WO2021093557A1 - 电源调整装置、供电装置及彩超设备 - Google Patents

电源调整装置、供电装置及彩超设备 Download PDF

Info

Publication number
WO2021093557A1
WO2021093557A1 PCT/CN2020/123479 CN2020123479W WO2021093557A1 WO 2021093557 A1 WO2021093557 A1 WO 2021093557A1 CN 2020123479 W CN2020123479 W CN 2020123479W WO 2021093557 A1 WO2021093557 A1 WO 2021093557A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
voltage
load
switching
Prior art date
Application number
PCT/CN2020/123479
Other languages
English (en)
French (fr)
Inventor
周泉
Original Assignee
飞依诺科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 飞依诺科技(苏州)有限公司 filed Critical 飞依诺科技(苏州)有限公司
Publication of WO2021093557A1 publication Critical patent/WO2021093557A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power

Definitions

  • the application relates to a power supply adjustment device, a power supply device and color ultrasound equipment, and belongs to the technical field of color ultrasound equipment.
  • Color Doppler ultrasound equipment refers to equipment used for ultrasound imaging, measurement and blood flow movement information collection for clinical ultrasound diagnostic examinations.
  • the color Doppler ultrasound device supplies power to the load in the device through the power supply device.
  • a typical power supply device usually includes a switching power supply.
  • the switching power supply will automatically reduce the switching frequency because the load is too small to achieve a balance between power supply and load energy consumption. Since the frequency of the switching power supply is not fixed at this time, it is easy to cause noise in the image in the color mode at this time, resulting in a problem of poor image output.
  • the present application provides a power adjustment device, a power supply device, and a color ultrasound device, which can solve the problem that the frequency of the switching power supply is not fixed when the color ultrasound device uses the existing power supply device to supply power, which will lead to poor image output effects.
  • This application provides the following technical solutions:
  • a power supply adjustment device in a first aspect, includes: a digital-to-analog converter with an input terminal connected to a switching power supply, a power supply output terminal for connecting with a load, and a power supply output terminal connected to the digital-to-analog converter A first amplifier and a constant power load connected in parallel between the output terminal and the power supply output terminal;
  • the power consumption of the constant power load does not change with the change of the output voltage of the digital-to-analog converter.
  • the constant power load includes: a voltage adjustment component, a second amplifier connected to the voltage adjustment component, a power tube connected to the second amplifier, and a current sampling resistor connected to the power tube at one end , The other end of the current sampling resistor is grounded;
  • the positive input terminal of the second amplifier is connected to the output terminal of the voltage adjustment component, and the negative input terminal of the second amplifier is connected to one end of the current sampling resistor;
  • the first end of the power tube is connected to the output end of the second amplifier, the second end is connected to the power supply output end, and the third end is connected to one end of the current sampling resistor.
  • the voltage adjustment component is used to adjust the first voltage output by the digital-to-analog converter to n times the reciprocal of the first voltage to obtain a second voltage, where n is a preset positive number .
  • the power dissipation tube is a triode or a metal-oxide semiconductor field effect transistor MOS tube.
  • the voltage adjustment component is a reciprocal arithmetic circuit; or, is a processing chip provided with a reciprocal arithmetic algorithm.
  • the voltage value of the forward input terminal of the second amplifier is equal to the voltage value of the reverse input terminal.
  • a power supply device in a second aspect, includes a switching power supply, and the power adjustment device provided in the first aspect, and the power adjustment device is connected to an output terminal of the switching power supply.
  • the power switching frequency of the switching power supply has a positive correlation with the load of the switching power supply.
  • the switching power supply includes an AC oscillating circuit connected to a voltage input terminal, a rectifying circuit connected to the AC oscillating circuit, a voltage sampling circuit connected to the output terminal of the rectifying circuit, and a voltage sampling circuit connected to the voltage sampling terminal.
  • Switching power supply chip connected to the circuit;
  • the output terminal of the switching power supply chip is connected to the AC oscillating circuit, and the output terminal of the rectifier circuit is the output terminal of the switching power supply.
  • a color ultrasound device is provided, and the color ultrasound device includes the power supply device provided in the second aspect.
  • the beneficial effect of the present application is that the first amplifier and the constant power load are arranged in parallel between the output terminal of the digital-to-analog converter and the power supply output terminal; the power consumption of the constant-power load does not change with the output voltage of the digital-to-analog converter.
  • FIG. 1 is a schematic structural diagram of a switching power supply 1 provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a power adjustment device 2 provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a switching power supply 1 provided by an embodiment of the present application.
  • the switching power supply 1 at least includes: an AC oscillating circuit 11 connected to a voltage input terminal of the switching power supply 1 and an AC oscillating circuit 11
  • the power switching frequency of the switching power supply 1 has a positive correlation with the load of the switching power supply 1.
  • the output terminal of the switching power supply chip 14 is connected to the AC oscillation circuit 11, and the output terminal of the rectifier circuit 12 is the output terminal of the switching power supply 1.
  • the AC oscillating circuit 11 includes power elements such as Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) (MOS tube) and transformer.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • transformer transformer
  • the power switching frequency of the switching power supply 1 When the load is small, that is, when the power consumed by the load is less than the minimum output power, the power switching frequency of the switching power supply 1 will also decrease. At this time, the frequency of the switching power supply 1 is not fixed. If the switching power supply 1 is used in a color ultrasound device It will cause noise in the color Doppler image in color mode.
  • a constant power load is connected in parallel at the output end of the switching power supply 1, so that when the load is small, the overall load (actual load + constant power load) can also be reduced due to the existence of the constant power load.
  • the power consumption is greater than or equal to the minimum output power of the switching power supply 1, so as to ensure that the power switching frequency of the switching power supply 1 is stable, thereby eliminating the noise of the image output by the color ultrasound device.
  • the power consumed by the constant power load is constant and will not change with the change of the output voltage of the switching power supply 1, the consumption of the load when the output voltage of the switching power supply 1 is high can be reduced, and power resources can be saved.
  • FIG. 2 is a schematic structural diagram of a power supply adjustment device 2 provided by an embodiment of the present application.
  • the power supply adjustment device 2 at least includes: a digital-to-analog converter 21 whose input terminal is connected to a switching power supply, and is used to connect to a load The power supply output terminal 22, and the first amplifier 23 and the constant power load 24 connected in parallel between the output terminal of the digital-to-analog converter 21 and the power supply output terminal 22.
  • the power consumption of the constant power load 24 does not change with the change of the output voltage of the digital-to-analog converter 11.
  • the constant power load 24 includes: a voltage adjustment component 241, a second amplifier 242 connected to the voltage adjustment component 241, a power tube 243 connected to the second amplifier 242, and one end connected to the power tube 243
  • the other end of the current sampling resistor 244 is grounded; the positive input end of the second amplifier 242 is connected to the output end of the voltage adjustment component 241, and the negative input end of the second amplifier 242 is connected to one end of the current sampling resistor 244 Connected; the first end of the power tube 243 is connected to the output end of the second amplifier 242, the second end is connected to the power supply output end 22, and the third end is connected to one end of the current sampling resistor 244.
  • the power consumption tube 243 is a triode or a MOS tube.
  • the first terminal is the gate (or gate), the second terminal is the drain, and the third terminal is the source;
  • the power tube 243 is a triode, the first terminal is The base and the second end are the emitter, and the third end is the collector; that is, when the type of the power dissipation tube 243 is different, the names of the first end, the second end and the third end are different, and this embodiment will not be repeated here. List one by one.
  • the voltage adjusting component 241 is configured to adjust the first voltage output by the digital-to-analog converter 21 to n times the reciprocal of the first voltage to obtain the second voltage, where n is a preset positive number.
  • the voltage adjustment component 241 is a reciprocal arithmetic circuit; or, is a processing chip provided with a reciprocal arithmetic algorithm.
  • the voltage value of the forward input terminal of the second amplifier 242 is equal to the voltage value of the reverse input terminal based on the principle of negative feedback. That is, when the voltage at the forward input terminal of the second amplifier 242 is higher than the voltage at the reverse input terminal of the second amplifier 242, the power transistor 243 is turned on, the current flows through the current sampling resistor 244, and the voltage of the current sampling resistor 244 gradually rises. Until the voltage of the forward input terminal of the second amplifier 242 is equal to the voltage value of the reverse input terminal of the second amplifier 242, the power tube 243 stops conducting. At this time, the voltage value of the reverse input terminal of the second amplifier 242 no longer changes , The voltage value of the forward input terminal of the second amplifier 242 is equal to the voltage value of the reverse input terminal.
  • the first voltage output by the digital-to-analog converter (DAC) 21 is V dac
  • the second voltage V1 of the voltage adjustment component 241 n/V DAC
  • I d is the power tube
  • the power adjustment device uses the first amplifier and the constant power load arranged in parallel between the output terminal of the digital-to-analog converter and the power supply output terminal; the power consumption of the constant power load does not follow the digital-to-analog conversion The output voltage of the converter changes; it can solve the problem of poor image output caused by the unfixed frequency of the switching power supply when the color ultrasound equipment uses the existing power supply device to supply power; in the case of a small load, due to the constant power load Existence can make the power consumption of the overall load (actual load + constant power load) greater than or equal to the minimum output power of the switching power supply in the power supply device, so as to ensure the stability of the power switching frequency of the switching power supply, which can eliminate the color ultrasound equipment caused by the unstable power switching frequency The noise of the image.
  • the power consumed by the constant power load is constant and will not change with the change of the output voltage of the switching power supply, the consumption of the load when the output voltage of the switching power supply is high can be reduced, and power resources
  • the present application further provides a power supply device, which includes a switching power supply and a power adjustment device connected to the output terminal of the switching power supply.
  • the switching power supply includes the switching power supply 1 shown in FIG. 1; the power adjustment device includes the power adjustment device 2 shown in FIG. 2.
  • the present application further provides a color ultrasound device, which includes the power supply device provided in the foregoing embodiment.
  • the above-mentioned power supply device may also be used in other equipment that needs to keep the power switching frequency of the switching power supply 1 stable.
  • This embodiment does not limit the application scenarios of the power supply device and the power supply adjustment device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种电源调整装置、供电装置及彩超设备,属于彩超设备技术领域,电源调整装置包括:输入端与开关电源(1)相连的数模转换器(21)、用于与负载相连的供电输出端(22)、以及在数模转换器(21)的输出端和供电输出端(22)之间并联的第一放大器(23)和恒功率负载(24);恒功率负载(24)的功耗不随数模转换器(21)的输出电压的变化而变化;可以解决在彩超设备使用现有的供电装置供电时开关电源(1)的频率不固定导致图像输出效果不佳的问题;可以消除彩超设备由于电源开关频率不固定导致的图像的噪声;同时,恒功率负载(24)的功率不会随着开关电源(1)的输出电压的变化而变化,可以降低开关电源(1)的输出电压较高时负载的消耗,节省电力资源。

Description

电源调整装置、供电装置及彩超设备 技术领域
本申请涉及一种电源调整装置、供电装置及彩超设备,属于彩超设备技术领域。
背景技术
彩超设备是指用于超声成像、测量与血流运动信息采集供临床超声诊断检查使用的设备。彩超设备通过供电装置为设备中的负载供电。
一种典型的供电装置通常包括开关电源。在低功率发射模式时,开关电源由于负载太小会自动降低开关频率以实现电源供电和负载能量消耗的平衡。由于此时开关电源的频率不固定,此时容易导致彩色模式下图像会有噪声,导致图像输出效果不佳的问题。
发明内容
本申请提供了一种电源调整装置、供电装置及彩超设备,可以解决在彩超设备使用现有的供电装置供电时开关电源的频率不固定会导致图像输出效果不佳的问题。本申请提供如下技术方案:
第一方面,提供了一种电源调整装置,所述电源调整装置包括:输入端与开关电源相连的数模转换器、用于与负载相连的供电输出端、以及在所述数模转换器的输出端和所述供电输出端之间并联的第一放大器和恒功率负载;
所述恒功率负载的功耗不随所述数模转换器的输出电压的变化而变化。
可选地,所述恒功率负载包括:电压调整组件、与所述电压调整组件相连第二放大器、与所述第二放大器相连的功耗管、一端与所述功耗管相连的电流取样电阻,所述电流取样电阻的另一端接地;
所述第二放大器的正向输入端与所述电压调整组件的输出端相连、所述第二放大器的负向输入端与所述电流取样电阻的一端相连;
所述功耗管的第一端与所述第二放大器的输出端相连、第二端与所述供电输出端相连、第三端与所述电流取样电阻的一端相连。
可选地,所述电压调整组件用于将所述数模转换器输出的第一电压调整为所述第一电压的倒数的n倍,得到第二电压,所述n为预设的正数。
可选地,所述功耗管为三极管或者金属-氧化物半导体场效应晶体MOS管。
可选地,所述电压调整组件为倒数型运算电路;或者,为设置有倒数运算算法的处理芯片。
可选地,所述第二放大器的正向输入端的电压值与所述反向输入端的电压值相等。
第二方面,提供了一种供电装置,所述供电装置包括:开关电源,以及第一方面提供的电源调整装置,所述电源调整装置与所述开关电源的输出端相连。
可选地,所述开关电源的电源开关频率与所述开关电源的负载大小呈正相关关系。
可选地,所述开关电源包括与电压输入端相连的交流振荡电路、与所述交流振荡电路相连的整流电路、与所述整流电路的输出端相连的电压采样电路、以及与所述电压采样电路相连的开关电源芯片;
所述开关电源芯片的输出端与所述交流振荡电路相连,所述整流电路的输出端为所述开关电源的输出端。
第三方面,提供一种彩超设备,所述彩超设备包括第二方面提供的供电装置。
本申请的有益效果在于:通过在数模转换器的输出端和供电输出端之间并联设置的第一放大器和恒功率负载;恒功率负载的功耗不随数模转换器的输出电压的变化而变化;可以解决在彩超设备使用现有的供电装置供电时开关电源的频率不固定导致图像输出效果不佳的问题;在负载较小的情况下,由于恒功率负载的存在可以使总体负载的功率消耗大于或等于供电装置中开关电源的最小输出功率,从而保证开关电源的电源开关频率稳定,可以消除彩超设备由于电源开关频率不固定导致的图像的噪声。同时,由于恒功率负载消耗的功率恒 定,不会随着开关电源的输出电压的变化而变化,可以降低开关电源的输出电压较高时负载的消耗,节省电力资源。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,并可依照说明书的内容予以实施,以下以本申请的较佳实施例并配合附图详细说明如后。
附图说明
图1是本申请一个实施例提供的开关电源1的结构示意图;
图2是本申请一个实施例提供的电源调整装置2的结构示意图。
具体实施方式
下面结合附图和实施例,对本申请的具体实施方式作进一步详细描述。以下实施例用于说明本申请,但不用来限制本申请的范围。
图1是本申请一个实施例提供的开关电源1的结构示意图,如图1所示,该开关电源1至少包括:与开关电源1的电压输入端相连的交流振荡电路11、与交流振荡电路11相连的整流电路12、与整流电路12的输出端相连的电压采样电路13、以及与电压采样电路13相连的开关电源芯片14。
开关电源1的电源开关频率与开关电源1的负载大小呈正相关关系。
其中,开关电源芯片14的输出端与交流振荡电路11相连,整流电路12的输出端为开关电源1的输出端。
可选地,交流振荡电路11包括金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)(MOS管)、变压器等功率元件。
开关电源1的工作原理包括:输入电压通过交流振荡电路11得到交流电,整流电路12将交流振荡电路11得到的交流电转变为直流电;电压采样电路13将输出电压(即整流电路12的输出电压)反馈至开关电源芯片14;开关电源芯片14根据输出电压调节交流电的占空比。假设开关电源1正常工作时的电源开关频率为f0,从电压采样电路13到开关电源芯片14调整的延时为t0,且交流 振荡电路11传输的能量为E0;则满足开关电源1的电源开关频率保持不变的最小输出功率为P=f0×E0。也即,负载消耗的最小的功率为P=f0×E0。示意性地,最小输出功率的范围为[0.3W-0.7W]。
在负载较小,也即负载消耗的功率小于最小输出功率时,开关电源1的电源开关频率也会减小,此时,开关电源1的频率不固定,若将开关电源1用于彩超设备中会导致彩色模式下的彩超图像存在噪声。
基于上述技术问题,本申请中,通过在开关电源1的输出端并联恒功率负载,使得负载较小的情况下,由于恒功率负载的存在也可以使总体负载(实际负载+恒功率负载)的功率消耗大于或等于开关电源1的最小输出功率,从而保证开关电源1的电源开关频率稳定,从而消除彩超设备输出的图像的噪声。同时,由于恒功率负载消耗的功率恒定,不会随着开关电源1的输出电压的变化而变化,可以降低开关电源1的输出电压较高时负载的消耗,节省电力资源。
下面对本申请提供的电源调整装置进行介绍。
图2是本申请一个实施例提供的电源调整装置2的结构示意图,如图2所示,该电源调整装置2至少包括:输入端与开关电源相连的数模转换器21、用于与负载相连的供电输出端22、以及在数模转换器21的输出端和供电输出端22之间并联的第一放大器23和恒功率负载24。其中,恒功率负载24的功耗不随数模转换器11的输出电压的变化而变化。
假设数模转换器(DAC)21的输出的第一电压为V dac、第一放大器23的放大倍率为K,则供电输出端22的输出电压V out=K×V dac。假设恒功率负载24上的电流为I d,则恒功率负载24的功耗P=K×V dac×I d。为保持P恒定(即保证恒功率负载24的恒功率),则保证I d=P/(K×V dac)即可。令I d=D/V dac,其中D=P/K,则控制电流的电路只要为V DAC的倒数倍率运算电路即可。
基于上述原理,在一个示例中,恒功率负载24包括:电压调整组件241、与电压调整组件241相连第二放大器242、与第二放大器242相连的功耗管243、一端与功耗管243相连的电流取样电阻244,电流取样电阻244的另一端接地; 第二放大器242的正向输入端与电压调整组件241的输出端相连、第二放大器242的负向输入端与电流取样电阻244的一端相连;功耗管243的第一端与第二放大器242的输出端相连、第二端与供电输出端22相连、第三端与电流取样电阻244的一端相连。
可选地,功耗管243为三极管或者MOS管。在功耗管243为MOS管时,第一端为栅极(或称门极)、第二端为漏极、第三端为源极;在功耗管243为三极管时,第一端为基极、第二端为发射极、第三端为集电极;也即,功耗管243的类型不同时,第一端、第二端和第三端的名称不同,本实施例在此不再一一列举。
可选地,电压调整组件241用于将数模转换器21输出的第一电压调整为第一电压的倒数的n倍,得到第二电压,n为预设的正数。可选地,电压调整组件241为倒数型运算电路;或者,为设置有倒数运算算法的处理芯片。
其中,基于负反馈原理第二放大器242的正向输入端的电压值与反向输入端的电压值相等。也即,在第二放大器242的正向输入端的电压高于第二放大器242的反向输入端的电压值时功耗管243导通,电流通过电流取样电阻244,电流取样电阻244电压逐渐升高,直至第二放大器242的正向输入端的电压等于第二放大器242的反向输入端的电压值时功耗管243停止导通,此时,第二放大器242的反向输入端的电压值不再改变,第二放大器242的正向输入端的电压值与反向输入端的电压值相等。
假设第一放大器23的放大倍率为K、数模转换器(DAC)21的输出的第一电压为V dac、电压调整组件241的第二电压V1=n/V DAC、I d为功耗管243和电流取样电阻244上通过的电流,I d=V2/R2=V1/R2(其中V1=V2)。功耗管243上的功耗PQ1=(V OUT-V1)×I d。由于V OUT>>V1,即V OUT-V1约等于V OUT,此时,PQ1≈V OUT×I d=K×V DAC×V1/R2=K×V DAC×n/(VDAC×R2)=K×n×R2。由于K、n和R2均为常数,则功耗管243上的功耗PQ1为常数,满足恒功率条件。
综上所述,本实施例提供的电源调整装置,通过在数模转换器的输出端和 供电输出端之间并联设置的第一放大器和恒功率负载;恒功率负载的功耗不随数模转换器的输出电压的变化而变化;可以解决在彩超设备使用现有的供电装置供电时开关电源的频率不固定导致图像输出效果不佳的问题;在负载较小的情况下,由于恒功率负载的存在可以使总体负载(实际负载+恒功率负载)的功率消耗大于或等于供电装置中开关电源的最小输出功率,从而保证开关电源的电源开关频率稳定,可以消除彩超设备由于电源开关频率不固定导致的图像的噪声。同时,由于恒功率负载消耗的功率恒定,不会随着开关电源的输出电压的变化而变化,可以降低开关电源的输出电压较高时负载的消耗,节省电力资源。
另外,由于恒功率负载的功率恒定,不会随着开关电源的输出电压变化而导致热量增加,因此,无需配置散热量较大的负载,降低负载配置难度。
可选地,基于上述实施例,本申请还提供一种供电装置,该供电装置包括开关电源以及与开关电源的输出端相连的电源调整装置。
其中,开关电源包括图1所示的开关电源1;电源调整装置包括图2所示的电源调整装置2。
可选地,基于上述实施例,本申请还提供一种彩超设备,该彩超设备包括上述实施例提供的供电装置。
可选地,上述供电装置也可以用于需要保持开关电源1的电源开关频率稳定的其它设备中,本实施例不对供电装置、电源调整装置的应用场景作限定。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种电源调整装置,其特征在于,所述电源调整装置包括:输入端与开关电源相连的数模转换器、用于与负载相连的供电输出端、以及在所述数模转换器的输出端和所述供电输出端之间并联的第一放大器和恒功率负载;
    所述恒功率负载的功耗不随所述数模转换器的输出电压的变化而变化。
  2. 根据权利要求1所述的电源调整装置,其特征在于,所述恒功率负载包括:电压调整组件、与所述电压调整组件相连第二放大器、与所述第二放大器相连的功耗管、一端与所述功耗管相连的电流取样电阻,所述电流取样电阻的另一端接地;
    所述第二放大器的正向输入端与所述电压调整组件的输出端相连、所述第二放大器的负向输入端与所述电流取样电阻的一端相连;
    所述功耗管的第一端与所述第二放大器的输出端相连、第二端与所述供电输出端相连、第三端与所述电流取样电阻的一端相连。
  3. 根据权利要求2所述的电源调整装置,其特征在于,所述电压调整组件用于将所述数模转换器输出的第一电压调整为所述第一电压的倒数的n倍,得到第二电压,所述n为预设的正数。
  4. 根据权利要求2所述的电源调整装置,其特征在于,所述功耗管为三极管或者金属-氧化物半导体场效应晶体MOS管。
  5. 根据权利要求2所述的电源调整装置,其特征在于,所述电压调整组件为倒数型运算电路;或者,为设置有倒数运算算法的处理芯片。
  6. 根据权利要求2所述的电源调整装置,其特征在于,所述第二放大器的正向输入端的电压值与所述反向输入端的电压值相等。
  7. 一种供电装置,其特征在于,所述供电装置包括开关电源,以及权利要求1至6任一所述的电源调整装置,所述电源调整装置与所述开关电源的输出端相连。
  8. 根据权利要求7所述的供电装置,其特征在于,所述开关电源的电源开关频率与所述开关电源的负载大小呈正相关关系。
  9. 根据权利要求7所述的供电装置,其特征在于,所述开关电源包括与电压输入端相连的交流振荡电路、与所述交流振荡电路相连的整流电路、与所述整流电路的输出端相连的电压采样电路、以及与所述电压采样电路相连的开关电源芯片;
    所述开关电源芯片的输出端与所述交流振荡电路相连,所述整流电路的输出端为所述开关电源的输出端。
  10. 一种彩超设备,其特征在于,所述彩超设备包括权利要求7至9任一所述的供电装置。
PCT/CN2020/123479 2019-11-13 2020-10-25 电源调整装置、供电装置及彩超设备 WO2021093557A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911107358.3A CN110794916B (zh) 2019-11-13 2019-11-13 电源调整装置、供电装置及彩超设备
CN201911107358.3 2019-11-13

Publications (1)

Publication Number Publication Date
WO2021093557A1 true WO2021093557A1 (zh) 2021-05-20

Family

ID=69444467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123479 WO2021093557A1 (zh) 2019-11-13 2020-10-25 电源调整装置、供电装置及彩超设备

Country Status (2)

Country Link
CN (1) CN110794916B (zh)
WO (1) WO2021093557A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110794916B (zh) * 2019-11-13 2021-05-14 飞依诺科技(苏州)有限公司 电源调整装置、供电装置及彩超设备
CN111781871B (zh) * 2020-06-30 2021-10-01 镇江宇诚智能装备科技有限责任公司 一种智能体结构及其多外设模块拼接与识别方法
CN112346063B (zh) * 2020-11-06 2023-11-24 飞依诺科技股份有限公司 超声设备、超声设备的控制方法及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86101100A (zh) * 1986-02-22 1987-09-02 南昌航空工业学院 恒功率微束等离子弧焊机
JP2007166865A (ja) * 2005-12-16 2007-06-28 Nagasaki Univ スイッチング電源回路
CN106020307A (zh) * 2016-06-23 2016-10-12 电子科技大学 一种恒定功耗的线性恒流电源
CN109861547A (zh) * 2019-03-14 2019-06-07 南京邮电大学 一种四路输出的反激式开关电源
CN110794916A (zh) * 2019-11-13 2020-02-14 飞依诺科技(苏州)有限公司 电源调整装置、供电装置及彩超设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203340336U (zh) * 2013-03-04 2013-12-11 江南大学 一种led驱动电源及调光系统
JP6399581B2 (ja) * 2014-06-20 2018-10-03 国立大学法人 東京大学 波力発電装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86101100A (zh) * 1986-02-22 1987-09-02 南昌航空工业学院 恒功率微束等离子弧焊机
JP2007166865A (ja) * 2005-12-16 2007-06-28 Nagasaki Univ スイッチング電源回路
CN106020307A (zh) * 2016-06-23 2016-10-12 电子科技大学 一种恒定功耗的线性恒流电源
CN109861547A (zh) * 2019-03-14 2019-06-07 南京邮电大学 一种四路输出的反激式开关电源
CN110794916A (zh) * 2019-11-13 2020-02-14 飞依诺科技(苏州)有限公司 电源调整装置、供电装置及彩超设备

Also Published As

Publication number Publication date
CN110794916B (zh) 2021-05-14
CN110794916A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2021093557A1 (zh) 电源调整装置、供电装置及彩超设备
TWI577115B (zh) 開關電源及用於開關電源的母線電容電壓控制方法
JP5400833B2 (ja) スイッチング電源回路、半導体装置、led照明装置
TWI493848B (zh) Power converter and power factor correction device
US10720847B2 (en) Semiconductor device for switching power supply and AC-DC convertor
JP2011166903A (ja) スイッチング電源装置
TWI815183B (zh) 高頻ac/ac直接變換器及ac/ac直接變換方法
CN113437857B (zh) 基于寄生体二极管导通损耗调节的SiC MOSFET结温平滑控制方法及系统
TWI490506B (zh) 用於確定電流的電路和方法
TWI652967B (zh) 無頻閃發光二極體驅動裝置及線性穩壓方法
TW202123592A (zh) 升壓轉換器
JP2017127166A (ja) フィードバック制御回路
TW201115897A (en) Driving controller and the power converting circuit, and method for modulating driver level according to load
CN107070181B (zh) 适于便携式超声设备的电源装置及其控制方法
JP2020526156A (ja) 炭化ケイ素バイポーラ接合トランジスタのための高度なゲートドライバ
JP5771769B2 (ja) 点灯装置、照明器具、照明システム
TWI474595B (zh) 具光譜成形電路之切換模式電源供應器
WO2023040549A1 (zh) 无线充电的接收端设备以及无线充电方法
US11784579B2 (en) Devices, systems, and methods for power supplies
JPH11196569A (ja) スイッチング電源等の平滑回路
US9832823B2 (en) Load driving circuit and illumination apparatus including the same
WO2019080080A1 (zh) 双向隔离型数字dcdc电源及控制方法
CN116390288A (zh) 驱动控制电路及其驱动控制方法和led驱动电路
TWI757667B (zh) 升壓轉換器
JP2024001433A (ja) 電源制御装置、ac/dcコンバータ、およびacアダプタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887343

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20887343

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 16.01.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20887343

Country of ref document: EP

Kind code of ref document: A1