KR20190054986A - 이차전지용 양극 활물질의 제조방법 - Google Patents

이차전지용 양극 활물질의 제조방법 Download PDF

Info

Publication number
KR20190054986A
KR20190054986A KR1020180139154A KR20180139154A KR20190054986A KR 20190054986 A KR20190054986 A KR 20190054986A KR 1020180139154 A KR1020180139154 A KR 1020180139154A KR 20180139154 A KR20180139154 A KR 20180139154A KR 20190054986 A KR20190054986 A KR 20190054986A
Authority
KR
South Korea
Prior art keywords
active material
lithium
cathode active
positive electrode
material precursor
Prior art date
Application number
KR1020180139154A
Other languages
English (en)
Other versions
KR102270119B1 (ko
Inventor
박성빈
정왕모
이동훈
김지혜
김동휘
조형만
한정민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PCT/KR2018/013852 priority Critical patent/WO2019093869A2/ko
Priority to JP2020524757A priority patent/JP7098185B2/ja
Priority to US16/762,363 priority patent/US11508961B2/en
Publication of KR20190054986A publication Critical patent/KR20190054986A/ko
Application granted granted Critical
Publication of KR102270119B1 publication Critical patent/KR102270119B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 양극 활물질 전구체를 마련하는 단계; 및 상기 양극 활물질 전구체 및 리튬 소스를 혼합하고 소성하여, 리튬 복합 전이금속 산화물을 형성하는 단계;를 포함하며, 상기 양극 활물질 전구체는 전체 금속 원소 중 니켈(Ni)의 함량이 60몰% 이상이고, 상기 양극 활물질 전구체의 전체 금속 원소(M)에 대한 상기 리튬 소스의 리튬(Li)의 몰비율(Li/M)이 1.1 초과인 이차전지용 양극 활물질의 제조방법에 관한 것이다.

Description

이차전지용 양극 활물질의 제조방법{METHOD FOR PREPARING OF POSITIVE ELECTRODE ACTIVE MATERIAL FOR SECONDARY BATTERY}
본 발명은 이차전지용 양극 활물질의 제조방법에 관한 것이다.
최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고용량인 이차전지의 수요가 급속히 증대되고 있다. 특히, 리튬 이차전지는 경량이고 고에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 이차전지의 성능향상을 위한 연구개발 노력이 활발하게 진행되고 있다.
리튬 이차전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화와 환원 반응에 의해 전기 에너지가 생산된다.
리튬 이차전지의 양극 활물질로는 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2), 리튬 망간 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4) 등이 사용되었다. 또한, 리튬 니켈 산화물(LiNiO2)의 우수한 가역 용량은 유지하면서도 낮은 열 안정성을 개선하기 위한 방법으로서, 니켈(Ni)의 일부를 코발트(Co)나 망간(Mn)/알루미늄(Al)으로 치환한 리튬 복합금속 산화물(이하 간단히 'NCM계 리튬 복합 전이금속 산화물' 또는 'NCA계 리튬 복합 전이금속 산화물'이라 함)이 개발되었다. 그러나, 종래의 개발된 NCM계/NCA계 리튬 복합 전이금속 산화물은 용량 특성이 충분하지 않아 적용에 한계가 있었다.
이와 같은 문제점을 개선하기 위해, 최근에는 NCM계/NCA계 리튬 산화물에서 니켈(Ni)의 함량을 증가시키려는 연구가 이루어지고 있다. 그러나, 고함량 니켈(High-Ni) NCM계/NCA계 리튬 산화물의 경우, 니켈(Ni)이 산화수 2+로 유지되려는 경향 때문에 초기 산화수 3+의 니켈(Ni)을 갖도록 형성하기 위해서는 소성 온도 및 소성 분위기 등의 소성 조건을 까다롭게 제어해야 하는 어려움이 있었다. 또한, 니켈(Ni)의 함량이 증가할수록 소성 시 결정이 급격히 크게 성장하여 결정 사이즈의 제어가 어려우며, 양극 활물질의 구조적 안정성 및 화학적 안정성이 떨어져 전지 용량 및 수명 특성 개선에 한계가 있다는 문제점이 있었다.
한국등록특허 제10-1056714호
본 발명은 고용량 확보를 위해 니켈(Ni)을 60몰% 이상 함유한 고함량 니켈(High-Ni)계 리튬 복합 전이금속 산화물의 양극 활물질 제조에 있어서, 소성 온도 및 소성 분위기 등의 소성 조건에 대한 민감도를 완화시켜 용이하게 소성 완성도를 높일 수 있으며, 제조되는 양극 활물질의 구조적 안정성 및 화학적 안정성을 향상시킬 수 있는 이차전지용 양극 활물질의 제조방법을 제공하고자 하는 것이다.
본 발명은 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 양극 활물질 전구체를 마련하는 단계; 및 상기 양극 활물질 전구체 및 리튬 소스를 혼합하고 소성하여, 리튬 복합 전이금속 산화물을 형성하는 단계;를 포함하며, 상기 양극 활물질 전구체는 전체 금속 원소 중 니켈(Ni)의 함량이 60몰% 이상이고, 상기 양극 활물질 전구체의 전체 금속 원소(M)에 대한 상기 리튬 소스의 리튬(Li)의 몰비율(Li/M)이 1.1 초과인 이차전지용 양극 활물질의 제조방법을 제공한다.
본 발명에 따르면, 고용량 확보를 위해 니켈(Ni)을 60몰% 이상 함유한 고함량 니켈(High-Ni)계 리튬 복합 전이금속 산화물의 양극 활물질 제조에 있어서, 소성 온도 및 소성 분위기 등의 소성 조건에 대한 민감도가 완화되어, 까다로운 소성 조건 제어의 어려움 없이 용이하게 소성 완성도를 높일 수 있다.
또한, 본 발명에 따라 제조되는 양극 활물질은 고함량 니켈(High-Ni)계 리튬 복합 전이금속 산화물임에도 결정 사이즈가 잘 제어되고, 구조적 안정성 및 화학적 안정성이 향상될 수 있다.
또한, 본 발명에 따라 제조되는 양극 활물질을 사용하여 제조된 리튬 이차전지는 초기 용량, 효율 및 수명 특성이 개선될 수 있다.
도 1은 실시예 및 비교예에 따라 제조된 양극 활물질을 사용한 리튬 이차전지의 사이클 특성을 평가한 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 이차전지용 양극 활물질의 제조방법은 (1) 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 양극 활물질 전구체를 마련하는 단계; 및 (2) 상기 양극 활물질 전구체 및 리튬 소스를 혼합하고 소성하여, 리튬 복합전이금속 산화물을 형성하는 단계;를 포함하며, 상기 양극 활물질 전구체는 전체 금속 원소 중 니켈(Ni)의 함량이 60몰% 이상이고, 상기 양극 활물질 전구체의 전체 금속 원소(M)에 대한 상기 리튬 소스의 리튬(Li)의 몰비율(Li/M)이 1.1 초과이다.
본 발명은 고용량 확보를 위해 니켈(Ni)을 60몰% 이상 함유한 고함량 니켈(High-Ni)계 리튬 복합 전이금속 산화물의 양극 활물질 제조에 있어서, 양극 활물질 전구체의 전체 금속 원소(M)에 대한 리튬 소스의 리튬(Li)의 몰비율(Li/M)을 1.1이 초과 되게 함으로써, 소성 온도 및 소성 분위기 등의 소성 조건에 대한 민감도를 완화시키고, 까다로운 소성 조건 제어의 어려움 없이 용이하게 소성 완성도를 높일 수 있도록 하였다.
본 발명에 따라 양극 활물질을 제조시, 고함량 니켈(High-Ni)계 리튬 복합 전이금속 산화물임에도 결정 사이즈가 잘 제어되고, 구조적 안정성 및 화학적 안정을 향상시킬 수 있다.
또한, 본 발명에 따라 제조되는 양극 활물질을 사용하여 제조된 리튬 이차전지는 초기 용량, 효율 및 수명 특성이 개선될 수 있다.
상기 양극 활물질의 제조방법을 단계별로 구체적으로 설명한다.
먼저, (1) 단계는 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 양극 활물질 전구체를 마련한다.
본 발명의 상기 양극 활물질 전구체는 전체 금속 원소 중 니켈(Ni)의 함량이 60몰% 이상인 고함량 니켈(High-Ni)의 양극 활물질 전구체이다. 보다 바람직하게는 전체 금속 원소 중 니켈(Ni)의 함량이 80몰% 이상일 수 있다. 본 발명과 같이 전체 금속 원소 중 니켈(Ni)의 함량이 60몰% 이상인 고함량 니켈(High-Ni)의 양극 활물질 전구체를 사용하여 형성된 리튬 복합 전이금속 산화물은 고용량 확보가 가능할 수 있다.
보다 구체적으로, 상기 양극 활물질 전구체는 하기 화학식 1로 표시될 수 있다.
[화학식 1]
Ni1-(x1+y1+z1)Cox1Ma y1Mb z1(OH)2
상기 식에서, Ma은 Mn 및 Al로 이루어진 군에서 선택된 적어도 하나 이상의 원소이고, Mb는 Zr, W, Mg, Al, Ce, Hf, Ta, La, Ti, Sr, Ba, Nb, Mo, 및 Cr으로 이루어진 군에서 선택된 적어도 하나 이상의 원소이며, 0<x1≤0.4, 0<y1≤0.4, 0≤z1≤0.1이며, 0<x1+y1+z1≤0.4이다.
상기 화학식 1의 양극 활물질 전구체에 있어서, Ni은 1-(x1+y1+z1)에 해당하는 함량, 예를 들어, 0.6≤1-(x1+y1+z1)<1로 포함될 수 있다. 상기 화학식 1의 양극 활물질 전구체 내 Ni의 함량이 0.6 이상의 조성이 되면 충방전에 기여하기에 충분한 Ni량이 확보되어 고용량화를 도모할 수 있다. 보다 바람직하게는 Ni은 0.8≤1-(x1+y1+z1)≤0.99로 포함될 수 있다. 이와 같이 본 발명에서 사용되는 양극 활물질 전구체는 전체 금속 원소 중 니켈(Ni)이 60몰% 이상인 고함량 니켈(High-Ni)계로, 니켈(Ni)이 60몰% 미만인 경우보다 소성 온도, 소성 분위기 등의 소성 조건에 따른 민감도가 크고, 구조적 안정성 및 화학적 안정성이 확보된 양극 활물질을 형성하기가 더 어렵기 때문에, 소성 조건을 제어하여 소성 완성도를 높이는 것이 더욱 중요하다.
상기 화학식 1의 양극 활물질 전구체에 있어서, Co는 x1에 해당하는 함량, 즉 0<x1≤0.4으로 포함될 수 있다. 상기 화학식 1의 양극 활물질 전구체 내 Co의 함량이 0.4를 초과할 경우 비용 증가의 우려가 있다. Co 포함에 따른 용량 특성 개선 효과의 현저함을 고려할 때, 상기 Co는 보다 구체적으로 0.05≤x1≤0.2의 함량으로 포함될 수 있다.
상기 화학식 1의 양극 활물질 전구체에 있어서, Ma은 Mn 또는 Al이거나, Mn 및 Al일 수 있고, 이러한 금속 원소는 활물질의 안정성을 향상시키고, 결과로서 전지의 안정성을 개선시킬 수 있다. 수명 특성 개선 효과를 고려할 때, 상기 Ma은 y1에 해당하는 함량, 즉 0<y1≤0.4의 함량으로 포함될 수 있다. 상기 화학식 1의 양극 활물질 전구체 내 y1가 0.4를 초과하면 오히려 전지의 출력 특성 및 용량 특성이 저하될 우려가 있으며, 상기 Ma은 보다 구체적으로 0.05≤y1≤0.2의 함량으로 포함될 수 있다.
상기 화학식 1의 양극 활물질 전구체에 있어서, Mb는 양극 활물질 전구체 내 포함된 도핑원소일 수 있으며, Mb는 z1에 해당하는 함량, 즉 0≤z1≤0.1로 포함될 수 있다.
본 발명에서 사용되는 상기 양극 활물질 전구체는 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 NCM계 화합물일 수 있고, 또는 니켈(Ni), 코발트(Co) 및 알루미늄(Al)을 포함하는 NCA계 화합물일 수 있으며, 니켈(Ni), 코발트(Co), 망간(Mn) 및 알루미늄(Al)의 4성분을 필수로 포함하는 4성분계 양극 활물질 전구체일 수도 있다. 용량, 효율 및 수명 특성 측면에서, 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 NCM계 화합물 또는 니켈(Ni), 코발트(Co), 망간(Mn) 및 알루미늄(Al)의 4성분을 필수로 포함하는 4성분계 양극 활물질 전구체가 보다 더 바람직할 수 있다. 상기 4성분계 양극 활물질 전구체로 양극 활물질을 제조할 경우, 양극 활물질의 안정성을 향상시킬 수 있으며, NCM/NCA 양극 활물질보다 출력 특성 및 용량 특성을 열화시키지 않으면서도 수명을 향상시킬 수 있다.
다음으로, (2) 단계는 상기 양극 활물질 전구체 및 리튬 소스를 혼합하고 소성하여, 리튬 복합 전이금속 산화물을 형성한다. 이때, 본 발명은 상기 양극 활물질 전구체의 전체 금속 원소(M)에 대한 상기 리튬 소스의 리튬(Li)의 몰비율(Li/M)이 1.1을 초과하도록 한다.
상기 리튬 소스로는 리튬 함유 황산염, 질산염, 아세트산염, 탄산염, 옥살산염, 시트르산염, 할라이드, 수산화물 또는 옥시수산화물 등이 사용될 수 있으며, 물에 용해될 수 있는 한 특별히 한정되지 않는다. 구체적으로 상기 리튬 소스는 Li2CO3, LiNO3, LiNO2, LiOH, LiOHㆍH2O, LiH, LiF, LiCl, LiBr, LiI, CH3COOLi, Li2O, Li2SO4, CH3COOLi, 또는 Li3C6H5O7 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
종래에는 일반적으로 양극 활물질 전구체의 전체 금속 원소(M)에 대한 리튬 소스의 리튬(Li)의 몰비율(Li/M)을 약 1.02~1.05로 하였는데, 이 경우 소성 온도 및 소성 분위기 등의 소성 조건에 대한 민감도가 커서 조금만 소성 조건이 제어되지 않거나 벗어나면, 니켈(Ni)이 산화수 2+로 유지되려는 경향 때문에 초기 산화수 3+의 니켈(Ni)을 갖도록 형성하기 어렵고, 결정 사이즈가 급격히 증가하는 등 소성 완성도를 확보하기가 어려웠으며, 소성 완성도가 떨어지게 되면 충분히 높은 용량 구현이 불가능하였다.
이러한 문제를 해결하기 위해서, 본 발명은 니켈(Ni)을 60몰% 이상 함유한 고함량 니켈(High-Ni)계 리튬 복합 전이금속 산화물의 양극 활물질 제조에 있어서, 상기 양극 활물질 전구체의 전체 금속 원소(M)에 대한 상기 리튬 소스의 리튬(Li)의 몰비율(Li/M)을 1.1이 초과 되게 함으로써, 소성 온도 및 소성 분위기 등의 소성 조건에 대한 민감도를 완화시키고, 까다로운 소성 조건 제어의 어려움 없이 용이하게 소성 완성도를 높일 수 있도록 하였다. 또한, 본 발명에 따라 양극 활물질을 제조시, 고함량 니켈(High-Ni)계 리튬 복합 전이금속 산화물임에도 결정 사이즈가 잘 제어되고, 구조적 안정성 및 화학적 안정성을 향상시킬 수 있었고, 이에 따라, 안정적으로 고용량 구현이 가능한 양극 활물질을 제조할 수 있음을 확인하였다.
상기 양극 활물질 전구체의 전체 금속 원소(M)에 대한 상기 리튬 소스의 리튬(Li)의 몰비율(Li/M)이 1.1 이하일 경우, 소성 완성도를 높이기 위한 소성 조건의 제어가 매우 까다롭고, 결정 사이즈의 제어가 어렵기 때문에 고용량 구현 및 안정성이 확보된 양극 활물질을 제조하기 어려운 문제가 발생할 수 있다.
보다 바람직하게는 상기 양극 활물질 전구체의 전체 금속 원소(M)에 대한 상기 리튬 소스의 리튬(Li)의 몰비율(Li/M)은 1.105 내지 1.30일 수 있으며, 더욱 바람직하게는 몰비율(Li/M)이 1.13 내지 1.20일 수 있다.
상기 소성 시 소성 온도는 700℃ 내지 900℃에서 수행될 수 있으며, 보다 바람직하게는 750 내지 850℃에서 수행될 수 있다.
또한, 상기 소성 시 소성 온도까지 2 내지 10℃/min의 승온 속도로 승온시킬 수 있으며, 보다 바람직하게는 3 내지 7℃/min의 승온 속도로 승온시킬 수 있다.
또한, 상기 소성 시 산소 분위기 하에서 소성할 수 있으며, 보다 구체적으로는 상기 소성 온도 및 산소 분위기 하에서 5시간 내지 30시간 동안 소성을 수행할 수 있다.
다음으로, 상기와 같이 고함량 니켈(High-Ni)의 리튬 복합 전이금속 산화물을 형성한 후 잔류 리튬 부산물을 제거하기 위해, 수세하는 단계를 더 포함할 수 있다.
고함량 니켈(High-Ni)의 리튬 복합 전이금속 산화물의 경우 양극 활물질 표면에 LiOH, Li2CO3 형태로 존재하는 리튬 부산물의 잔류량이 높아져 이로 인한 가스 발생 및 스웰링(swelling) 현상이 발생하는 문제가 발생할 수 있다. 따라서, 잔류 리튬 부산물을 제거하기 위한 수세 공정을 거칠 수 있다.
상기 수세하는 단계는, 예를 들면, 순수에 리튬 복합 전이금속 산화물을 투입하고 교반시키는 방법으로 수행될 수 있다. 이때, 상기 리튬 복합 전이금속 산화물 100중량부에 대하여 순수 30 내지 300중량부, 보다 바람직하게는 50 내지 150중량부를 사용하여 수행할 수 있다.
또한, 상기 수세 시 온도는 30℃ 이하, 바람직하게는 -10℃ 내지 30℃일 수 있으며, 수세 시간은 10분 내지 1시간 정도일 수 있다. 수세 온도 및 수세 시간이 상기 범위를 만족할 때, 리튬 부산물이 효과적으로 제거될 수 있다.
본 발명은 상기 양극 활물질 전구체의 전체 금속 원소(M)에 대한 상기 리튬 소스의 리튬(Li)의 몰비율(Li/M)이 1.1을 초과하도록 리튬 소스를 투입하기 때문에 잔류 리튬 부산물이 많아질 수 있지만, 이와 같이 수세 공정을 거칠 경우 잔류 리튬 부산물을 제거할 수 있게 때문에 문제가 되지 않을 수 있다.
이와 같이 본 발명에 따라 제조된 리튬 복합 전이금속 산화물의 양극 활물질은 니켈(Ni)을 60몰% 이상 함유한 고함량 니켈(High-Ni)계 리튬 복합 전이금속 산화물이며, 소성 완성도가 향상되어 고용량 구현이 가능하며, 구조적 안정성 및 화학적 안정성이 향상될 수 있다. 또한, 본 발명에 따라 제조되는 양극 활물질을 사용하여 제조된 리튬 이차전지는 초기 용량, 효율 및 수명 특성이 향상될 수 있다.
본 발명의 다른 일 실시예에 따르면 상기와 같이 제조된 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지를 제공한다.
구체적으로, 상기 양극은 양극 집전체 및 상기 양극 집전체 위에 형성되며, 상기 양극 활물질을 포함하는 양극 활물질 층을 포함한다.
상기 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 양극 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또, 상기 양극 활물질 층은 앞서 설명한 양극 활물질과 함께, 도전재 및 바인더를 포함할 수 있다.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
또, 상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및 도전재를 포함하는 양극 활물질 층 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극 활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또, 다른 방법으로, 상기 양극은 상기 양극 활물질 층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지 또는 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극활물질 층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질 층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극 활물질 층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOα(0 < α < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1
양극 활물질 전구체 Ni0 . 86Co0 . 1Mn0 . 02Al0 .02(OH)2의 전체 금속 원소(M)에 대한 리튬 소스 LiOH의 리튬(Li)의 몰비율(Li/M)이 1.15가 되도록 헨셀 믹서(700L)에 투입하고, 중심부 300rpm에서 20분간 믹싱(mixing)하였다. 혼합된 분말을 330mmx330mm 크기의 알루미나 도가니에 넣고, 5℃/min으로 승온시켜 산소(O2) 분위기 하 790℃에서 10시간 동안 소성하여 리튬 복합 전이금속 산화물을 제조하였다.
제조된 리튬 복합 전이금속 산화물 300g을 10℃ 순수 240mL에 넣고 30분 동안 교반하여 수세하고, 20분간 필터링을 수행하였다. 필터링된 리튬 복합 전이금속 산화물을 진공 오븐에서 130℃로 10시간 건조시켜 양극 활물질을 제조하였다.
실시예 2
양극 활물질 전구체 Ni0 . 86Co0 . 1Mn0 . 02Al0 .02(OH)2의 전체 금속 원소(M)에 대한 리튬 소스 LiOH의 리튬(Li)의 몰비율(Li/M)이 1.20이 되도록 투입한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극 활물질을 제조하였다.
실시예 3
양극 활물질 전구체 Ni0 . 86Co0 . 1Mn0 . 02Al0 .02(OH)2의 전체 금속 원소(M)에 대한 리튬 소스 LiOH의 리튬(Li)의 몰비율(Li/M)이 1.105가 되도록 투입한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극 활물질을 제조하였다.
비교예 1
양극 활물질 전구체 Ni0 . 86Co0 . 1Mn0 . 02Al0 .02(OH)2의 전체 금속 원소(M)에 대한 리튬 소스 LiOH의 리튬(Li)의 몰비율(Li/M)이 1.02가 되도록 투입한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극 활물질을 제조하였다.
비교예 2
양극 활물질 전구체 Ni0 . 86Co0 . 1Mn0 . 02Al0 .02(OH)2의 전체 금속 원소(M)에 대한 리튬 소스 LiOH의 리튬(Li)의 몰비율(Li/M)이 1.05가 되도록 투입한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극 활물질을 제조하였다.
비교예 3
양극 활물질 전구체 Ni0 . 86Co0 . 1Mn0 . 02Al0 .02(OH)2의 전체 금속 원소(M)에 대한 리튬 소스 LiOH의 리튬(Li)의 몰비율(Li/M)이 1.08이 되도록 투입한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극 활물질을 제조하였다.
비교예 4
양극 활물질 전구체 Ni0 . 8Co0 . 15Al0 .05(OH)2 30g을 LiOH(H2O) 13.80g과 혼합한 후 산화 분위기하 700℃에서 10시간 동안 소성하여 Li1 . 05Ni0 . 8Co0 . 15Al0 . 05O2 양극 활물질 을 얻었다.
[제조예: 리튬 이차전지의 제조]
실시예 1 내지 3 및 비교예 1 내지 4에 의해 제조된 각각의 양극 활물질, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 95:2.5:2.5의 비율로 혼합하여 양극 합재(점도: 5000mPa·s)을 제조하고, 이를 알루미늄 집전체의 일면에 도포한 후, 130℃에서 건조 후, 압연하여 양극을 제조하였다.
또, 음극 활물질로서 천연흑연, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 85:10:5의 비율로 혼합하여 음극활물질층 형성용 조성물을 제조하고, 이를 구리 집전체의 일면에 도포하여 음극을 제조하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/DMC/EMC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
[실험예 1: 전지 용량 및 효율 평가]
상기와 같이 실시예 1 내지 3 및 비교예 1 내지 4에 의해 제조된 각각의 양극 활물질을 사용하여 제조된 각 리튬 이차 전지 셀(full cell)에 대해 충방전 실험을 진행하여 0.2C 초기 용량 및 초기 효율을 측정하였으며, 그 결과를 하기 표 1에 나타내었다.
실시예1 실시예2 실시예3 비교예1 비교예2 비교예3 비교예4
충전용량(mAh/g)(0.2C) 230.1 231.2 230.7 228.4 229.3 229.6 221.2
방전용량(mAh/g)(0.2C) 205.4 205.5 205.7 202.2 203.4 203.6 190.2
효율(%)(0.2C) 89.3 88.9 89.2 88.5 88.7 88.7 86.0
* 온도 25℃, 로딩 420mg/25cm2, 전압 4.25V
상기 표 1을 참조하면, 리튬(Li) 및 금속 원소(M)의 몰비율(Li/M)을 1.1 이하로 한 비교예 1 내지 4에 비하여 리튬(Li) 및 금속 원소(M)의 몰비율(Li/M)을 1.1이 초과되도록 한 실시예 1 내지 3의 경우가 다소 우수한 초기 용량 및 효율을 나타냈다.
[실험예 2: 수명 특성 평가]
상기와 같이 제조된 각 리튬 이차 전지 셀(full cell)에 대해 45℃에서 CCCV 모드로 0.5C, 4.25V가 될 때까지 충전하고, 0.55C 조건으로 cut off하였으며, 1.0C의 정전류로 2.5V가 될 때까지 방전하여 30회 충방전을 실시하면서 용량 유지율(Capacity Retention[%])을 측정하였다. 그 결과를 도 1에 나타내었다.
도 1을 참조하면, 리튬(Li) 및 금속 원소(M)의 몰비율(Li/M)을 1.1 이하로 한 비교예 1 내지 4에 비하여 리튬(Li) 및 금속 원소(M)의 몰비율(Li/M)을 1.1이 초과되도록 한 실시예 1 내지 3의 경우가 사이클 진행에 따른 용량 유지율이 높게 나타나는 것을 확인할 수 있다. 즉, 리튬(Li) 및 금속 원소(M)의 몰비율(Li/M)을 1.1이 초과되도록 한 실시예 1 내지 3의 경우 수명 특성이 매우 향상되었음을 알 수 있다.

Claims (10)

  1. 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 양극 활물질 전구체를 마련하는 단계; 및
    상기 양극 활물질 전구체 및 리튬 소스를 혼합하고 소성하여, 리튬 복합 전이금속 산화물을 형성하는 단계;를 포함하며,
    상기 양극 활물질 전구체는 전체 금속 원소 중 니켈(Ni)의 함량이 60몰% 이상이고,
    상기 양극 활물질 전구체의 전체 금속 원소(M)에 대한 상기 리튬 소스의 리튬(Li)의 몰비율(Li/M)이 1.1 초과인 이차전지용 양극 활물질의 제조방법.
  2. 제1항에 있어서,
    상기 양극 활물질 전구체의 전체 금속 원소(M)에 대한 상기 리튬 소스의 리튬(Li)의 몰비율(Li/M)이 1.105 내지 1.30인 이차전지용 양극 활물질의 제조방법.
  3. 제1항에 있어서,
    상기 양극 활물질 전구체의 전체 금속 원소(M)에 대한 상기 리튬 소스의 리튬(Li)의 몰비율(Li/M)이 1.13 내지 1.20인 이차전지용 양극 활물질의 제조방법.
  4. 제1항에 있어서,
    상기 양극 활물질 전구체는 전체 금속 원소 중 니켈(Ni)의 함량이 80몰% 이상인 이차전지용 양극 활물질의 제조방법.
  5. 제1항에 있어서,
    상기 양극 활물질 전구체는 니켈(Ni), 코발트(Co), 망간(Mn) 및 알루미늄(Al)을 포함하는 이차전지용 양극 활물질의 제조방법.
  6. 제1항에 있어서,
    상기 양극 활물질 전구체는 하기 화학식 1로 표시되는 이차전지용 양극 활물질의 제조방법.
    [화학식 1]
    Ni1-(x1+y1+z1)Cox1Ma y1Mb z1(OH)2
    상기 식에서, Ma은 Mn 및 Al로 이루어진 군에서 선택된 적어도 하나 이상의 원소이고, Mb는 Zr, W, Mg, Al, Ce, Hf, Ta, La, Ti, Sr, Ba, Nb, Mo, 및 Cr으로 이루어진 군에서 선택된 적어도 하나 이상의 원소이며, 0<x1≤0.4, 0<y1≤0.4, 0≤z1≤0.1이며, 0<x1+y1+z1≤0.4이다.
  7. 제1항에 있어서,
    상기 소성 시 소성 온도는 700 내지 900℃인 이차전지용 양극 활물질의 제조방법.
  8. 제1항에 있어서,
    상기 소성 시 2 내지 10℃/min의 승온 속도로 소성 온도까지 승온시키는 이차전지용 양극 활물질의 제조방법.
  9. 제1항에 있어서,
    상기 소성 시 산소 분위기 하에서 소성하는 이차전지용 양극 활물질의 제조방법.
  10. 제1항에 있어서,
    상기 리튬 복합 전이금속 산화물을 형성한 후, 수세하는 단계를 더 포함하는 이차전지용 양극 활물질의 제조방법.
KR1020180139154A 2017-11-13 2018-11-13 이차전지용 양극 활물질의 제조방법 KR102270119B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/KR2018/013852 WO2019093869A2 (ko) 2017-11-13 2018-11-13 이차전지용 양극 활물질의 제조방법
JP2020524757A JP7098185B2 (ja) 2017-11-13 2018-11-13 二次電池用正極活物質の製造方法
US16/762,363 US11508961B2 (en) 2017-11-13 2018-11-13 Method of preparing positive electrode active material for secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170150535 2017-11-13
KR20170150535 2017-11-13

Publications (2)

Publication Number Publication Date
KR20190054986A true KR20190054986A (ko) 2019-05-22
KR102270119B1 KR102270119B1 (ko) 2021-06-28

Family

ID=66680441

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180139154A KR102270119B1 (ko) 2017-11-13 2018-11-13 이차전지용 양극 활물질의 제조방법

Country Status (6)

Country Link
US (1) US11508961B2 (ko)
EP (1) EP3683191B1 (ko)
JP (1) JP7098185B2 (ko)
KR (1) KR102270119B1 (ko)
CN (1) CN111344256B (ko)
HU (1) HUE066276T2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102077538B1 (ko) 2019-10-14 2020-02-14 주식회사 에이엘텍 이차전지의 양극재에 적용되는 알루미늄 박막의 세척 장치, 이를 이용한 세척 방법 및 이를 이용하여 세척된 알루미늄 박막
CN112299495A (zh) * 2020-10-30 2021-02-02 中南大学 一种含锂氧化物前驱体及其制备方法
WO2021141463A1 (ko) * 2020-01-10 2021-07-15 주식회사 엘지화학 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2022119314A1 (ko) * 2020-12-01 2022-06-09 주식회사 엘지화학 양극 활물질 전구체, 이의 제조방법 및 이를 이용한 양극 활물질의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070082900A (ko) * 2006-02-17 2007-08-22 주식회사 엘지화학 리튬-금속 복합산화물의 제조방법
KR101056714B1 (ko) 2008-11-10 2011-08-12 주식회사 엘지화학 고전압 특성이 향상된 양극 활물질
EP2677569A1 (en) * 2012-04-24 2013-12-25 LG Chem, Ltd Active material for composite electrode of lithium secondary battery for increased output, and lithium secondary battery including same
KR20150043274A (ko) * 2012-07-09 2015-04-22 주식회사 엘지화학 리튬 복합 전이금속 산화물 제조용 전구체
KR20160083616A (ko) * 2014-12-31 2016-07-12 삼성에스디아이 주식회사 리튬이차전지용 양극 활물질의 전구체, 그 제조방법, 리튬이차전지용 양극 활물질, 그 제조방법, 및 상기 양극 활물질을 포함하는 리튬이차전지
JP2019522882A (ja) * 2016-12-28 2019-08-15 エルジー・ケム・リミテッド 二次電池用正極活物質、その製造方法、及びそれを含むリチウム二次電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100944137B1 (ko) 2005-11-02 2010-02-24 에이지씨 세이미 케미칼 가부시키가이샤 리튬 함유 복합 산화물 및 그 제조 방법
JP5618116B2 (ja) * 2008-09-12 2014-11-05 住友金属鉱山株式会社 リチウムニッケル複合酸化物及びリチウムニッケル複合酸化物を正極活物質に用いた非水系電解質二次電池
JP5742192B2 (ja) 2009-12-07 2015-07-01 住友化学株式会社 リチウム複合金属酸化物の製造方法
KR20130059029A (ko) 2011-11-28 2013-06-05 에스케이씨 주식회사 복합 금속 수산화물의 제조방법
JP6241349B2 (ja) 2014-03-28 2017-12-06 住友金属鉱山株式会社 非水電解質二次電池用正極活物質の前駆体とその製造方法、及び非水電解質二次電池用正極活物質とその製造方法
CN104183842B (zh) 2014-08-14 2017-02-15 东莞新能源科技有限公司 正极材料及其制备方法
KR102436419B1 (ko) * 2015-10-30 2022-08-25 삼성에스디아이 주식회사 복합양극활물질, 그 제조방법 및 이를 포함한 양극을 함유한 리튬 이차 전지
KR102460961B1 (ko) * 2015-11-06 2022-10-31 삼성에스디아이 주식회사 리튬이차전지용 양극 활물질, 그 제조방법 및 이를 포함한 양극을 구비한 리튬이차전지
CN106848470B (zh) 2017-03-08 2019-07-02 中南大学 一种从废旧镍钴锰三元锂离子电池中回收、制备三元正极材料的方法
CN107180950A (zh) 2017-04-17 2017-09-19 张保平 一种锂离子电池三元正极材料ncm、nca的喷雾干燥法制备方法
CN109428076B (zh) * 2017-09-04 2023-04-11 三星电子株式会社 正极活性材料前体、正极活性材料、制备正极活性材料的方法、正极和锂电池
WO2020044652A1 (ja) * 2018-08-31 2020-03-05 パナソニックIpマネジメント株式会社 正極活物質およびそれを備えた電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070082900A (ko) * 2006-02-17 2007-08-22 주식회사 엘지화학 리튬-금속 복합산화물의 제조방법
KR101056714B1 (ko) 2008-11-10 2011-08-12 주식회사 엘지화학 고전압 특성이 향상된 양극 활물질
EP2677569A1 (en) * 2012-04-24 2013-12-25 LG Chem, Ltd Active material for composite electrode of lithium secondary battery for increased output, and lithium secondary battery including same
KR20150043274A (ko) * 2012-07-09 2015-04-22 주식회사 엘지화학 리튬 복합 전이금속 산화물 제조용 전구체
KR20160083616A (ko) * 2014-12-31 2016-07-12 삼성에스디아이 주식회사 리튬이차전지용 양극 활물질의 전구체, 그 제조방법, 리튬이차전지용 양극 활물질, 그 제조방법, 및 상기 양극 활물질을 포함하는 리튬이차전지
JP2019522882A (ja) * 2016-12-28 2019-08-15 エルジー・ケム・リミテッド 二次電池用正極活物質、その製造方法、及びそれを含むリチウム二次電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102077538B1 (ko) 2019-10-14 2020-02-14 주식회사 에이엘텍 이차전지의 양극재에 적용되는 알루미늄 박막의 세척 장치, 이를 이용한 세척 방법 및 이를 이용하여 세척된 알루미늄 박막
WO2021141463A1 (ko) * 2020-01-10 2021-07-15 주식회사 엘지화학 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
CN112299495A (zh) * 2020-10-30 2021-02-02 中南大学 一种含锂氧化物前驱体及其制备方法
WO2022119314A1 (ko) * 2020-12-01 2022-06-09 주식회사 엘지화학 양극 활물질 전구체, 이의 제조방법 및 이를 이용한 양극 활물질의 제조방법

Also Published As

Publication number Publication date
JP2021501975A (ja) 2021-01-21
US11508961B2 (en) 2022-11-22
JP7098185B2 (ja) 2022-07-11
US20200266439A1 (en) 2020-08-20
KR102270119B1 (ko) 2021-06-28
CN111344256B (zh) 2022-11-01
EP3683191A2 (en) 2020-07-22
EP3683191A4 (en) 2020-12-09
HUE066276T2 (hu) 2024-07-28
CN111344256A (zh) 2020-06-26
EP3683191B1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
US11424436B2 (en) Positive electrode active material for secondary battery, method of preparing the same, and lithium secondary battery including the positive electrode active material
KR102313091B1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR20190090350A (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20180077026A (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20190057951A (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR102204938B1 (ko) 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR102507631B1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102270119B1 (ko) 이차전지용 양극 활물질의 제조방법
KR102464769B1 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20190032126A (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR20190038395A (ko) 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지
KR20190006368A (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20190056139A (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR102622330B1 (ko) 양극 활물질의 제조방법
KR20190083701A (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20190078991A (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR20190044544A (ko) 이차전지용 양극활물질 제조방법 및 이를 이용하는 이차전지
KR20190044445A (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR20220133813A (ko) 양극 활물질의 제조방법
KR20180134615A (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20200036796A (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20210136877A (ko) 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20190054360A (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20190044444A (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR20190028089A (ko) 리튬 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
GRNT Written decision to grant