1994-01-21 テルモ株式会社 血沈測定台
JPH0622959U (ja) * 1992-06-22 1994-03-25 テルモ株式会社 血沈測定器具用吸引具および血沈測定器具
US5891734A (en) * 1994-08-01 1999-04-06 Abbott Laboratories Method for performing automated analysis
US6296450B1 (en) * 1999-09-03 2001-10-02 Baxter International Inc. Systems and methods for control of pumps employing gravimetric sensing
AU6120799A (en) * 1999-09-27 2001-04-30 Adelio Missaglia Apparatus for testing blood samples
IT1311616B1 (it) * 1999-11-08 2002-03-14 Sire Analytical Syst Srl Procedimento per la determinazione della velocita' di sedimentazionedel sangue e di altri parametri ad essa correlati, e relativo
DE60139056D1 (de) * 2000-09-18 2009-08-06 Sysmex Corp Blutzellen-Detektor, Blutanalysegerät und Blutanalyseverfahren unter Verwendung des Detektors
US6813949B2 (en) * 2001-03-21 2004-11-09 Mirant Corporation Pipeline inspection system
US7207939B2 (en) * 2002-10-03 2007-04-24 Coulter International Corp. Apparatus and method for analyzing a liquid in a capillary tube of a hematology instrument
ITFI20030273A1 (it) * 2003-10-28 2005-04-29 Diesse Diagnostica Senese S P A Metodo e dispositivo per eseguire analisi sulla velocita'
JP4761109B2 (ja) * 2005-01-26 2011-08-31 学校法人日本大学 核の検査装置及び方法
US7481978B2 (en) * 2005-03-23 2009-01-27 Beckman Coulter, Inc. Apparatus for aspirating liquids from sealed containers
ITUD20050118A1 (it) * 2005-07-13 2007-01-14 Sire Analytical Systems Srl Procedimento per la taratura di macchine per l' analisi di parametri del sangue connessi alla densita' del sangue, quali la velocita' di eritrosedimentazione e/o di aggregazione dei globuli rossi
ITUD20060111A1 (it) * 2006-04-28 2007-10-29 Sire Analytical Syst Srl Metodo per la rilevazione di stati di anemia presenti in un campione ematico
CN201303943Y (zh) * 2008-10-15 2009-09-09 深圳市普康电子有限公司 血细胞分析仪采样针血样分配装置
US9279800B2 (en) * 2012-01-13 2016-03-08 Alcor Scientific, Inc. Apparatus, method, system for the determination of the aggregation rate of red blood cells
CN110187089B (zh) * 2012-07-18 2021-10-29 赛拉诺斯知识产权有限责任公司 快速测量小容量样本中有形血液成分的沉降率
WO2014201626A1 (zh) * 2013-06-19 2014-12-24 深圳市亚辉龙生物科技有限公司 全自动红细胞沉降速率分析仪及其检测方法
CN104297108B (zh) * 2013-07-16 2017-09-05 成都深迈瑞医疗电子技术研究院有限公司 粒子分析仪及其液路系统
CN104297497B (zh) * 2013-07-16 2016-02-24 成都深迈瑞医疗电子技术研究院有限公司 血液分析方法、控制装置和血液细胞分析仪
JP6360696B2 (ja) * 2014-03-18 2018-07-18 日本光電工業株式会社 血液検査装置および血液検査方法
CN107656085B (zh) * 2014-07-01 2021-04-09 深圳迈瑞生物医疗电子股份有限公司 一种血液检测仪
CN104181319A (zh) * 2014-09-11 2014-12-03 长春星锐智能化科技有限公司 一种用于全自动化学分析仪的镉柱还原检测装置
CN104458519B (zh) * 2014-12-08 2017-01-18 重庆南方数控设备有限责任公司 获取血沉数据的精确检测方法
CN104713816B (zh) * 2015-02-04 2017-06-23 深圳市帝迈生物技术有限公司 一种全血crp检测装置与方法、及一种血液细胞分析仪
CN104833813B (zh) * 2015-05-12 2017-03-29 江苏英诺华医疗技术有限公司 一种同时具有血液常规和生化检测功能的分析仪
CN205317792U (zh) * 2015-12-08 2016-06-15 重庆南方数控设备有限责任公司 一种自动精确化检测的魏氏法血沉仪
US10648995B2 (en) * 2015-12-18 2020-05-12 Abbott Laboratories Systems and methods for automated analysis
CN106248579A (zh) * 2016-08-31 2016-12-21 马东阁 一种oled血液检测设备
JP7037324B2 (ja) * 2017-01-27 2022-03-16 日本光電工業株式会社 炎症マーカー測定方法、炎症マーカー測定装置、炎症マーカー測定プログラム、および当該プログラムを記録した記録媒体
CN108732338A (zh) * 2017-04-17 2018-11-02 深圳市帝迈生物技术有限公司 一种可兼容白细胞五分类和白细胞三分群的血细胞分析仪及测试方法
CN107884563A (zh) * 2017-11-26 2018-04-06 张延艳 一种用于血液分析的医疗装置及其使用方法
CN208091861U (zh) * 2018-04-20 2018-11-13 重庆南方数控设备有限责任公司 一种血沉检测装置
CN109932519A (zh) * 2019-04-19 2019-06-25 深圳市理邦精密仪器股份有限公司 血液检测装置
CN110251116A (zh) * 2019-07-15 2019-09-20 河北医科大学第一医院 一种血管通路流量检测仪及其计算方法
WO2021097610A1 (zh) * 2019-11-18 2021-05-27 深圳迈瑞生物医疗电子股份有限公司 样本分析仪及样本分析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1864060A (zh) * 2003-09-03 2006-11-15 塞尔分析系统有限公司 用于血液分析的集成仪器和相关方法
CN101529243A (zh) * 2006-10-26 2009-09-09 贝克曼考尔特公司 用于在自动分析仪中吸出和分配液体的装置
CN102539792A (zh) * 2010-12-31 2012-07-04 深圳迈瑞生物医疗电子股份有限公司 一种血样吸取检测方法、装置及血液处理设备
CN109991430A (zh) * 2017-12-30 2019-07-09 深圳迈瑞生物医疗电子股份有限公司 样本分析仪及样本分析方法
CN208621631U (zh) * 2018-04-25 2019-03-19 深圳迈瑞生物医疗电子股份有限公司 一种样本分析系统

Also Published As

Publication number Publication date
EP4063825A1 (en) 2022-09-28
CN114585901A (zh) 2022-06-03
WO2021098396A1 (zh) 2021-05-27
CN111712703A (zh) 2020-09-25
WO2021098394A1 (zh) 2021-05-27
CN114556081A (zh) 2022-05-27
EP4063825A4 (en) 2023-01-25
CN114556082A (zh) 2022-05-27
CN111712703B (zh) 2024-04-12
WO2021097610A1 (zh) 2021-05-27

Similar Documents

Publication Publication Date Title
WO2021098398A1 (zh) 样本分析仪及样本分析方法
US20230185070A1 (en) Automated microscopic cell analysis
US8821791B2 (en) Monitoring method, monitoring apparatus and liquid sample analyzer
CN105784571B (zh) 一种特定反应蛋白crp的双池子测量方法及装置
US8921099B2 (en) Cell analyzer, cell processing apparatus, specimen preparing apparatus
CN109959549A (zh) 样本检测方法及样本分析仪
US20170003204A1 (en) Smear preparation apparatus, blood sample processing system, and method of washing blood processing unit of the smear preparation apparatus
JP2018096915A (ja) 自動分析装置
CN108362615A (zh) 一种分析检测用装置及细胞或颗粒检测方法
CN111886489B (zh) 样本分析仪及样本分析方法
CN111812343B (zh) 一种基于免疫比浊法测量的液路系统及其控制方法
CN115541459A (zh) 样本分析仪及样本分析方法
EP4249922A1 (en) Blood sample analyzer and control method therefor
CN219201334U (zh) 一种流式荧光检测液路系统
US20240201217A1 (en) Method of washing a fluidic system of an in-vitro diagnostic analyzer
EP4187228A1 (en) System, apparatus, and method for measuring erythrocyte sedimentation rate
CN213337218U (zh) 细胞分析仪
CN115615880A (zh) 样本分析仪
CN114486690A (zh) 血液细胞分析仪及血液细胞的分析方法
CN115824965A (zh) 一种流式荧光检测液路系统
JP2024087800A (ja) 体外診断分析装置の流体システムを洗浄する方法
CN118112226A (zh) 血液检测方法、血液检测设备
CN116165108A (zh) 血沉测量系统、设备及血沉测量方法
CN113848342A (zh) 采样针的分血方法和血液细胞分析仪
CN114112806A (zh) 细胞分析仪及其检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20888901

Country of ref document: EP

Kind code of ref document: A1