WO2023040549A1 - 无线充电的接收端设备以及无线充电方法 - Google Patents

无线充电的接收端设备以及无线充电方法 Download PDF

Info

Publication number
WO2023040549A1
WO2023040549A1 PCT/CN2022/112790 CN2022112790W WO2023040549A1 WO 2023040549 A1 WO2023040549 A1 WO 2023040549A1 CN 2022112790 W CN2022112790 W CN 2022112790W WO 2023040549 A1 WO2023040549 A1 WO 2023040549A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
wireless
mode
path
Prior art date
Application number
PCT/CN2022/112790
Other languages
English (en)
French (fr)
Inventor
陈锐
张俊
郑毅成
�田�浩
徐鑫勇
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023040549A1 publication Critical patent/WO2023040549A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of wireless charging, in particular to a wireless charging receiver device and a wireless charging method.
  • a charge pump and a step-down circuit are usually provided, and the battery of the receiving device is charged through the charge pump or the step-down circuit.
  • the charge pump outputs high charging power to charge the battery
  • the step-down circuit generally outputs medium charging power or low charging power to charge the battery.
  • the current wireless charging method has the problem of serious heating of the receiving end device.
  • a receiver device for wireless charging includes a wireless receiver circuit, a charge pump, a step-down circuit, and a battery, wherein the wireless receiver circuit, the charge pump, and the battery forming a first charging path, the wireless receiving circuit, the step-down circuit and the battery forming a second charging path;
  • the first charging path is used to conduct when the wireless charging is in the first charging mode or the second charging mode, so as to charge the battery;
  • the second charging path is used to conduct when the wireless charging is in the third charging mode, so as to charge the battery
  • the charging power corresponding to the third charging mode is smaller than the charging power corresponding to the second charging mode, and the charging power corresponding to the second charging mode is smaller than the charging power corresponding to the first charging mode.
  • a wireless charging method which is used in any of the receiving end devices described above, and the method includes:
  • the first charging path includes a wireless receiving circuit, a charge pump and Battery;
  • the wireless charging path includes the wireless receiving circuit, the step-down circuit and said battery;
  • the charging power corresponding to the third charging mode is smaller than the charging power corresponding to the second charging mode, and the charging power corresponding to the second charging mode is smaller than the charging power corresponding to the first charging mode.
  • the receiver device includes a wireless receiving circuit, a charge pump, a step-down circuit and a battery, wherein the wireless receiving circuit, the charge pump and The battery forms a first charging path, and the wireless receiving circuit, the step-down circuit and the battery form a second charging path; the first charging path is used to conduct when the wireless charging is in the first charging mode or the second charging mode, so as to Battery charging; the second charging path is used to conduct when the wireless charging is in the third charging mode, so as to charge the battery; wherein, the charging power corresponding to the third charging mode is smaller than the charging power corresponding to the second charging mode, and the charging power corresponding to the second charging mode is The charging power corresponding to the second charging mode is smaller than the charging power corresponding to the first charging mode.
  • the battery in the second power charging mode, the battery is charged through the step-down circuit, and the power loss of the step-down circuit is relatively high, which causes serious heating of the receiving end device.
  • the battery in the second charging mode, the battery is charged by the charge pump, and the efficiency of the charge pump is high, so the power loss on the wireless charging circuit of the receiving device can be reduced, thereby reducing the heat generation of the receiving device.
  • FIG. 1 is one of the structural schematic diagrams of a wireless charging receiver device provided by an embodiment of the present application
  • Fig. 2 is the second structural schematic diagram of the wireless charging receiver device provided by the embodiment of the present application.
  • Fig. 3 is the third schematic structural diagram of the wireless charging receiver device provided by the embodiment of the present application.
  • Fig. 4 is the fourth structural schematic diagram of the wireless charging receiver device provided by the embodiment of the present application.
  • Fig. 5 is the fifth schematic structural diagram of the wireless charging receiver device provided by the embodiment of the present application.
  • Fig. 6 is the sixth schematic structural diagram of the wireless charging receiver device provided by the embodiment of the present application.
  • Fig. 7 is a schematic flowchart of a wireless charging method provided by an embodiment of the present application.
  • FIG. 1 is one of the structural schematic diagrams of a wireless charging receiving end device provided by an embodiment of the present application.
  • the receiving end device includes a wireless receiving circuit 101 , a charge pump 102 , a step-down circuit 103 and a battery 104 , wherein the wireless charging The receiving circuit 101, the charge pump 102 and the battery 104 form a first charging path, and the wireless receiving circuit 101, the step-down circuit 103 and the battery 104 form a second charging path;
  • the first charging path is used to conduct when the wireless charging is in the first charging mode or the second charging mode, so as to charge the battery 104;
  • the second charging path is used to conduct when the wireless charging is in the third charging mode, so as to charge the battery 104;
  • the charging power corresponding to the third charging mode is smaller than the charging power corresponding to the second charging mode, and the charging power corresponding to the second charging mode is smaller than the charging power corresponding to the first charging mode.
  • the processor when the wireless charging is in the first charging mode or the second charging mode, the processor can control the first charging path to be turned on, and at the same time can control the step-down circuit 103 to be turned off, so as to pass through the first charging path for The battery 104 is charged.
  • the processor may be a central processing unit (Central Processing Unit, CPU) or other control chips.
  • the wireless receiving circuit may include a wireless receiving coil, a rectifier circuit and a main low dropout regulator (Main Low Dropout Regulator, MLDO).
  • the wireless receiving coil can receive the electromagnetic signal emitted by the charging device and convert the electromagnetic signal into alternating current, and then the rectifier circuit converts the alternating current into direct current to charge the battery.
  • the charging device in the wireless charging system refers to a wireless charging transmitter device, such as a charging pad.
  • the rectification circuit can be a full-bridge rectification circuit or a half-bridge rectification circuit, and the rectification circuit can convert alternating current into direct current to charge the battery.
  • the rectification circuit and the MLDO may be integrated in a receiving integrated circuit (Receive Integrated Circuit, RX IC) chip.
  • the transmitting end of the wireless charging can transmit electromagnetic signals according to the voltage of the direct current.
  • the charging chip on the receiving end device can inquire about the charging power supported by the transmitting end, and send the inquired charging power to the processor of the receiving end device.
  • the temperature of the device and the battery level of the receiving device determine which charging mode should be used for charging.
  • the charging modes include a first charging mode, a second charging mode and a third charging mode.
  • the current wireless charging mode includes a high-power charging mode, a medium-power charging mode, and a low-power charging mode.
  • High-power charging mode means that the charging device can output relatively large power.
  • the power range corresponding to the high-power charging mode is, for example, 40W to 50W;
  • the low-power charging mode means that the charging device outputs relatively small power. It is less than 15W;
  • the medium-power charging mode means that the output power of the charging device is between the high-power charging mode and the low-power charging mode, and the charging power corresponding to the medium-power charging mode is, for example, 20W-30W.
  • the charging power corresponding to the third charging mode in this embodiment is smaller than the charging power corresponding to the second charging mode
  • the charging power corresponding to the second charging mode is smaller than the charging power corresponding to the first charging mode. Therefore, the first charging mode in this embodiment can be understood as a high-power charging mode, the second charging mode can be understood as a medium-power charging mode, and the third charging mode can be understood as a low-power charging mode.
  • the battery when wireless charging is in high-power charging mode, the battery is charged through a charge pump.
  • the wireless charging is in the middle power charging mode or the low power charging mode, the battery is charged through a step-down circuit such as a Buck circuit.
  • a step-down circuit such as a Buck circuit.
  • the power loss of the step-down circuit is relatively high in the middle power charging mode, which causes a serious problem of heating of the receiving end device.
  • the first charging path is turned on when the wireless charging is in the first charging mode or the second charging mode, so as to charge the battery. Since the efficiency of the charge pump included in the first charging path is relatively high, which can generally reach more than 98%, in the second charging mode, the power loss of the charge pump is relatively low, thereby reducing the power consumption of the wireless charging circuit of the receiving end device. Power loss, thereby reducing the heat generation of the receiving end equipment.
  • the charge pump in this embodiment may be a charge pump in a 2:1 working mode, a charge pump in a pass-through mode, or a charge pump in a 4:2 working mode.
  • This embodiment does not limit the specific form of the charge pump.
  • the working mode of the charge pump can be controlled to switch, for example, the 2:1 working mode is switched to the through mode.
  • the power loss of the charge pump is low, so in the medium power charging mode, charging the battery through the charge pump can reduce the heat generation of the receiving end device.
  • the output voltage of the charge pump is equal to the input voltage of the charge pump
  • the 2:1 working mode the output voltage of the charge pump is equal to 1/2 of the input voltage of the charge pump.
  • a charge pump with an input voltage of 10 volts and an output voltage of 5 volts is generally called a charge pump with a 2:1 working mode, and a charge pump with an input voltage of 20 volts and an output voltage of 10 volts A charge pump called 4:2 mode of operation.
  • the output current of the charge pump is about twice the input current.
  • the receiver device for wireless charging includes a wireless receiver circuit, a charge pump, a step-down circuit, and a battery, wherein the wireless receiver circuit, the charge pump, and the battery form a first charging path, and the wireless receiver circuit, step-down circuit
  • the voltage circuit and the battery form a second charging path;
  • the first charging path is used to conduct when the wireless charging is in the first charging mode or the second charging mode, so as to charge the battery;
  • the second charging path is used for wireless charging When the charging is in the third charging mode, it is turned on to charge the battery; wherein, the charging power corresponding to the third charging mode is less than the charging power corresponding to the second charging mode, and the charging power corresponding to the second charging mode is less than that of the first charging mode corresponding charging power.
  • the battery in the second power charging mode, the battery is charged through the step-down circuit, and the power loss of the step-down circuit is relatively high, which causes serious heating of the receiving end device.
  • the battery in the second charging mode, the battery is charged by the charge pump, and the efficiency of the charge pump is high, so the power loss on the wireless charging circuit of the receiving device can be reduced, thereby reducing the heat generation of the receiving device.
  • the battery can be charged in a medium-power charging mode for a longer period of time, and at the same time, lower-cost heat dissipation materials can be used to dissipate heat from the receiver device, so as to realize cut costs.
  • Fig. 2 is the second schematic structural diagram of the wireless charging receiving end device provided by the embodiment of the present application.
  • the receiving end device further includes a switching element 201, and the switching element 201 is arranged in the wireless receiving circuit Between 101 and the charge pump 102 , the wireless receiving circuit 101 , the switch element 201 , the charge pump 102 and the battery 104 form a first charging path.
  • the switching element may be integrated in the RX IC chip, or may not be integrated in the RX IC chip.
  • the switching elements are back-to-back MOS transistors.
  • MOS tube is the abbreviation of MOSFET.
  • MOSFET Metal-Oxide Semiconductor Field-Effect Transistor referred to as Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET
  • the charge pump itself is an open-loop system, it does not have the ability to control the charging voltage and charging current. Therefore, the charging voltage and charging current can be controlled by a group of back-to-back MOS tubes.
  • the back-to-back MOS transistors in this embodiment are also used for path management. Since the back-to-back MOS transistors can be turned off bidirectionally, there will be no reverse leakage when the back-to-back MOS transistors are not turned on.
  • Fig. 3 is the third schematic structural diagram of the wireless charging receiving end device provided by the embodiment of the present application.
  • the switching element is a back-to-back MOS transistor 301
  • the receiving end device also includes a wired charging interface 302 , the wired charging interface 302, the charge pump 102, and the battery 104 form a third charging path, and the wired charging interface 302, the back-to-back MOS transistor 301, the step-down circuit 103, and the battery 104 form a fourth charging path;
  • the third charging path is used to conduct when the wired charging is in the first charging mode, so as to charge the battery
  • the fourth charging path is used to conduct when the wired charging is in the second charging mode or the third charging mode, so as to charge the battery.
  • the processor can determine which charging mode should be currently used for charging according to the current temperature of the receiving device and the battery level of the receiving device.
  • the charging modes include a first charging mode, a second charging mode and a third charging mode.
  • the wired charging interface 302 may be connected to the charge pump 102 through a back-to-back MOS transistor 303 .
  • the processor can control an external module such as a feedback module 305 or a charge pump to turn on the back-to-back MOS transistors 301, thereby charging the battery through the fourth charging path.
  • the third charging path is turned on when the wired charging is in the first charging mode to charge the battery, and the fourth charging path is in the second charging mode or the third charging path when the wired charging is in the third charging mode. In the case of charging mode, it is turned on to charge the battery. It can ensure that when the wireless charging method is adopted, the heating of the receiving end device can be reduced, and the battery can also be charged by wired charging, so that users can switch between wireless charging and wired charging.
  • the switching element is a gallium nitride MOS transistor.
  • Gallium Nitride Field-effect Transistor (Gallium Nitride Field-effect Transistor) is a type of field effect transistor based on gallium nitride and aluminum gallium nitride.
  • Gallium nitride material has good heat dissipation performance.
  • the back-to-back MOS tubes are connected to the MOS tube control elements;
  • the MOS transistor control element is configured to lower the gate voltage of the back-to-back MOS transistors when it is detected that the voltage of the first charging path is greater than the target voltage threshold.
  • the gate voltage of the back-to-back MOS transistors is reduced to increase the impedance of the back-to-back MOS transistors, thereby reducing the back-to-back MOS transistors.
  • the output voltage avoids high voltage being directly applied to the charge pump, causing the output voltage of the charge pump to increase synchronously, which in turn causes a large current to flow into the battery.
  • the target voltage threshold may be a voltage value determined by the CPU according to the detected battery voltage slightly greater than twice the voltage, and the CPU may transmit the voltage value to the MOS tube control element, and the MOS tube control element detects the first When the voltage of a charging path is greater than the target voltage threshold, the gate voltage of the back-to-back MOS transistors is reduced to increase the impedance of the back-to-back MOS transistors, thereby reducing the voltage of the first charging path.
  • the MOS transistor control element includes at least one of a digital core 304 , a feedback module 305 and a charge pump 102 .
  • the back-to-back MOS tubes can be integrated inside the RX IC, or the back-to-back MOS tubes may not be integrated inside the RX IC, and can be used as an independent IC and controlled by an external control element.
  • the external control element can be a feedback module or charge pump.
  • An Input Output (IO) port can be set on the RX IC, and the external control element can control the back-to-back MOS tube through the IO port, or can be directly connected to the gate of the back-to-back MOS tube to directly control the back-to-back MOS tube.
  • IO Input Output
  • the back-to-back MOS transistors 301 may be connected to at least one of the digital core 304 , the feedback module 305 and the charge pump 102 .
  • the feedback module 305 may be a constant voltage feedback module and/or a constant current feedback module. It should be noted that when the back-to-back MOS transistor 301 is connected to the digital core 304 , the feedback module 305 and multiple components in the charge pump 102 , software can be used to control one of the multiple components to detect the voltage of the first charging path. The voltage at the input end of the back-to-back MOS transistor 303 or the voltage at the output end of the back-to-back MOS transistor 301 in the first charging path can be detected.
  • the wireless receiving circuit in this embodiment is, for example, the wireless receiving circuit 306 shown in FIG.
  • it includes MOS transistor Q1 , MOS transistor Q2 , MOS transistor Q3 and MOS transistor Q4 as shown in FIG. 5 .
  • the MOS tube in the full bridge rectifier circuit can also be replaced by a diode.
  • the wireless receiving circuit 306 receives the electromagnetic signal sent by the wireless transmitting coil 308 of the charging device, converts the electromagnetic signal into alternating current, and the alternating current enters the rectification circuit through the capacitor 307, and the rectification circuit converts the alternating current into direct current and inputs it to MLDO309, and MLDO309 charges the first
  • the back-to-back MOS transistors 301 in the path provide the input voltage, and the output voltage of the back-to-back MOS transistors 301 is provided to the charge pump 102 , and the charge pump 102 charges the battery 104 .
  • the low dropout linear regulator can be integrated in the RX IC chip.
  • the wireless charging method When using the wireless charging method, there may be a large voltage or a large current in the first charging path. For example, when starting charging, because the user does not align the wireless receiving circuit 306 of the receiving device with the wireless transmitting coil 308, charging for a period of time After the user changes the position of the receiving device so that the wireless receiving circuit 306 is aligned with the wireless transmitting coil 308, the energy coupled to the wireless receiving circuit 306 from the wireless transmitting coil increases, so that the voltage in the first charging path or The current suddenly increases.
  • the voltage of the first charging path is detected by the MOS tube control element.
  • the gate voltage of the back-to-back MOS tubes is reduced, so that the back-to-back MOS tubes can be increased.
  • the impedance reduces the voltage of the first charging path, thereby reducing the voltage applied to the charge pump. Therefore, the back-to-back MOS tubes in this embodiment have the ability to control the charging voltage.
  • the first charging path may also include MLDO309
  • the MOS transistor control element may detect the voltage at the input terminal of MLDO309, and may also detect the voltage at the output terminal of MLDO309.
  • the voltage at the output terminal of MLDO309 is equal to the voltage at the input terminal of back-to-back MOS transistors.
  • the back-to-back MOS tubes are connected to the MOS tube control element;
  • the MOS transistor control element is configured to lower the gate voltage of the back-to-back MOS transistors when it is detected that the current in the first charging path is greater than the target current threshold.
  • the current of the first charging path can be detected, and when the current of the first charging path is greater than the target current threshold, the gate voltage of the back-to-back MOS transistors is reduced. , to increase the impedance of the back-to-back MOS tubes, thereby reducing the current of the first charging path. Therefore, the back-to-back MOS transistors in this embodiment have the ability to limit the current. When a large current occurs in the first charging path, the impedance of the back-to-back MOS transistors can be increased, thereby limiting the charging current.
  • the back-to-back MOS tubes are connected to the MOS tube control element;
  • the MOS transistor control element is used to obtain the expected input voltage of the charge pump, and is used to adjust the gate voltage of the back-to-back MOS transistors according to the difference between the expected input voltage and the voltage of the first charging path detected by the MOS transistor control element. , so that the output voltage of the back-to-back MOS tube is consistent with the expected input voltage.
  • the CPU can detect the current voltage 1 of the battery, and notify the voltage 2 to the MOS tube control element, the voltage 2 is slightly greater than twice the voltage 1, and the MOS tube control element uses the voltage 2 as the expected input voltage of the charge pump.
  • the MOS transistor control element can adjust the gate voltages of the back-to-back MOS transistors according to the difference between the expected input voltage and the voltage of the first charging path detected by the MOS transistor control element.
  • the difference obtained by subtracting the expected input voltage from the detected voltage of the first charging path is greater than the target difference, reduce the gate voltage of the back-to-back MOS transistors to increase the impedance of the back-to-back MOS transistors, thereby reducing the back-to-back The output voltage of the MOS tube, so that the output voltage of the back-to-back MOS tube is consistent with the expected input voltage.
  • the difference obtained by subtracting the detected voltage of the first charging path from the expected input voltage is greater than the target difference
  • Output voltage so that the output voltage of the back-to-back MOS tube is consistent with the expected input voltage.
  • the charge pump can work in a 2:1 working mode, that is, the output voltage of the charge pump is equal to 1/2 of the input voltage.
  • the charge pump can also work in a 1:1 working mode, that is, it works in a through mode, and the output voltage of the charge pump is equal to the input voltage of the charge pump.
  • the charge pump works in the through mode, because the impedance of the charge pump is small, the efficiency of the charge pump is higher than that in the 2:1 working mode, which can further reduce the power loss of the charge pump, thereby reducing the heat generation of the charge pump. Thereby reducing the heat generation of the receiving end equipment.
  • the charge pump works in the 4:2 working mode, which can charge the double-cell battery.
  • the switching element is configured to be turned on when the wireless charging is in the first charging mode or the second charging mode, and to be turned off when the wireless charging is in the third charging mode;
  • the switching element is further configured to be turned off when the wired charging is in the first charging mode, and to be turned on when the wired charging is in the second charging mode or the third charging mode.
  • the switch element is connected with the MOS tube control element.
  • the switching elements in FIG. 3 are back-to-back MOS transistors, and the back-to-back MOS transistors are connected to the MOS transistor control element.
  • the receiving end device of wireless charging provided in this embodiment can ensure that the heating of the receiving end device is reduced when wireless charging is adopted through the switch element being turned on when the wireless charging is in the first charging mode or the second charging mode. Moreover, the switching element is turned off when the wired charging is in the first charging mode, and turned on when the wired charging is in the second charging mode or the third charging mode, so as to realize charging the battery through wired charging, thereby facilitating The user switches between a wireless charging method and a wired charging method.
  • the processor controls to turn off the back-to-back MOS tubes or the processor controls the MOS tubes to control the elements to turn off the back-to-back MOS tube, which can prevent reverse leakage.
  • the processor controls to turn on the back-to-back MOS transistors or the processor controls the MOS transistor control element to turn on the back-to-back MOS transistors, thereby turning on the fourth charging path, and then Charge the battery through the fourth charging path.
  • the receiving end device includes at least two switching elements connected in parallel to each other, wherein at least the switching elements connected in parallel to each other are arranged between the wireless receiving circuit and the charge pump.
  • Fig. 4 is the fourth structural schematic diagram of the wireless charging receiver device provided by the embodiment of the present application.
  • Fig. 4 shows two parallel switching elements, and the two parallel switching elements are two parallel Back-to-back MOS transistors, that is to say, on the basis of the circuit structure shown in FIG. 3 , a back-to-back MOS transistor is connected in parallel with the back-to-back MOS transistor 301 to obtain a schematic structural diagram as shown in FIG. 4 .
  • this embodiment can output charging current to charge the battery through the parallel connection of back-to-back MOS tubes.
  • the impedance of the back-to-back MOS tubes after parallel connection is smaller than the impedance of a single back-to-back MOS tube.
  • the input current of the MOS tubes is constant, the power loss of the back-to-back MOS tubes after parallel connection is reduced. Therefore, the heating of the back-to-back MOS tubes can be reduced, thereby reducing the heating of the receiving end device of wireless charging.
  • the receiving end device includes at least two wireless receiving circuits connected in parallel, the at least two wireless receiving circuits, the charge pump and the battery form a first charging path, and the at least two wireless receiving circuits, the step-down circuit and the battery form a second charging path. charging path.
  • Fig. 5 is the fifth structural diagram of the wireless charging receiver device provided by the embodiment of the present application.
  • Fig. 5 shows two parallel wireless receiving circuits, that is to say, the circuit structure shown in Fig.
  • each wireless receiving circuit includes a wireless receiving coil , capacitor, rectifier circuit and MLDO, specifically refer to the structural diagram shown in FIG. 5 .
  • the wireless receiving coil can be a low-inductance wireless receiving coil or an ordinary wireless receiving coil.
  • the wireless receiving coil is a low-inductance wireless receiving coil, the thickness of the low-inductance wireless receiving coil is small, so it is helpful to control The thickness of the receiving end device improves the thinness of the receiving end device.
  • this embodiment can increase the input current to the charge pump through the parallel connection of the wireless receiving circuit, so that a larger charging current can be used. Charge the battery, and then realize the charging of the battery through the high-power charging mode, and increase the charging speed of the battery. Moreover, in the traditional high-power charging mode, a large current only flows through one wireless receiving circuit, resulting in large and relatively concentrated heating of the wireless receiving circuit.
  • the high current in the high power mode can be shunted through the parallel wireless receiving circuits, so the heating of the wireless receiving circuits can be dispersed, and the power loss of the wireless receiving circuits can be reduced, thereby Avoid the problem of excessive local temperature and serious heating of the receiving end equipment.
  • the receiving end device includes at least two charge pumps connected in parallel with each other, and the wireless receiving circuit, the at least two charge pumps, and the battery form a first charging path.
  • FIG. 6 is the sixth structural schematic diagram of the wireless charging receiver device provided by the embodiment of the present application.
  • FIG. 6 shows two charge pumps connected in parallel, that is, in the circuit structure shown in FIG. 3 Basically, by connecting a charge pump in parallel with the charge pump shown in FIG. 3 , the structure schematic diagram shown in FIG. 6 can be obtained.
  • this embodiment can increase the input current to the battery through the parallel connection of the charge pump, so that the battery can be charged with a larger charging current, and then Realize charging the battery through the high-power charging mode, and improve the charging speed of the battery. Moreover, because in the traditional high-power charging mode, a large current only flows through one charge pump, and the heat generated by the charge pump is serious.
  • the large current in the high power mode can be shunted through the parallel charge pumps, and the sum of the power losses shared by each charge pump is less than the power loss of a single charge pump, so relatively
  • the high-power charging mode of the traditional technology only one charge pump is used to charge the battery, which can disperse the heat generation of the charge pump and reduce the heat generation of the charge pump, thereby avoiding the problem of excessive local temperature and serious heat generation of the receiving end device.
  • At least two of the above-mentioned wireless receiving circuit, back-to-back MOS transistors, and charge pump can be connected in parallel to realize high-power charging.
  • FIG. 7 is a schematic flowchart of a wireless charging method provided by an embodiment of the present application, and the method is applied to any of the above wireless charging receiver devices.
  • the method comprises the steps of:
  • the wireless charging path includes a wireless receiving circuit, a charge pump, and a battery.
  • the second charging path includes a wireless receiving circuit, a step-down circuit, and a battery.
  • the charging power corresponding to the third charging mode is smaller than the charging power corresponding to the second charging mode, and the charging power corresponding to the second charging mode is smaller than the charging power corresponding to the first charging mode.
  • the wireless charging path when the wireless charging is in the first charging mode or the second charging mode, the first charging path is controlled to be turned on, so as to charge the battery through the first charging path, and the wireless charging is in the second charging mode.
  • the second charging path is controlled to be turned on, so as to charge the battery through the second charging path.
  • the charging power corresponding to the third charging mode is smaller than the charging power corresponding to the second charging mode
  • the charging power corresponding to the second charging mode is smaller than the charging power corresponding to the first charging mode.
  • the battery in the second power charging mode, the battery is charged through the step-down circuit, and the power loss of the step-down circuit is relatively high, which causes serious heating of the receiving end device.
  • the second charging mode the battery is charged by the charge pump, and the efficiency of the charge pump is high, so the power loss on the wireless charging circuit of the receiving device can be reduced, thereby reducing the heat generation of the receiving device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请涉及一种无线充电的接收端设备以及无线充电方法。接收端设备包括无线接收电路(101)、电荷泵(102)、降压电路(103)以及电池(104),其中,无线接收电路(101)、电荷泵(102)以及电池(104)形成第一充电通路,无线接收电路(101)、降压电路(103)以及电池(104)形成第二充电通路;第一充电通路,用于在无线充电处于第一充电模式或者第二充电模式的情况下导通,以对电池(104)充电;第二充电通路,用于在无线充电处于第三充电模式的情况下导通,以对电池(104)充电;其中,第三充电模式对应的充电功率小于第二充电模式对应的充电功率,第二充电模式对应的充电功率小于第一充电模式对应的充电功率,降低了接收端设备的发热。

Description

无线充电的接收端设备以及无线充电方法
相关申请
本申请要求2021年09月18日申请的,申请号为2021111131374,名称为“无线充电的接收端设备以及无线充电方法”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及无线充电领域,特别是涉及一种无线充电的接收端设备以及无线充电方法。
背景技术
随着电子技术的发展,越来越多的用户可以通过无线充电的方式对接收端设备的电池进行充电。
目前的无线充电系统中,通常设置有电荷泵和降压电路,通过电荷泵或降压电路对接收端设备的电池充电。例如在电池的电量较小时,通过电荷泵输出较高的充电功率给电池充电,而在电池的电量较大时,一般通过降压电路输出中等充电功率或较低充电功率给电池充电。
然而,目前的无线充电方式存在接收端设备发热较严重的问题。
发明内容
基于此,有必要针对上述技术问题,提供一种能够降低无线充电时接收端设备发热的无线充电的接收端设备以及无线充电方法。
第一方面,提供了一种无线充电的接收端设备,所述接收端设备包括无线接收电路、电荷泵、降压电路以及电池,其中,所述无线接收电路、所述电荷泵以及所述电池形成第一充电通路,所述无线接收电路、所述降压电路以及所述电池形成第二充电通路;
所述第一充电通路,用于在无线充电处于第一充电模式或者第二充电模式的情况下导通,以对所述电池充电;
所述第二充电通路,用于在无线充电处于第三充电模式的情况下导通,以对所述电池充电;
其中,所述第三充电模式对应的充电功率小于所述第二充电模式对应的充电功率,所述第二充电模式对应的充电功率小于所述第一充电模式对应的充电功率。
第二方面,提供了一种无线充电方法,用于上述任一所述的接收端设备中,所述方法包括:
在无线充电处于第一充电模式或者第二充电模式的情况下,导通所述接收端设备中的第一充电通路,以对电池充电,所述第一充电通路包括无线接收电路、电荷泵以及电池;
在无线充电处于第三充电模式的情况下,导通所述接收端设备中的第二充电通路,以对所述电池充电,所述第二充电通路包括所述无线接收电路、降压电路以及所述电池;
其中,所述第三充电模式对应的充电功率小于所述第二充电模式对应的充电功率,所述第二充电模式对应的充电功率小于所述第一充电模式对应的充电功率。
上述无线充电的接收端设备以及无线充电方法,本实施例提供的无线充电的接收端设备,接收端设备包括无线接收电路、电荷泵、降压电路以及电池,其中,无线接收电路、电荷泵以及电池形成第一充电通路,无线接收电路、降压电路以及电池形成第二充电通路;第一充电通路,用于在无线充电处于第一充电模式或者第二充电模式的情况下导通,以对电池充电;第二充电通路,用于在无线充电处于第三充电模式的情况下导通,以对电池充电;其中,第三充电模式对应的充电功率小于第二充电模式对应的充电功率,第二充电模式对应的充电功率小于第一充电模式对应的充电功率。由于传统技术中,在第二功率充电模式下是通过降压电路对电池充电,而降压电路的功率损耗较高,从而造成接收端设备发热较严重。而本实施例中在第二充电模式下,通过充电泵对电池充电,而电荷泵的效率较高,因此能够降低接收端设备的无线充电电路上的功率损耗,进而降低接收端设备的发热。
附图说明
图1是本申请实施例提供的无线充电的接收端设备的结构示意图之一;
图2是本申请实施例提供的无线充电的接收端设备的结构示意图之二;
图3是本申请实施例提供的无线充电的接收端设备的结构示意图之三;
图4是本申请实施例提供的无线充电的接收端设备的结构示意图之四;
图5是本申请实施例提供的无线充电的接收端设备的结构示意图之五;
图6是本申请实施例提供的无线充电的接收端设备的结构示意图之六;
图7是本申请实施例提供的无线充电方法的流程示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
参照图1,图1是本申请实施例提供的无线充电的接收端设备的结构示意图之一,该接收端设备包括无线接收电路101、电荷泵102、降压电路103以及电池104,其中,无线接收电路101、电荷泵102以及电池104形成第一充电通路,无线接收电路101、降压电路103以及电池104形成第二充电通路;
第一充电通路,用于在无线充电处于第一充电模式或者第二充电模式的情况下导通,以对电池104充电;
第二充电通路,用于在无线充电处于第三充电模式的情况下导通,以对电池104充电;
其中,第三充电模式对应的充电功率小于第二充电模式对应的充电功率,第二充电模式对应的充电功率小于第一充电模式对应的充电功率。
本实施例中,在无线充电处于第一充电模式或者第二充电模式的情况下,处理器可以控制第一充电通路导通,同时可以控制降压电路103断开,以通过第一充电通路为电池104充电。其中,处理器可以为中央处理器(Central Processing Unit,CPU)或其他的控制芯片。
需要说明的是,在无线充电系统中,无线接收电路可以包括无线接收线圈、整流电路以及主低压差线性稳压器(Main Low DropoutRegulator,MLDO)。无线接收线圈可以接收充电设备发射的电磁信号,并将电磁信号转换为交流电,之后由整流电路将交流电转换为直流电,以给电池充电。其中,无线充电系统中的充电设备指无线充电的发射端设备,例如充电板。在一些实施例中,整流电路可以为全桥整流电路或半桥整流电路,整流电路可以将交流电转换为直流电,以给电池充电。其中,整流电路以及MLDO可以集成在接收集成电路(Receive Integrated Circuit,RX IC)芯片中。
其中,无线充电的发射端可以根据直流电的电压发射电磁信号。在无线充电系统中,接收端设备上的充电芯片可以询问发射端支持的充电功率,将询问到的充电功率发送给接收端设备的处理器,处理器根据询问到的充电功率以及结合当前接收端设备的温度、接收端设备的电池电量确定当前应采用哪种充电模式充电。充电模式包括第一充电模式、第二充电模式以及第三充电模式。
由于当前的无线充电模式包括高功率充电模式、中等功率充电模式以及低功率充电模式。高功率充电模式指充电设备能够输出较大的功率,高功率充电模式对应的功率范围例如为40W~50W;低功率充电模式指充电设备输出较小的功率,低功率充电模式对应的功率范围一般为15W以下;中等功率充电模式指充电设备输出的功率介于高功率充电模式与低功率充电模式之间,中等功率充电模式对应的充电功率例如为20W~30W。并且由于本实施例中的第三充电模式对应的充电功率小于第二充电模式对应的充电功率,第二充电模式对应的充电功率小于第一充电模式对应的充电功率。因此,本实施例中的第一充电模式可以理解为高功率充电模式,第二充电模式可以理解为中等功率充电模式,第三充电模式可以理解为低功率充电模式。
传统技术中,在无线充电处于高功率充电模式时,通过电荷泵对电池充电。在无线充电处于中等功率充电模式或低功率充电模式时,通过降压电路例如Buck电路对电池充电。然而,由于降压电路的效率较低,一般可以达到85%左右,因此,在中等功率充电模式下,降压电路的功率损耗较高,从而造成接收端设备发热较严重的问题。
而本实施例中,第一充电通路在无线充电处于第一充电模式或者第二充电模式的情况下导通,以对电池充电。由于第一充电通路包括的充电泵的效率较高,一般可以达到98%以上,因此,在第二充电 模式下,充电泵的功率损耗较低,从而可以降低接收端设备的无线充电电路上的功率损耗,进而降低接收端设备的发热。
本实施例中的电荷泵可以为2:1工作模式的电荷泵、直通模式的电荷泵,或者电荷泵为4:2工作模式的电荷泵,本实施例对电荷泵的具体形式不进行限制,电荷泵具有2:1工作模式以及直通模式时,在充电过程中,可以控制电荷泵的工作模式进行切换,例如由2:1工作模式切换为直通模式。电荷泵的功率损耗较低,因此在中等功率充电模式下,通过电荷泵对电池充电,能够降低接收端设备的发热。直通模式下,电荷泵的输出电压等于电荷泵的输入电压,2:1工作模式下,电荷泵的输出电压等于电荷泵的输入电压的1/2。
需要说明的是,一般将电荷泵的输入电压为10伏,输出电压为5伏的电荷泵称为2:1工作模式的电荷泵,将输入电压为20伏,输出电压为10伏的电荷泵称为4:2工作模式的电荷泵。在2:1工作模式或4:2工作模式下,电荷泵的输出电流约是输入电流的2倍。
本实施例提供的无线充电的接收端设备,接收端设备包括无线接收电路、电荷泵、降压电路以及电池,其中,无线接收电路、电荷泵以及电池形成第一充电通路,无线接收电路、降压电路以及电池形成第二充电通路;第一充电通路,用于在无线充电处于第一充电模式或者第二充电模式的情况下导通,以对电池充电;第二充电通路,用于在无线充电处于第三充电模式的情况下导通,以对电池充电;其中,第三充电模式对应的充电功率小于第二充电模式对应的充电功率,第二充电模式对应的充电功率小于第一充电模式对应的充电功率。由于传统技术中,在第二功率充电模式下是通过降压电路对电池充电,而降压电路的功率损耗较高,从而造成接收端设备发热较严重。而本实施例中在第二充电模式下,通过充电泵对电池充电,而电荷泵的效率较高,因此能够降低接收端设备的无线充电电路上的功率损耗,进而降低接收端设备的发热。
并且,由于本实施例提供的接收端设备的发热降低,因此,可以采用较长时间的中等功率充电模式对电池充电,同时可以采用更低成本价格的散热材料对接收端设备进行散热,以实现降低成本。
参照图2,图2是本申请实施例提供的无线充电的接收端设备的结构示意图之二,在上述实施例的基础上,接收端设备还包括开关元件201,开关元件201设置于无线接收电路101和电荷泵102之间,无线接收电路101、开关元件201、电荷泵102以及电池104形成第一充电通路。其中,开关元件可以集成在RX IC芯片中,也可以不集成在RX IC芯片。
可选的,开关元件为背靠背MOS管。其中,MOS管,是MOSFET的缩写。MOSFET金属-氧化物半导体场效应晶体管,简称金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)
由于电荷泵本身是个开环系统,不具有控制充电电压和充电电流的能力。因此可以通过一组背靠背MOS管控制充电电压和充电电流。
并且,本实施例中的背靠背MOS管还有路径管理用途,由于背靠背MOS管可以双向关闭,所以在不需要它导通的时候,它不会出现反向漏电的情况。
参照图3,图3是本申请实施例提供的无线充电的接收端设备的结构示意图之三,在上述实施例的基础上,开关元件为背靠背MOS管301,接收端设备还包括有线充电接口302,有线充电接口302、电荷泵102以及电池104形成第三充电通路,有线充电接口302、背靠背MOS管301、降压电路103以及电池104形成第四充电通路;
第三充电通路,用于在有线充电处于第一充电模式的情况下导通,以对电池充电;
第四充电通路,用于在有线充电处于第二充电模式或者第三充电模式的情况下导通,以对电池充电。
在有线充电时,处理器可以根据当前接收端设备的温度以及接收端设备的电池电量确定当前应采用哪种充电模式充电。充电模式包括第一充电模式、第二充电模式以及第三充电模式。
其中,有线充电接口302可以通过背靠背MOS管303与电荷泵102连接。
需要说明的是,在通过如图3所示的有线充电方式的第四充电通路对电池进行充电时,RX IC不工作,集成在RX IC的数字核也不工作,处理器无法控制数字核导通背靠背MOS管301,此种情况下,处理器能够控制外部模块例如反馈模块305或电荷泵导通背靠背MOS管301,进而能够通过第四充电 通路为电池充电。
本实施例提供的无线充电的接收端设备,第三充电通路在有线充电处于第一充电模式的情况下导通,以对电池充电,第四充电通路在有线充电处于第二充电模式或者第三充电模式的情况下导通,以对电池充电。能够保证采用无线充电的方式时,降低接收端设备的发热的前提下,还能够实现通过有线充电的方式对电池充电,从而方便用户在无线充电方和有线充电方式之间进行切换选择。
可选的,开关元件为氮化镓MOS管。氮化镓场效应晶体管(GalliumNitride Field-effectTransistor)是一类以氮化镓以及铝氮化镓为基础材料的场效应晶体管,氮化镓材料具有好的散热性能。
可选的,背靠背MOS管与MOS管控制元件连接;
MOS管控制元件,用于在检测到第一充电通路的电压大于目标电压阈值的情况下,对背靠背MOS管的栅极电压进行降低处理。
本实施例中,在检测到的第一充电通路的电压大于目标电压阈值的情况下,对背靠背MOS管的栅极电压进行降低处理,以增大背靠背MOS管的阻抗,从而降低背靠背MOS管的输出电压,避免高压直接被施加到电荷泵上,导致电荷泵输出电压同步抬高,进而导致大电流灌入电池。其中,目标电压阈值可以是CPU根据检测到的电池的电压,确定的略大于该电压的2倍的电压值,CPU可以将该电压值传递给MOS管控制元件,MOS管控制元件在检测到第一充电通路的电压大于目标电压阈值的情况下,对背靠背MOS管的栅极电压进行降低处理,以增大背靠背MOS管的阻抗,进而降低第一充电通路的电压。
可选的,如图3所示,MOS管控制元件包括数字核304、反馈模块305以及电荷泵102中的至少一个。
需要说明的是,背靠背MOS管可以集成在RX IC内部,背靠背MOS管亦可以不集成在RX IC内部,可以作为一个独立的IC,并受外部的控制元件控制,外部的控制元件可以为反馈模块或电荷泵。RX IC上可以设置一个输入输出(Input Output,IO)口,外部的控制元件可以通过该IO口控制背靠背MOS管,也可以直接与背靠背MOS管的栅极连接,以直接控制背靠背MOS管。
背靠背MOS管301可以与数字核304、反馈模块305以及电荷泵102中的至少一个连接。其中,反馈模块305可以为恒压反馈模块和/或恒流反馈模块。需要说明的是,在背靠背MOS管301与数字核304、反馈模块305以及电荷泵102中的多个元件连接时,可以通过软件实现控制多个元件中的一个元件检测第一充电通路的电压。可以检测第一充电通路中的背靠背MOS管303的输入端的电压或背靠背MOS管301的输出端的电压。
需要说明的是,如图3所示,本实施例中的无线接收电路例如为如图3所示的无线接收电路306,接收端设备还可以包括电容307和全桥整流电路,全桥整流电路例如包括如图5所示的MOS管Q1、MOS管Q2、MOS管Q3以及MOS管Q4。全桥整流电路中的MOS管也可以用二极管替代。无线接收电路306接收充电设备的无线发射线圈308发送的电磁信号,将电磁信号转换为交流电,交流电经过电容307进入整流电路,由整流电路将交流电转换为直流电并输入至MLDO309,MLDO309向第一充电通路中的背靠背MOS管301提供输入电压,背靠背MOS管301输出的电压提供给电荷泵102,由电荷泵102对电池104进行充电。其中,低压差线性稳压器可以集成在RX IC芯片中。
采用无线充电方式时,第一充电通路中可能存在大电压或大电流的情况,例如在开始充电时,由于用户未将接收端设备的无线接收电路306与无线发射线圈308对正,充电一段时间后用户改变了接收端设备的位置从而使无线接收电路306与无线发射线圈308对正后,则无线接收电路306从无线发射线圈耦合到的能量增大,从而使第一充电通路中的电压或电流突然增大。
为了避免第一充电通路中出现大电压或大电流时,导致较高的输入电压或输入电流施加在电荷泵上,进而导致电荷泵输出的过大的电压或电流灌入电池,因此,本实施例中通过MOS管控制元件检测第一充电通路的电压,在第一充电通路的电压大于目标电压阈值的情况下,对背靠背MOS管的栅极电压进行降低处理,从而可以增大背靠背MOS管的阻抗,降低第一充电通路的电压,进而降低施加在电荷泵上的电压。因此,本实施例中的背靠背MOS管具有控制充电电压的能力,当充电通路中出现高压的时候需要抗住压差,避免高压直接被施加到电荷泵上,导致电荷泵输出电压同步抬高,进而导致大电流灌 入电池。
需要说明的是,第一充电通路还可以包括MLDO309,MOS管控制元件可以检测MLDO309的输入端的电压,也可以检测MLDO309的输出端的电压。其中,MLDO309的输出端的电压等于背靠背MOS管的输入端的电压。
可选的,背靠背MOS管与MOS管控制元件连接;
MOS管控制元件,用于在检测到第一充电通路的电流大于目标电流阈值的情况下,对背靠背MOS管的栅极电压进行降低处理。
与上述检测第一充电通路的电压类似,本实施例中可以检测第一充电通路的电流,在第一充电通路的电流大于目标电流阈值的情况下,对背靠背MOS管的栅极电压进行降低处理,以增大背靠背MOS管的阻抗,从而降低第一充电通路的电流。因此,本实施例中的背靠背MOS管具有限制电流的能力,当第一充电通路中出现大电流时,能够增大背靠背MOS管的阻抗,由此限制充电电流。
可选的,背靠背MOS管与MOS管控制元件连接;
MOS管控制元件,用于获取电荷泵的期望输入电压,并用于根据期望输入电压和MOS管控制元件检测到的第一充电通路的电压的差值,对背靠背MOS管的栅极电压进行调整处理,以使背靠背MOS管的输出电压与期望输入电压一致。
本实施例中,CPU可以检测电池当前的电压1,并将电压2通知到MOS管控制元件,电压2略大于电压1的2倍,MOS管控制元件将电压2作为电荷泵的期望输入电压。MOS管控制元件根据期望输入电压和MOS管控制元件检测到的第一充电通路的电压的差值,能够对背靠背MOS管的栅极电压进行调整处理。例如,在检测到的第一充电通路的电压减去期望输入电压得到的差值大于目标差值的情况下,降低背靠背MOS管的栅极电压,以增大背靠背MOS管的阻抗,从而降低背靠背MOS管的输出电压,以使背靠背MOS管的输出电压与期望输入电压一致。在期望输入电压减去检测到的第一充电通路的电压得到的差值大于目标差值的情况下,提高背靠背MOS管的栅极电压,以降低背靠背MOS管的阻抗,从而提高背靠背MOS管的输出电压,以使背靠背MOS管的输出电压与期望输入电压一致。
需要说明的是,电荷泵可以工作在2:1工作模式下,即电荷泵的输出电压等于输入电压的1/2。电荷泵也可以工作在1:1的工作模式,即工作在直通模式,电荷泵的输出电压等于电荷泵的输入电压。电荷泵工作在直通模式时,由于电荷泵的阻抗较小,因此电荷泵的效率相对于2:1工作模式时的效率更高,能够进一步降低电荷泵的功率损耗,从而降低电荷泵的发热,进而降低接收端设备的发热。电荷泵工作在4:2的工作模式,可以对双电芯的电池进行充电。
可选的,开关元件,用于在无线充电处于第一充电模式或者第二充电模式的情况下导通,在无线充电处于第三充电模式的情况下关断;
开关元件,还用于在有线充电处于第一充电模式的情况下关断,在有线充电处于第二充电模式或者第三充电模式的情况下导通。
其中,开关元件与MOS管控制元件连接。如图3所示,图3中的开关元件为背靠背MOS管,背靠背MOS管与MOS管控制元件连接。
本实施例提供的无线充电的接收端设备,通过开关元件在无线充电处于第一充电模式或者第二充电模式的情况下导通,能够保证采用无线充电的方式时,降低接收端设备的发热,并且,开关元件在有线充电处于第一充电模式的情况下关断,在有线充电处于第二充电模式或者第三充电模式的情况下导通,从而实现通过有线充电的方式对电池充电,从而方便用户在无线充电方和有线充电方式之间进行切换选择。
可选的,在开关元件为背靠背MOS管时,由于背靠背MOS管可以双向关闭,所以在不需要它导通的时候,处理器控制关断背靠背MOS管或者处理器控制MOS管控制元件关断背靠背MOS管,从而可以防止出现反向漏电的情况。并且,在有线充电处于第二充电模式或者第三充电模式的情况下,处理器控制导通背靠背MOS管或者处理器控制MOS管控制元件导通背靠背MOS管,从而导通第四充电通路,进而通过第四充电通路为电池充电。
可选的,接收端设备包括相互并联的至少两个开关元件,其中,相互并联的至少开关元件设置于无 线接收电路和电荷泵之间。参照图4,图4是本申请实施例提供的无线充电的接收端设备的结构示意图之四,图4中示出了两个并联的开关元件,该两个并联的开关元件为两个并联的背靠背MOS管,也就是说,在图3所示电路结构的基础上,再与背靠背MOS管301并联一个背靠背MOS管,就可以得到如图4所示的结构示意图。
需要说明的是,本实施例可以通过背靠背MOS管的并联来输出充电电流对电池充电,通过背靠背MOS管并联后,并联后的背靠背MOS管的阻抗小于单个背靠背MOS管的阻抗,并联后的背靠背MOS管的输入电流不变时,并联后的背靠背MOS管的功率损耗降低,因此,可以降低背靠背MOS管的发热,进而降低无线充电的接收端设备的发热。
可选的,接收端设备包括相互并联的至少两个无线接收电路,至少两个无线接收电路、电荷泵以及电池形成第一充电通路,至少两个无线接收电路、降压电路以及电池形成第二充电通路。参照图5,图5是本申请实施例提供的无线充电的接收端设备的结构示意图之五,图5中示出了两个并联的无线接收电路,也就是说,在图3所示电路结构的基础上,与图3所示的无线接收电路并联一个无线接收电路,图5中还示出了由两个无线接收电路并联的一种可能的实现方式,每个无线接收电路包括无线接收线圈、电容、整流电路以及MLDO,具体参照如图5所示的结构示意图。其中,无线接收线圈可以为低感量无线接收线圈或普通的无线接收线圈,在无线接收线圈为低感量无线接收线圈时,由于低感量无线接收线圈的厚度较小,因此有助于控制接收端设备的厚度,提高接收端设备的轻薄性。
需要说明的是,在背靠背MOS管和电荷泵能承受较大电流的情况下,本实施例可以通过无线接收电路的并联来提高输入至电荷泵的输入电流,从而能够实现采用更大的充电电流对电池充电,进而实现通过高功率充电模式对电池进行充电,提高电池的充电速度。并且,由于传统的高功率充电模式下,大电流仅流经一个无线接收电路,导致无线接收电路的发热较大且相对集中。而本实施例中,通过无线接收电路的并联方式,能够将高功率模式下的大电流经过并联的无线接收电路分流,因此能够分散无线接收电路的发热,并降低无线接收电路的功率损耗,从而避免接收端设备的局部温度过高以及发热严重的问题。
可选的,接收端设备包括相互并联的至少两个电荷泵,无线接收电路、至少两个电荷泵以及电池形成第一充电通路。参照图6,图6是本申请实施例提供的无线充电的接收端设备的结构示意图之六,图6中示出了两个并联的电荷泵,也就是说,在图3所示电路结构的基础上,与图3所示的电荷泵并联一个电荷泵,就可以得到如图6所示的结构示意图。
需要说明的是,在背靠背MOS管能承受较大电流的情况下,本实施例可以通过电荷泵的并联来提高输入至电池的输入电流,从而能够实现采用更大的充电电流对电池充电,进而实现通过高功率充电模式对电池进行充电,提高电池的充电速度。并且,由于传统的高功率充电模式下,大电流仅流经一个电荷泵,该电荷泵的发热较严重。而本实施例中,通过电荷泵的并联方式,能够将高功率模式下的大电流经过并联的电荷泵分流,分担在各个电荷泵上的功率损耗之和小于单个电荷泵的功率损耗,因此相对于传统技术中高功率充电模式下,仅通过一个电荷泵对电池充电而言,能够分散电荷泵的发热并降低电荷泵的发热,从而避免接收端设备的局部温度过高以及发热严重的问题。
需要说明的是,上述的无线接收电路、背靠背MOS管以及电荷泵中的至少两个可以通过并联的方式实现高功率充电。
参照图7,图7是本申请实施例提供的无线充电方法的流程示意图,该方法应用于上述任一无线充电的接收端设备。该方法包括如下步骤:
S701、在无线充电处于第一充电模式或者第二充电模式的情况下,导通接收端设备中的第一充电通路,以对电池充电,第一充电通路包括无线接收电路、电荷泵以及电池。
S702、在无线充电处于第三充电模式的情况下,导通接收端设备中的第二充电通路,以对电池充电,第二充电通路包括无线接收电路、降压电路以及电池。
其中,第三充电模式对应的充电功率小于第二充电模式对应的充电功率,第二充电模式对应的充电功率小于第一充电模式对应的充电功率。
本实施例提供的无线充电方法,通过在无线充电处于第一充电模式或者第二充电模式的情况下,控 制第一充电通路导通,以通过第一充电通路为电池充电,在无线充电处于第三充电模式的情况下,控制第二充电通路导通,以通过第二充电通路为电池充电。其中,第三充电模式对应的充电功率小于第二充电模式对应的充电功率,第二充电模式对应的充电功率小于第一充电模式对应的充电功率。由于传统技术中,在第二功率充电模式下是通过降压电路对电池充电,而降压电路的功率损耗较高,从而造成接收端设备发热较严重。而本实施例中在第二充电模式下,通过充电泵对电池充电,而电荷泵的效率较高,因此能够降低接收端设备的无线充电电路上的功率损耗,进而降低接收端设备的发热。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种无线充电的接收端设备,其特征在于,所述接收端设备包括无线接收电路、电荷泵、降压电路以及电池,其中,所述无线接收电路、所述电荷泵以及所述电池形成第一充电通路,所述无线接收电路、所述降压电路以及所述电池形成第二充电通路;
    所述第一充电通路,用于在无线充电处于第一充电模式或者第二充电模式的情况下导通,以对所述电池充电;
    所述第二充电通路,用于在无线充电处于第三充电模式的情况下导通,以对所述电池充电;
    其中,所述第三充电模式对应的充电功率小于所述第二充电模式对应的充电功率,所述第二充电模式对应的充电功率小于所述第一充电模式对应的充电功率。
  2. 根据权利要求1所述的接收端设备,其特征在于,所述接收端设备还包括开关元件,所述开关元件设置于所述无线接收电路和所述电荷泵之间,所述无线接收电路、所述开关元件、所述电荷泵以及所述电池形成所述第一充电通路。
  3. 根据权利要求2所述的接收端设备,其特征在于,所述开关元件为背靠背MOS管。
  4. 根据权利要求2所述的接收端设备,其特征在于,所述开关元件为氮化镓MOS管。
  5. 根据权利要求3所述的接收端设备,其特征在于,所述开关元件为背靠背MOS管,所述接收端设备还包括有线充电接口,所述有线充电接口、所述电荷泵以及所述电池形成第三充电通路,所述有线充电接口、所述背靠背MOS管、所述降压电路以及所述电池形成第四充电通路;
    所述第三充电通路,用于在有线充电处于所述第一充电模式的情况下导通,以对所述电池充电;
    所述第四充电通路,用于在有线充电处于所述第二充电模式或者所述第三充电模式的情况下导通,以对所述电池充电。
  6. 根据权利要求3所述的接收端设备,其特征在于,所述背靠背MOS管与MOS管控制元件连接;
    所述MOS管控制元件,用于在检测到所述第一充电通路的电压大于目标电压阈值的情况下,对所述背靠背MOS管的栅极电压进行降低处理。
  7. 根据权利要求3所述的接收端设备,其特征在于,所述背靠背MOS管与MOS管控制元件连接;
    所述MOS管控制元件,用于在检测到所述第一充电通路的电流大于目标电流阈值的情况下,对所述背靠背MOS管的栅极电压进行降低处理。
  8. 根据权利要求3所述的接收端设备,其特征在于,所述背靠背MOS管与MOS管控制元件连接;
    所述MOS管控制元件,用于获取所述电荷泵的期望输入电压,并用于根据所述期望输入电压和所述MOS管控制元件检测到的所述第一充电通路的电压的差值,对所述背靠背MOS管的栅极电压进行调整处理,以使所述背靠背MOS管的输出电压与所述期望输入电压一致。
  9. 根据权利要求2所述的接收端设备,其特征在于,
    所述开关元件,用于在无线充电处于所述第一充电模式或者所述第二充电模式的情况下导通,在无线充电处于所述第三充电模式的情况下关断;
    所述开关元件,还用于在有线充电处于所述第一充电模式的情况下关断,在有线充电处于所述第 二充电模式或者所述第三充电模式的情况下导通。
  10. 根据权利要求6至9任一所述的接收端设备,其特征在于,所述MOS管控制元件包括数字核、反馈模块以及所述电荷泵中的至少一个。
  11. 根据权利要求2所述的接收端设备,其特征在于,所述接收端设备包括相互并联的至少两个开关元件,其中,相互并联的至少两个所述开关元件设置于所述无线接收电路和所述电荷泵之间。
  12. 根据权利要求1至9任一所述的接收端设备,其特征在于,所述接收端设备包括相互并联的至少两个所述无线接收电路,所述至少两个无线接收电路、所述电荷泵以及所述电池形成所述第一充电通路,所述至少两个无线接收电路、所述降压电路以及所述电池形成第二充电通路。
  13. 根据权利要求1至9任一所述的接收端设备,其特征在于,所述接收端设备包括相互并联的至少两个所述电荷泵,所述无线接收电路、所述至少两个电荷泵以及所述电池形成所述第一充电通路。
  14. 一种无线充电方法,其特征在于,用于权利要求1至13任一所述的接收端设备中,所述方法包括:
    在无线充电处于第一充电模式或者第二充电模式的情况下,导通所述接收端设备中的第一充电通路,以对电池充电,所述第一充电通路包括无线接收电路、电荷泵以及电池;
    在无线充电处于第三充电模式的情况下,导通所述接收端设备中的第二充电通路,以对所述电池充电,所述第二充电通路包括所述无线接收电路、降压电路以及所述电池;
    其中,所述第三充电模式对应的充电功率小于所述第二充电模式对应的充电功率,所述第二充电模式对应的充电功率小于所述第一充电模式对应的充电功率。
  15. 根据权利要求14所述的方法,其特征在于,所述接收端设备还包括开关元件,所述开关元件设置于所述无线接收电路和所述电荷泵之间,所述无线接收电路、所述开关元件、所述电荷泵以及所述电池形成所述第一充电通路。
  16. 根据权利要求15所述的方法,其特征在于,所述开关元件为背靠背MOS管。
  17. 根据权利要求15所述的方法,其特征在于,所述开关元件为氮化镓MOS管。
  18. 根据权利要求16所述的方法,其特征在于,所述开关元件为背靠背MOS管,所述接收端设备还包括有线充电接口,所述有线充电接口、所述电荷泵以及所述电池形成第三充电通路,所述有线充电接口、所述背靠背MOS管、所述降压电路以及所述电池形成第四充电通路;所述方法还包括:
    在有线充电处于所述第一充电模式的情况下通过所述第三充电通路对所述电池充电;
    在有线充电处于所述第二充电模式或者所述第三充电模式的情况下通过所述第四充电通路对所述电池充电。
  19. 根据权利要求16所述的方法,其特征在于,所述背靠背MOS管与MOS管控制元件连接;所述方法还包括:
    在检测到所述第一充电通路的电压大于目标电压阈值的情况下,利用MOS管控制元件所述对所述背靠背MOS管的栅极电压进行降低处理。
  20. 根据权利要求16所述的方法,其特征在于,所述背靠背MOS管与MOS管控制元件连接;所述方法还包括:
    在检测到所述第一充电通路的电流大于目标电流阈值的情况下,利用所述MOS管控制元件对所述背靠背MOS管的栅极电压进行降低处理。
PCT/CN2022/112790 2021-09-18 2022-08-16 无线充电的接收端设备以及无线充电方法 WO2023040549A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111113137.4A CN115842384A (zh) 2021-09-18 2021-09-18 无线充电的接收端设备以及无线充电方法
CN202111113137.4 2021-09-18

Publications (1)

Publication Number Publication Date
WO2023040549A1 true WO2023040549A1 (zh) 2023-03-23

Family

ID=85574542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112790 WO2023040549A1 (zh) 2021-09-18 2022-08-16 无线充电的接收端设备以及无线充电方法

Country Status (2)

Country Link
CN (1) CN115842384A (zh)
WO (1) WO2023040549A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787055A (zh) * 2016-11-30 2017-05-31 珠海市魅族科技有限公司 一种充电电路、系统、方法及终端
CN107658927A (zh) * 2017-09-27 2018-02-02 同济大学 基于反馈信令的自适应移动光学充电系统
CN109148990A (zh) * 2018-09-30 2019-01-04 Oppo广东移动通信有限公司 无线充电方法、电子设备、无线充电装置和无线充电系统
CN109950959A (zh) * 2019-03-26 2019-06-28 联想(北京)有限公司 电子设备及充电方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787055A (zh) * 2016-11-30 2017-05-31 珠海市魅族科技有限公司 一种充电电路、系统、方法及终端
CN107658927A (zh) * 2017-09-27 2018-02-02 同济大学 基于反馈信令的自适应移动光学充电系统
CN109148990A (zh) * 2018-09-30 2019-01-04 Oppo广东移动通信有限公司 无线充电方法、电子设备、无线充电装置和无线充电系统
CN109950959A (zh) * 2019-03-26 2019-06-28 联想(北京)有限公司 电子设备及充电方法

Also Published As

Publication number Publication date
CN115842384A (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
TWI577115B (zh) 開關電源及用於開關電源的母線電容電壓控制方法
US20170285674A1 (en) Protection from hard commutation events at power switches
JP4528321B2 (ja) スイッチング回路、回路、並びにスイッチング回路及び駆動パルス生成回路を含む回路
TW201926875A (zh) 同步整流的開關電源電路及其控制方法
US20040164785A1 (en) On chip power supply
US20190393793A1 (en) Power switching circuit and switching method
CN102005731A (zh) 提供过温度保护的控制器、功率转换器及其方法
WO2020222077A1 (en) Active clamping with bootstrap circuit
TWI481156B (zh) 電源供應裝置
TW201238228A (en) Smart driver for flyback converts
TWI767535B (zh) 用於在次級同步整流器中產生控制訊號和充電直流電源的方法與裝置
JP2014068520A (ja) 部分共振モードおよび電流連続モードを備えたコントローラおよびその動作方法
WO2023040549A1 (zh) 无线充电的接收端设备以及无线充电方法
US20190386574A1 (en) Power supply and power supply unit
JP7381596B2 (ja) チップ、信号レベルシフタ回路、及び電子装置
CN114726217A (zh) 开关电源的mos驱动电路
US20220278558A1 (en) Rectifier, inverter, and wireless charging device
CN216414175U (zh) 一种llc谐振转换器的启动电路及芯片
CN114814515A (zh) SiC MOSFET的短路检测电路及方法
TWM537760U (zh) 電子裝置
US20200235673A1 (en) Power supply and power supply unit
CN114421566B (zh) 充电管理电路以及包含其的充电电路
WO2023029840A1 (zh) 同步整流装置、同步整流方法、电源以及电子设备
CN216873068U (zh) 一种易于集成的D-Mode氮化镓功率管的驱动及电流检测电路
TWI844670B (zh) 電力轉換器及用於電力轉換器之主動箝位電路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE