WO2021013101A1 - 升压电路以及升压电路的控制方法 - Google Patents

升压电路以及升压电路的控制方法 Download PDF

Info

Publication number
WO2021013101A1
WO2021013101A1 PCT/CN2020/102793 CN2020102793W WO2021013101A1 WO 2021013101 A1 WO2021013101 A1 WO 2021013101A1 CN 2020102793 W CN2020102793 W CN 2020102793W WO 2021013101 A1 WO2021013101 A1 WO 2021013101A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching devices
boost circuit
voltage
switching device
switching
Prior art date
Application number
PCT/CN2020/102793
Other languages
English (en)
French (fr)
Inventor
高拥兵
王均
石磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20844545.2A priority Critical patent/EP3910777B1/en
Priority to AU2020317327A priority patent/AU2020317327B2/en
Publication of WO2021013101A1 publication Critical patent/WO2021013101A1/zh
Priority to US17/473,511 priority patent/US20210408909A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel

Definitions

  • This application relates to the field of circuit technology, and more specifically, to a boost circuit and a control method of the boost circuit.
  • Boost circuit (Common boost circuit has boost circuit, boost translated into Chinese means increase, increase, boost circuit does not specifically refer to a specific circuit, but generally refers to a type of boost circuit, which is realized by this circuit Input a voltage, output a higher voltage) is a common switching DC boost circuit, which controls the inductance to store and release energy by turning on and off the switching device, so that the output voltage is higher than the input voltage. Achieve boost.
  • each switching device In order to improve the output waveform of the boost circuit, multiple switching devices are usually used in the boost circuit to control the charging and discharging process of the boost circuit (using the switching devices to turn on and off to control the charging and discharging).
  • each switching device In a traditional boost circuit, each switching device withstands the same voltage during operation, and the corresponding withstand voltage specifications of each switching device are also the same.
  • the selection of the withstand voltage specifications of the switching device of the boost circuit in the traditional scheme may cause a large gap between the actual voltage of the switching device and the withstand voltage specification of the switching device during the normal operation of the boost circuit.
  • Some switching devices with high withstand voltage specifications may be selected uniformly, and the switching characteristics of these high withstand voltage specifications are often relatively poor, resulting in low system efficiency of the boost circuit.
  • the present application provides a boost circuit and a control method of the boost circuit, so as to improve the working efficiency of the boost circuit.
  • a boost circuit in a first aspect, includes a power supply, a power supply, N switching devices, N-1 flying capacitors, N freewheeling diodes, and a precharging unit.
  • N switching devices are connected in series in sequence.
  • the first switching device is connected to the first end of the power supply through the first end of the inductor, and the second end of the Nth switching device is connected to the power supply. The second end is connected.
  • the voltage withstand specifications of the K switching devices are all different, and the voltages that the K switching devices withstand during normal operation are all different, N and K are both positive integers, and N>1, K ⁇ N.
  • the i-th flying capacitor among the above N-1 flying capacitors corresponds to the first i switching device among the N switching devices.
  • the voltage borne by the i-th flying capacitor is the previous i
  • the sum of voltages borne by two switching devices, i is a positive integer less than N.
  • the flying capacitor refers to the capacitor connected in parallel with both ends of the switching device and the freewheeling diode.
  • the above N freewheeling diodes correspond to the N switching devices respectively, and the i-th freewheeling diode in the N freewheeling diodes bears the same voltage as the i-th switching device among the N switching devices.
  • the voltage of the flying capacitor can be controlled by the turn-on and turn-off time of the N switching devices, so as to control the voltages that the K switching devices bear when they work normally.
  • the first terminal of the i-th flying capacitor is connected to the first terminal of the first switching device through the first i freewheeling diode, and the second terminal of the i-th flying capacitor is connected to the first terminal of the i-th switching device. Connected at the second end;
  • Freewheeling diode sometimes called flywheel diode or snubber diode
  • flywheel diode is a diode used with inductive loads.
  • the two ends of the inductor will Generate sudden voltage, which may damage other components.
  • the current in the boost circuit can be changed relatively smoothly, avoiding the generation of sudden voltage and sudden current.
  • the above-mentioned pre-charging unit is used to charge N-1 flying capacitors before the voltage of the boost circuit is output, so that the voltage of the i-th flying capacitor is the first i of the K switching devices The sum of the voltage withstand during normal operation.
  • the voltage value of the switching device is the same as the voltage value of the corresponding freewheeling diode.
  • the withstand voltage specifications of the switching device and the corresponding freewheeling diode can be the same or different, as long as the withstand voltage specification of the switching device is greater than the voltage that the switching device actually bears, the withstand voltage specification of the freewheeling diode It is sufficient if it is greater than the voltage that the freewheeling diode actually bears.
  • the above boost circuit further includes: an output unit, the first terminal of the output unit is connected to the first terminal of the power supply through N freewheeling diodes, and the second terminal of the output unit is connected to the second terminal of the power supply.
  • the above-mentioned output unit may be composed of a resistor R and a capacitor C connected in parallel.
  • the K freewheeling diodes have different withstand voltage specifications, and the K freewheeling diodes are respectively different from the above N switches.
  • the K switching devices in the device correspond one to one.
  • the K freewheeling diodes corresponding to the K switching devices with different withstand voltage specifications among the N freewheeling diodes also have different withstand voltage specifications, the same withstand voltage specifications are used uniformly with the N freewheeling diodes.
  • the voltages of the K freewheeling diodes can be made to be as close as possible to the corresponding withstand voltage specifications, thereby improving the performance of the freewheeling diodes and further improving the system efficiency of the boost circuit.
  • the above-mentioned boost circuit further includes a charging switch.
  • the above charging switch is arranged between the Nth switching device and the second end of the power supply.
  • the Nth switching device When the charging switch is closed, the Nth switching device is connected to the power supply.
  • the charging switch When the charging switch is opened, the Nth switching device is connected to the power supply. The power supply is off.
  • the pre-charging unit can be flexibly controlled by the charging switch to charge the flying capacitor.
  • the above-mentioned charging switch is arranged between the Nth switching device and the power supply, only one charging switch is needed to control the pre-charging process, and the number of switches can be reduced.
  • the above-mentioned charging switch is arranged between the Nth switching device and the power supply, compared with the manner in which each of the N switching devices is provided with a switch, the on-state loss can be reduced as a whole.
  • the charging switch is turned off, and the pre-charging unit is used to charge the flying capacitor.
  • the charging switch is closed. Then, the boost circuit can work normally.
  • the above-mentioned charging switch is composed of any one of a relay, a contactor, and a semiconductor bidirectional switch.
  • At least one of the above-mentioned N free-wheeling diodes is connected in parallel with a metal-oxide semiconductor field effect switching device MOSFET, and the MOSFET has a third quadrant conduction characteristic.
  • each of the N freewheeling diodes is connected in parallel with a MOSFET.
  • the above N switching devices are all insulated gate bipolar switching devices IGBT, or the above N switching devices are all MOSFETs.
  • each of the above N switching devices is connected with a diode in reverse parallel.
  • the above-mentioned boost circuit is a positive multi-level boost circuit.
  • the boost circuit is a positive multi-level boost circuit
  • the first terminal of the power source is the positive electrode of the power source
  • the second terminal of the power source is the negative electrode of the power source.
  • a multi-level boost circuit generally refers to a boost circuit that can output multiple (generally greater than or equal to three) different levels. Generally speaking, the more switching devices included in the boost circuit, the level that can be output The more the value is.
  • the above-mentioned boost circuit is a positive multi-level boost circuit.
  • the boost circuit is a negative multi-level boost circuit
  • the first end of the power supply is the negative pole of the power supply
  • the second end of the power supply is the positive pole of the power supply.
  • a method for controlling a booster circuit is provided.
  • the method is applied to the booster circuit of the above-mentioned first aspect.
  • the method includes: before the booster circuit outputs a voltage, controlling the number of precharge units to be N-1
  • the flying capacitor is charged so that the voltage of the i-th flying capacitor is the sum of the voltages withstood by the first i of the K switching devices during normal operation; controlling the on and off of the N switching devices, So that the boost circuit outputs voltage.
  • the pre-charging unit charges these switching devices, which can make certain switching devices withstand voltages closer to the withstand voltage specifications of the switching devices during operation.
  • the actual voltage of the switching device in the boost circuit may be closer to the withstand voltage specification of the switching device, thereby improving the boost circuit System efficiency.
  • the above-mentioned boost circuit includes a charging switch, and before controlling the pre-charging unit to charge the N-1 flying capacitors, the above-mentioned method further includes: controlling The charging switch is turned off; after the pre-charging unit finishes charging the N-1 flying capacitors, the above method further includes: controlling the charging switch to turn on.
  • the flying capacitor can be charged flexibly.
  • a booster device which includes the booster circuit described above.
  • Fig. 1 is a schematic diagram of a boost circuit of an embodiment of the present application
  • Fig. 2 is a schematic diagram of a boost circuit of an embodiment of the present application
  • Fig. 3 is a schematic diagram of a boost circuit of an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a boost circuit of an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a boost circuit of an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a boost circuit of an embodiment of the present application.
  • Fig. 7 is a schematic diagram of a boost circuit of an embodiment of the present application.
  • Fig. 8 is a schematic diagram of a boost circuit of an embodiment of the present application.
  • Fig. 9 is a schematic diagram of a boost circuit of an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a control method of a boost circuit according to an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a control method of a boost circuit according to an embodiment of the present application.
  • Fig. 1 is a schematic diagram of a boost circuit of an embodiment of the present application.
  • the boost circuit shown in Figure 1 includes a power supply E, an inductor L, N switching devices, N-1 flying capacitors, N freewheeling diodes, and a pre-charging unit.
  • the various modules or units of the boost circuit shown in FIG. 1 are described in detail below.
  • the power supply E is used to provide the input voltage for the boost circuit, and the boost circuit processes the input voltage, so that the final output voltage is higher than the input voltage, thereby realizing the boost.
  • the inductor L is an energy storage element, and the inductor L is connected to the first end of the power source. In the boost circuit shown in FIG. 1, the inductor L is connected to the positive electrode of the power source.
  • the N switching devices include T1 to Tn, and the N switching devices are connected in series in sequence.
  • the first terminal of the first switching device is connected to the first terminal of the power supply E through the inductor L.
  • One end is connected, and the second end of the Nth switching device is connected to the second end of the power supply E (in the boost circuit shown in FIG. 1, the second end of the power supply E is the negative electrode).
  • K switching devices (the K switching devices are not shown in Figure 1) have different withstand voltage specifications (the withstand voltage specifications of any two switching devices in the K devices) Different), the voltages that the K switching devices bear during normal operation are also different (any two switching devices in the K devices bear different voltages during normal operation), N and K are both positive integers, and N> 1.
  • K ⁇ N the K switching devices are not shown in Figure 1
  • the voltages that the K switching devices bear during normal operation are also different (any two switching devices in the K devices bear different voltages during normal operation)
  • N and K are both positive integers, and N> 1.
  • the first end of the first switching device T1 is the end connecting the first switching device T1 and the inductor L
  • the second end of the Nth switching device Tn is the Nth switching device Tn directly connected to the power supply. One end.
  • the first terminal of the i-th flying capacitor is connected to the first terminal of the first switching device through the first i freewheeling diode, and the second terminal of the i-th flying capacitor is connected to the first terminal of the i-th switching device. The second end is connected.
  • the first end of the flying capacitor C1 is connected to the first end of the first switching device T1 through the first freewheeling diode D1, and the second end of the flying capacitor C1 is connected to the first switching device T1.
  • the second end is connected.
  • the first terminal of the flying capacitor C2 is connected to the first terminal of the first switching device T1 through the first freewheeling diode D1 and the second freewheeling diode D2, and the second terminal of the flying capacitor C2 is connected to the second switch The second end of the device T2 is connected.
  • the flying capacitor refers to the capacitor connected in parallel with both ends of the switching device and the freewheeling diode.
  • T1 and D1 are connected in parallel with the slave after being connected in series
  • C1 is a flying capacitor.
  • C2 to Cn-1 are also flying capacitors.
  • Each of the above N switching devices may specifically be an insulated gate bipolar transistor (IGBT), or each of the above N switching devices is a metal-oxide semiconductor field effect Transistor, referred to as metal-oxide-semiconductor field-effect transistor (MOSFET).
  • IGBT insulated gate bipolar transistor
  • MOSFET metal-oxide semiconductor field effect Transistor
  • the voltage that each switching device bears during normal operation is generally lower than the withstand voltage specification of the switching device (the withstand voltage specification represents the maximum voltage that the switching device can withstand during normal operation). For example, if the switching device withstands a voltage of 600V during normal operation, then a switching device with a withstand voltage specification of 650V can be selected.
  • T1 and T3 have different withstand voltage specifications.
  • T1 has a withstand voltage specification of 650V
  • T2 has a withstand voltage specification of 1200V. Then, T1 can withstand a voltage of 500V during operation, while T2 is working
  • the voltage that can be withstood can be 1000V, and the voltage that T1 and T2 can withstand is different.
  • N-1 flying capacitors N-1 flying capacitors:
  • the N-1 flying capacitors include C1 to Cn.
  • the i-th flying capacitor corresponds to the first i of the above N switching devices.
  • the boost circuit shown in FIG. 1 works normally, the voltage borne by the i-th flying capacitor is the sum of the voltage borne by the previous i switching devices, and i is a positive integer less than N.
  • C1 corresponds to the first switching device T1.
  • Vc1 the voltage that C1 bears is the same as the voltage that the first switching device bears.
  • C2 corresponds to the first two switching devices (T1 and T2).
  • Vc2 the voltage of C2 is equal to the voltage of T1 and T2.
  • Cn-1 corresponds to the previous N-1 switching devices (T1 to Tn-1).
  • Vcn-1) of Cn-1 is equal to the sum of the voltages of T1 to Tn-1 .
  • Freewheeling diode sometimes called flywheel diode or snubber diode
  • flywheel diode is a diode used with inductive loads.
  • the two ends of the inductor will Generate sudden voltage, which may damage other components.
  • the current in the boost circuit can be changed relatively smoothly, avoiding the generation of sudden voltage and sudden current.
  • the N freewheeling diodes include D1 to Dn, and the N freewheeling diodes correspond to the above N switching devices respectively, that is, among the N freewheeling diodes, the i-th freewheeling diode
  • the freewheeling diode corresponds to the i-th switching device among the above N switching devices, and the i-th freewheeling diode and the i-th switching device bear the same voltage.
  • the first diode D1 of the N freewheeling diodes corresponds to the first switching device T1 of the N switching devices
  • the second diode D2 of the N freewheeling diodes corresponds to The second switching device T2 among the N switching devices
  • the N-th diode Dn among the N freewheeling diodes corresponds to the N-th switching device Tn among the N switching devices.
  • the voltage value of the switching device is the same as the voltage value of the corresponding freewheeling diode.
  • the voltage value of T1 is the same as that of D1
  • the voltage value of T2 is the same as that of D2
  • the voltage value of Tn is the same as that of Dn.
  • the voltage values are the same.
  • the voltage that each freewheeling diode bears during normal operation is generally lower than the withstand voltage specification of the freewheeling diode (the withstand voltage specification means that the freewheeling diode can withstand the normal operation The maximum voltage value).
  • the freewheeling diode withstands a voltage of 610V during normal operation, then a freewheeling diode with a withstand voltage of 650V can be selected.
  • the withstand voltage specifications of the switching device and the corresponding freewheeling diode can be the same or different, as long as the withstand voltage specification of the switching device is greater than the voltage that the switching device actually bears, the withstand voltage specification of the freewheeling diode It is sufficient if it is greater than the voltage that the freewheeling diode actually bears.
  • the withstand voltage is 610V
  • the withstand voltage specifications of T1 and D1 can both be 650V.
  • the withstand voltage is 610V
  • the withstand voltage specification of T1 can be 650V
  • the withstand voltage specification of D1 can be greater than 650V.
  • the pre-charging unit is used to charge the above N-1 flying capacitors before the output voltage of the boost circuit (normal operation), so that the voltage of the i-th flying capacitor is the first i of the above N switching devices The sum of the voltage withstand during normal operation.
  • the pre-charging unit charges the flying capacitors C1 to Cn-1 so that the voltage of C1 is the voltage that T1 can withstand during normal operation, and the voltage of C2 is the voltage that T1 and T2 can withstand during normal operation.
  • the sum, the voltage of Cn-1 is the sum of the voltages that T1 to Tn-1 withstand during normal operation.
  • the N freewheeling diodes can be selected uniformly with diodes with larger withstand voltage specifications, or diodes with different withstand voltage specifications can be selected according to the different withstand voltages.
  • the N freewheeling diodes include K freewheeling diodes (not shown in FIG. 1), and the K freewheeling diodes respectively correspond to the K switching devices of the N switching devices in one-to-one correspondence, and ,
  • the withstand voltage specifications of the K freewheeling diodes are all different.
  • the withstand voltage specifications of T1 and T2 in the boost circuit of FIG. 1 are different, since the freewheeling diodes corresponding to T1 and T2 are D1 and D2, respectively, the withstand voltage specifications of D1 and D2 are also different.
  • the K freewheeling diodes corresponding to the K switching devices with different withstand voltage specifications among the N freewheeling diodes also have different withstand voltage specifications, the same withstand voltage specifications are used uniformly with the N freewheeling diodes.
  • the voltages of the K freewheeling diodes can be made to be as close as possible to the corresponding withstand voltage specifications, thereby improving the performance of the freewheeling diodes and further improving the system efficiency of the boost circuit.
  • the boost circuit in this application includes 3 switching devices (T1, T2 and T3), 2 flying capacitors (C1 and C2), and 3 freewheeling diodes (D1, D2 and D3) . If the input voltage of the boost circuit shown in Figure 2 is 900V and the output voltage is 2000V, then when the flying capacitors C1 and C2 are charged through the pre-charging unit, the voltage after C1 is charged to 500V, and after C2 is charged The voltage is 1000V.
  • T1 bears 500V.
  • the voltage that C2 bears is the sum of the voltage that T1 bears and the voltage that T2 bears. It can be seen that the voltage that T2 bears is also 500V.
  • the voltage that T3 bears is the difference between the output voltage (2000V) and the voltage that C2 bears (1000V). Therefore, the voltage that T3 bears is 1000V. Therefore, the voltages that T1, T2 and T3 bear are 500V, 500V and 1000V respectively.
  • switching devices with a withstand voltage specification of 650V can be selected, and for T3, switching devices with a withstand voltage specification of 1200V can be selected.
  • D1, D2, and D3 bear the same voltage as T1, T2, and T3. Therefore, for T1 and T2, a freewheeling diode with a withstand voltage of 650V can be selected. For T3, You can choose a freewheeling diode with a withstand voltage of 1200V. Of course, the withstand voltage specifications selected for D1, D2, and D3 here can also be different from T1, T2, and T3. The selection of withstand voltage specifications can ensure that the freewheeling diode and the corresponding switching device can work normally when they bear the same voltage. OK. For example, D1 can choose a freewheeling diode with a withstand voltage of 600V.
  • the actual voltage of the switching device when the actual voltage of the switching device is close to the withstand voltage specification, the characteristics of the switching device are better, and when the actual voltage of the switching device differs greatly from the withstand voltage specification, the characteristics are often poor. Therefore, in the above example, by selecting switching devices with a withstand voltage specification of 650V as T1 and T2, and selecting a switching device with a withstand voltage specification of 1200V as T3, the actual voltage of the switching device can be made more compatible with the withstand voltage specification of the switching device. Close, which can improve the system efficiency of the boost circuit to a certain extent.
  • the output voltage of the booster circuit is often evenly distributed to each switching device, and each switching device has the same withstand voltage specifications.
  • the traditional solution is to evenly distribute the output voltage of 2000V on each switching device.
  • the actual voltage that T1, T2, and T3 bear during operation is 667V.
  • T1, T2, and T3 When they are all IGBTs, the commonly used withstand voltage specifications of IGBTs are 650V and 1200V.
  • T1, T2 and T3 actually bear voltages of 667V during operation, which exceeds 650V
  • IGBTs with withstand voltage specifications of 1200V have to be selected as T1, T2 And T3, so that the voltage that T1, T2, and T3 actually bear during operation is too far apart from the withstand voltage specification, resulting in lower system efficiency of the boost circuit.
  • the actual voltage of each switching device can be as close as possible to the withstand voltage specifications, thereby improving the system efficiency of the boost circuit.
  • the voltage of the flying capacitor can be controlled by the turn-on and turn-off time of the N switching devices, so as to control the voltages that the K switching devices bear when they work normally.
  • the withstand voltage specifications of T1 and T2 are 650V
  • the withstand voltage specification of T3 is 1200V
  • the input voltage of the booster circuit is 900V
  • the output voltage is 2000V.
  • the voltages of C1 and C2 can be controlled by controlling the turn-on and turn-off times of T1, T2, and T3, so that the voltage of C1 is maintained at 500V, and the voltage of C2 is maintained at 1000V, so that The voltage that T1 and T2 bear when working is 500V, while the voltage that T3 bears when working is 1000V.
  • the boost circuit shown in FIG. 1 further includes an output unit.
  • the output unit includes a resistor R and a capacitor C.
  • the resistor R and the capacitor C are connected in parallel.
  • One end of the resistor R and the capacitor C is connected to the first end of the power source E through a freewheeling diode.
  • the other end is connected to the second end of the power supply E through a freewheeling diode.
  • a charging switch can be set between the flying capacitor and the corresponding switching device.
  • the pre-charging unit completes the charging of the flying capacitor After charging, close the charging switch.
  • the flying capacitors (C1 to Cn-1) and the corresponding switching devices (T1 to Tn) are connected through the charging switches (S1 to Sn-1).
  • the charging switch (S1 to Sn-1) before the initial power-on, the charging switch (S1 to Sn-1) is turned off, and then each flying capacitor is charged through the pre-charging unit.
  • the charging switch (S1 to Sn-1) When the voltage meets the normal operating requirements, the charging switch (S1 to Sn-1) is closed, and the boost circuit works normally.
  • each flying capacitor can be charged before the boost circuit starts to work.
  • the boost circuit shown in Figure 3 has a large number of switches and a higher cost.
  • a larger current will pass when these charging switches are closed, resulting in larger on-state losses and reduced effectiveness. Therefore, in order to reduce the on-state loss and reduce the cost, only one charging switch can be provided, and the charging switch can be connected between the Nth switching device and the second terminal of the power supply.
  • the boost circuit of the embodiment of the present application further includes a charging switch, which is arranged between the Nth switching device and the second terminal of the power supply.
  • a charging switch which is arranged between the Nth switching device and the second terminal of the power supply.
  • the charging switch S is arranged between the Nth switching device and the second end of the power source E.
  • One end of the charging switch S is connected to the switching device Tn, and the other end of the charging switch S is connected to the second end of the power supply.
  • the boost circuit includes three switching devices T1, T2, and T3, and the charging switch S is arranged between T3 and the power source E.
  • the charging switch S by connecting the charging switch S between the Nth switching device and the second end of the power supply, one charging switch can be used to control the pre-charging unit to charge the flying capacitor, and the number of switches can be reduced.
  • the charging switch S By connecting the charging switch S between the Nth switching device and the second terminal of the power supply, the total current flowing through the charging switch S can also be reduced (compared to the case of multiple switches shown in FIG. 3 Ratio), thereby reducing the on-state loss.
  • the charging switch can be composed of any one of a relay, a contactor, and a semiconductor bidirectional switch.
  • the charging switch in this application can also be any other switch that can be applied to a booster circuit.
  • a freewheeling diode in order to further reduce the on-state loss of the boost circuit, can also be connected in parallel with a MOSFET.
  • each of the above N freewheeling diodes is connected in parallel with a MOSFET.
  • each freewheeling diode (D1 to Dn) is connected in parallel with a MOSFET. Specifically, D1 is connected in parallel with M1, D2 is connected in parallel with M2, and Dn is connected in parallel with Mn.
  • each switching device in the boost circuit can have a diode in reverse parallel connection.
  • T1 has a diode Dn+1 in anti-parallel
  • T2 has a diode Dn+2 in anti-parallel
  • Tn has a diode D2n in anti-parallel.
  • the boost circuit in the embodiment of the present application may be a positive multi-level boost circuit or a negative multi-level boost circuit.
  • a multi-level boost circuit generally refers to a boost circuit that can output multiple (generally greater than or equal to three) different levels. Generally speaking, the more switching devices included in the boost circuit, the level that can be output The more the value is.
  • the boost circuit shown in Figs. 1 to 7 is a positive multi-level boost circuit, and the freewheeling diodes (D1 to Dn) are connected to the anode of the power supply E.
  • the boost circuits shown in FIGS. 8 and 9 are negative multi-level boost circuits, and freewheeling diodes (D1 to Dn) are connected to the cathode of the power supply E.
  • the embodiment of the present application further includes a boost device, which includes the boost circuit in the embodiment of the present application.
  • the boost device may specifically be a boost type direct current-direct current (DC-DC) conversion device.
  • the boost circuit of the embodiment of the present application is described in detail above with reference to FIGS. 1 to 9, and the control method of the boost circuit of the embodiment of the present application is described in detail below with reference to FIG. 10 and FIG. 11. It should be understood that the method of controlling the boost circuit shown in FIGS. 10 and 11 can control the boost circuit shown in FIGS. 1 to 9.
  • FIG. 10 is a schematic flowchart of a control method of a boost circuit according to an embodiment of the present application.
  • the method shown in FIG. 10 can be controlled by a boosting device including the boosting circuit in FIGS. 1 to 9 described above.
  • the method shown in FIG. 10 includes steps 1001 to 1003, which are described below.
  • step 1002 when it is determined that the voltage of the i-th flying capacitor is the sum of the voltages withstood by the previous i switching devices during normal operation, it indicates that the charging process is completed, the boost circuit can work normally, and the external output voltage is also Step 1003 is executed.
  • Step 1003 When it is determined in step 1002 that the voltage of the i-th flying capacitor is not the sum of the voltages withstood by the previous i switching devices during normal operation, it indicates that the charging process has not ended and it is necessary to continue charging, that is, continue to perform step 1001.
  • step 1003 by controlling the turn-on and turn-off frequencies of the N switching devices, voltages meeting different requirements can be output.
  • the specific control process is the same as that of the existing boost circuit (specifically, a boost boost circuit). No more detailed description.
  • the pre-charging unit charges these switching devices, which can make certain switching devices withstand voltages closer to the withstand voltage specifications of the switching devices during operation.
  • the actual voltage of the switching device in the boost circuit may be closer to the withstand voltage specification of the switching device, thereby increasing the boost The system efficiency of the circuit.
  • the charging switch may be turned off before step 1001 is executed.
  • step 1003 is performed to control the on and off of the N switching devices OFF, making the boost circuit output voltage.
  • the above-mentioned boost circuit includes a charging switch.
  • the method shown in FIG. 10 further includes: controlling the charging switch to be turned off; and the pre-charging unit is N-1 flying jumpers. After the capacitor is charged, the method shown in FIG. 10 further includes: controlling the charging switch to close.
  • the pre-charging unit stops working.
  • the charging switch S is turned off first, and then the pre-charging unit is controlled to charge the flying capacitors C1 to Cn-1, and the flying capacitors C1 to Cn- After the charging of 1, the charging switch S is closed, and then the voltage output by the booster circuit is controlled by controlling the on and off of the switching devices T1 to Tn.
  • the charging switch can be used to flexibly charge the flying capacitor.
  • FIG. 11 is a schematic flowchart of a control method of a boost circuit according to an embodiment of the present application.
  • the method shown in FIG. 11 can be controlled by a boost device including the boost circuit in FIGS. 1 to 9 described above.
  • the method shown in FIG. 11 includes steps 2001 to 2007, which are described below.
  • the pre-charging unit detects the voltage of the flying capacitor.
  • the pre-charging unit can detect the voltage of the flying capacitor. Therefore, before charging the flying capacitor by the pre-charging unit, it can be judged whether the voltage borne by the flying capacitor meets the requirements. If the voltage borne by the flying capacitor meets the requirements, there is no need to use the pre-charging unit to charge the flying capacitor. Go to step 2005. When the voltage borne by the flying capacitor does not meet the requirements, the pre-charging unit needs to be used to charge the flying capacitor, that is, step 2003 is performed.
  • Determining whether the capacitance of the flying capacitor is within the set range in the above step 2002 may refer to determining whether the voltage of the i-th flying capacitor is equal to the sum of the voltages withstood by the previous i switching devices during normal operation.
  • C1 it can be determined whether the voltage of C1 is equal to the voltage that T1 withstands during normal operation, and for C2, it can be determined whether the voltage of C2 is equal to the sum of the voltages withstand T1 and T2 during normal operation.
  • Step 2003 determines whether the voltage of the flying capacitor is within the set range is the same as step 2002.
  • step 2004, whether the voltage of the flying capacitor is within the set range can be determined in real time during the charging process, or whether the voltage of the flying capacitor is within the set range can also be determined at regular intervals.
  • step 2004, it is determined whether the voltages borne by the flying capacitors C1 to Cn-1 are within a set range.
  • step 2004 When it is determined in step 2004 that the voltage of the flying capacitor is within the set range, it indicates that the charging of the flying capacitor is completed. Next, the charging switch can be controlled to close, that is, step 2005 is performed. When it is determined in step 2004 that the voltage of the flying capacitor is not within the set range, it means that the charging of the flying capacitor has not been completed, and step 2003 needs to be performed to continue charging the flying capacitor.
  • the boost circuit can start to work normally.
  • the switching device can be controlled to be turned on and off to make the boost circuit output voltage.
  • the boost circuit can be made to output different voltages.
  • step 2006 the specific control method of the switching device is the same as the control method of the existing booster circuit, which will not be described in detail here.
  • the voltage of the base of the switching device can be controlled to make the switching device in an off state, and then the charging switch can be turned off.
  • the base voltages of the switching devices T1 to Tn can be controlled to make the switching devices T1 to Tn in the off state (equivalent to off Off state), and then turn off the charging switch S (also called off), so that the boost circuit enters the "off state".
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请涉及电路技术领域,提供了升压电路和升压电路的控制方法。该升压电路包括电源、电感、N个开关器件、N-1个飞跨电容、N个续流二极管、预充电单元和输出单元。其中,N个开关器件依次串联在一起,N个开关器件中的第一个开关器件通过电感与电源的第一端相连,第N个开关器件与电源的第二端相连,该N个开关器件中至少有两个开关器件的耐压规格不同,其中,耐压规格不同的开关器件正常工作时承受的电压值也不相同,N为正整数。本申请中通过采用不同耐压规格的开关器件能够提高升压电路的系统效率。

Description

升压电路以及升压电路的控制方法
本申请要求于2019年7月19日提交中国专利局、申请号为201910657370.5、申请名称为“升压电路以及升压电路的控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电路技术领域,并且更具体地,涉及一种升压电路以及升压电路的控制方法。
背景技术
升压电路(常见的升压电路有boost电路,boost翻译成中文是增大、提高的意思,boost电路不特指一种具体电路,而是泛指一种升压电路,即通过该电路实现输入一个电压,输出一个更高的电压)是一种常见的开关直流升压电路,它通过开关器件的导通和关断来控制电感储存和释放能量,从而使得输出电压高于输入电压,从而实现升压。
为了改善升压电路的输出波形,通常会在升压电路中采用多个开关器件来控制升压电路的充放电过程(利用开关器件的开启和关断来控制充放电)。在传统的升压电路中,每个开关器件工作时承受的电压相同,每个开关器件对应的耐压规格也相同。
但是传统方案中升压电路的开关器件耐压规格的选择可能会使得升压电路正常工作时开关器件实际承受的电压与开关器件的耐压规格有较大的差距,也就是说传统方案中,可能会统一选择一些耐压规格很高的开关器件,而这些高耐压规格的开关器件的开关特性往往比较差,导致升压电路的系统效率不高。
发明内容
本申请提供一种升压电路以及升压电路的控制方法,以提高升压电路的工作效率。
第一方面,提供一种升压电路,该升压电路包括电源、电源、N个开关器件、N-1个飞跨电容、N个续流二极管和预充电单元。
其中,N个开关器件依次串联在一起,在该N个开关器件中,第一个开关器件通过电感的第一端与电源的第一端相连,第N个开关器件的第二端与电源的第二端相连。在该N开关器件中,K个开关器件的耐压规格均不相同,并且该K个开关器件正常工作时承受的电压均不相同,N和K均为正整数,并且N>1,K≤N。
上述N-1个飞跨电容中的第i个飞跨电容与N个开关器件中的前i个开关器件对应,在升压电路正常工作时,第i个飞跨电容承受的电压为前i个开关器件承受的电压的和,i为小于N的正整数。
在升压电路中,飞跨电容是指与开关器件和续流二极管的两端相并联的电容。
上述N个续流二极管分别与N个开关器件一一对应,N个续流二极管中的第i个续流 二极管与N个开关器件中的第i个开关器件承受的电压相同。
在本申请中,可以通过N个开关器件的导通和关断的时间来控制飞跨电容的电压,进而控制K个开关器件正常工作时承受的电压均不相同。
另外,上述第i个飞跨电容的第一端通过前i个续流二极管与第1个开关器件的第一端相连,上述第i个飞跨电容的第二端与第i个开关器件的第二端相连;
续流二极管(flyback diode),有时也称为飞轮二极管或缓冲(snubber)二极管,是一种配合电感性负载使用的二极管,当电感性负载的电流有突然的变化或减少时,电感二端会产生突变电压,可能会破坏其他元件。在升压电路中通过为电感配合使用续流二极管,能够使得升压电路中的电流可以较平缓地变化,避免突变电压和突变电流的产生。
上述预充电单元用于在所述升压电路输出电压之前,为N-1个飞跨电容充电,以使得第i个飞跨电容的电压为所述K个开关器件中的前i个开关器件正常工作时承受的电压之和。
升压电路在正常工作时,开关器件承受的电压值与相应的续流二极管承受的电压值相同。另外,在本申请中,开关器件与相对应的续流二极管的耐压规格可以相同,也可以不同,只要使得开关器件的耐压规格大于开关器件实际承受的电压,续流二极管的耐压规格大于续流二极管实际承受的电压即可。
可选地,上述升压电路还包括:输出单元,该输出单元的第一端通过N个续流二极管与电源的第一端相连,该输出单元的第二端与电源的第二端相连。
上述输出单元可以由并联在一起的电阻R和电容C组成。
本申请中,升压电路中存在耐压规格不同的开关器件,而这些耐压规格不同的开关器件在工作时承受的电压也不相同,这与传统方案中的升压电路中选择统一耐压规格的开关器件的方式相比,能够使得升压电路中的开关器件实际承受的电压可能更接近开关器件的耐压规格,从而有可能提高升压电路的系统效率。
一般来说,开关器件的工作时实际承受的电压与开关器件的耐压规格相差较大时,开关器件的特性往往比较差,相应的升压电路的系统效率指标也会比较差。而当开关器件工作时实际承受的电压与开关器件的耐压规格比较接近时,开关器件的特性会比较好一些,相应的升压电路的系统效率指标也会有所提高。
结合第一方面,在第一方面的某些实现方式中,在上述N个续流二极管中,K个续流二极管的耐压规格均不相同,该K个续流二极管分别与上述N个开关器件中的K个开关器件一一对应。
本申请中,由于N个续流二极管中与K个耐压规格不同的开关器件相对应的K个续流二极管也具有不同的耐压规格,与N个续流二极管统一采用相同的耐压规格的方式相比,能够使得K个续流二极管工作时承受的电压与相应的耐压规格尽可能的接近,从而可以提升续流二极管的性能,进一步提高升压电路的系统效率。
结合第一方面,在第一方面的某些实现方式中,上述升压电路还包括充电开关。
上述充电开关设置在第N个开关器件与电源的第二端之间,当充电开关闭合时,第N个开关器件与电源处于连接状态,当充电开关断开时,第N个开关器件与所述电源处于断开状态。
通过充电开关能够灵活的控制预充电单元对飞跨电容进行充电。
由于上述充电开关设置在第N个开关器件与电源之间,因此,只需要一个充电开关就能够实现对预充电过程的控制,可以减少开关的数量。另外,由于上述充电开元设置在第N个开关器件与电源之间,与N个开关器件中的每个开关器件均设置一个开关的方式相比,能够在整体上减少通态损耗。
一般在升压电路工作之前,将充电开关断开,利用预充电单元为飞跨电容充电,当充电完毕后再将充电开关闭合,接下来,升压电路就可以正常工作了。
可选地,上述充电开关由继电器、接触器以及半导体双向开关中的任意一个构成。
结合第一方面,在第一方面的某些实现方式中,上述N个续流二极管中的至少一个续流二极管并联有金属-氧化物半导体场效应开关器件MOSFET,该MOSFET具有第三象限导通特性。
进一步的,上述N个续流二极管中的每个续流二极管均并联有MOSFET。
通过为续流二极管并联MOSFET,能够减少通态损耗。
结合第一方面,在第一方面的某些实现方式中,上述N个开关器件均为绝缘栅双极型开关器件IGBT,或者上述N个开关器件均为MOSFET。
结合第一方面,在第一方面的某些实现方式中,上述N个开关器件中的每个开关器件均反向并联有二极管。
结合第一方面,在第一方面的某些实现方式中,上述升压电路为正向的多电平升压电路。
具体地,当上述升压电路为正向的多电平升压电路时,上述电源的第一端为电源的正极,上述电源的第二端为电源的负极。
多电平升压电路一般是指可以输出多个(一般是指大于或者等于三个)不同电平的升电路,一般来说,升压电路中包含的开关器件越多,能够输出的电平数值也就越多。
结合第一方面,在第一方面的某些实现方式中,上述升压电路为正向的多电平升压电路。
具体地,当上述升压电路为负向的多电平升压电路时,上述电源的第一端为电源的负极,上述电源的第二端为电源的正极。
第二方面,提供了一种升压电路的控制方法,该方法应用于上述第一方面的升压电路中,该方法包括:在升压电路输出电压之前,控制预充电单元为N-1个飞跨电容充电,以使得第i个飞跨电容的电压为K个开关器件中的前i个开关器件正常工作时承受的电压之和;控制所述N个开关器件的导通和关断,以使得所述升压电路输出电压。
本申请中,升压电路中存在耐压规格不同的开关器件,通过预充电单元为这些开关器件进行充电,能够使得某些开关器件工作时承受的电压与开关器件的耐压规格比较接近,这与传统方案中的升压电路中选择统一耐压规格的开关器件的方式相比,能够使得升压电路中的开关器件实际承受的电压可能更接近开关器件的耐压规格,从而提高升压电路的系统效率。
结合第二方面,在第二方面的某些实现方式中,上述升压电路包括充电开关,在控制所述预充电单元为所述N-1个飞跨电容充电之前,上述方法还包括:控制充电开关断开;在预充电单元为所述N-1个飞跨电容完成充电之后,上述方法还包括:控制所述充电开关闭合。
通过充电开关,能够灵活地实现对飞跨电容的充电。
第三方面,提供一种升压装置,该升压装置包括上述升压电路。
附图说明
图1是本申请实施例的升压电路的示意图;
图2是本申请实施例的升压电路的示意图;
图3是本申请实施例的升压电路的示意图;
图4是本申请实施例的升压电路的示意图;
图5是本申请实施例的升压电路的示意图;
图6是本申请实施例的升压电路的示意图;
图7是本申请实施例的升压电路的示意图;
图8是本申请实施例的升压电路的示意图;
图9是本申请实施例的升压电路的示意图;
图10是本申请实施例的升压电路的控制方法的示意性流程图;
图11是本申请实施例的升压电路的控制方法的示意性流程图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例的升压电路的示意图。
图1所示的升压电路包括电源E、电感L、N个开关器件、N-1个飞跨电容、N个续流二极管、预充电单元。下面对图1所示的升压电路的各个模块或者单元进行详细的介绍。
电源E:
电源E用于为升压电路提供输入电压,升压电路对输入电压进行处理,能够使得最终的输出电压高于输入电压,从而实现升压。
电感L:
该电感L为储能元件,电感L与电源的第一端相连,在图1所示的升压电路中,电感L与电源的正极相连。
N个开关器件:
如图1所示,N个开关器件包括T1至Tn,该N个开关器件依次串联在一起,在这N个开关器件中,第一个开关器件的第一端通过电感L与电源E的第一端相连,第N个开关器件的第二端与所述电源E的第二端相连(在图1所示的升压电路中,电源E的第二端为负极)。在这N个开关器件中,有K个开关器件(该K个开关器件在图1中未示出)的耐压规格均不相同(该K个器件中的任意两个开关器件的耐压规格不同),该K个开关器件正常工作时承受的电压也都不相同(该K个器件中的任意两个开关器件正常工作时承受的电压不同),N和K均为正整数,并且N>1,K≤N。
如图1所示,第一开关器件T1的第一端是第一开关器件T1与电感L相连的一端,第N个开关器件Tn的第二端是第N个开关器件Tn与电源直接相连的一端。
另外,上述第i个飞跨电容的第一端通过前i个续流二极管与第1个开关器件的第一端相连,上述第i个飞跨电容的第二端与第i个开关器件的第二端相连。
如图1所示,飞跨电容C1的第一端通过第1个续流二极管D1与第1个开关器件T1的第一端相连,飞跨电容C1的第二端与第1个开关器件的第二端相连。飞跨电容C2的第一端通过第1个续流二极管D1和第2个续流二极管D2与第1个开关器件T1的第一端相连,飞跨电容C2的第二端与第2个开关器件T2的第二端相连。
在升压电路中,飞跨电容是指与开关器件和续流二极管的两端相并联的电容。例如,在图1中,T1和D1串联后与从并联,C1为飞跨电容。同样的,C2至Cn-1也是飞跨电容。
上述N个开关器件中的每个开关器件具体可以是绝缘栅双极型开关器件(insulated gate bipolar transistor,IGBT),或者上述N个开关器件中每个开关器件均为金属-氧化物半导体场效应晶体管,简称金氧半场效晶体管(metal-oxide-semiconductor field-effect transistor,MOSFET)。
对于上述N个开关器件来说,每个开关器件正常工作时承受的电压一般要低于该开关器件的耐压规格(耐压规格表示该开关器件正常工作时能够承受的最大的电压值)。例如,开关器件正常工作时承受的电压为600V,那么,可以选择耐压规格为650V的开关器件。
例如,上述K个开关器件中的T1和T3的耐压规格不同,T1的耐压规格为650V,T2的耐压规格为1200V,那么,T1在工作时可以承受500V的电压,而T2在工作时承受的电压可以为1000V,T1和T2工作时承受的电压不同。
N-1个飞跨电容:
如图1所示,该N-1个飞跨电容包括C1至Cn,在该N-1个飞跨电容中,第i个飞跨电容与上述N个开关器件中的前i个开关器件对应,在图1所示的升压电路正常工作时,第i个飞跨电容承受的电压为前i个开关器件承受的电压的和,i为小于N的正整数。
例如,在图1所示的升压电路中,C1与第一个开关器件T1对应,当升压电路正常工作时,C1承受的电压(Vc1)与第1个开关器件承受的电压相同。
再如,在图1所示的升压电路中,C2与前两个开关器件(T1和T2)对应,当升压电路正常工作时,C2承受的电压(Vc2)等于T1承受的电压与T2承受的电压的和。Cn-1与前N-1个开关器件对应(T1至Tn-1),当升压电路正常工作时,Cn-1承受的电压(Vcn-1)等于T1至Tn-1承受的电压的总和。
N个续流二极管:
续流二极管(flyback diode),有时也称为飞轮二极管或缓冲(snubber)二极管,是一种配合电感性负载使用的二极管,当电感性负载的电流有突然的变化或减少时,电感二端会产生突变电压,可能会破坏其他元件。在升压电路中通过为电感配合使用续流二极管,能够使得升压电路中的电流可以较平缓地变化,避免突变电压和突变电流的产生。
如图1所示,该N个续流二极管包括D1至Dn,该N个续流二极管分别与上述N个开关器件一一对应,也就是说,在该N个续流二极管中,第i个续流二极管与上述N个开关器件中的第i个开关器件对应,并且,该第i个续流二极管与第i个开关器件承受的电压相同。
具体地,如图1所示,N个续流二极管中的第一个二极管D1对应于N个开关器件中的第一个开关器件T1,N个续流二极管中的第二个二极管D2对应于N个开关器件中的第二个开关器件T2,N个续流二极管中的第N个二极管Dn对应于N个开关器件中的第 N个开关器件Tn。
升压电路在正常工作时,开关器件承受的电压值与相应的续流二极管承受的电压值相同。
例如,如图1所示,当升压电路正常工作时,T1承受的电压值与D1承受的电压值相同,T2承受的电压值与D2承受的电压值相同,Tn承受的电压值与Dn承受的电压值相同。
应理解,对于上述N个续流二极管来说,每个续流二极管正常工作时承受的电压一般要低于该续流二极管的耐压规格(耐压规格表示该续流二极管正常工作时能够承受的最大的电压值)。例如,续流二极管正常工作时承受的电压为610V,那么,可以选择耐压规格为650V的续流二极管。
另外,在本申请中,开关器件与相对应的续流二极管的耐压规格可以相同,也可以不同,只要使得开关器件的耐压规格大于开关器件实际承受的电压,续流二极管的耐压规格大于续流二极管实际承受的电压即可。例如,当T1和D1正常工作时承受的电压是610V,那么,T1和D1的耐压规格可以都是650V。或者,当T1和D1正常工作时承受的电压是610V,T1的耐压规格可以为650V,而D1的耐压规格可以大于650V。
预充电单元:
预充电单元用于在升压电路输出电压(正常工作)之前为上述N-1个飞跨电容充电,以使得第i个飞跨电容的电压为上述N个开关器件中的前i个开关器件正常工作时承受的电压之和。
例如,如图1所示,预充电单元通过为飞跨电容C1至Cn-1充电,使得C1的电压为T1正常工作时承受的电压,使得C2的电压为T1和T2正常工作时承受的电压之和,Cn-1的电压为T1至Tn-1正常工作时承受的电压之和。
本申请中,升压电路中存在耐压规格不同的开关器件,而这些耐压规格不同的开关器件在工作时承受的电压也不相同,这与传统方案中的升压电路中选择统一耐压规格的开关器件的方式相比,能够使得升压电路中的开关器件实际承受的电压可能更接近开关器件的耐压规格,从而有可能提高升压电路的系统效率。
对于上述N个续流二极管来说,该N个续流二极管可以统一选择具有较大耐压规格的二极管,也可以根据承受的电压的不同来选择不同耐压规格的二极管。
可选地,上述N个续流二极管中包括K个续流二极管(图1中未示出),该K个续流二极管分别与上述N个开关器件中的K个开关器件一一对应,并且,该K个续流二极管的耐压规格均不相同。
例如,如果图1的升压电路中的T1和T2的耐压规格不同,那么,由于T1和T2对应的续流二极管分别为D1和D2,那么,D1和D2的耐压规格也不相同。
本申请中,由于N个续流二极管中与K个耐压规格不同的开关器件相对应的K个续流二极管也具有不同的耐压规格,与N个续流二极管统一采用相同的耐压规格的方式相比,能够使得K个续流二极管工作时承受的电压与相应的耐压规格尽可能的接近,从而可以提升续流二极管的性能,进一步提高升压电路的系统效率。
如图2所示,假设本申请中的升压电路包括3个开关器件(T1、T2和T3),2个飞跨电容(C1和C2),3个续流二极管(D1、D2和D3)。如果图2所示的升压电路的输入电压为900V,输出电压为2000V,那么,在通过预充电单元为飞跨电容C1和C2充电 时,可以控制C1充电后的电压为500V,C2充电后的电压为1000V。
由于C1承受的电压与T1相同,由此可得知T1承受的电压为500V。C2承受的电压为T1承受的电压与T2承受的电压的和,由此可得知T2承受的电压为也为500V。而T3承受的电压是输出电压(2000V)与C2承受的电压(1000V)的差,因此,T3承受的电压为1000V。因此,T1、T2和T3承受的电压分别为500V,500V和1000V。对于T1和T2来说,可以选择耐压规格为650V的开关器件,对于T3来说,可以选择耐压规格为1200V的开关器件。
由于升压电路工作时,D1、D2和D3分别与T1、T2和T3承受的电压相同,因此,对于T1和T2来说,可以选择耐压规格为650V的续流二极管,对于T3来说,可以选择耐压规格为1200V的续流二极管。当然,这里的D1、D2和D3选择的耐压规格也可以与T1、T2和T3有所不同,耐压规格的选择只要能够保证续流二极管和相应的开关器件承受相同的电压时能够正常工作即可。例如,D1可以选择耐压规格为600V的续流二极管。
一般来说,开关器件实际承受的电压与耐压规格比较接近时,开关器件的特性较好,而当开关器件实际承受的电压与耐压规格相差巨大时,特性往往较差。因此,在上述示例中,通过选择耐压规格为650V的开关器件作为T1和T2,选择耐压规格为1200V的开关器件作为T3,能够使得开关器件实际承受的电压与开关器件的耐压规格更接近,从而可以在一定程度上提高升压电路的系统效率。
而传统方案往往会将升压电路的输出电压平均分配在每个开关器件上,并且每个开关器件的耐压规格相同。以图2所示的升压电路为例,传统方案是将2000V的输出电压平均分配在每个开关器件上,T1、T2和T3在工作时实际承受的电压为667V,当T1、T2和T3均为IGBT时,IGBT常用的耐压规格为650V和1200V,由于T1、T2和T3在工作时实际承受的电压为667V,超过了650V,因此,只好选择耐压规格1200V的IGBT作为T1、T2和T3,这样就使得T1、T2和T3在工作时实际承受的电压与耐压规格的差距过大,导致升压电路的系统效率较低。而本申请中,通过选择不同耐压规格的耐压器件,可以使得每个开关器件实际承受的电压与耐压规格尽可能的接近,从而提高升压电路的系统效率。
在本申请中,可以通过N个开关器件的导通和关断的时间来控制飞跨电容的电压,进而控制K个开关器件正常工作时承受的电压均不相同。
例如,如图2所示,T1和T2的耐压规格为650V,T3的耐压规格为1200V,升压电路的输入电压为900V,输出电压为2000V。那么,可以在升压电路工作时,通过控制T1、T2和T3的导通和关断的时间来控制C1和C2的电压,使得C1的电压保持在500V,C2的电压保持在1000V,从而使得T1和T2工作时承受的电压为500V,而T3工作时承受的电压为1000V。
进一步的,图1所示的升压电路还包括输出单元。
如图1所示,输出单元包括电阻R和电容C,电阻R和电容C并联在一起,电阻R和电容C的一端通过续流二极管与电源E的第一端相连,电阻R和电容C的另一端通过续流二极管与电源E的第二端相连。
为了避免升压电路初始上电时由于电压过大对开关器件(T1-Tn)造成的损坏,可以在飞跨电容与相应的开关器件之间设置充电开关,当预充电单元完成对飞跨电容的充电后 再闭合充电开关。
如图3所示,飞跨电容(C1至Cn-1)与相应的开关器件(T1至Tn)均通过充电开关(S1至Sn-1)连接。在图3所示的升压电路中,当初始上电之前,先断开充电开关(S1至Sn-1),然后通过预充电单元为每个飞跨电容充电,当检测到飞跨电容的电压满足正常的运行要求时,闭合充电开关(S1至Sn-1),升压电路正常工作。
本申请中,通过为每个飞跨电容设置相应的充电开关,能够在升压电路开始工作之前为每个飞跨电容充电。
但是图3所示的升压电路中的开关数量较多,成本较高,并且当升压电路正常工作时,闭合这些充电开关时会通过较大的电流,造成的通态损耗较大,降低效率。因此,为了降低通态损耗,减少成本,可以只设置一个充电开关,将充电开关连接在第N个开关器件与电源的第二端之间。
可选地,作为一个实施例,本申请实施例的升压电路还包括充电开关,该充电开关设置在第N个开关器件与电源的第二端之间,当充电开关闭合时,第N个开关器件与电源处于连接状态,当充电开关断开时,第N个开关器件与所述电源处于断开状态。
具体地,如图4所示,充电开关S设置在第N个开关器件与电源E的第二端之间。充电开关S的一端与开关器件Tn相连,充电开关S的另一端与电源的第二端相连。
再如,在图5中,升压电路包括三个开关器件T1、T2和T3,充电开关S设置在T3与电源E之间。
本申请中,通过将充电开关S连接在第N个开关器件与电源的第二端之间,能够利用一个充电开关就能够实现预充电单元为飞跨电容充电的控制,可以减少开关数量,另外,通过将充电开关S连接在第N个开关器件与电源的第二端之间,还能够减小流经充电开关S的总电流的大小(与图3中所示的多个开关的情况相比),进而减少通态损耗。
在本申请中,充电开关可以由继电器、接触器以及半导体双向开关中的任意一个构成。另外,本申请中的充电开关还可以是其他任何能够适用于升压电路的开关。
在本申请中,为了进一步减少升压电路的通态损耗,还可以为续流二极管并联MOSFET。
可选地,作为一个实施例,上述N个续流二极管中的每个续流二极管均并联有MOSFET。
通过为续流二极管并联MOSFET,能够减少通态损耗。
如图6和图7所示,每个续流二极管(D1至Dn)均并联有一个MOSFET。具体地,D1并联的是M1,D2并联的是M2,Dn并联的是Mn。
在本申请实施例中,升压电路中的每个开关器件均可以反向并联一个二极管。
具体地,如图1所示,T1反向并联有二极管Dn+1,T2反向并联有二极管Dn+2,Tn反向并联有二极管D2n。
本申请实施例中的升压电路既可以是正向的多电平升压电路,也可以是负向的多电平升压电路。
多电平升压电路一般是指可以输出多个(一般是指大于或者等于三个)不同电平的升电路,一般来说,升压电路中包含的开关器件越多,能够输出的电平数值也就越多。
图1至图7所示的升压电路为正向的多电平升压电路,续流二极管(D1至Dn)与电源E的正极相连。
图8和图9所示的升压电路为负向的多电平升压电路,续流二极管(D1至Dn)与电源E的负极相连。
本申请实施例还包括一种升压装置,该升压装置包括本申请实施例中的升压电路。该升压装置具体可以是一种升压型的直流-直流(direct current-direct current,DC-DC)变换装置。
上文结合图1至图9对本申请实施例的升压电路进行了详细的介绍,下面结合图10和图11对本申请实施例的升压电路的控制方法进行详细描述。应理解,图10和图11所示的升压电路的控制方法可以对图1至图9中所示的升压电路进行控制。
图10是本申请实施例的升压电路的控制方法的示意性流程图。图10所示的方法可以由包含上述图1至图9中的升压电路的升压装置来控制。图10所示的方法包括步骤1001至步骤1003,下面对这些步骤进行介绍。
1001、控制预充电单元为N-1个飞跨电容充电。
1002、确定第i个飞跨电容的电压是否为前i个开关器件正常工作时承受的电压之和。
在步骤1002中,当确定了第i个飞跨电容的电压为前i个开关器件正常工作时承受的电压之和时,说明充电过程完毕,升压电路可以正常工作,向外输出电压,也就是执行步骤1003。当步骤1002中确定了第i个飞跨电容的电压不是前i个开关器件正常工作时承受的电压之和时,说明充电过程尚未结束,需要继续充电,也就是继续执行步骤1001。
1003、控制N个开关器件的导通和关断,以使得升压电路输出电压。
在步骤1003中,通过控制N个开关器件的导通和关断的频率,可以输出满足不同要求的电压,具体的控制过程与现有升压电路(具体可以是boost升压电路)相同,这里不再详细描述。
本申请中,升压电路中存在耐压规格不同的开关器件,通过预充电单元为这些开关器件进行充电,能够使得某些开关器件工作时承受的电压与开关器件的耐压规格比较接近,这与传统方案中的升压电路中选择统一耐压规格的开关器件的方式相比,能够使得升压电路中的开关器件实际承受的电压可能更接近开关器件的耐压规格,从而可以提高升压电路的系统效率。
当升压电路中存在充电开关时,可以在执行步骤1001之前先将该充电开关断开。
而当升压电路中存在充电开关时,如果预充电单元为飞跨电容充电完毕,那么,就可以闭合该充电开关,接下来,再执行步骤1003,以控制N个开关器件的导通和关断,使得升压电路输出电压。
可选地,作为一个实施例,上述升压电路包括充电开关,在执行步骤1001之前,图10所示的方法还包括:控制充电开关断开;而在预充电单元为N-1个飞跨电容完成充电之后,图10所示的方法还包括:控制充电开关闭合。
应理解,在本申请实施例中,在预充电单元完成对飞跨电容的充电之后,预充电单元就停止工作。
例如,以图4所示的升压电路为例,先断开充电开关S,然后控制预充电单元为飞跨电容C1至Cn-1充电,在预充电单元完成对飞跨电容C1至Cn-1的充电之后,闭合充电开关S,接下来,通过控制开关器件T1至Tn的导通和关断来控制升压电路输出的电压。
本申请中,通过充电开关,能够灵活地实现对飞跨电容的充电。
为了更好地理解本申请实施例的升压电路的控制方法的详细过程,下面结合图11再进行详细的介绍。
图11是本申请实施例的升压电路的控制方法的示意性流程图。图11所示的方法可以由包含上述图1至图9中的升压电路的升压装置来控制。图11所示的方法包括步骤2001至步骤2007,下面对这些步骤进行介绍。
2001、预充电单元检测飞跨电容的电压。
2002、确定飞跨电容的电压是否在设定范围。
通过预充电单元可以检测飞跨电容承受的电压。因此,通过预充电单元为飞跨电容充电之前,可以先判断飞跨电容承受的电压是否满足要求,如果飞跨电容承受的电压满足要求,则不必再利用预充电单元为飞跨电容充电,可以执行步骤2005。而当飞跨电容承受的电压不满足要求时,需要利用预充电单元为飞跨电容充电,也就是执行步骤2003。
上述步骤2002中确定飞跨电容的电容是否在设定范围,可以是指确定第i个飞跨电容的电压是否等于前i个开关器件正常工作时承受的电压之和。
具体地,对于C1来说,可以确定C1的电压是否等于T1正常工作时承受的电压,对于C2来说,可以确定C2的电压是否等于T1和T2正常工作时承受的电压之和。
2003、控制预充电单元为飞跨电容充电。
2004、确定飞跨电容的电压是否在设定范围。
在步骤2003之后,需要继续确定飞跨电容的电压是否在设定范围,步骤2003确定飞跨电容的电压是否在设定范围的方式与步骤2002相同。在步骤2004中,可以在充电过程中实时确定飞跨电容的电压是否在设定范围,也可以每隔一定的时间确定飞跨电容的电压是否在设定范围。
具体地,以图4所示的升压电路为例,在步骤2004中,确定飞跨电容C1至Cn-1承受的电压是否在设定范围。
当步骤2004中确定飞跨电容的电压在设定范围时,说明完成了对飞跨电容的充电,接下来,可以控制充电开关闭合,也就是执行步骤2005。而当步骤2004中确定飞跨电容的电压没有在设定范围时,说明还未完成对飞跨电容的充电,此时需要执行步骤2003继续为飞跨电容充电。
2005、控制充电开关闭合。
2006、控制开关器件的导通和关断,使得升压电路输出电压。
在充电开关闭合之后,接下来升压电路就可以开始正常工作了。在升压电路正常工作时,可以通过控制开关器件的导通和关断,使得升压电路输出电压。
例如,如图4所示,通过控制T至Tn的导通和关断的周期,可以使得升压电路输出不同的电压。
在上述步骤2006中,对开关器件的具体控制方式与现有的升压电路的控制方式相同,这里不再详细描述。
当升压电路需要停止工作时,可以先通过控制开关器件基极的电压,使得开关器件处于截止状态,然后再将充电开关断开。
具体地,以图4所示的升压电路为例,在升压电路需要停止工作时,可以通过控制开关器件T1至Tn的基极电压,使得开关器件T1至Tn处于截止状态(相当于关断状态),然后再将充电开关S断开(也可以称为关断),这样升压电路就进入“关机状态”。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种升压电路,其特征在于,包括:
    电源;
    电感,与所述电源的第一端相连;
    N个开关器件,所述N个开关器件依次串联在一起,其中,所述N个开关器件的第一个开关器件的第一端通过电感与所述电源的第一端相连,第N个开关器件的第二端与所述电源的第二端相连,所述N个开关器件中的K个开关器件的耐压规格均不相同,所述K个开关器件正常工作时承受的电压均不相同,N和K均为正整数,并且N>1,K≤N;
    N-1个飞跨电容,所述N-1个飞跨电容中的第i个飞跨电容与所述N个开关器件中的前i个开关器件对应,在所述升压电路正常工作时,所述第i个飞跨电容承受的电压为所述前i个开关器件承受的电压的和,i为小于N的正整数;
    N个续流二极管,所述N个续流二极管分别与所述N个开关器件一一对应,所述N个续流二极管中的第i个续流二极管与所述N个开关器件中的第i个开关器件承受的电压相同,其中,所述第i个飞跨电容的第一端通过前i个续流二极管与第1个开关器件的第一端相连,所述第i个飞跨电容的第二端与第i个开关器件的第二端相连;
    预充电单元,用于在所述升压电路输出电压之前,为所述N-1个飞跨电容充电,以使得所述第i个飞跨电容的电压为所述N个开关器件中的前i个开关器件正常工作时承受的电压之和。
  2. 如权利要求1所述的升压电路,其特征在于,所述N个续流二极管中的K个续流二极管的耐压规格均不相同,所述K个续流二极管分别与所述K个开关器件一一对应。
  3. 如权利要求1或2所述的升压电路,其特征在于,所述升压电路还包括:
    充电开关,所述充电开关设置在所述第N个开关器件与所述电源的第二端之间,当所述充电开关闭合时,所述第N个开关器件与所述电源处于连接状态,当所述充电开关断开时,所述第N个开关器件与所述电源处于断开状态。
  4. 如权利要求1-3中任一项所述的升压电路,其特征在于,所述N个续流二极管中的至少一个续流二极管并联有金属-氧化物半导体场效应开关器件MOSFET,所述MOSFET具有第三象限导通特性。
  5. 如权利要求1-4中任一项所述的升压电路,其特征在于,所述N个开关器件均为绝缘栅双极型开关器件IGBT,或者所述N个开关器件均为MOSFET。
  6. 如权利要求1-5中任一项所述的升压电路,其特征在于,所述N个开关器件中的每个开关器件均反向并联有二极管。
  7. 如权利要求1-6中任一项所述的升压电路,其特征在于,所述升压电路为正向的多电平升压电路。
  8. 如权利要求1-6中任一项所述的升压电路,其特征在于,所述升压电路为负向的多电平升压电路。
  9. 一种升压电路的控制方法,所述方法应用于如权利要求1-8中任一项所述的升压电路,其特征在于,包括:
    控制所述预充电单元为所述N-1个飞跨电容充电,以使得所述第i个飞跨电容的电压为所述K个开关器件中的前i个开关器件正常工作时承受的电压之和;
    控制所述N个开关器件的导通和关断,以使得所述升压电路输出电压。
  10. 如权利要求9所述的方法,其特征在于,所述升压电路包括充电开关,在控制所述预充电单元为所述N-1个飞跨电容充电之前,所述方法还包括:
    控制所述充电开关断开;
    在所述预充电单元为所述N-1个飞跨电容完成充电之后,所述方法还包括:
    控制所述充电开关闭合。
PCT/CN2020/102793 2019-07-19 2020-07-17 升压电路以及升压电路的控制方法 WO2021013101A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20844545.2A EP3910777B1 (en) 2019-07-19 2020-07-17 Boost circuit and control method for boost circuit
AU2020317327A AU2020317327B2 (en) 2019-07-19 2020-07-17 Step-Up Circuit and Step-Circuit Control Method
US17/473,511 US20210408909A1 (en) 2019-07-19 2021-09-13 Step-up circuit and step-up circuit control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910657370.5 2019-07-19
CN201910657370.5A CN110429815B (zh) 2019-07-19 2019-07-19 升压电路以及升压电路的控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/473,511 Continuation US20210408909A1 (en) 2019-07-19 2021-09-13 Step-up circuit and step-up circuit control method

Publications (1)

Publication Number Publication Date
WO2021013101A1 true WO2021013101A1 (zh) 2021-01-28

Family

ID=68411346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102793 WO2021013101A1 (zh) 2019-07-19 2020-07-17 升压电路以及升压电路的控制方法

Country Status (5)

Country Link
US (1) US20210408909A1 (zh)
EP (1) EP3910777B1 (zh)
CN (1) CN110429815B (zh)
AU (1) AU2020317327B2 (zh)
WO (1) WO2021013101A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429815B (zh) * 2019-07-19 2021-04-20 华为技术有限公司 升压电路以及升压电路的控制方法
CN111371298A (zh) * 2020-05-27 2020-07-03 北京小米移动软件有限公司 充电设备、充电控制方法及装置、电子设备、存储介质
CN112953202B (zh) * 2021-03-03 2023-10-20 华为数字能源技术有限公司 电压转换电路及供电系统
CN114640252B (zh) * 2022-03-24 2023-03-14 苏州罗约科技有限公司 一种混合三电平飞跨电容升压电路
CN115065247B (zh) * 2022-08-18 2022-11-15 深圳市微源半导体股份有限公司 升压变换电路及升压变换器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106230253A (zh) * 2016-09-09 2016-12-14 华为技术有限公司 升压功率变换电路和控制方法
CN106787899A (zh) * 2016-12-20 2017-05-31 南京航空航天大学 一种新型两级式多电平功率逆变系统
US20190036450A1 (en) * 2013-03-15 2019-01-31 Psemi Corporation Switch-timing in a switched-capacitor power converter
CN109391151A (zh) * 2018-11-12 2019-02-26 浙江工业大学 级联的升压型dc-dc变换器
CN109756115A (zh) * 2018-12-21 2019-05-14 华为数字技术(苏州)有限公司 一种升压功率变换电路、方法、逆变器、装置及系统
CN110429815A (zh) * 2019-07-19 2019-11-08 华为技术有限公司 升压电路以及升压电路的控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908175B2 (ja) * 2006-12-12 2012-04-04 ローム株式会社 チャージポンプ回路の制御回路、方法、およびそれらを用いたチャージポンプ回路ならびに電子機器
CN100530881C (zh) * 2007-01-10 2009-08-19 合肥工业大学 功率开关的有源串联均压控制装置
EP2561606B1 (en) * 2010-04-19 2018-12-05 ABB Schweiz AG Multi-level dc/ac converter
KR20180019242A (ko) * 2015-07-08 2018-02-23 페레그린 세미컨덕터 코포레이션 스위칭된 커패시터 전력 컨버터들
WO2017018147A1 (ja) * 2015-07-29 2017-02-02 ソニー株式会社 スイッチング装置、電動移動体及び電力供給システム
US10199924B2 (en) * 2017-04-26 2019-02-05 Futurewei Technologies, Inc. Converter apparatus and method with auxiliary transistor for protecting components at startup
JP7008495B2 (ja) * 2017-12-19 2022-01-25 パナソニックIpマネジメント株式会社 電力変換装置
CN208489802U (zh) * 2018-05-03 2019-02-12 易事特集团股份有限公司 五电平拓扑单元及五电平交直流变换器
CN108923632B (zh) * 2018-08-29 2020-03-24 阳光电源股份有限公司 一种多电平boost装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190036450A1 (en) * 2013-03-15 2019-01-31 Psemi Corporation Switch-timing in a switched-capacitor power converter
CN106230253A (zh) * 2016-09-09 2016-12-14 华为技术有限公司 升压功率变换电路和控制方法
CN106787899A (zh) * 2016-12-20 2017-05-31 南京航空航天大学 一种新型两级式多电平功率逆变系统
CN109391151A (zh) * 2018-11-12 2019-02-26 浙江工业大学 级联的升压型dc-dc变换器
CN109756115A (zh) * 2018-12-21 2019-05-14 华为数字技术(苏州)有限公司 一种升压功率变换电路、方法、逆变器、装置及系统
CN110429815A (zh) * 2019-07-19 2019-11-08 华为技术有限公司 升压电路以及升压电路的控制方法

Also Published As

Publication number Publication date
EP3910777A1 (en) 2021-11-17
AU2020317327A1 (en) 2022-02-24
EP3910777B1 (en) 2024-05-15
EP3910777A4 (en) 2022-04-27
US20210408909A1 (en) 2021-12-30
CN110429815A (zh) 2019-11-08
AU2020317327B2 (en) 2023-10-26
CN110429815B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
WO2021013101A1 (zh) 升压电路以及升压电路的控制方法
US9705411B2 (en) Soft-switched bidirectional buck-boost converters
WO2018045936A1 (zh) 升压功率变换电路和控制方法
WO2019134670A1 (en) Multi-level boost converter
US11264894B2 (en) Converter and current control system thereof
JP7305033B2 (ja) 電力変換装置の駆動回路及びその応用装置
US20200044578A1 (en) Multi-Level Power Converter with Light Load Flying Capacitor Voltage Regulation
CN106936298B (zh) 一种半导体器件、控制方法以及变流器
US10985653B1 (en) Charge pump converter and control method
Yu et al. Properties and synthesis of lossless snubbers and passive soft-switching PWM converters
JP3133166B2 (ja) ゲート電力供給回路
JP2021035118A (ja) Dc/dc変換装置
US6353543B2 (en) Switching circuit of power conversion apparatus
US10879812B2 (en) Semiconductor switch
CN105471244B (zh) 缓冲器电路
US10666164B2 (en) Bidirectional power conversion circuit and bidirectional power converter
US20180198368A1 (en) Fast Charge Sharing Between Capacitors of a Dual Input Path DC/DC Converter
TWI572132B (zh) 雙輸出電源轉換器
Khodabakhsh et al. Using multilevel ZVZCS converters to improve light-load efficiency in low power applications
EP3961896A1 (en) Direct-current transformer
WO2024002082A1 (zh) 家电设备的三相电源变换电路、家电设备和上电控制方法
WO2023024848A1 (zh) 多电平电容预充电路和电源设备
JP7182135B2 (ja) Dc/dc変換装置
McNeill et al. Fundamental Comparison of Efficiencies of Voltage Source Converter Phase-Leg Configurations with Super-Junction MOSFETs
Hopkins et al. Drain current injection circuitry for enabling the use of super-junction MOSFETs in a 5kW bidirectional DC-DC converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844545

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020844545

Country of ref document: EP

Effective date: 20210810

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020317327

Country of ref document: AU

Date of ref document: 20200717

Kind code of ref document: A