WO2021098173A1 - 电力变换装置的驱动电路及其应用装置 - Google Patents

电力变换装置的驱动电路及其应用装置 Download PDF

Info

Publication number
WO2021098173A1
WO2021098173A1 PCT/CN2020/092060 CN2020092060W WO2021098173A1 WO 2021098173 A1 WO2021098173 A1 WO 2021098173A1 CN 2020092060 W CN2020092060 W CN 2020092060W WO 2021098173 A1 WO2021098173 A1 WO 2021098173A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
voltage
power conversion
branch
conversion device
Prior art date
Application number
PCT/CN2020/092060
Other languages
English (en)
French (fr)
Inventor
陈鹏
朱寅
徐清清
Original Assignee
阳光电源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光电源股份有限公司 filed Critical 阳光电源股份有限公司
Priority to JP2022511049A priority Critical patent/JP7305033B2/ja
Priority to AU2020388721A priority patent/AU2020388721B2/en
Priority to EP20889604.3A priority patent/EP4064538A4/en
Publication of WO2021098173A1 publication Critical patent/WO2021098173A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/168Modifications for eliminating interference voltages or currents in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • H03K17/605Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors with galvanic isolation between the control circuit and the output circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • H03K17/605Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors with galvanic isolation between the control circuit and the output circuit
    • H03K17/61Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors with galvanic isolation between the control circuit and the output circuit using transformer coupling
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/689Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/689Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit
    • H03K17/691Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit using transformer coupling
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0036Means reducing energy consumption
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver

Definitions

  • the present invention belongs to the field of power electronics technology, and more specifically, relates to a drive circuit of a power conversion device and an application device thereof.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor, insulated gate bipolar transistor
  • both MOSFET and IGBT have voltage spikes when they are turned off, and the turn-off voltage stress is relatively high.
  • the reverse recovery current of the freewheeling diode will flow, which will increase the conduction loss and current stress. Voltage stress during turn-off and current stress during turn-on will increase the risk of MOSFET and IGBT damage and reduce their reliability.
  • the purpose of the present invention is to provide a drive circuit of a power conversion device and an application device thereof, which are used to switch the drive voltage between a preset voltage and a normal voltage without permanently adjusting the resistance of the drive resistor. Avoid the impact of performance when the power conversion device is operating normally.
  • the first aspect of the present invention discloses a drive circuit of a power conversion device, including: at least one power switching circuit, N isolation modules, and at least one isolated power supply, where N is the number of power semiconductor devices in the main circuit of the power conversion device. Number, and N is a positive integer; where:
  • control terminals of each of the power semiconductor devices are respectively connected to the output terminals of the corresponding isolation module through respective driving resistors;
  • each isolation module is respectively connected to the output terminal corresponding to the isolation power supply, and receives the corresponding driving voltage
  • each isolation module is respectively connected to the corresponding first output end of the controller in the power conversion device, and is used to receive a PWM (Pulse-Width Modulation, pulse width modulation) signal of a corresponding power semiconductor device;
  • PWM Pulse-Width Modulation, pulse width modulation
  • the input terminal of the isolated power supply is connected to the output terminal of the power switching circuit
  • the input end of the power switching circuit is connected to the power supply
  • the control terminal of the power switch circuit is connected to the second output terminal of the controller to receive a drive voltage control signal; the power switch circuit is used to change its output according to the drive voltage control signal, so that each The driving voltage of the isolation module is equal to a preset voltage when the power conversion device is in a transient state, and is equal to a normal voltage when the power conversion device is in a normal operation state.
  • the power switching circuit includes a capacitor, and a first branch and a second branch with different output voltages
  • At least one of the first branch and the second branch is provided with a control terminal as the control terminal of the power switching circuit
  • the input end of the first branch is used as an input end of the power switching circuit and is connected to the first power supply;
  • the input end of the second branch serves as another input end of the power switching circuit, and is connected to the second power supply;
  • the output end of the first branch and the output end of the second branch are both connected to one end of the capacitor, and the connection point is used as the positive electrode of the output end of the power switching circuit;
  • the other end of the capacitor is grounded and serves as the negative electrode of the output end of the power switching circuit.
  • the first branch includes a first current-limiting resistor and a first diode
  • the second branch includes a second current-limiting resistor, a first electronic switch, and a second diode connected in series;
  • the cathode of the first diode serves as the output terminal of the first branch
  • the anode of the first diode is connected to one end of the first current limiting resistor
  • the other end of the first current limiting resistor is used as the input end of the first branch
  • the cathode of the second diode is used as the output terminal of the second branch
  • the anode of the second diode is connected to the output terminal of the first electronic switch through the second current limiting resistor;
  • the input terminal of the first electronic switch is used as the input terminal of the second branch;
  • the control terminal of the first electronic switch serves as the control terminal of the power switching circuit.
  • the first branch includes: a first current-limiting resistor and a second electronic switch connected in series
  • the second branch includes: a second current-limiting resistor and the first electronic switch connected in series
  • the control terminal of the first electronic switch is the control terminal of the power switching circuit
  • the control terminal of the first electronic switch is also connected to the control terminal of the second electronic switch through an inverter.
  • the output voltage of the first branch is less than the output voltage of the second branch
  • the driving voltage control signal is: controlling the first electronic switch to close when the power conversion device is in a normal operating state, and controlling the first electronic switch to close when the power conversion device is in a transient state. Broken signal.
  • the voltage of the second power supply is greater than the voltage of the first power supply, and the resistance of the first current-limiting resistor is equal to the resistance of the second current-limiting resistor;
  • the voltage of the second power source is equal to the voltage of the first power source, and the resistance of the first current limiting resistor is greater than the resistance of the second current limiting resistor;
  • the voltage of the second power source is greater than the voltage of the first power source, and the resistance of the first current limiting resistor is greater than the resistance of the second current limiting resistor.
  • the first electronic switch is any one of the following: MOSFET, triode, IGBT, and a combination of at least two of MOSFET, triode, and IGBT.
  • the drive circuit of the power conversion device further includes: an amplifying circuit
  • control terminals of each of the power semiconductor devices are respectively connected to the output terminals of the corresponding amplifying circuit through respective driving resistors;
  • each amplifying circuit is respectively connected with the output terminals of the corresponding isolation modules.
  • the isolated power supply adopts open-loop control.
  • the isolation module is any one of an isolated optocoupler, an isolated capacitive coupling, and an isolated magnetic coupling.
  • a second aspect of the present invention discloses a power conversion device, including: a controller, M power conversion modules, and the drive circuit according to any one of the first aspect; M is a positive integer;
  • the controller is connected to the control end of each power semiconductor device in the M power conversion modules through the drive circuit.
  • the third aspect of the present invention discloses an inverter, including: a controller, M power conversion modules, and the drive circuit according to any one of the first aspects; M is a positive integer;
  • At least one inverter circuit is included in the M power conversion modules
  • the controller is connected to the control end of each power semiconductor device in the M power conversion modules through the drive circuit.
  • a drive circuit for a power conversion device includes: at least one power switching circuit, N isolation modules, and at least one isolated power supply.
  • the control terminals of each power semiconductor device are driven by their own
  • the resistor is connected to the output terminal of the corresponding isolation module, and the power terminal of each isolation module is respectively connected to the output terminal of the corresponding isolation power supply to receive the corresponding driving voltage.
  • the power switching circuit is used to change itself according to the driving voltage control signal received by its control terminal So that the drive voltage of each isolation module is equal to the preset voltage when the power conversion device is in a transient state, thereby avoiding the risk of damage to each power semiconductor device, and equal to the normal voltage when the power conversion device is in normal operation. ; And there is no need to permanently adjust the resistance of the drive resistor, which avoids the impact on the performance of the power conversion device during normal operation.
  • FIG. 1 is a schematic diagram of a driving circuit of a power conversion device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a power switching circuit in a driving circuit of another power conversion device provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a power switching circuit in a driving circuit of another power conversion device provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a power switching circuit in a driving circuit of another power conversion device provided by an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of an inverter provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a power switching circuit in a driving circuit of another power conversion device provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a driving circuit of another power conversion device according to an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of a power conversion device provided by an embodiment of the present invention.
  • the terms “include”, “include” or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements not only includes those elements, but also includes no Other elements clearly listed, or also include elements inherent to this process, method, article, or equipment. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other identical elements in the process, method, article, or equipment that includes the element.
  • the embodiment of the present invention provides a driving circuit of a power conversion device, which is used to control the driving voltage of a power semiconductor device in the main circuit of the power conversion device to switch between a preset voltage and a normal voltage, and there is no need to permanently adjust the resistance of the driving resistor , To avoid the impact of performance during the normal operation of the power conversion device.
  • the driving circuit of the power conversion device includes: at least one power switching circuit 10, N isolation modules (here, the isolation module is an isolated optocoupler 30 for display), and at least one isolated power source 20, where N is power conversion The number of power semiconductor devices in the main circuit of the device, and N is a positive integer; where:
  • each power semiconductor device is respectively connected to the output terminals of the corresponding isolation module 30 through their respective driving resistors.
  • each isolation module 30 is respectively connected to the output terminal of the corresponding isolation power supply 20 to receive the corresponding driving voltage.
  • the output terminals of the isolated power supply 20 include: a positive voltage output terminal, a control voltage output terminal, and a negative voltage output terminal; a capacitor is set between two adjacent output terminals of the three output terminals, and the positive voltage output
  • the output voltage of the terminal is VP
  • the output voltage of the control voltage output terminal is VE
  • the output voltage of the negative voltage output terminal is VN.
  • the power terminal of the isolation module 30 includes: a positive voltage input terminal, a control voltage input terminal, and a negative voltage input terminal.
  • the specific connection relationship between the isolation module 30 and the isolation power source 20 is: the positive voltage input terminal of the isolation module 30 is connected to the positive voltage output terminal of the isolation power source 20; the control voltage input terminal of the isolation module 30 is connected to the control voltage output terminal of the isolation power source 20 The negative voltage input terminal of the isolation module 30 is connected to the negative voltage output terminal of the isolated power supply 20; in this case, the voltage between the output voltage VP of the positive voltage output terminal of the isolated power supply 20 and the output voltage VN of the negative voltage output terminal The difference is the driving voltage provided by the isolated power supply 20 to the isolation module 30.
  • the negative voltage input terminal of the isolation module 30 may not be connected to the negative voltage output terminal of the isolated power supply 20, but in a floating state; in this case, the output voltage VP of the positive voltage output terminal of the isolated power supply 20 is the isolated power supply 20 The driving voltage provided to the isolation module 30.
  • the isolation module 30 can be any one of an isolation optocoupler, an isolation magnetic coupling, and an isolation capacitive coupling.
  • the isolation module 30 can also be other devices or circuits with isolation and signal transmission functions. This will not be repeated one by one, and they are all within the protection scope of this application.
  • the input terminal of the isolated power supply 20 is connected to the output terminal of the power switching circuit 10, and the input terminal of the power switching circuit 10 is connected to the power supply.
  • the isolated power supply 20 is an open-loop control. Therefore, the output voltage and the input voltage of the isolated power supply 20 change linearly.
  • the input voltage of the isolated power supply 20 is large, and its output voltage is also large.
  • the input voltage of the isolated power supply 20 is small, and its output voltage is also small. Then the voltage output from the power switching circuit 10 to the isolated power supply 20 is similar to that of the isolated power supply 20.
  • the output drive voltage changes linearly.
  • each power semiconductor device inside it is equipped with its own isolation module 30.
  • a plurality of isolation modules 30, such as isolation modules 30 of various power semiconductor devices in the same power conversion module may share an isolated power source 20; or all the isolation modules 30 on the drive board of the power conversion device may share the same isolated power source 20. There are no restrictions. When a plurality of isolated power supplies 20 are included on the drive board of the power conversion device, these isolated power supplies 20 may also share a power switching circuit 10.
  • each isolation module 30 When the power conversion device is in a normal operating state, inside the drive circuit, the power switching circuit 10 converts the voltage received at its input terminal and then outputs it to the isolated power source 20 through its output terminal.
  • the isolated power supply 20 outputs a corresponding driving voltage to the power supply terminal of the corresponding isolation module 30 through its output terminal.
  • the input end of each isolation module 30 is respectively connected to the corresponding first output end of the controller in the power conversion device, and receives the PWM signal of the corresponding power semiconductor device. According to the received PWM signal, each isolation module 30 outputs a driving signal to the control terminal of the corresponding power semiconductor device through its own output terminal, so that each power semiconductor device performs a corresponding action according to the driving signal.
  • the control terminal of the power switching circuit 10 is connected to the second output terminal of the controller to receive the driving voltage control signal; so that the power switching circuit 10 can change its output according to the driving voltage control signal received by its control terminal to
  • the driving voltage of each isolation module 30 is equal to the preset voltage when the power conversion device is in a transient state, and equal to the normal voltage when the power conversion device is in a normal operating state.
  • the transient transition process refers to processes such as low voltage ride-through, high voltage ride-through, startup process, and shutdown.
  • the controller of the power conversion device switches to the power supply
  • the control terminal of the circuit 10 outputs a first driving voltage control signal, such as a driving voltage control signal at a certain level, so that the output voltage of the power switching circuit 10 is lower, and the driving voltage of each isolation module 30 is a preset voltage .
  • the controller of the power conversion device When the power conversion device is in a normal operating state, the controller of the power conversion device outputs a second drive voltage control signal, such as a drive voltage control signal at another level, to the control terminal of the power switch circuit 10, so that the power switch circuit
  • a second drive voltage control signal such as a drive voltage control signal at another level
  • the preset voltage is lower than the normal voltage, so as to ensure that when the power conversion device is in any of the transient transient processes such as low voltage ride through, high voltage ride through, startup process and shutdown, the power semiconductor device in its main circuit receives
  • the drive signal and the power conversion device change during normal operation, slowing down the closing and closing speed of each power semiconductor device, so that the voltage stress when turning off or the current stress when turning on are within the allowable range, reducing The risk of damage to power semiconductor devices improves their reliability. And there is no need to permanently adjust the resistance of the driving resistor, which avoids the impact on the performance of the power conversion device during normal operation.
  • the preset voltage can also be higher than the normal voltage, as long as it can ensure that the power conversion device is in any of the transient transition processes such as low voltage ride through, high voltage ride through, startup process, and shutdown. At this time, slow down the closing and closing speed of each power semiconductor device, so that the voltage stress during the turn-off or the current stress during the turn-on are within the allowable range, and both are within the protection scope of the present application.
  • a drive resistor or a voltage regulating circuit is provided on the secondary side of the isolated power supply, but two isolation channels need to be designed to distinguish and control different drive resistance cut-in circuits or distinguish between different control The function is enabled, resulting in higher circuit cost and complexity.
  • one power switching circuit 10 can correspond to multiple isolated power sources 20, further reducing the cost and complexity of the single circuit.
  • an amplifying circuit 40 may also include as shown in FIG. 7: an amplifying circuit 40; wherein:
  • each power semiconductor device is respectively connected to the output terminals of the corresponding amplifying circuit 40 through their respective driving resistors, and the input terminals of each amplifying circuit 40 are respectively connected to the output terminals of the corresponding isolation module 30.
  • connection relationship of other devices in FIG. 7 is similar to the connection relationship in FIG. 1, and will not be repeated here.
  • FIG. 2 the specific structure of the above-mentioned power switching circuit 10 can be seen in FIG. 2, including a capacitor C, and a first branch 201 and a second branch 202 with different output voltages.
  • At least one of the first branch 201 and the second branch 202 is provided with a control terminal as the control terminal of the power switching circuit 10.
  • the input end of the first branch 201 is used as an input end of the power switching circuit 10 and is connected to the first power supply V1
  • the input end of the second branch 202 is used as another input end of the power switching circuit 10 and is connected to the second power supply V2
  • the output terminal of the first branch 201 and the output terminal of the second branch 202 are both connected to one end of the capacitor C, the connection point is used as the positive output terminal of the power switching circuit 10, and the other end of the capacitor C is grounded and used as the power switching circuit 10.
  • the output terminal is negative.
  • the first branch 201 includes as shown in FIG. 4: a first current-limiting resistor R1 and a first diode D1.
  • the cathode of the first diode D1 is used as the output terminal of the first branch 201
  • the anode of the first diode D1 is connected to one end of the first current limiting resistor R1
  • the other end of the first current limiting resistor R1 is used as The input terminal of the first branch 201.
  • the second branch 202 includes a second current-limiting resistor R2, a first electronic switch K1, and a second diode D2 connected in series as shown in FIG. 4.
  • the cathode of the second diode D2 serves as the output terminal of the second branch 202
  • the anode of the second diode D2 is connected to the output terminal of the first electronic switch K1 through the second current limiting resistor R2, and the first electronic
  • the input terminal of the switch K1 is used as the input terminal of the second branch 202
  • the control terminal of the first electronic switch K1 is the control terminal of the power switching circuit 10.
  • the first electronic switch K1 is any one of the following: MOSFET, triode, IGBT, and a combination of at least two of MOSFET, triode and IGBT.
  • the first electronic switch K1 can also be other semiconductor switches, which will not be listed here. It depends on the actual situation, and they are all within the protection scope of this application.
  • the output voltage of the first branch 201 is smaller than the output voltage of the second branch 202.
  • the first power supply V1, the second power supply V2, the first current-limiting resistor R1, and the second current-limiting resistor R2 can be respectively set as follows: the voltage of the second power source V2 is greater than the voltage of the first power source V1, and the voltage of the first current-limiting resistor R1 The resistance is equal to the resistance of the second current limiting resistor R2.
  • the first power source V1, the second power source V2, the first current-limiting resistor R1, and the second current-limiting resistor R2 are respectively set as follows: the voltage of the second power source V2 is equal to the voltage of the first power source V1, and the first current-limiting resistor R1 The resistance value of is greater than the resistance value of the second current-limiting resistor R2.
  • the first power supply V1 and the second power supply V2 may be the same power supply, and the input end of the first branch 201 is connected to the input end of the second branch 202, as shown in FIG. 3, and other connection relationships are similar to those in FIG. 4. , I will not repeat them here.
  • the first power supply V1, the second power supply V2, the first current-limiting resistor R1, and the second current-limiting resistor R2 are respectively set to: the voltage of the second power source V2 is greater than the voltage of the first power source V1, and the first current-limiting resistor The resistance of R1 is greater than the resistance of the second current-limiting resistor R2.
  • the driving voltage control signal is: when the power conversion device is in a normal operation state, the first electronic switch K1 is controlled to close, and when the power conversion device is in low voltage ride-through, high voltage ride-through, startup process, shutdown, etc. In the transition process, the signal that controls the first electronic switch K1 to turn off.
  • the first electronic switch K1 When the first electronic switch K1 is closed, since the output voltage of the first branch 201 is less than the output voltage of the second branch 202, the first diode D1 in the first branch 201 will be reversely blocked, and the first branch No current flows through the first current-limiting resistor R1 in 201. At this time, only the second branch 202 outputs a voltage to the capacitor C, so that the driving voltage is equal to the normal voltage.
  • the first electronic switch K1 When the first electronic switch K1 is turned off, that is, when the second branch 202 is disconnected, the first branch 201 outputs a voltage to the capacitor C, and the second diode D2 in the second branch 202 is reversely turned off.
  • the output voltage of the branch 201 is lower than the output voltage of the second branch 202, thereby switching the driving voltage from the normal voltage to a lower preset voltage.
  • the positive voltage of the charged capacitor C is the output voltage of the power switching circuit 10; because the output voltage of the first branch 201 is smaller than that of the second branch Therefore, when the power conversion device is in a normal operating state, the drive voltage control signal controls the second branch 202 with a higher output voltage to output a voltage to the capacitor C, so that the positive voltage of the charged capacitor C is higher , And then make the driving voltage equal to the normal voltage; when the power conversion device is in the transient transition process of low voltage ride through, high voltage ride through, startup process and shutdown, the driving voltage control signal controls the first branch 201 with a lower output voltage to the capacitor C outputs the voltage, so that the positive voltage of the capacitor C after being charged is reduced, so that the driving voltage is equal to the preset voltage.
  • a second electronic switch K2 can also be provided in the first branch 201, and the control signal of the first electronic switch K1 in the second branch 202 can be controlled by an inverter.
  • the signal can be reversed, and the diodes in the two branches can be omitted at that time.
  • the working principle is similar to the above-mentioned situation and will not be repeated here.
  • An embodiment of the present invention provides a power conversion device. Referring to FIG. 8, it includes a controller 830, M power conversion modules 820, and the drive circuit 810 described in any of the foregoing embodiments.
  • M is a positive integer
  • the M power conversion modules 820 include at least one of a DC/AC conversion circuit, a DC/DC conversion circuit, an AC/AC conversion circuit, and an AC/DC conversion circuit, which are not specifically limited here, depending on the specific application environment. Yes, they are all within the protection scope of this application.
  • the controller 830 is connected to the control end of each power semiconductor device in the M power conversion modules 820 through the drive circuit 810, and outputs the PWM signal of the corresponding power semiconductor device to the isolation module 30 in the drive circuit 810, and then controls the corresponding power conversion module 820 Each power semiconductor device is turned on and off.
  • Each power semiconductor device in the power conversion module 820 may be a MOSFET, an IGBT, or other power semiconductor devices, which will not be listed here, and they are all within the protection scope of the present application.
  • an embodiment of the present invention provides an inverter.
  • the inverter includes: a controller 430, M power conversion modules 420, and the drive circuit 410 described in any of the foregoing embodiments.
  • M is a positive integer
  • the controller 430 is connected to the control end of each power semiconductor device in the M power conversion modules 420 through the driving circuit 410, and outputs the PWM signal of the corresponding power semiconductor device to the isolation module 30 in the driving circuit 410, and then controls the corresponding power conversion module 420
  • Each power semiconductor device is turned on and off.
  • Each power semiconductor device in the power conversion module 420 may be a MOSFET, an IGBT, or other power semiconductor devices, which will not be listed here, and they are all within the protection scope of the present application.
  • the inverter When the inverter is in the running state, its controller 430 outputs the PWM signal of the corresponding power semiconductor device to each isolation module 30 in the drive circuit 410 to control the corresponding power semiconductor device to turn on and off.
  • the operating state includes: normal operating state, low voltage ride through, high voltage ride through, start-up process and shutdown and other transient transient processes.
  • the isolation module 30 when the PWM signal received by the isolation module 30 of the driving circuit 410 requires disconnection, the isolation module 30 outputs a prohibition control signal to the corresponding power semiconductor device to turn off the corresponding power semiconductor device.
  • the isolation module 30 When the PWM signal received by the isolation module 30 of the driving circuit 410 requires closing, the isolation module 30 outputs an enable control signal to the corresponding power semiconductor device, so as to close the corresponding power semiconductor device.
  • the controller 430 controls the driving voltage of the driving circuit 410 to be equal to the normal voltage, so that each power semiconductor device in the M power conversion modules 420 outputs a normal driving signal according to its PWM signal, and then normal run.
  • the controller 430 controls the driving voltage of the driving circuit 410 to be equal to the preset voltage, so that the low voltage ride through, high voltage ride through, high voltage ride through, In the transient transient process such as startup and shutdown, slow down the closing and shutdown speed of each power semiconductor device, thereby reducing the voltage and current stress of each power semiconductor device, avoiding the risk of damage to each power semiconductor device, and improving its reliability .
  • the driving voltage of the driving circuit 410 is switched between the normal voltage and the preset voltage, which avoids that when the inverter is in transient voltage stress and current stress is high, There is a risk of damage to each power semiconductor device in the power conversion module 420.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

本发明提供一种电力变换装置的驱动电路及其应用装置,该驱动电路包括:至少一个电源切换电路、N个隔离模块和至少一个隔离电源;电源依次通过电源切换电路和相应的隔离电源,为各个隔离模块提供驱动电压;各个隔离模块的输出端分别通过对应的驱动电阻连接对应功率半导体器件的控制端;电源切换电路用于根据其控制端接收到的驱动电压控制信号改变自身的输出,以使各个隔离模块的驱动电压,在电力变换装置处于正常运行状态时等于正常电压,而在电力变换装置处于暂态过度过程中等于预设电压,进而避免各个功率半导体器件损坏的风险;并且无需永久性调整驱动电阻的阻值,避免了对于电力变换装置正常运行时性能的影响。

Description

电力变换装置的驱动电路及其应用装置
本申请要求于2019年11月18日提交中国专利局、申请号为201911127613.0、发明名称为“电力变换装置的驱动电路及其应用装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于电力电子技术领域,更具体的说,尤其涉及一种电力变换装置的驱动电路及其应用装置。
背景技术
在电力电子的电源中,MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金属氧化物半导体场效应管)和IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)被广泛应用。MOSFET和IGBT都属于功率半导体器件,这种器件通过控制其驱动信号的电压值,实现其内部的导通和关断功能。正常情况下,施加大于其导通电压的正电压即可使其导通,施加负电压或0电压即可使其关断。在其导通时,驱动信号的电压值越高,其导通状态下的损耗越小、性能越好;在其关断时,驱动信号的电压值取负是为了保证器件可靠的关断。
在实际使用时,由于开关线路的寄生电感的存在,MOSFET和IGBT在关断时均有电压尖峰、关断电压应力较高。在导通时也会有续流二极管的反向恢复电流流过、增大导通损耗和电流应力。关断时的电压应力、导通时的电流应力,均会加大MOSFET和IGBT损坏的风险,降低其可靠性。
为了避免上述加大MOSFET和IGBT损坏的风险,降低其可靠性的问题,现有技术中存在一种方案是通过改变驱动电阻的大小,来调节导通和关断速度,进而降低相应的应力。但是驱动电阻永久调整后,不能兼顾正常运行和异常运行的性能。
发明内容
有鉴于此,本发明的目的在于提供一种电力变换装置的驱动电路及其应用装置,用于将驱动电压在预设电压和正常电压之间切换,并且无需永久性调整驱动电阻的阻值,避免了在电力变换装置正常运行时性能的影响。
本发明第一方面公开了一种电力变换装置的驱动电路,包括:至少一个电 源切换电路、N个隔离模块和至少一个隔离电源,N为所述电力变换装置的主电路中功率半导体器件的个数,且N为正整数;其中:
各个所述功率半导体器件的控制端,分别通过各自的驱动电阻连接对应所述隔离模块的输出端;
各个所述隔离模块的电源端,分别与对应所述隔离电源的输出端相连,接收相应的驱动电压;
各个所述隔离模块的输入端,分别与所述电力变换装置中控制器的对应第一输出端相连,用于接收相应功率半导体器件的PWM(Pulse-Width Modulation,脉冲宽度调制)信号;
所述隔离电源的输入端与所述电源切换电路的输出端相连;
所述电源切换电路的输入端与电源相连;
所述电源切换电路的控制端,与所述控制器的第二输出端相连,接收驱动电压控制信号;所述电源切换电路用于根据所述驱动电压控制信号改变自身的输出,以使各个所述隔离模块的驱动电压,在所述电力变换装置处于暂态过度过程中等于预设电压,而在所述电力变换装置处于正常运行状态时等于正常电压。
可选的,所述电源切换电路,包括:电容,和,输出电压不同的第一支路和第二支路;
所述第一支路和所述第二支路中的至少一个设置有控制端、作为所述电源切换电路的控制端;
所述第一支路的输入端作为所述电源切换电路的一个输入端,与第一电源相连;
所述第二支路的输入端作为所述电源切换电路的另一个输入端,与第二电源相连;
所述第一支路的输出端和所述第二支路的输出端均与所述电容的一端相连,连接点作为所述电源切换电路的输出端正极;
所述电容的另一端接地并作为所述电源切换电路的输出端负极。
可选的,所述第一支路包括第一限流电阻和第一二极管,所述第二支路包括串联连接的第二限流电阻、第一电子开关和第二二极管;
所述第一二极管的阴极作为所述第一支路的输出端;
所述第一二极管的阳极与所述第一限流电阻的一端相连;
所述第一限流电阻的另一端作为所述第一支路的输入端;
所述第二二极管的阴极作为所述第二支路的输出端;
所述第二二极管的阳极通过所述第二限流电阻与所述第一电子开关的输出端相连;
所述第一电子开关的输入端作为所述第二支路的输入端;
所述第一电子开关的控制端作为所述电源切换电路的控制端。
可选的,所述第一支路包括:串联连接的第一限流电阻和第二电子开关,所述第二支路包括:串联连接的第二限流电阻和第一电子开关;
所述第一电子开关的控制端为所述电源切换电路的控制端;
所述第一电子开关的控制端还通过反向器与所述第二电子开关的控制端相连。
可选的,所述第一支路的输出电压小于所述第二支路的输出电压;
所述驱动电压控制信号为:在所述电力变换装置处于正常运行状态时控制所述第一电子开关闭合,而在所述电力变换装置处于暂态过度过程中,控制所述第一电子开关关断的信号。
可选的,所述第二电源的电压大于所述第一电源的电压,所述第一限流电阻的阻值等于所述第二限流电阻的阻值;
或者,所述第二电源的电压等于所述第一电源的电压,所述第一限流电阻的阻值大于所述第二限流电阻的阻值;
又或者,所述第二电源的电压大于所述第一电源的电压,所述第一限流电阻的阻值大于所述第二限流电阻的阻值。
可选的,所述第一电子开关为以下任意一种:MOSFET,三极管,IGBT,以及,MOSFET、三极管和IGBT中至少两个的组合。
可选的,所述的电力变换装置的驱动电路,还包括:放大电路;
各个所述功率半导体器件的控制端,分别通过各自的驱动电阻连接对应所述放大电路的输出端;
各个所述放大电路的输入端,分别与相应所述隔离模块的输出端相连。
可选的,所述隔离电源采用开环型控制。
可选的,所述隔离模块为:隔离光耦、隔离型容耦和隔离型磁耦中的任意一种。
本发明第二方面公开了一种电力变换装置,包括:控制器、M个电力变换模块以及如第一方面任一所述的驱动电路;M为正整数;
所述控制器通过所述驱动电路与M个电力变换模块中各个功率半导体器件的控制端相连。
本发明第三方面公开了一种逆变器,包括:控制器、M个电力变换模块以及如第一方面任一所述的驱动电路;M为正整数;
M个电力变换模块中至少包括一个逆变电路;
所述控制器通过所述驱动电路与M个电力变换模块中各个功率半导体器件的控制端相连。
从上述技术方案可知,本发明提供的一种电力变换装置的驱动电路,包括:至少一个电源切换电路、N个隔离模块和至少一个隔离电源,各个功率半导体器件的控制端,分别通过各自的驱动电阻连接对应隔离模块的输出端,各个隔离模块的电源端,分别与对应隔离电源的输出端相连,接收相应的驱动电压,电源切换电路用于根据其控制端接收到的驱动电压控制信号改变自身的输出,以使各个隔离模块的驱动电压,在电力变换装置处于暂态过度过程中等于预设电压,进而避免各个功率半导体器件损坏的风险,而在电力变换装置处于正常运行状态时等于正常电压;并且无需永久性调整驱动电阻的阻值,避免了对于电力变换装置正常运行时性能的影响。
附图说明
图1是本发明实施例提供的一种电力变换装置的驱动电路的示意图;
图2是本发明实施例提供的另一种电力变换装置的驱动电路中电源切换电路的示意图;
图3是本发明实施例提供的另一种电力变换装置的驱动电路中电源切换电路的示意图;
图4是本发明实施例提供的另一种电力变换装置的驱动电路中电源切换电路的示意图;
图5是本发明实施例提供的一种逆变器的示意图;
图6是本发明实施例提供的另一种电力变换装置的驱动电路中电源切换电路的示意图;
图7是本发明实施例提供的另一种电力变换装置的驱动电路的示意图;
图8是本发明实施例提供的一种电力变换装置的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本申请中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本发明实施例提供一种电力变换装置的驱动电路,用于控制电力变换装置主电路中功率半导体器件的驱动电压在预设电压和正常电压之间切换,并且无需永久性调整驱动电阻的阻值,避免了在电力变换装置正常运行时性能的影响。
该电力变换装置的驱动电路,参见图1,包括:至少一个电源切换电路10、N个隔离模块(在此以隔离模块为隔离光耦30进行展示)和至少一个隔离电源20,N为电力变换装置的主电路中功率半导体器件的个数,且N为正整数;其中:
各个功率半导体器件的控制端,分别通过各自的驱动电阻连接对应隔离模块30的输出端。
各个隔离模块30的电源端,分别与对应隔离电源20的输出端相连,接收 相应的驱动电压。需要说明的是,隔离电源20的输出端包括:正电压输出端、控制电压输出端和负电压输出端;三个输出端中相邻的两个输出端之间均设置有电容,正电压输出端的输出电压为VP,控制电压输出端的输出电压为VE,负电压输出端的输出电压为VN。隔离模块30的电源端包括:正电压输入端、控制电压输入端和负电压输入端。隔离模块30与隔离电源20之间的具体连接关系是:隔离模块30的正电压输入端与隔离电源20的正电压输出端相连;隔离模块30的控制电压输入端与隔离电源20的控制电压输出端相连;隔离模块30的负电压输入端与隔离电源20的负电压输出端相连;此种情况下,隔离电源20的正电压输出端的输出电压VP和负电压输出端的输出电压VN之间的电压差为隔离电源20向隔离模块30提供的驱动电压。或者,隔离模块30的负电压输入端还可以不与隔离电源20的负电压输出端相连,而是处于悬空状态;此种情况下,隔离电源20的正电压输出端的输出电压VP即为隔离电源20向隔离模块30提供的驱动电压。
在实际应用中,隔离模块30可以是隔离光耦、隔离型磁耦和隔离型容耦中的任意一种,当然,隔离模块30还可以是其他具有隔离和信号传输功能的器件或电路,在此不再一一赘述,均在本申请的保护范围内。
隔离电源20的输入端与电源切换电路10的输出端相连,电源切换电路10的输入端与电源相连。
在实际应用中,隔离电源20为开环型控制,因此,隔离电源20的输出电压和输入电压呈线性变化。如隔离电源20的输入电压较大,其输出电压也较大,隔离电源20的输入电压较小,其输出电压也较小,进而电源切换电路10向隔离电源20输出的电压,与隔离电源20输出的驱动电压呈线性变化。
在实际应用中,电力变换装置中的一个电力变换模块,比如逆变电路或者DC/DC变换电路,其内部的各个功率半导体器件,均配备有各自的隔离模块30。多个隔离模块30,比如同一电力变换模块内各个功率半导体器件的隔离模块30,可以共用一个隔离电源20;也可以是电力变换装置驱动板上的全部隔离模块30共用同一个隔离电源20,此处不做限定。当电力变换装置驱动板上包括多个隔离电源20时,这些隔离电源20也可以共用一个电源切换电路10。
在电力变换装置处于正常运行状态时,该驱动电路内部,电源切换电路10将其输入端接收到的电压转换后再通过其输出端输出至隔离电源20。隔离电源20通过其输出端向对应的隔离模块30的电源端输出相应的驱动电压。各个隔离模块30的输入端,分别与电力变换装置中控制器的对应第一输出端相连,接收相应功率半导体器件的PWM信号。各个隔离模块30根据接收到的PWM信号,通过自身的输出端向各自对应的功率半导体器件的控制端输出驱动信号,以使各个功率半导体器件依据驱动信号执行相应的动作。
电源切换电路10的控制端,与控制器的第二输出端相连,接收驱动电压控制信号;使得该电源切换电路10,能够根据其控制端接收到的驱动电压控制信号,改变自身的输出,以使各个隔离模块30的驱动电压,在电力变换装置处于暂态过度过程中等于预设电压,而在电力变换装置处于正常运行状态时等于正常电压。
具体的,该暂态过度过程是指低电压穿越、高电压穿越、启动过程及关机等过程,在电力变换装置处于上述任意一种暂态过度过程中时,电力变换装置的控制器向电源切换电路10的控制端输出第一驱动电压控制信号,比如某一电平下的驱动电压控制信号,以使电源切换电路10的输出电压较低,进而使得各个隔离模块30的驱动电压为预设电压。而在电力变换装置处于正常运行状态时,电力变换装置的控制器向电源切换电路10的控制端输出第二驱动电压控制信号,比如另一电平下的驱动电压控制信号,以使电源切换电路10的输出电压较高,进而使得各个隔离模块30的驱动电压为正常电压。该预设电压低于正常电压,进而确保电力变换装置处于低电压穿越、高电压穿越、启动过程及关机等暂态过度过程中任一种情况时,其主电路中的功率半导体器件接收到的驱动信号与电力变换装置正常运行状态时产生变化,放慢各个功率半导体器件的闭合和关断的速度,使其关断时的电压应力或导通时的电流应力,均处于允许范围内,降低功率半导体器件损坏的风险,提高其可靠性。并且无需永久性调整驱动电阻的阻值,避免了对于电力变换装置正常运行时性能的影响。值得说明的是,实际应用中,该预设电压也可以高于该正常电压,只要能够确保电力变换装置处于低电压穿越、高电压穿越、启动过程及关机等暂态过度过程中任一种情况时,放慢各个功率半导体器件的闭合和关断的速度,使其 关断时的电压应力或导通时的电流应力,均处于允许范围内即可,均在本申请的保护范围内。
现有技术中还存在一种方案是:在隔离电源的二次侧设置有驱动电阻或调压电路,但是均需要设计2路隔离通道,来区分控制不同的驱动电阻切入电路或区分控制不同的功能使能,造成电路成本较高、也比较复杂。
而本发明实施例中,通过改变隔离电源20的原边电压,进而改变隔离电源20的副边电压,避免了需要多路隔离通道来区分控制,并且,在不改变隔离电源20和隔离模块30的情况下,一个电源切换电路10,可以对应多路隔离电源20,进一步降低单路成本、电路复杂程度。
此外,在图1的基础之上,还可以包括如图7所示的:放大电路40;其中:
各个功率半导体器件的控制端,分别通过各自的驱动电阻连接对应放大电路40的输出端,各个放大电路40的输入端,分别与相应隔离模块30的输出端相连。
需要说明的是,图7中其他器件的连接关系与图1中的连接关系相似,在此不再一一赘述,详情参见关于图1的描述,均在本申请的保护范围内。
在实际应用中,上述电源切换电路10的具体结构可以参见图2,包括:电容C,和,输出电压不同的第一支路201和第二支路202。
第一支路201和第二支路202中的至少一个设置有控制端、作为电源切换电路10的控制端。
第一支路201的输入端作为电源切换电路10的一个输入端,与第一电源V1相连,第二支路202的输入端作为电源切换电路10的另一个输入端,与第二电源V2相连,第一支路201的输出端和第二支路202的输出端均与电容C的一端相连,连接点作为电源切换电路10的输出端正极,电容C的另一端接地并作为电源切换电路10的输出端负极。
在实际应用中,第一支路201包括如图4所示的:第一限流电阻R1和第一二极管D1。
具体的,第一二极管D1的阴极作为第一支路201的输出端,第一二极管 D1的阳极与第一限流电阻R1的一端相连,第一限流电阻R1的另一端作为第一支路201的输入端。
第二支路202包括如图4所示的:串联连接的第二限流电阻R2、第一电子开关K1和第二二极管D2。
具体的,第二二极管D2的阴极作为第二支路202的输出端,第二二极管D2的阳极通过第二限流电阻R2与第一电子开关K1的输出端相连,第一电子开关K1的输入端作为第二支路202的输入端,第一电子开关K1的控制端为电源切换电路10的控制端。
第一电子开关K1为一下任意一种:MOSFET,三极管,IGBT,以及,MOSFET、三极管和IGBT中至少两个的组合,第一电子开关K1也可以是其他半导体开关,在此不一一列举,视实际情况而定即可,均在本申请的保护范围内。
在实际应用中,第一支路201的输出电压小于第二支路202的输出电压。
可以将第一电源V1、第二电源V2、第一限流电阻R1和第二限流电阻R2分别设置为:第二电源V2的电压大于第一电源V1的电压,第一限流电阻R1的阻值等于第二限流电阻R2的阻值。
或者,将第一电源V1、第二电源V2、第一限流电阻R1和第二限流电阻R2分别设置为:第二电源V2的电压等于第一电源V1的电压,第一限流电阻R1的阻值大于第二限流电阻R2的阻值。此时,第一电源V1和第二电源V2可以为同一个电源,第一支路201的输入端和第二支路202的输入端相连,如图3所示,其他连接关系与图4相似,在此不再一一赘述。
又或者,将第一电源V1、第二电源V2、第一限流电阻R1和第二限流电阻R2分别设置为:第二电源V2的电压大于第一电源V1的电压,第一限流电阻R1的阻值大于第二限流电阻R2的阻值。
上述三种情况均是为了实现第一支路201的输出电压小于第二支路202的输出电压,其他可以是实现第一支路201的输出电压小于第二支路202的输出电压的方式,也在本申请的保护范围内。
在本实施例中,其驱动电压控制信号为:在电力变换装置处于正常运行状态时控制第一电子开关K1闭合,而在电力变换装置处于低电压穿越、高电压 穿越、启动过程及关机等暂态过度过程中,控制第一电子开关K1关断的信号。
在第一电子开关K1闭合时,由于第一支路201的输出电压小于第二支路202的输出电压,第一支路201中的第一二极管D1将反向截止,第一支路201中的第一限流电阻R1无电流通过,此时仅第二支路202向电容C输出电压,进而使驱动电压等于正常电压。
在第一电子开关K1关断时,即第二支路202断开时,第一支路201向电容C输出电压,第二支路202中的第二二极管D2反向截止,由于第一支路201的输出电压小于第二支路202的输出电压,进而使驱动电压从正常电压切换为较低的预设电压。
无论第一支路201还是第二支路202向电容C输出电压,充电后的电容C的正极电压即为电源切换电路10的输出电压;由于第一支路201的输出电压小于第二支路202的输出电压,因此,在电力变换装置处于正常运行状态时,驱动电压控制信号控制输出电压较高的第二支路202向电容C输出电压,以使充电后的电容C的正极电压较高,进而使驱动电压等于正常电压;在电力变换装置处于低电压穿越、高电压穿越、启动过程及关机等暂态过度过程中,驱动电压控制信号控制输出电压较低的第一支路201向电容C输出电压,以使充电后的电容C的正极电压降低,进而使驱动电压等于预设电压。
实际应用中,如图6所示,也可以为第一支路201中设置一个第二电子开关K2,通过一个反向器使其控制信号与第二支路202中第一电子开关K1的控制信号取反即可,届时可以省略两个支路中的二极管,其工作原理与上述情况类似,此处不再赘述。
本发明实施例提供一种电力变换装置,参见图8,包括控制器830、M个电力变换模块820以及上述任一实施例所述的驱动电路810。
M为正整数,图8以M=1为例进行展示。
M个电力变换模块820包括DC/AC变换电路、DC/DC变换电路、AC/AC变换电路和AC/DC变换电路中的至少一种,在此不做具体限定,视具体应用环境而定即可,均在本申请的保护范围内。
控制器830通过驱动电路810与M个电力变换模块820中各个功率半导 体器件的控制端相连,向驱动电路810中的隔离模块30输出相应功率半导体器件的PWM信号,进而控制相应电力变换模块820中各个功率半导体器件闭合和关断。电力变换模块820中各个功率半导体器件可以是MOSFET,也可以是IGBT,还可以是其他功率半导体器件,在此不再一一列举,均在本申请的保护范围内。
驱动电路810的具体结构及工作原理在此不再一一赘述,详情参见上述各个实施例。
本发明实施例提供一种逆变器,参见图5,包括:控制器430、M个电力变换模块420以及上述任一实施例所述的驱动电路410。
M为正整数,图5以M=1为例进行展示。
M个电力变换模块420中至少包括一个逆变电路,即M=1时,该电力变换模块420为逆变电路;当M>1时,另外几个电力变换模块420可以是DC/DC变换电路。
控制器430通过驱动电路410与M个电力变换模块420中各个功率半导体器件的控制端相连,向驱动电路410中的隔离模块30输出相应功率半导体器件的PWM信号,进而控制相应电力变换模块420中各个功率半导体器件闭合和关断。电力变换模块420中各个功率半导体器件可以是MOSFET,也可以是IGBT,还可以是其他功率半导体器件,在此不再一一列举,均在本申请的保护范围内。
驱动电路410的具体结构及工作原理在此不再一一赘述,详情参见上述各个实施例。
在此,对逆变器的具体工作过程进行说明:
在逆变器处于运行状态时,其控制器430向驱动电路410中各个隔离模块30输出相应功率半导体器件的PWM信号,以控制相应功率半导体器件闭合和关断。其中,运行状态包括:正常运行状态、低电压穿越、高电压穿越、启动过程及关机等暂态过度过程。
具体的,当驱动电路410的隔离模块30接收到的PWM信号要求断开时,隔离模块30向相应功率半导体器件输出禁止控制信号,以使相应功率半导体 器件断开。而当驱动电路410的隔离模块30接收到的PWM信号要求闭合时,隔离模块30向相应功率半导体器件输出使能控制信号,以使相应功率半导体器件闭合。
在逆变器处于正常运行状态时,其控制器430控制驱动电路410的驱动电压等于正常电压,以使M个电力变换模块420中各个功率半导体器件根据其PWM信号输出正常的驱动信号,进而正常运行。
在逆变器处于低电压穿越、高电压穿越、启动过程及关机等暂态过度过程中,其控制器430控制驱动电路410的驱动电压等于预设电压,使得在低电压穿越、高电压穿越、启动过程及关机等暂态过度过程中,放慢各个功率半导体器件的闭合和关断的速度,进而降低各个功率半导体器件的电压和电流应力,避免各个功率半导体器件损坏的风险,提高其可靠性。
在本实施例中,在逆变器处于不同状态下,驱动电路410的驱动电压在正常电压和预设电压之间切换,避免了在逆变器处于暂态电压应力和电流应力较高时,电力变换模块420中的各个功率半导体器件损坏的风险。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统或系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的系统及系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于 技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (12)

  1. 一种电力变换装置的驱动电路,其特征在于,包括:至少一个电源切换电路、N个隔离模块和至少一个隔离电源,N为电力变换装置的主电路中功率半导体器件的个数,且N为正整数;其中:
    各个所述功率半导体器件的控制端,分别通过各自的驱动电阻连接对应所述隔离模块的输出端;
    各个所述隔离模块的电源端,分别与对应所述隔离电源的输出端相连,接收相应的驱动电压;
    各个所述隔离模块的输入端,分别与所述电力变换装置中控制器的对应第一输出端相连,用于接收相应功率半导体器件的脉冲宽度调制PWM信号;
    所述隔离电源的输入端与所述电源切换电路的输出端相连;
    所述电源切换电路的输入端与电源相连;
    所述电源切换电路的控制端,与所述控制器的第二输出端相连,接收驱动电压控制信号;所述电源切换电路用于根据所述驱动电压控制信号改变自身的输出,以使各个所述隔离模块的驱动电压,在所述电力变换装置处于暂态过度过程中等于预设电压,而在所述电力变换装置处于正常运行状态时等于正常电压。
  2. 根据权利要求1所述的电力变换装置的驱动电路,其特征在于,所述电源切换电路,包括:电容,和,输出电压不同的第一支路和第二支路;
    所述第一支路和所述第二支路中的至少一个设置有控制端、作为所述电源切换电路的控制端;
    所述第一支路的输入端作为所述电源切换电路的一个输入端,与第一电源相连;
    所述第二支路的输入端作为所述电源切换电路的另一个输入端,与第二电源相连;
    所述第一支路的输出端和所述第二支路的输出端均与所述电容的一端相连,连接点作为所述电源切换电路的输出端正极;
    所述电容的另一端接地并作为所述电源切换电路的输出端负极。
  3. 根据权利要求2所述的电力变换装置的驱动电路,其特征在于,所述第一支路包括第一限流电阻和第一二极管,所述第二支路包括串联连接的第二限流电阻、第一电子开关和第二二极管;
    所述第一二极管的阴极作为所述第一支路的输出端;
    所述第一二极管的阳极与所述第一限流电阻的一端相连;
    所述第一限流电阻的另一端作为所述第一支路的输入端;
    所述第二二极管的阴极作为所述第二支路的输出端;
    所述第二二极管的阳极通过所述第二限流电阻与所述第一电子开关的输出端相连;
    所述第一电子开关的输入端作为所述第二支路的输入端;
    所述第一电子开关的控制端作为所述电源切换电路的控制端。
  4. 根据权利要求2所述的电力变换装置的驱动电路,其特征在于,所述第一支路包括:串联连接的第一限流电阻和第二电子开关,所述第二支路包括:串联连接的第二限流电阻和第一电子开关;
    所述第一电子开关的控制端为所述电源切换电路的控制端;
    所述第一电子开关的控制端还通过反向器与所述第二电子开关的控制端相连。
  5. 根据权利要求3或4所述的电力变换装置的驱动电路,其特征在于,所述第一支路的输出电压小于所述第二支路的输出电压;
    所述驱动电压控制信号为:在所述电力变换装置处于正常运行状态时控制所述第一电子开关闭合,而在所述电力变换装置处于暂态过度过程中,控制所述第一电子开关关断的信号。
  6. 根据权利要求5所述的电力变换装置的驱动电路,其特征在于,所述第二电源的电压大于所述第一电源的电压,所述第一限流电阻的阻值等于所述第二限流电阻的阻值;
    或者,所述第二电源的电压等于所述第一电源的电压,所述第一限流电阻的阻值大于所述第二限流电阻的阻值;
    又或者,所述第二电源的电压大于所述第一电源的电压,所述第一限流电阻的阻值大于所述第二限流电阻的阻值。
  7. 根据权利要求3所述的电力变换装置的驱动电路,其特征在于,所述第一电子开关为以下任意一种:金属氧化物半导体场效应管MOSFET,三极管,绝缘栅双极型晶体管IGBT,以及,MOSFET、三极管和IGBT中至少两个的组合。
  8. 根据权利要求1-4任一所述的电力变换装置的驱动电路,其特征在于,还包括:放大电路;
    各个所述功率半导体器件的控制端,分别通过各自的驱动电阻连接对应所述放大电路的输出端;
    各个所述放大电路的输入端,分别与相应所述隔离模块的输出端相连。
  9. 根据权利要求1-4任一所述的电力变换装置的驱动电路,其特征在于,所述隔离电源采用开环型控制。
  10. 根据权利要求1-4任一所述的电力变换装置的驱动电路,其特征在于,所述隔离模块为:隔离光耦、隔离型容耦和隔离型磁耦中的任意一种。
  11. 一种电力变换装置,其特征在于,包括:控制器、M个电力变换模块和如权利要求1-10任一所述的驱动电路;M为正整数;
    所述控制器通过所述驱动电路与M个电力变换模块中各个功率半导体器件的控制端相连。
  12. 一种逆变器,其特征在于,包括:控制器、M个电力变换模块以及如权利要求1-10任一所述的驱动电路;M为正整数;
    M个电力变换模块中至少包括一个逆变电路;
    所述控制器通过所述驱动电路与M个电力变换模块中各个功率半导体器件的控制端相连。
PCT/CN2020/092060 2019-11-18 2020-05-25 电力变换装置的驱动电路及其应用装置 WO2021098173A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022511049A JP7305033B2 (ja) 2019-11-18 2020-05-25 電力変換装置の駆動回路及びその応用装置
AU2020388721A AU2020388721B2 (en) 2019-11-18 2020-05-25 Driver circuit of power conversion device and application device thereof
EP20889604.3A EP4064538A4 (en) 2019-11-18 2020-05-25 DRIVER CIRCUIT OF A POWER CONVERSION DEVICE AND APPLICATION DEVICE THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911127613.0 2019-11-18
CN201911127613.0A CN110729880B (zh) 2019-11-18 2019-11-18 电力变换装置的驱动电路及其应用装置

Publications (1)

Publication Number Publication Date
WO2021098173A1 true WO2021098173A1 (zh) 2021-05-27

Family

ID=69225403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092060 WO2021098173A1 (zh) 2019-11-18 2020-05-25 电力变换装置的驱动电路及其应用装置

Country Status (5)

Country Link
EP (1) EP4064538A4 (zh)
JP (1) JP7305033B2 (zh)
CN (1) CN110729880B (zh)
AU (1) AU2020388721B2 (zh)
WO (1) WO2021098173A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113992070A (zh) * 2021-09-07 2022-01-28 东风汽车集团股份有限公司 一种电机供电系统及其控制方法和控制设备
CN114578119A (zh) * 2022-03-29 2022-06-03 合肥工业大学 基于并联SiC MOSFET动静态参数影响下的电流测量系统
CN116800246A (zh) * 2023-06-09 2023-09-22 陕西星环聚能科技有限公司 隔离电路和聚变拍摄装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729880B (zh) * 2019-11-18 2021-06-11 阳光电源股份有限公司 电力变换装置的驱动电路及其应用装置
CN116826687A (zh) * 2020-11-18 2023-09-29 华为技术有限公司 一种供电系统、缓启动电路及控制方法
CN112444755B (zh) * 2020-11-18 2023-10-20 许继集团有限公司 一种继电保护装置电源自检功能检测系统及检测方法
CN112558674B (zh) * 2020-12-02 2023-02-21 浙江中控技术股份有限公司 一种模拟量电流输出系统
CN112234962A (zh) * 2020-12-16 2021-01-15 杭州飞仕得科技有限公司 一种门极电流动态可控的功率半导体驱动电路

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506539A (en) * 1993-06-22 1996-04-09 U.S. Philips Corporation IGFET power semiconductor circuit with GAE control and fault detection circuits
US5986484A (en) * 1996-07-05 1999-11-16 Mitsubishi Denki Kabushiki Kaisha Semiconductor device drive circuit with voltage surge suppression
CN204465496U (zh) * 2015-04-09 2015-07-08 陕西航晶微电子有限公司 一种隔离式高端驱动器
CN107027205A (zh) * 2016-02-02 2017-08-08 佛山市顺德区美的电热电器制造有限公司 电磁加热装置及电磁加热装置中功率开关管的驱动电路
CN208015701U (zh) * 2018-03-09 2018-10-26 深圳市深图医学影像设备有限公司 一种igbt隔离控制驱动电路
CN209001922U (zh) * 2018-07-19 2019-06-18 西安理工大学 一种SiC MOSFET驱动电路系统
CN110365197A (zh) * 2019-08-15 2019-10-22 上海地铁电子科技有限公司 地铁列车牵引逆变模块驱动板
CN110729880A (zh) * 2019-11-18 2020-01-24 阳光电源股份有限公司 电力变换装置的驱动电路及其应用装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3132648B2 (ja) * 1996-09-20 2001-02-05 富士電機株式会社 電力変換器におけるゲート駆動回路
JP2009278704A (ja) * 2008-05-12 2009-11-26 Fuji Electric Systems Co Ltd 電圧駆動型半導体素子のゲート駆動装置
US8704409B2 (en) * 2009-10-28 2014-04-22 Zhiwei Chen High speed solid-state relay with controller
JP2012049946A (ja) * 2010-08-30 2012-03-08 Toyota Motor Corp 電圧駆動型素子を駆動する駆動装置
US9793889B2 (en) * 2011-03-15 2017-10-17 Infineon Technologies Ag Semiconductor device including a circuit to compensate for parasitic inductance
WO2012157118A1 (ja) * 2011-05-19 2012-11-22 トヨタ自動車株式会社 電圧駆動型素子を駆動する駆動装置
JP5938852B2 (ja) 2011-05-25 2016-06-22 富士電機株式会社 電圧制御型スイッチング素子のゲート駆動回路
CN102437803A (zh) * 2011-12-23 2012-05-02 东南大学 低成本、高隔离特性的开关磁阻电机自举式驱动电路
JP2014045562A (ja) 2012-08-27 2014-03-13 Panasonic Corp インバータ装置
CN102801339B (zh) * 2012-08-28 2014-07-16 矽力杰半导体技术(杭州)有限公司 一种低待机功耗的交直流电压转换电路及其控制方法
JP2014175886A (ja) 2013-03-11 2014-09-22 Panasonic Corp ゲート駆動回路およびゲート駆動方法
JP2016077057A (ja) 2014-10-03 2016-05-12 日新電機株式会社 半導体スイッチング素子の駆動回路
CN204349777U (zh) * 2014-12-26 2015-05-20 深圳青铜剑电力电子科技有限公司 一种igbt驱动用的隔离电源
WO2016121114A1 (ja) * 2015-01-30 2016-08-04 三菱電機株式会社 デジタル出力回路、プリント配線基板および工業機器
CN105337478A (zh) * 2015-11-16 2016-02-17 北京机械设备研究所 一种用于脉宽调制电压的反并联晶闸管驱动电路
CN205544904U (zh) * 2016-02-02 2016-08-31 佛山市顺德区美的电热电器制造有限公司 电磁加热装置及其功率开关管的驱动电路
CN106026623B (zh) * 2016-06-23 2019-07-19 广州金升阳科技有限公司 一种隔离式电子开关

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506539A (en) * 1993-06-22 1996-04-09 U.S. Philips Corporation IGFET power semiconductor circuit with GAE control and fault detection circuits
US5986484A (en) * 1996-07-05 1999-11-16 Mitsubishi Denki Kabushiki Kaisha Semiconductor device drive circuit with voltage surge suppression
CN204465496U (zh) * 2015-04-09 2015-07-08 陕西航晶微电子有限公司 一种隔离式高端驱动器
CN107027205A (zh) * 2016-02-02 2017-08-08 佛山市顺德区美的电热电器制造有限公司 电磁加热装置及电磁加热装置中功率开关管的驱动电路
CN208015701U (zh) * 2018-03-09 2018-10-26 深圳市深图医学影像设备有限公司 一种igbt隔离控制驱动电路
CN209001922U (zh) * 2018-07-19 2019-06-18 西安理工大学 一种SiC MOSFET驱动电路系统
CN110365197A (zh) * 2019-08-15 2019-10-22 上海地铁电子科技有限公司 地铁列车牵引逆变模块驱动板
CN110729880A (zh) * 2019-11-18 2020-01-24 阳光电源股份有限公司 电力变换装置的驱动电路及其应用装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4064538A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113992070A (zh) * 2021-09-07 2022-01-28 东风汽车集团股份有限公司 一种电机供电系统及其控制方法和控制设备
CN114578119A (zh) * 2022-03-29 2022-06-03 合肥工业大学 基于并联SiC MOSFET动静态参数影响下的电流测量系统
CN114578119B (zh) * 2022-03-29 2024-04-12 合肥工业大学 基于并联SiC MOSFET动静态参数影响下的电流测量系统
CN116800246A (zh) * 2023-06-09 2023-09-22 陕西星环聚能科技有限公司 隔离电路和聚变拍摄装置
CN116800246B (zh) * 2023-06-09 2024-04-09 陕西星环聚能科技有限公司 隔离电路和聚变拍摄装置

Also Published As

Publication number Publication date
CN110729880B (zh) 2021-06-11
EP4064538A4 (en) 2023-11-22
AU2020388721A1 (en) 2022-03-03
CN110729880A (zh) 2020-01-24
JP2022544998A (ja) 2022-10-24
EP4064538A1 (en) 2022-09-28
JP7305033B2 (ja) 2023-07-07
AU2020388721B2 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
WO2021098173A1 (zh) 电力变换装置的驱动电路及其应用装置
US11165345B2 (en) Multi-level boost apparatus
EP3035532B1 (en) Gate drive circuit and method of operating same
US10063224B2 (en) Driver circuit and semiconductor module having same
US7242238B2 (en) Drive circuit for voltage driven type semiconductor element
US9391503B2 (en) Converter circuit
US20170047841A1 (en) System and Method for a Switch Having a Normally-on Transistor and a Normally-off Transistor
EP2662968B1 (en) Three-level inverter
US7911192B2 (en) High voltage power regulation using two power switches with low voltage transistors
WO2021013101A1 (zh) 升压电路以及升压电路的控制方法
EP2678941B1 (en) Driver circuit for a semiconductor power switch
CN101674001A (zh) 带有死区控制的桥式驱动电路
CN108880230B (zh) 基于开关电源斩波电压的电源并联控制模块及并联系统
CN112910240B (zh) 一种可变栅极电压开通控制电路、功率模块及电力变换器
CN113541497A (zh) 控制方法和控制设备
US20130328537A1 (en) Buck converter with reverse current protection, and a photovoltaic system
CN108306535B (zh) 单相十一电平逆变器
TWI810702B (zh) 功率模組
JP2020096444A (ja) スイッチング回路
CN113765339A (zh) 避免并联式半导体开关中的寄生振荡的方法及对应的装置
CN113394954A (zh) 驱动电路、功率电路以及投影设备
TWM566962U (zh) 市電高壓光控型驅動電路
CN216873068U (zh) 一种易于集成的D-Mode氮化镓功率管的驱动及电流检测电路
WO2024018612A1 (ja) 半導体装置および電力変換装置
US11431331B2 (en) Switching apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511049

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020388721

Country of ref document: AU

Date of ref document: 20200525

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020889604

Country of ref document: EP

Effective date: 20220620