WO2021091108A1 - 리튬 이차전지의 제조방법 - Google Patents

리튬 이차전지의 제조방법 Download PDF

Info

Publication number
WO2021091108A1
WO2021091108A1 PCT/KR2020/013959 KR2020013959W WO2021091108A1 WO 2021091108 A1 WO2021091108 A1 WO 2021091108A1 KR 2020013959 W KR2020013959 W KR 2020013959W WO 2021091108 A1 WO2021091108 A1 WO 2021091108A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
lithium
charging
battery
secondary battery
Prior art date
Application number
PCT/KR2020/013959
Other languages
English (en)
French (fr)
Inventor
윤현웅
채오병
이정범
이병선
하회진
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200129950A external-priority patent/KR102631720B1/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP20885458.8A priority Critical patent/EP3982460A4/en
Priority to US17/623,698 priority patent/US20220278358A1/en
Priority to CN202080047686.3A priority patent/CN114080710A/zh
Publication of WO2021091108A1 publication Critical patent/WO2021091108A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of manufacturing a lithium secondary battery.
  • Lithium secondary batteries developed in the early 1990s are in the spotlight because of their higher operating voltage and higher energy density than conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries using aqueous electrolyte solutions.
  • conventional batteries such as Ni-MH, Ni-Cd, and sulfuric acid-lead batteries using aqueous electrolyte solutions.
  • EV electric vehicles
  • lithium metal is highly reactive and reacts easily with moisture and oxygen in the air, the assembling process is difficult, and lithium metal grows into a dendrite as the lithium metal dissolves and precipitates during operation, causing a battery short circuit.
  • An object of the present invention is to provide a lithium secondary battery that can achieve a higher energy density and has more excellent safety and lifespan characteristics compared to conventional lithium ion batteries and lithium metal secondary batteries.
  • a negative electrode coated with a negative active material layer on a negative electrode current collector A positive electrode coated with a positive electrode active material layer on the positive electrode current collector; Separator; And assembling a battery containing an electrolyte, and
  • the negative electrode loading amount ratio (N/P ratio) to the positive electrode loading amount is 0.01 to 0.99
  • a method of manufacturing a lithium secondary battery is provided.
  • FIG. 1 is a schematic diagram illustrating a change of a negative electrode in a method of manufacturing a lithium secondary battery of the present invention.
  • the present invention relates to a method of manufacturing a lithium secondary battery that exhibits high energy density and has excellent safety and lifespan characteristics compared to conventional lithium ion batteries and lithium metal secondary batteries.
  • a negative electrode coated with a negative electrode active material layer on the negative electrode current collector A positive electrode coated with a positive electrode active material layer on the positive electrode current collector; Separator; And assembling a battery containing an electrolyte, and
  • the negative electrode loading amount ratio (N/P ratio) to the positive electrode loading amount is 0.01 to 0.99
  • a method of manufacturing a lithium secondary battery is provided.
  • lithium-ion batteries have widely applied carbon-based materials such as artificial graphite, natural graphite, and hard carbon capable of intercalation/deintercalation of lithium as an anode active material.
  • carbon-based materials such as artificial graphite, natural graphite, and hard carbon capable of intercalation/deintercalation of lithium as an anode active material.
  • graphite is mainly used in commercial batteries due to its structural stability, low electron chemical reactivity, and excellent lithium ion storage capacity, but its theoretical capacity is about 372 mAh/g, and its application to high-capacity batteries is limited.
  • silicon, tin, etc. which can react with lithium to form an alloy as a high-capacity negative electrode material, are being studied as substitutes, but these have a problem that entails a significant volume change when lithium ions are inserted/desorbed.
  • lithium metal which can theoretically achieve the highest capacity, it is difficult to handle because of its high reactivity with moisture and oxygen and its soft nature, and there is a problem in that fairness is inferior when manufacturing a lithium metal electrode.
  • a lithium metal electrode made of a current collector and a thin film of lithium metal may cause a phenomenon in which lithium metal is deposited as a dendritic due to uneven electron density on the electrode surface during lithium plating and dissolution when the battery is driven .
  • the lithium metal (lithium dendrite) deposited in the dendritic form cannot be used as an active material, and there is a problem that a battery short circuit occurs when the dendritic lithium continues to grow.
  • a battery is assembled using a negative electrode including a conventional negative electrode active material excluding lithium metal, but the ratio of the negative electrode loading amount to the positive electrode loading amount, that is, the N/P ratio, is set lower than that of a conventional battery. Then, the lithium secondary battery is manufactured by charging it by a positive electrode loading amount higher than that of the negative electrode loading amount so that intercalation of the negative electrode active material and plating of lithium metal occur continuously.
  • the lithium secondary battery manufactured in this way uses both the negative electrode active material included in the battery assembly and the plated lithium metal as an active material for the negative electrode, so it has a higher capacity compared to the existing lithium ion battery and the lithium metal secondary battery. It shows remarkably improved safety and longevity characteristics.
  • the negative electrode of the finally manufactured lithium secondary battery has a structure including a negative electrode active material layer coated on a current collector and a lithium metal layer formed on the negative electrode active material layer during charging, but assembling a battery Since lithium metal is not separately handled in the step, it is not necessary to block moisture and oxygen, thus simplifying the assembly process.
  • the specific surface area of the negative electrode active material layer, which is the plating surface is very large, so that the current density and overvoltage are significantly lower than that of the lithium metal thin film. Accordingly, lithium metal can be uniformly plated on the surface of the negative electrode active material layer without growing dendritic, and thus the plated lithium metal can be used as an active material.
  • the negative electrode loading amount ratio (N/P ratio) to the positive electrode loading amount is set to satisfy the range of 0.01 to 0.99.
  • the positive electrode and negative electrode current collectors are not particularly limited as long as they have conductivity without causing chemical changes to the battery.
  • the positive electrode current collector stainless steel, aluminum, nickel, titanium, calcined carbon, or a surface-treated aluminum or stainless steel surface with carbon, nickel, titanium, silver, or the like may be used.
  • negative electrode current collector copper, stainless steel, aluminum, nickel, titanium, calcined carbon, a surface-treated copper or stainless steel surface with carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. can be used. have.
  • the current collector may be in various forms such as a film, a sheet, a foil, a net, a porous material, a foam, and a nonwoven fabric.
  • the thickness of the current collector may be in the range of 3 to 500 ⁇ m, but is not limited thereto.
  • the negative active material layer includes a negative active material, a binder, and optionally a conductive material.
  • a carbon-based active material As the negative active material, a carbon-based active material, an alloy of lithium metal, and/or a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions may be used. However, lithium metal is excluded.
  • crystalline carbon As the carbon-based active material, crystalline carbon, amorphous carbon, or a combination thereof may be used.
  • the crystalline carbon include graphite such as natural graphite or artificial graphite, and such graphite may be in the form of amorphous, plate, flake, spherical or fibrous.
  • the amorphous carbon include soft carbon (low temperature calcined carbon) or hard carbon, mesophase pitch carbide, calcined coke, and the like.
  • Lithium metal alloys include lithium (Li) and sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), and calcium (Ca ), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), germanium (Ge), and an alloy of a metal selected from the group consisting of tin (Sn).
  • Examples of a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions include a silicon-based active material and a tin-based active material. Specifically, Si, SiO x (0 ⁇ x ⁇ 2), Si-C composite, Si-Q alloy (where Q is an alkali metal, alkaline earth metal, group 13 to 16 element, transition metal, rare earth element, or a combination thereof And not Si), Sn, SnO 2 , Sn-C complex, Sn-R (wherein R is an alkali metal, alkaline earth metal, group 13-16 element, transition metal, rare earth element, or a combination thereof, Sn is Or not).
  • Q and R include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, Te, Po, or combinations thereof.
  • lithium titanium oxide may be used as the negative active material.
  • Lithium titanium oxide may be represented by Li a Ti b O 4 (0.5 ⁇ a ⁇ 3, 1 ⁇ b ⁇ 2.5), specifically Li 0.8 Ti 2.2 O 4 , Li 2.67 Ti 1.33 O 4 , LiTi 2 O 4 , It may be Li 1.33 Ti 1.67 O 4 , Li 1.14 Ti 1.71 O 4- or the like, but is not limited thereto.
  • the negative electrode active material described above is included in an amount of 70 to 99.5% by weight, or 80 to 99% by weight of the total weight of the negative electrode active material layer (that is, before the lithium metal layer is formed, as the negative electrode active material layer in the battery assembly step, the same applies hereinafter). desirable. If the content of the negative active material is less than 70% by weight, there may be a disadvantage in energy density, and if it exceeds 99.5% by weight, there may be a problem in that the active material is peeled off due to insufficient amount of the binder. However, in the case of an alloy of lithium metal, since it can be used by electrolytic plating on the current collector in the form of a foil without a binder, it can be used in an amount of 100% by weight.
  • the binder adheres the active material particles well to each other and also plays a role in adhering the active material to the current collector, and representative examples thereof include polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, polyvinyl chloride, carboxylated poly Vinyl chloride, polyvinylfluoride, polymer containing ethylene oxide, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene -Butadiene rubber, epoxy resin, nylon, etc. may be used, but the present invention is not limited thereto.
  • the conductive material is used to impart conductivity to the electrode, and does not cause chemical changes in the battery to be constructed, and any electronically conductive material may be used.
  • carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, and carbon fiber
  • Metal-based materials such as metal powders such as copper, nickel, aluminum, and silver, or metal fibers
  • Conductive polymers such as polyphenylene derivatives
  • a conductive material containing a mixture thereof may be used.
  • the positive electrode active material layer includes a positive electrode active material, a binder, and optionally a conductive material, wherein the binder and the conductive material described above may be used.
  • the positive electrode active material a compound known in the art as a compound capable of reversible insertion and desorption of lithium may be used without limitation.
  • the positive electrode active material may be a lithium composite metal oxide containing at least one metal such as cobalt, manganese, nickel, or aluminum, and lithium.
  • lithium composite metal oxide examples include lithium-manganese oxides (eg, LiMnO 2 , LiMn 2 O 4, etc.), lithium-cobalt oxides (eg, LiCoO 2, etc.), and lithium-nickel oxides (eg For example, LiNiO 2 ), lithium-nickel-manganese oxide (e.g., LiNi 1-Y Mn Y O 2 (here, 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 (here, 0 ⁇ Z ⁇ 2), lithium-nickel-cobalt oxide (e.g., LiNi 1-Y1 Co Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1), etc.), lithium-manganese-cobalt oxide ( For example, LiCo 1-Y2 Mn Y2 O 2 (here, 0 ⁇ Y2 ⁇ 1), LiMn 2-Z1 Co Z1 O 4 (here, 0 ⁇ Z1 ⁇ 2), etc.), lithium-nickel-manganese- Cobal
  • Ni-rich cathode material (NCM811, NCM911) or Li-rich cathode material (Over-Lithiated layered Oxide: xLi 2 MnO 3 ⁇ (1- x)LiMO 2 , where 0 ⁇ x ⁇ 1) may be used, and specifically, it is preferable to use Li[Li 0.2 Mn 0.54 Ni 0.13 Co 0.13 ]O 2.
  • the loading amount per unit area of the positive active material layer is 4 to 15 mAh/cm 2 , 5 to 10 mAh/cm 2 , or 5 to 8 mAh/cm 2.
  • a sufficient amount of lithium ions may be supplied to the negative electrode from the positive electrode active material in the charging step of the battery.
  • the positive electrode active material layer of the present invention may further include an irreversible additive in order to supply a sufficient amount of lithium ions to the negative electrode.
  • the irreversible additive refers to a material in which lithium ions are desorbed during the initial charging of a battery, and then in an irreversible phase, that is, a material that does not occlude the desorbed lithium ions.
  • lithium ions may remain in the irreversible additive converted to the irreversible phase, and the remaining lithium ions are reversibly occluded and released, but the lithium ions released during the initial charge are returned to the irreversible compensation additive during subsequent discharge. It is not occluded and is plated on the cathode.
  • the irreversible additive is not particularly limited as long as it is a compound having the above-described effect, but specifically Li 7/3 Ti 5/3 O 4 , Li 2.3 Mo 6 S 7.7 , Li 2 NiO 2 , Li 2 CuO 2, Li 6 CoO 4 , Li 5 FeO 4 , Li 6 MnO 4 , Li 2 MoO 3 , Li 3 N, Li 2 O, LiOH and Li 2 CO 3 selected from the group consisting of There may be more than one type. Among them, in terms of stable life performance and energy density, preferably at least one selected from the group consisting of Li 2 NiO 2 , Li 6 CoO 4 , and Li 3 N may be used.
  • the irreversible additive is included in an amount of 10% by weight or less of the total weight of the positive electrode active material layer.
  • the irreversible additive exceeds 10% by weight of the total weight of the positive electrode active material layer, a problem of gelation may occur during preparation of the positive electrode slurry.
  • the irreversible additive is a material that is selectively used to supply a larger amount of lithium ions to the negative electrode, and there is no limit to the lower limit.
  • the method of manufacturing the negative electrode and the positive electrode is not particularly limited.
  • an active material slurry prepared by mixing an active material, a binder, optionally, a conductive material and/or an irreversible additive in an organic solvent is applied and dried on the current collector, and optionally compression molded on the current collector to improve the electrode density. It can be manufactured by doing.
  • an active material As the organic solvent, an active material, a binder, a conductive material, and an irreversible additive can be uniformly dispersed, and it is preferable to use one that evaporates easily.
  • N-methylpyrrolidone, acetonitrile, methanol, ethanol, tetrahydrofuran, water, and isopropyl alcohol may be exemplified, but are not limited thereto.
  • the negative electrode loading amount is significantly lower than that of the positive electrode loading amount during the initial assembly of the electrode, lithium ions are supplied from the positive electrode when charging the battery to be plated on the negative active material layer. Accordingly, the lithium metal layer is formed on the negative active material layer. Can be produced to obtain a high-capacity negative electrode.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions, and any one commonly used in a lithium battery may be used. That is, those having low resistance to ion migration of the electrolyte and excellent in impregnating the electrolyte may be used.
  • any one commonly used in a lithium battery may be used.
  • those having low resistance to ion migration of the electrolyte and excellent in impregnating the electrolyte may be used.
  • glass fiber polyester, Teflon, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), or a combination thereof, it may be in the form of a non-woven fabric or a woven fabric.
  • a polyolefin-based polymer separator such as polyethylene, polypropylene, etc., or a separator including a coating layer containing a ceramic component or a polymer material to secure heat resistance or mechanical strength, may be used, and such a separator may be used in a single layer or a multilayer structure.
  • a separator prepared by coating a ceramic coating material containing ceramic particles and an ionic binder polymer on both surfaces of a polyolefin-based polymer substrate may be used as the separator.
  • an electrolyte solution including a lithium salt and a non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, and the like, which are usually used in a lithium secondary battery, may be used.
  • the electrolyte solution contains a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or aprotic solvent may be used.
  • the carbonate-based solvent dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methyl ethyl carbonate (MEC), ethylene carbonate ( EC), propylene carbonate (PC), butylene carbonate (BC), and the like may be used, and as the ester solvent, methyl acetate, ethyl acetate, n-propyl acetate, 1,1-dimethylethyl acetate, methylpropionate , Ethyl propionate, ⁇ -butyrolactone, decanolide, valerolactone, mevalonolactone, caprolactone, and the like may be used.
  • Dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, etc. may be used as the ether solvent, and cyclohexanone may be used as the ketone solvent.
  • ether solvent e.g., tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, etc.
  • cyclohexanone may be used as the ketone solvent.
  • R-CN R is a C2 to C20 linear, branched or cyclic hydrocarbon group, wherein A bonded aromatic ring or an ether bond
  • nitriles such as nitriles, amides such as dimethylformamide, dioxolanes such as 1,3-dioxolane, sulfolanes, and the like
  • amides such as dimethylformamide
  • dioxolanes such as 1,3-dioxolane, sulfolanes, and the like
  • the non-aqueous organic solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using one or more mixtures may be appropriately adjusted according to the desired battery performance, which is widely understood by those in the field. Can be.
  • the electrolyte may exhibit excellent performance.
  • the non-aqueous organic solvent may further include the aromatic hydrocarbon-based organic solvent in the carbonate-based solvent.
  • the carbonate-based solvent and the aromatic hydrocarbon-based organic solvent may be mixed in a volume ratio of about 1:1 to about 30:1.
  • the non-aqueous electrolyte may further include vinylene carbonate or an ethylene carbonate-based compound to improve battery life.
  • ethylene carbonate-based compound examples include difluoro ethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate, fluoroethylene carbonate, vinylene. Ethylene carbonate, etc. are mentioned.
  • the lifespan may be improved by appropriately adjusting the amount of the vinylene carbonate-based compound.
  • the lithium salt is dissolved in the non-aqueous organic solvent, acts as a source of lithium ions in the battery, enables the operation of a basic lithium secondary battery, and promotes the movement of lithium ions between the positive electrode and the negative electrode.
  • Representative examples of the lithium salt include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN(C x F 2x+1 SO 2 )(C y F 2y +1 SO 2 ) (where x and y are natural numbers), LiCl, LiI, LiB(C 2 O 4 ) 2 (lithium bis(oxalato) borate; LiBOB) or a combination thereof
  • the lithium salt is preferably used in the range of 0.1 to 2.0 M. If the concentration of the lithium salt falls within the above range, the electrolyte has an appropriate conductivity and viscosity. It can exhibit excellent electro
  • an electrolyte containing a large amount of FEC Fluoroehtylene carbonate
  • an electrolyte suitable for lithium metal batteries high concentrated electrolyte
  • TTE 1,1,2,2-tetrafluoroethyl-2,2,3,3 -tetrafluoropropyl ether
  • OTE 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether
  • organic solid electrolyte for example, polyethylene derivative, polyethylene oxide derivative, polypropylene oxide derivative, phosphate ester polymer, poly agitation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride , A polymer containing a secondary dissociation group, and the like may be used.
  • Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, and sulfates of Li such as Li 4 SiO 4 -LiI-LiOH and Li 3 PO 4 -Li 2 S-SiS 2 may be used.
  • a method of manufacturing a lithium secondary battery is not particularly limited, and as an example, an electrode assembly is manufactured by sequentially stacking the positive electrode, a separator, and a negative electrode, placing it in a battery case, and injecting an electrolyte solution into the upper part of the case, It can be manufactured by sealing with a plate and a gasket.
  • a solid electrolyte may be positioned between the positive electrode and the negative electrode in place of the separator.
  • FIG. 1 is a schematic diagram briefly explaining a process of changing a negative electrode in a method of manufacturing a lithium secondary battery of the present invention.
  • the negative electrode When initially assembled, the negative electrode includes a negative electrode current collector 10 and a negative electrode active material layer 21. Subsequently, when the assembled battery is overcharged, lithium desorbed from the positive electrode active material layer is first intercalated with the active material included in the negative electrode active material layer, and after all intercalation is completed, the voids and surfaces in the negative electrode active material layer are plated. Since the negative active material layer has a very large specific surface area and thus has a low current density and a low overvoltage for a lithium plating reaction, the lithium metal does not grow into a dendrite during the lithium metal plating process, and uniform plating may occur. As a result, the plated lithium metal can serve as a second negative electrode active material.
  • the negative electrode 100 of the lithium secondary battery finally manufactured after the overcharging step is completed includes a current collector 10, an intercalated negative electrode active material layer 22 and a lithium metal layer 23, and the negative active material Both the negative electrode active material and the lithium metal included in the layer 22 and the lithium metal layer 23 may be used as an active material of the negative electrode.
  • the overcharging step may be performed by one charging, or may be performed by two or more consecutive charging.
  • the charging method can use various charging methods such as constant current-constant voltage mode (CC-CV mode), constant current mode (CC mode), constant voltage mode (CV mode), and constant power mode (CP mode) charging, and is not particularly limited.
  • CC-CV mode constant current-constant voltage mode
  • CC mode constant current mode
  • CV mode constant voltage mode
  • CP mode constant power mode
  • the overcharging step When the overcharging step is performed in a single charge, charging of the negative active material (lithium intercalation) and plating of lithium metal occur continuously.
  • the filling method an appropriate method may be selected from among various filling methods as described above. However, when the positive electrode capacity designed to be higher than the negative electrode is charged, overcharge proceeds to the negative electrode, so that a lithium plating layer may be generated after charging the negative active material.
  • the active material included in the negative active material layer is first charged to the extent that the first charging occurs, and then the secondary charging may be performed so that the lithium metal can be continuously plated. .
  • the conditions for charging once and charging twice may be set differently in consideration of the characteristics of each step.
  • the first charging is performed as much as the initial loading amount of the negative active material layer, and in the case of the second charging, the remaining positive electrode loading amount is charged, so that two consecutive charging may be performed.
  • the side reaction of the electrolyte may become severe and the internal resistance may increase. Therefore, it is preferable to lower the current during the secondary charging than during the primary charging.
  • the thickness of the lithium metal layer generated after the overcharging step may be in the range of 1 to 5000%, or 1 to 200% of the thickness of the negative active material layer. By satisfying this range, high capacity and long life can be realized.
  • LiNi 0.6 Co 0.2 Mn 0.2 O 2 was used as a positive electrode active material, and a conductive material (carbon black) and a binder (PVdF) were mixed in NMP (N-methyl-2-pyrrolidone) at a weight ratio of 94:3:3, respectively.
  • NMP N-methyl-2-pyrrolidone
  • the prepared positive electrode mixture was coated on an aluminum foil having a thickness of 20 ⁇ m at a loading amount of 4.5 mAh/cm 2 , and then rolled and dried to prepare a positive electrode.
  • Artificial graphite was used as the negative electrode, and a conductive material (carbon black) and a binder (PVdF) were mixed in NMP (N-methyl-2-pyrrolidone) at a weight ratio of 95:3:2 to prepare a negative electrode mixture.
  • NMP N-methyl-2-pyrrolidone
  • the prepared negative electrode mixture was coated on a 20 ⁇ m-thick copper foil at 3.0 mAh/cm 2 , then rolled and dried to prepare a negative electrode.
  • a separator (DB307B, BA1 SRS composition, thickness: 15 ⁇ m, fabric 7 ⁇ m, 4 ⁇ m thick coating per side of SRS, total 8 ⁇ m) was interposed between the cathode and the anode, and laminated at a pressure of 1 kgf/mm line pressure to form an electrode assembly.
  • the electrode assembly was accommodated in a pouch-type battery case, propylene carbonate and dimethyl carbonate were mixed at a volume ratio of 2:8, and a non-aqueous electrolyte containing 3.8 M LiFSI as a lithium salt was added.
  • a pouch-type lithium secondary battery was prepared.
  • the lithium secondary battery prepared above was charged at 0.2C by 4.5mAh/cm 2, which is the amount of positive electrode loading.
  • the filling 2 is manufactured as a lithium secondary battery negative electrode loading amounts to 3mAh 0.2C / cm, and except that the back rest by charging 1.5mAh / cm 2 to 0.1C Example 1 In the same manner as, a lithium secondary battery was manufactured.
  • LiNi 0.6 Co 0.2 Mn 0.2 O 2 was used as a positive electrode active material, and an irreversible additive (Li 2 NiO 2 ), a conductive material (carbon black), and a binder (PVdF) were each 88: 2:
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that a positive electrode mixture was prepared by mixing in NMP (N-methyl-2-pyrrolidone) at a weight ratio of 5:4.
  • Example 1 In the charging process of Example 1, a lithium secondary battery was manufactured in the same manner as in Example 1, except that the prepared lithium secondary battery was charged at 0.2 C by 3 mAh/cm 2 equal to the negative electrode loading amount.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that a lithium metal negative electrode of 60 ⁇ m was applied as the negative electrode active material in Example 1 above.
  • the anode was coin-punched with 1.6 cm 2 , and the coin half cell was evaluated using a Li metal electrode as the counter electrode to measure the expression capacity. By dividing the anode area from the measured expression capacity, the anode loading amount can be calculated. Then, coin-puncture the cathode with 1.6 cm 2 and measure the expression capacity by conducting coin half cell evaluation using a Li metal electrode as the counter electrode. By dividing the area of the negative electrode from the measured expression capacity, the negative electrode loading amount can be calculated. It is shown in Table 1 below by dividing the positive electrode loading amount to the thus calculated negative electrode loading amount.
  • the initial charge/discharge capacity is expressed high by charging so that intercalation of the negative electrode active material and plating of lithium metal occur continuously. It was confirmed that it could be manufactured.
  • the charging was performed only as much as the loading amount of the negative electrode and the same lifespan characteristics as Comparative Example 1 in which only intercalation was performed on the negative electrode active material was displayed. Only lithium metal was used as the negative electrode active material. Thus, it was confirmed that the lifespan characteristics were superior to those of Comparative Example 2, in which charging was performed only by lithium plating.
  • Comparative Example 1 in which charging was performed by the amount of negative electrode loading, had good life characteristics, but the basic capacity was the invention according to the present invention. Compared with, it can be seen that it is significantly smaller.
  • Example 2 which is charged twice, exhibits more excellent life characteristics than Example 1, which is charged once.
  • Example 4 in which the secondary charging was performed at a high current in the second charge, is similar to Example 1, the second charging while performing the secondary charging at a low current is the best in terms of life characteristics. I can confirm.
  • the present invention it is possible to produce a lithium secondary battery having improved capacity and energy density and excellent safety and lifespan characteristics compared to the existing lithium ion battery and lithium metal secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 기존의 리튬 이온 전지 및 리튬 금속 이차전지에 비하여 개선된 용량 및 에너지 밀도를 나타낼 수 있고, 안전성과 수명 특성이 우수한 리튬 이차전지를 제조하는 방법에 관한 것이다.

Description

리튬 이차전지의 제조방법
관련 출원(들)과의 상호 인용
본 출원은 2019년 11월 07일자 한국 특허 출원 제10-2019-0141790호 및 2020년 10월 08일자 한국 특허 출원 제10-2020-0129950호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 리튬 이차전지의 제조방법에 관한 것이다.
1990년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 Ni-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 높아 각광을 받고 있다. 특히, 최근 전기 자동차(EV) 등의 수요가 증가함에 따라 높은 에너지 밀도를 갖는 리튬 이차전지의 필요성이 확대되고 있다.
음극 활물질로 리튬 금속을 사용하는 리튬 금속 이차전지는 종래의 탄소계, 실리콘계 활물질을 사용하는 리튬 이온 전지와 비교하여 에너지 밀도를 크게 향상시킬 수 있어 지속적 연구가 이루어지고 있다.
그러나 리튬 금속은 반응성이 높아 공기 중의 수분 및 산소와 쉽게 반응하므로 조립 공정이 까다롭고, 작동 중 리튬 금속의 용해 및 석출 반응이 일어나면서 리튬 금속이 수지상으로 성장하여 전지 단락을 일으키는 문제가 있다.
이에, 기존의 리튬 이온 전지와 비교하여 고용량을 가지면서도, 안전성 및 수명 특성이 향상된 리튬 이차전지를 개발하고자 하는 노력이 계속되고 있다.
본 발명은 기존의 리튬 이온 전지 및 리튬 금속 이차전지와 비교하여 보다 높은 에너지 밀도를 달성할 수 있고, 안전성 및 수명 특성이 더욱 우수한 리튬 이차전지를 제공하는 것을 목적으로 한다.
본 발명의 일 구현예에 따르면, 음극 집전체 상에 음극 활물질층이 코팅된 음극; 양극 집전체 상에 양극 활물질층이 코팅된 양극; 분리막; 및 전해질을 포함하는 전지를 조립하는 단계, 및
상기 전지를 충전하는 단계를 포함하는 리튬 이차전지의 제조방법으로서,
상기 전지 조립 단계에서, 양극 로딩량에 대한 음극 로딩량 비(N/P ratio)는 0.01 내지 0.99이고,
상기 전지 충전 단계에서 충전은 양극 로딩량만큼 이루어지는 것인,
리튬 이차전지의 제조방법이 제공된다.
도 1은 본 발명의 리튬 이차전지의 제조방법에서 음극의 변화를 설명한 모식도이다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명은 기존의 리튬 이온 전지 및 리튬 금속 이차전지에 비해 고에너지 밀도를 나타내며 안전성 및 수명특성이 우수한 리튬 이차전지의 제조방법에 관한 것이다.
이에 본 발명의 일 구현예에 따르면,
음극 집전체 상에 음극 활물질층이 코팅된 음극; 양극 집전체 상에 양극 활물질층이 코팅된 양극; 분리막; 및 전해질을 포함하는 전지를 조립하는 단계, 및
상기 전지를 충전하는 단계를 포함하는 리튬 이차전지의 제조방법으로서,
상기 전지 조립 단계에서, 양극 로딩량에 대한 음극 로딩량 비(N/P ratio)는 0.01 내지 0.99이고,
상기 전지 충전 단계에서 충전은 양극 로딩량만큼 이루어지는 것인,
리튬 이차전지의 제조방법이 제공된다.
기존의 리튬 이온 전지는 음극 활물질로서 리튬의 삽입/탈리가 가능한 인조흑연, 천연흑연, 하드카본 등의 탄소계 재료가 널리 적용되어 왔다. 특히 흑연은 구조적 안정성, 낮은 전자 화학 반응성, 우수한 리튬 이온 저장능력으로 인하여 상용 전지에 주로 활용되고 있으나, 이론 용량이 약 372 mAh/g으로, 고용량 전지에 적용하는 데는 한계가 있다.
이에, 고용량 음극 소재로서 리튬과 반응하여 합금을 형성할 수 있는 실리콘, 주석 등이 대체재로 연구되고 있으나, 이들은 리튬 이온이 삽입/탈리될 때 상당한 부피변화를 수반하는 문제가 있다.
한편, 이론적으로 가장 고용량을 달성할 수 있는 리튬 금속의 경우, 수분 및 산소와 반응성이 높고 무른 성질 때문에 취급이 어려워, 리튬 금속 전극 제조 시 공정성이 떨어지는 문제가 있다. 또, 집전체 및 리튬 금속의 박막으로 이루어지는 리튬 금속 전극은 전지 구동 시 리튬 도금(plating) 및 용출(dissolution) 과정에서 전극 표면의 전자 밀도 불균일화로 인하여 리튬 금속이 수지상으로 석출되는 현상이 일어날 수 있다. 이 경우, 수지상으로 석출된 리튬 금속(리튬 덴드라이트)은 활물질로 이용될 수 없고, 수지상 리튬이 계속해서 성장할 경우 전지 단락을 일으키는 문제가 있다.
이에, 본 발명에서는 리튬 금속을 제외한, 통상의 음극 활물질을 포함하는 음극을 사용하여 전지를 조립하되, 양극 로딩량에 대한 음극 로딩량의 비, 즉, N/P ratio를 통상의 전지보다 낮게 설정하여 조립한 다음, 이를 음극 로딩량에 비해 높은 양극 로딩량만큼 충전함으로써 음극 활물질의 인터칼레이션(intercalation) 및 리튬 금속의 도금(plating)이 연속적으로 발생하도록 하여 리튬 이차전지를 제조한다. 이렇게 제조된 리튬 이차전지는 전지 조립 시 기 포함되어 있던 음극 활물질 및 충전으로 인해 도금된 리튬 금속이 모두 음극의 활물질로 활용되므로 기존의 리튬 이온 전지 및 리튬 금속 이차전지와 비교하여 고용량을 가지면서도, 현저히 향상된 안전성 및 수명 특성을 나타낸다.
즉, 본 발명의 제조방법에 따르면, 최종 제조되는 리튬 이차전지의 음극은 집전체 상에 코팅된 음극 활물질층 및 충전 과정에서 상기 음극 활물질층 상에 형성된 리튬 금속층을 포함하는 구조이나, 전지의 조립 단계에서는 리튬 금속을 별도로 취급하지 않으므로 수분 및 산소의 차단이 불필요하여 조립 공정이 간편하다. 또, 리튬 금속이 도금될 때, 도금 표면인 음극 활물질층의 비표면적이 매우 넓기 때문에, 리튬 금속 박막과 비교하여 전류밀도 및 과전압이 현저히 낮다. 따라서, 리튬 금속이 수지상으로 성장하지 않고 음극 활물질층 표면에 균일하게 도금될 수 있으며, 이에 따라 도금된 리튬 금속이 활물질로 사용될 수 있다.
이하, 본 발명을 상세히 설명한다.
본 발명의 제조방법에서는 먼저, 음극 집전체 상에 탄소계 음극 활물질을 포함하는 음극 활물질층이 코팅된 음극; 양극 집전체 상에 양극 활물질층이 코팅된 양극; 분리막; 및 전해질을 포함하는 전지를 조립한다. 이때 양극 로딩량에 대한 음극 로딩량 비(N/P ratio)는 0.01 내지 0.99 범위를 만족하도록 한다.
상기 양극 및 음극 집전체로는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않는다.
예를 들어, 양극 집전체로는 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
또, 음극 집전체로는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
상기 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다. 상기 집전체의 두께는 3 내지 500 ㎛의 범위일 수 있으나, 이에 제한되지 않는다.
상기 음극 활물질층은 음극 활물질, 바인더, 및 선택적으로 도전재를 포함한다.
상기 음극 활물질로는, 탄소계 활물질, 리튬 금속의 합금, 및/또는 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질이 사용될 수 있다. 단, 리튬 금속은 제외된다.
탄소계 활물질로는 결정질 탄소, 비정질 탄소, 또는 이들의 조합을 사용할 수 있다. 상기 결정질 탄소의 예로는 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 이러한 흑연은 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 형태일 수 있다. 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
리튬 금속의 합금으로는, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al), 게르마늄(Ge) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금을 들 수 있다.
리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질의 예로는, 실리콘계 활물질 및 주석계 활물질을 들 수 있다. 구체적으로, Si, SiO x(0 < x < 2), Si-C 복합체, Si-Q 합금(상기 Q는 알칼리 금속, 알칼리 토금속, 13족 내지 16족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, Si은 아님), Sn, SnO 2, Sn-C 복합체, Sn-R(상기 R은 알칼리 금속, 알칼리 토금속, 13족 내지 16족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, Sn은 아님) 등을 들 수 있다. 상기 Q 및 R의 구체적인 원소로는, Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, Te, Po 또는 이들의 조합을 들 수 있다.
또, 상기 음극 활물질로 리튬 티타늄 산화물(LTO)를 사용할 수 있다. 리튬 티타늄 산화물은 Li aTi bO 4(0.5 ≤ a ≤ 3, 1 ≤ b ≤2.5)로 표시될 수 있으며, 구체적으로 Li 0.8Ti 2.2O 4, Li 2.67Ti 1.33O 4, LiTi 2O 4, Li 1.33Ti 1.67O 4, Li 1.14Ti 1.71O 4- 등일 수 있으나, 이에 제한되는 것은 아니다.
상술한 음극 활물질은 음극 활물질층(즉, 리튬 금속층이 형성되기 전, 전지 조립 단계의 음극 활물질층으로서, 이하 동일함) 총 중량의 70 내지 99.5 중량%, 또는 80 내지 99 중량%로 포함되는 것이 바람직하다. 만일 음극 활물질 함량이 70 중량% 미만이면 에너지밀도에 불리한 문제가 있을 수 있고, 99.5 중량%를 초과하면 바인더량이 부족해서 활물질이 벗겨지는 문제가 있을 수 있다. 단, 리튬 금속의 합금의 경우는 바인더 없이 포일(foil) 형태로 집전체 상에 전해 도금하여 사용될 수 있으므로, 100 중량%로 사용될 수 있다.
상기 바인더는 활물질 입자들을 서로 잘 부착시키고, 또한 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용 가능하다. 예를 들어, 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 양극 활물질층은 양극 활물질, 바인더, 및 선택적으로 도전재를 포함하며, 이때 바인더 및 도전재는 상술한 바인더 및 도전재가 사용될 수 있다.
상기 양극 활물질로는 리튬의 가역적인 삽입 및 탈리가 가능한 화합물로서 당 업계에 알려진 화합물이 제한 없이 사용될 수 있다. 구체적으로 상기 양극 활물질은 코발트, 망간, 니켈, 또는 알루미늄과 같은 1종 이상의 금속과, 리튬을 포함하는, 리튬 복합 금속 산화물일 수 있다.
상기 리튬 복합 금속 산화물로는 리튬-망간계 산화물(예를 들면, LiMnO 2, LiMn 2O 4 등), 리튬-코발트계 산화물(예를 들면, LiCoO 2 등), 리튬-니켈계 산화물(예를 들면, LiNiO 2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi 1-YMn YO 2(여기에서, 0<Y<1), LiMn 2-zNi zO 4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi 1-Y1Co Y1O 2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo 1-Y2Mn Y2O 2(여기에서, 0<Y2<1), LiMn 2-Z1Co Z1O 4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(Ni pCo qMn r1)O 2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Ni p1Co q1Mn r2)O 4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Ni p2Co q2Mn r3M S2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되는 1종 이상이고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자 분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다.
또, 전지 조립 후 충전 시 음극에 충분한 양의 리튬 이온을 공급할 수 있도록, Ni-rich 양극재 (NCM811, NCM911) 또는 Li-rich 양극재 (Over -Lithiated layered Oxide: xLi 2MnO 3·(1-x)LiMO 2, 여기서, 0<x<1)를 사용할 수 있으며, 구체적으로 Li[Li 0.2Mn 0.54Ni 0.13Co 0.13]O 2를 사용하는 것이 바람직하다.
또, 상기 양극 활물질층의 단위 면적당 로딩량은 4 내지 15 mAh/cm 2, 5 내지 10 mAh/cm 2, 또는 5 내지 8 mAh/cm 2 인 것이 바람직하다. 상술한 로딩량 범위를 만족할 때, 전지의 충전 단계에서 양극 활물질로부터 충분한 양의 리튬 이온이 음극에 공급될 수 있다.
한편, 본 발명의 양극 활물질층은 음극에 충분한 양의 리튬 이온을 공급하기 위하여 비가역 첨가제를 더 포함할 수 있다. 상기 비가역 첨가제는 전지의 최초 충전 시 리튬 이온이 탈리된 다음, 비가역 상, 즉, 다시 탈리된 리튬 이온을 흡장하지 않는 물질을 의미한다.
이때, 비가역 상으로 전환된 비가역 첨가제에 리튬 이온이 남아 있을 수 있는데, 이와 같이 남아 있는 리튬 이온은 흡장 및 방출이 가역적으로 일어나지만, 최초 충전 시 방출된 리튬 이온은 이후 방전 시 다시 비가역 보상 첨가제로 흡장되지 않으며, 음극에 도금된다.
상기 비가역 첨가제는 상술한 효과를 갖는 화합물이면 특별히 제한되는 것은 아니나, 구체적으로 Li 7/3Ti 5/3O 4, Li 2.3Mo 6S 7.7, Li 2NiO 2, Li 2CuO 2, Li 6CoO 4, Li 5FeO 4, Li 6MnO 4, Li 2MoO 3, Li 3N, Li 2O, LiOH 및 Li 2CO 3로 이루어지는 군에서 선택되는 1종 이상일 수 있다. 이 중, 안정적인 수명 성능 및 에너지 밀도 측면에서 바람직하기로 Li 2NiO 2, Li 6CoO 4, 및 Li 3N으로 이루어지는 군에서 선택되는 1종 이상이 사용될 수 있다.
상기 비가역 첨가제는 양극 활물질층 총 중량의 10 중량% 이하로 포함되는 것이 바람직하다. 비가역 첨가제가 양극 활물질층 총 중량의 10 중량%를 초과하면 양극 슬러리 제조 시 겔화(gelation)되는 문제가 발생할 수 있다. 비가역 첨가제는 음극에 보다 많은 양의 리튬 이온을 공급하기 위하여 선택적으로 사용되는 물질인 바, 하한값에는 제한이 없다.
상기 음극 및 양극을 제조하는 방법은 특별히 제한되지 않는다. 예를 들어, 활물질, 바인더, 선택적으로, 도전재 및/또는 비가역 첨가제를 유기 용매 상에서 혼합하여 제조한 활물질 슬러리를 집전체 위에 도포 및 건조하고, 선택적으로 전극 밀도의 향상을 위하여 집전체에 압축 성형하여 제조할 수 있다.
상기 유기 용매로는 활물질, 바인더, 도전재, 비가역 첨가제를 균일하게 분산시킬 수 있으며, 쉽게 증발되는 것을 사용하는 것이 바람직하다. 구체적으로는 N-메틸피롤리돈, 아세토니트릴, 메탄올, 에탄올, 테트라하이드로퓨란, 물, 이소프로필알코올 등을 들 수 있으나 이에 제한되는 것은 아니다.
한편, 상기 음극 및 양극의 로딩량은, N/P ratio(=음극 로딩량/양극 로딩량) 가 0.01 내지 0.99 범위이다. 이와 같이 최초 전극 조립 시 음극 로딩량을 양극 로딩량에 비해 현저히 낮게 할 경우, 전지 충전 시 양극으로부터 리튬 이온이 공급되어 음극 활물질층 상에 도금될 수 있으며, 이에 따라 음극 활물질층 상에 리튬 금속층이 생성되어 고용량 음극을 얻을 수 있다.
상기 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로 리튬 전지에서 통상적으로 사용되는 것이라면 모두 사용 가능하다.  즉, 전해질의 이온 이동에 대하여 저저항이면서 전해액 함침 능력이 우수한 것이 사용될 수 있다.  예를 들어, 유리 섬유, 폴리에스테르, 테프론, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌(PTFE) 또는 이들의 조합물 중에서 선택된 것으로서, 부직포 또는 직포 형태이어도 무방하다. 
예를 들어, 폴리에틸렌, 폴리프로필렌 등과 같은 폴리올레핀계 고분자 분리막이나, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅층을 포함하는 분리막이 사용될 수도 있으며, 이러한 분리막은 단층 또는 다층 구조로 사용될 수 있다. 일 실시예에서, 상기 분리막으로는 폴리올레핀계 고분자 기재의 양면에 세라믹 입자와 이온성 바인더 고분자를 함유하는 세라믹 코팅재를 코팅하여 제조한 분리막이 사용될 수 있다.
상기 전해질은 통상 리튬 이차전지에 사용되는, 리튬염 및 비수계 유기용매를 포함하는 전해액, 유기 고체 전해질, 무기 고체 전해질 등이 사용 가능하다.
상기 전해액은 비수성 유기 용매와 리튬염을 포함한다.
상기 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.
상기 비수성 유기용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계 또는 비양성자성 용매를 사용할 수 있다. 상기 카보네이트계 용매로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 사용될 수 있으며, 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 1,1-디메틸에틸 아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, γ-부티로락톤, 데카놀라이드(decanolide), 발레로락톤, 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등이 사용될 수 있다. 상기 에테르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있으며, 상기 케톤계 용매로는 시클로헥사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류, 설포란(sulfolane)류 등이 사용될 수 있다.
상기 비수성 유기 용매는 단독으로 또는 하나 이상 혼합하여 사용할 수 있으며, 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.
또한, 상기 카보네이트계 용매의 경우 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트를 혼합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 비수성 유기용매는 상기 카보네이트계 용매에 상기 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이트계 용매와 상기 방향족 탄화수소계 유기용매는 약 1:1 내지 약 30:1의 부피비로 혼합될 수 있다.
상기 비수성 전해질은 전지 수명을 향상시키기 위하여 비닐렌 카보네이트 또는 에틸렌 카보네이트계 화합물을 더욱 포함할 수도 있다.
상기 에틸렌 카보네이트계 화합물의 대표적인 예로는 디플루오로 에틸렌카보네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에틸렌 카보네이트, 플루오로에틸렌 카보네이트, 비닐렌 에틸렌 카보네이트 등을 들 수 있다. 상기 비닐렌 카보네이트 또는 상기 에틸렌 카보네이트계 화합물을 더욱 사용하는 경우 그 사용량을 적절하게 조절하여 수명을 향상시킬 수 있다.
상기 리튬염은 상기 비수성 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 상기 리튬염의 대표적인 예로는 LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiC 4F 9SO 3, LiClO 4, LiAlO 2, LiAlCl 4, LiN(C xF 2x+1SO 2)(C yF 2y+1SO 2)(여기서, x 및 y는 자연수임), LiCl, LiI, LiB(C 2O 4) 2(리튬 비스옥살레이토 보레이트(lithium bis(oxalato) borate; LiBOB) 또는 이들의 조합을 들 수 있으며, 이들을 지지(supporting) 전해염으로 포함한다. 상기 리튬염의 농도는 0.1 내지 2.0 M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질 중에서도 리튬금속전지에 적합한 전해질로 알려져 있는 FEC(Fluoroehtylene carbonate)를 다량 함유하는 전해질, 고농도 전해질(High concentrated electrolyte), TTE(1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether), OTE(1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether)와 같은 불화에테르 희석용매가 함유되어 있는 전해질의 경우, 리튬 도금층과의 전해액 부반응 억제가 극대화 되어 본 실험에 가장 바람직한 예가 될 수 있다. 즉, 전해액 부반응을 억제하기 위한 전해질이 본 발명에 바람직하게 사용될 수 있다.
또한 상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐알코올, 폴리 불화 비닐리덴, 이차성 해리기를 포함하는 중합체 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li 3N, LiI, Li 5NI 2, Li 3N-LiI-LiOH, LiSiO 4, LiSiO 4-LiI-LiOH, Li 2SiS 3, Li 4SiO 4, Li 4SiO 4-LiI-LiOH, Li 3PO 4-Li 2S-SiS 2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
리튬 이차전지를 제조하는 방법은 특별히 제한되지 않으며, 일례로 상기 양극, 분리막, 및 음극을 순차로 적층시켜 전극 조립체를 제조하고, 이를 전지 케이스에 넣은 다음, 케이스의 상부에 전해액을 주입하고, 캡 플레이트 및 가스켓으로 밀봉하여 제조될 수 있다. 전해질로 고체 전해질을 포함하는 경우, 상기 양극 및 음극 사이에는 분리막을 대신하여 고체 전해질이 위치할 수 있다.
다음으로, 상기와 같이 조립된 전지에 대해, 음극 로딩보다 높게 설계된 양극 로딩만큼 과충전을 진행하여, 최종 리튬 이차전지를 제조한다.
도 1은 본 발명의 리튬 이차전지의 제조방법에서 음극의 변화 과정을 간략히 설명한 모식도이다.
최초 전지 조립 시 음극은 음극 집전체(10) 및 음극 활물질층(21)을 포함한다. 이후 조립된 전지를 과충전하면, 양극 활물질층에서 탈리된 리튬은 먼저 음극 활물질층에 포함된 활물질에 인터칼레이션 되며, 인터칼레이션이 모두 완료된 후에는 음극 활물질층 내의 공극 및 표면에 도금된다. 상기 음극 활물질층은 비표면적이 매우 넓어 전류밀도가 낮고, 리튬 도금 반응에 대한 과전압이 낮으므로, 리튬 금속의 도금 과정에서 리튬 금속이 수지상으로 성장하지 않고, 균일한 도금이 일어날 수 있다. 결과적으로, 도금된 리튬 금속은 제 2 음극 활물질로서 역할 할 수 있게 된다.
상기 과충전 단계가 완료되어 최종적으로 제조된 리튬 이차전지의 음극(100)은 집전체(10), 리튬이 인터칼레이션 된 음극 활물질층(22) 및 리튬 금속층(23)을 포함하며, 상기 음극 활물질층(22) 및 리튬 금속층(23)에 포함된 음극 활물질과 리튬 금속이 모두 음극의 활물질로 활용될 수 있다.
상기 과충전 단계는 1회의 충전으로 수행될 수 있고, 또는 2회 이상의 연속하는 충전에 의하여 수행될 수 있다. 충전법은 정전류-정전압 모드(CC-CV mode), 정전류 모드(CC mode), 정전압 모드(CV mode), 정전력 모드(CP mode) 충전 등 다양한 충전법을 사용할 수 있으며, 특별히 제한되지 않는다.
상기 과충전 단계를 1회의 충전으로 수행할 경우, 상기 음극 활물질의 충전(리튬 인터칼레이션) 및 리튬 금속의 도금은 연속적으로 일어난다. 충전법은 상술한 바와 같은 다양한 충전법 중 적절한 방법을 택할 수 있다. 단, 음극보다 높게 설계된 양극 용량만큼 충전하여야, 음극에 과충전이 진행되어 음극 활물질 충전 후 리튬 도금층이 생성될 수 있다.
상기 과충전 단계를 2회의 연속 충전으로 수행할 경우, 음극 활물질층에 포함된 활물질의 1차 충전이 일어날 정도로 1차 충전한 후, 연속하여 리튬 금속이 도금될 수 있도록 2차 충전을 수행할 수 있다. 이때 1회 충전 및 2회 충전의 조건은 각 단계의 특성을 고려하여 서로 다르게 설정할 수 있다.
구체적으로, 음극 활물질층의 최초 로딩량만큼 1차 충전을 진행하고, 2차 충전 시에는 남은 양극 로딩량만큼 충전하는 방식으로 2회의 연속 충전을 수행할 수 있다. 이때, 리튬 금속이 도금되는 단계에서 고율(high rate) 충전을 수행하면 전해질 부반응이 심해져 내부 저항이 커질 수 있으므로, 1차 충전시보다 2차 충전시의 전류를 낮게 하는 것이 바람직하다.
상기 과충전 단계 이후 생성된 리튬 금속층의 두께는 음극 활물질층 두께의 1 내지 5000 % 범위, 또는 1 내지 200 % 범위일 수 있다. 이와 같은 범위를 만족함에 따라 고용량 및 장수명 구현이 가능하다.
이하, 본 발명의 바람직한 실시예, 이에 대비되는 비교예, 이들을 평가하는 실험예를 기재한다. 그러나, 상기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
<실시예 1>
양극의 제조
양극 활물질로서 LiNi 0.6Co 0.2Mn 0.2O 2을 사용하고, 도전재(carbon black), 바인더(PVdF)를 각각 94:3:3 의 중량비로 NMP(N-methyl-2-pyrrolidone)에 넣고 믹싱하여 양극 합제를 제조하였다.
제조된 양극 합제를 20 ㎛ 두께의 알루미늄 호일에 4.5mAh/cm 2의 로딩량으로 코팅한 후 압연 및 건조하여 양극을 제조하였다.
음극의 제조
음극으로는 인조 흑연을 사용하고, 도전재(carbon black), 바인더(PVdF)를 95 : 3 : 2의 중량비로 NMP(N-methyl-2-pyrrolidone)에 넣고 믹싱하여 음극 합제를 제조하였다.
제조된 음극 합제를 20 ㎛ 두께의 구리 호일에 3.0mAh/cm 2으로 코팅한 후 압연 및 건조하여 음극을 제조하였다.
이차전지의 제조
상기 음극과 양극 사이에 분리막(DB307B, BA1 SRS 조성, 두께: 15 ㎛, 원단 7㎛, SRS 한 면당 4㎛ 두께로 도포 총 8㎛) 을 개재하고 1kgf/mm 선압의 압력으로 라미네이션하여 전극조립체를 제조한 후, 상기 전극조립체를 파우치형 전지케이스에 수납하고, 프로필렌 카보네이트와 디메틸 카보네이트가 부피비를 기준으로 2:8로 혼합되어 있고, 리튬염으로 3.8 M의 LiFSI를 포함하고 있는 비수 전해액을 첨가하여 파우치형 리튬 이차전지를 제조하였다.
충전 과정
상기에서 제조된 리튬 이차전지를 0.2C로 양극 로딩량 만큼인 4.5mAh/cm 2만큼 충전하였다.
<실시예 2 >
상기 실시예 1의 충전 과정에서, 제조된 리튬 이차전지를 0.2C로 음극 로딩량 만큼인 3mAh/cm 2 충전하고, 다시 0.1C로 나머지 1.5mAh/cm 2만큼 충전하는 것을 제외하고는 실시예 1과 동일하게 리튬 이차전지를 제조하였다.
<실시예 3>
상기 실시예 1의 양극 제조시, 양극 활물질로서 LiNi 0.6Co 0.2Mn 0.2O 2을 사용하고, 비가역 첨가제(Li 2NiO 2), 도전재(carbon black), 바인더(PVdF)를 각각 88: 2: 5: 4의 중량비로 NMP(N-methyl-2-pyrrolidone)에 넣고 믹싱하여 양극 합제를 제조한 것을 제외하고는 실시예 1과 동일하게 리튬 이차전지를 제조하였다.
<실시예 4>
상기 실시예 1의 충전 과정에서, 제조된 리튬 이차전지를 0.2C로 음극 로딩량 만큼인 3mAh/cm 2을 충전하고, 다시 0.3C로 1.5mAh/cm 2을 충전한 것을 제외하고는 실시예 1과 동일하게 리튬 이차전지를 제조하였다.
<비교예 1>
상기 실시예 1의 충전 과정에서, 제조된 리튬 이차전지를 0.2C로 음극 로딩량만큼인 3mAh/cm 2만큼 충전하는 것을 제외하고는 실시예 1과 동일하게 리튬 이차전지를 제조하였다.
<비교예 2>
상기 실시예 1에서 음극 활물질을 60㎛의 리튬 금속 음극을 적용한 것을 제외하고는 실시예1과 동일하게 리튬 이차전지를 제조하였다.
<실험예 1>
상기 실시예 1 내지 3, 비교예 1에서 양극과 음극의 로딩량을 하기와 같이 측정하였다.
양극 로딩량 측정은 양극을 1.6 cm 2로 코인 타발 하고 대극으로 Li금속전극을 사용해서 Coin half cell 평가를 진행하여서 발현용량을 측정한다. 측정된 발현용량에서 양극 면적을 나눠주면 양극 로딩량을 계산할 수 있다. 그 다음 음극을 1.6 cm 2로 코인 타발 하고 대극으로 Li 금속전극을 사용해서 Coin half cell 평가를 진행하여서 발현용량을 측정한다. 측정된 발현용량에서 음극의 면적을 나눠주면 음극 로딩량을 계산할수 있다. 이렇게 계산된 음극 로딩량에 양극 로딩량을 나누어주어서 하기 표1에 나타내었다.
로딩량 비
실시예 1 0.67
실시예 2 0.67
실시예 3 0.60
실시예 4 0.67
비교예 1 0.67
<실험예 2>
상기 실시예 1 내지 4, 비교예 1 내지 2에서 충전을 완료한 리튬 이차전지를 0.5C로 완전 방전한 후 측정된 충전/방전 용량값을 표 2에 나타내었고 다시 동일 충방전 조건으로 상온에서 200th cycle까지 사이클 평가를 진행해서 용량유지율을 계산해 표 2에 나타내었다. (200 사이클 후의 방전용량/1 사이클 후의 방전용량)×100으로 계산된 값을 수명 유지율(%)로 나타냄)
초기 충전 용량(mAh) 초기 방전 용량(mAh) 용량 유지율@ 200th cycle
실시예 1 75 69 96%
실시예 2 76 70 99%
실시예 3 80 69 99%
실시예 4 75 70 95%
비교예 1 50 46 96%
비교예 2 75 69 75%
상기 표 2를 참조하면, 실시예 1 내지 4의 경우 음극 활물질의 인터칼레이션(intercalation) 및 리튬 금속의 도금(plating)이 연속적으로 발생하도록 충전을 진행함으로써 초기 충방전 용량이 높게 발현되어 고용량 전지를 제조할 수 있음을 확인할 수 있었다. 또한 200 th cycle에서의 용량유지율을 확인하면 음극의 로딩량만큼만 충전을 진행하여 음극 활물질에 인터칼레이션만 진행한 비교예1과 동일 유사한 수명특성을 나타내는 것을 확인할 수 있었고 리튬 금속만을 음극 활물질로 사용하여, 리튬 plating에 의해서만 충전이 진행된 비교예 2보다는 우수한 수명특성을 나타냄을 확인할 수 있었다.한편, 충전을 음극 로딩량만큼 진행한 비교예 1은 수명특성은 좋으나, 기본적인 용량이 본 발명에 따른 발명과 비교하여 현저히 작은 것을 확인할 수 있다.
더 나아가, 1회 충전을 진행한 실시예 1보다 2회 충전을 진행한 실시예 2가 더욱 우수한 수명특성을 발휘함을 확인할 수 있다. 다만, 2회 충전에서 2차 충전을 높은 전류에서 수행한 실시예 4는 실시예 1과 유사하므로, 2회 충전을 수행하면서, 2차 충전을 낮은 전류로 수행하는 것이 수명특성 측면에서 가장 우수한 것을 확인할 수 있다.
본 발명에 따르면 기존의 리튬 이온 전지 및 리튬 금속 이차전지에 비하여 개선된 용량 및 에너지 밀도를 나타낼 수 있고, 안전성과 수명 특성이 우수한 리튬 이차전지를 제조할 수 있다.

Claims (9)

  1. 음극 집전체 상에 음극 활물질층이 코팅된 음극; 양극 집전체 상에 양극 활물질층이 코팅된 양극; 분리막; 및 전해질을 포함하는 전지를 조립하는 단계, 및
    상기 전지를 충전하는 단계를 포함하는 리튬 이차전지의 제조방법으로서,
    상기 전지 조립 단계에서, 양극 로딩량에 대한 음극 로딩량 비(N/P ratio)는 0.01 내지 0.99이고,
    상기 전지 충전 단계에서 충전은 양극 로딩량만큼 이루어지는 것인,
    리튬 이차전지의 제조방법.
  2. 제1항에 있어서,
    상기 전지를 충전하는 단계에서, 음극 활물질층의 공극 및 표면에 리튬이 도금되어 음극 활물질층 상에 리튬 금속층이 형성되는 것인, 리튬 이차전지의 제조방법.
  3. 제2항에 있어서,
    상기 리튬 금속층의 두께는 음극 활물질층 두께의 1 내지 5000 %인 리튬 이차전지의 제조방법.
  4. 제1항에 있어서,
    상기 양극 활물질층의 단위 면적당 로딩량은 4 내지 15 mAh/cm 2인 리튬 이차전지의 제조방법.
  5. 제1항에 있어서,
    상기 양극 활물질층은 Li 7/3Ti 5/3O 4, Li 2.3Mo 6S 7.7, Li 2NiO 2, Li 2CuO 2, Li 6CoO 4, Li 5FeO 4, Li 6MnO 4, Li 2MoO 3, Li 3N, Li 2O, LiOH 및 Li 2CO 3로 이루어지는 군에서 선택되는 1종 이상의 비가역 첨가제를 더 포함하는 것인 리튬 이차전지의 제조방법.
  6. 제5항에 있어서,
    상기 비가역 첨가제는 양극 활물질층 총 중량의 10 중량% 이하로 포함되는 것인 리튬 이차전지의 제조방법.
  7. 제1항에 있어서,
    상기 음극 활물질은, 탄소계 활물질; 나트륨, 칼륨, 루비듐, 세슘, 프랑슘, 베릴륨, 마그네슘, 칼슘, 스트론튬, 바륨, 라듐, 알루미늄, 게르마늄 및 주석으로 이루어지는 군에서 선택되는 금속과 리튬의 합금; 실리콘계 활물질; 주석계 활물질; 및 리튬 티타늄 산화물로 이루어지는 군에서 선택되는 1종 이상인 리튬 이차전지의 제조방법.
  8. 제1항에 있어서,
    상기 전지 충전 단계는 2회 연속으로 수행되는 리튬 이차전지의 제조방법.
  9. 제8항에 있어서,
    상기 전지 충전 단계에서, 2회 충전시의 충전 전류는 1회 충전시의 충전 전류보다 낮은 리튬 이차전지의 제조방법.
PCT/KR2020/013959 2019-11-07 2020-10-14 리튬 이차전지의 제조방법 WO2021091108A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20885458.8A EP3982460A4 (en) 2019-11-07 2020-10-14 METHOD OF MAKING A LITHIUM SECONDARY BATTERY
US17/623,698 US20220278358A1 (en) 2019-11-07 2020-10-14 Manufacturing method of lithium secondary battery
CN202080047686.3A CN114080710A (zh) 2019-11-07 2020-10-14 锂二次电池的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190141790 2019-11-07
KR10-2019-0141790 2019-11-07
KR10-2020-0129950 2020-10-08
KR1020200129950A KR102631720B1 (ko) 2019-11-07 2020-10-08 리튬 이차전지의 제조방법

Publications (1)

Publication Number Publication Date
WO2021091108A1 true WO2021091108A1 (ko) 2021-05-14

Family

ID=75848203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013959 WO2021091108A1 (ko) 2019-11-07 2020-10-14 리튬 이차전지의 제조방법

Country Status (4)

Country Link
US (1) US20220278358A1 (ko)
EP (1) EP3982460A4 (ko)
CN (1) CN114080710A (ko)
WO (1) WO2021091108A1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237293A (ja) * 2000-07-06 2002-08-23 Japan Storage Battery Co Ltd 非水電解質二次電池およびその製造方法
US20060068291A1 (en) 2004-09-28 2006-03-30 Yamin Herzel Lithium cell and method of forming same
KR20150014878A (ko) * 2013-07-30 2015-02-09 주식회사 엘지화학 비가역 첨가제가 포함되어 있는 이차전지용 양극 합제
JP2015069809A (ja) * 2013-09-27 2015-04-13 独立行政法人産業技術総合研究所 リチウムイオン電池
EP2982460A1 (en) 2014-08-07 2016-02-10 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Apparatus and method of manufacturing metallic or inorganic strands having a thickness in the micron range by melt spinning
US20160172660A1 (en) 2014-12-12 2016-06-16 Pellion Technologies, Inc. Electrochemical cell and method of making the same
KR20180138546A (ko) * 2017-06-21 2018-12-31 주식회사 엘지화학 리튬 이차전지
KR20190100078A (ko) * 2018-02-20 2019-08-28 삼성전자주식회사 전고체 이차전지

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033619A1 (ja) * 2013-09-05 2015-03-12 石原産業株式会社 非水電解質二次電池及びその製造方法
KR101588252B1 (ko) * 2013-09-06 2016-01-25 주식회사 엘지화학 이차전지 셀
US11245133B2 (en) * 2016-06-08 2022-02-08 Ses Holdings Pte. Ltd. High energy density, high power density, high capacity, and room temperature capable rechargeable batteries
JP7078608B2 (ja) * 2016-08-12 2022-05-31 バイキング パワー システムズ プライベート リミテッド 高エネルギー充電式金属アノード電池用添加剤含有電解物
US20180226633A1 (en) * 2017-02-07 2018-08-09 Samsung Electronics Co., Ltd. Anode for all solid-state secondary battery, all solid-state secondary battery including the anode, and method of manufacturing the anode

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237293A (ja) * 2000-07-06 2002-08-23 Japan Storage Battery Co Ltd 非水電解質二次電池およびその製造方法
US20060068291A1 (en) 2004-09-28 2006-03-30 Yamin Herzel Lithium cell and method of forming same
KR20150014878A (ko) * 2013-07-30 2015-02-09 주식회사 엘지화학 비가역 첨가제가 포함되어 있는 이차전지용 양극 합제
JP2015069809A (ja) * 2013-09-27 2015-04-13 独立行政法人産業技術総合研究所 リチウムイオン電池
EP2982460A1 (en) 2014-08-07 2016-02-10 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Apparatus and method of manufacturing metallic or inorganic strands having a thickness in the micron range by melt spinning
US20160172660A1 (en) 2014-12-12 2016-06-16 Pellion Technologies, Inc. Electrochemical cell and method of making the same
KR20180138546A (ko) * 2017-06-21 2018-12-31 주식회사 엘지화학 리튬 이차전지
KR20190100078A (ko) * 2018-02-20 2019-08-28 삼성전자주식회사 전고체 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3982460A4

Also Published As

Publication number Publication date
EP3982460A1 (en) 2022-04-13
CN114080710A (zh) 2022-02-22
EP3982460A4 (en) 2022-08-10
US20220278358A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
CN110476279B (zh) 锂二次电池
KR101744088B1 (ko) 리튬 이차 전지
CN111052485B (zh) 用于锂二次电池的非水性电解液和包含其的锂二次电池
KR20190008100A (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
US20120288761A1 (en) Electrode additives coated with electro conductive material and lithium secondary comprising the same
WO2010093219A2 (ko) 에너지 밀도가 향상된 리튬이차전지
WO2011105833A2 (ko) 출력 향상을 위한 양극 활물질 및 이를 포함하는 리튬 이차전지
KR102631720B1 (ko) 리튬 이차전지의 제조방법
KR20190092284A (ko) 고온 저장 특성이 향상된 리튬 이차전지
KR20180065958A (ko) 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
WO2014185750A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
KR101805542B1 (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
WO2010035950A2 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR102018756B1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2015102140A1 (ko) 이차전지용 음극 및 이를 포함하는 리튬 이차전지
KR102272271B1 (ko) 리튬 이차 전지
WO2019013521A2 (ko) 리튬 이차 전지
WO2020204625A1 (ko) 리튬 이차전지용 전극
KR20190032126A (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020153690A1 (ko) 리튬 복합 음극 활물질, 이를 포함하는 음극 및 이들의 제조방법
US20220231281A1 (en) Method for Preparing Positive Electrode Active Material for Lithium Secondary Battery and Positive Electrode Active Material Prepared Thereby
KR20210026500A (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
KR20140092739A (ko) 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
US7858241B2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary batter using the same
KR20190054986A (ko) 이차전지용 양극 활물질의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885458

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020885458

Country of ref document: EP

Effective date: 20220105

NENP Non-entry into the national phase

Ref country code: DE