WO2021091046A1 - 자연 분해성 마이크로캡슐 및 이의 제조방법 - Google Patents

자연 분해성 마이크로캡슐 및 이의 제조방법 Download PDF

Info

Publication number
WO2021091046A1
WO2021091046A1 PCT/KR2020/009600 KR2020009600W WO2021091046A1 WO 2021091046 A1 WO2021091046 A1 WO 2021091046A1 KR 2020009600 W KR2020009600 W KR 2020009600W WO 2021091046 A1 WO2021091046 A1 WO 2021091046A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
capsule
microcapsules
microcapsule
Prior art date
Application number
PCT/KR2020/009600
Other languages
English (en)
French (fr)
Inventor
염준석
황인
박노진
심우선
Original Assignee
주식회사 엘지생활건강
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190169897A external-priority patent/KR102355447B1/ko
Application filed by 주식회사 엘지생활건강 filed Critical 주식회사 엘지생활건강
Priority to JP2022525905A priority Critical patent/JP2023501313A/ja
Priority to EP20886052.8A priority patent/EP4056262A4/en
Priority to US17/774,337 priority patent/US20230002706A1/en
Priority to CN202080075555.6A priority patent/CN114616052B/zh
Publication of WO2021091046A1 publication Critical patent/WO2021091046A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • C11D3/502Protected perfumes
    • C11D3/505Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/16Interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/20After-treatment of capsule walls, e.g. hardening
    • B01J13/22Coating
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3726Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/12Soft surfaces, e.g. textile

Definitions

  • the present invention relates to a method of manufacturing a biodegradable microcapsule and a microcapsule manufactured according to the manufacturing method.
  • an encapsulation method For effective delivery of active ingredients, an encapsulation method is used, and it is possible to reduce side effects, stability maintenance of active ingredients, and problems related to cost by accurately delivering even with small doses, so target delivery of drugs in the field of medicine/pharmaceuticals, Maintaining the stability of fragrances in hygiene products and scenting at the point of time the user desires, maintaining stability from external stimuli such as light and heat of effective substances in the cosmetic field, and skin delivery, pesticides in the agricultural field, and nutritional ingredients in the food field. It is applied in various forms and purposes in industrial fields such as enhancing stability and absorption efficiency.
  • microplastics that do not decompose in nature and can accumulate and cause serious environmental pollution (a polymer made by humans with a diameter of 5 mm or less, which is not decomposed when discharged to nature) is one of the causes of contamination. Pointing at the capsule.
  • capsules made of inorganic particles are easily broken due to weak tension or impact generated during drying, and when made of natural polymers, active ingredients inside the capsules are eluted due to the inherent microporosity of the material, thereby maintaining the stability of the capsules.
  • a substance with an ester bond introduced so as to be easily decomposed is used, there is a problem that it is decomposed before use because it cannot withstand the harsh conditions of the formulation (change in pH, change in temperature).
  • the decomposition of a substance occurs due to microorganisms, light, and hydrolysis, and the degradability of a substance designated by the international standard measurement method is specified by the method of decomposition by microorganisms and light.
  • the OECD 301D test method if the decomposition by microorganisms is more than 60% for 28 days in a dark room at room temperature, it is'immediately degradable material', in the case of 20 to 60%,'biodegradable material', less than 20%.
  • active ingredients are usually monomolecular substances, which have high permeability or strong oxidizing properties, so oxide substances such as oxygen, active oxygen, and free radicals penetrate from the external environment and are oxidized. This is a method of enhancing the isolation of the capsule membrane to maintain the stability of the capsule.
  • Materials used for encapsulation for effective loading of active ingredients are used in a wide spectrum from organic polymers to inorganic materials, and interfacial polymerization of polymers to lower the permeability of the capsule membrane, layer-by-layer through ionic bonding, solubility according to pH.
  • a method such as solidification through change has been proposed.
  • the active ingredient is eluted in a harsh environment in the presence of a surfactant, an ionic component, or a solvent in the formulation.
  • the present inventors have found that the first encapsulation component, the second encapsulation component, the first capsule reinforcement component, and the second capsule reinforcement
  • the pickering emulsion is prepared using the ingredients and the pickering emulsion is encapsulated, it has been confirmed that microcapsules can be prepared not only having high versatility, excellent natural degradability and stability, but also capable of easily controlling the activity of the active substance, and completed the present invention. Was done.
  • an object of the present invention is to provide a method for manufacturing microcapsules having high versatility, natural degradability and stability, and microcapsules prepared accordingly.
  • the present invention As a means for solving the above problems, the present invention
  • a pickering emulsion by mixing a continuous phase 1 including inorganic particles and a first encapsulating component, and a dispersed phase 1 including a second encapsulating component and a first capsule reinforcing component;
  • the first encapsulation component and the second capsule reinforcement component may contain two or more amine groups or hydroxy groups, respectively, or both,
  • the second encapsulation component and the first capsule reinforcement component may each contain two or more functional groups selected from the group consisting of an amine group, an isocyanate group, an acyl halide group, a chloroformate group, and an acrylate group.
  • microcapsule including inorganic particles, a first encapsulation component, a second encapsulation component, a first capsule reinforcement component, and a second capsule reinforcement component.
  • the first encapsulation component and the second capsule reinforcement component may have one or more of the same functional groups, and the same functional groups may in particular be amine groups.
  • the second encapsulation component and the first capsule strengthening component may have one or more of the same functional groups, and the same functional groups may in particular be isocyanate groups.
  • the present invention includes the step of preparing a continuous phase 1 including inorganic particles and a first encapsulating component.
  • the solvent of the continuous phase 1 may include all solvents commonly used in the art.
  • the solvent of the continuous phase 1 may be distilled water.
  • the inorganic particles are added for the purpose of forming the pickering emulsion, which is the basic structure of the microcapsule, and may be a metal, a non-metal, or a mixture thereof, but is not limited thereto.
  • the type of the inorganic particles is not limited as long as the inorganic particles are not dissolved in the aqueous phase and can be adsorbed in the dispersed phase.
  • the inorganic particles include titanium, vanadium, manganese, iron, cobalt, nickel, copper, niobium, molybdenum, ruthenium, rhodium, palladium, silver, zinc, hafnium, tantalum, tungsten, iridium, platinum, gold, indium, tin, Metals such as calcium, aluminum or magnesium; Non-metals such as silica of phyllosilicate, inosilicate, sorosilicate or tectosilicate; Or it may be selected from a mixture thereof.
  • the inorganic particles may be silica.
  • the inorganic particles may have a diameter of 1 to 900 nm, such as 1.5 to 750 nm, and a diameter of 2 to 500 nm.
  • the content of the inorganic particles is 0.001 to 5 parts by weight, such as 0.005 to 4 parts by weight, 0.01 to 3 parts by weight, 0.1 to 2 parts by weight, based on the weight of the total composition for the production of microcapsules, It may be included in an amount of 0.5 to 1.5 parts by weight.
  • the first encapsulation component refers to a biodegradable polymer, and can be included to form the outer wall of the capsule by interfacial polymerization reaction with the second encapsulation component present in the dispersed phase to be dissolved in the continuous phase and to be easily decomposed.
  • the first encapsulating component is not particularly limited as long as it is a biodegradable polymer having an amine group and/or a hydroxy group in the molecule.
  • the biodegradable polymer may be a natural component or a synthetic component, and may be a monomer, oligomer, or polymer.
  • the natural ingredients include polysaccharides such as cellulose, hyaluronic acid, xanthan gum, chitosan, or heparin; Some modified substances of polysaccharides such as hydroxyethylcellulose or hydroxypropylcellulose; Nucleic acid of DNA or RNA; Proteins such as collagen, gelatin or silk fibroin; Or a polypeptide such as polylysine, polyglutamic acid, or polyarginine.
  • the synthetic component may include a component having a hydroxyl group, a carboxyl group, or an amine group such as polyester, polyphosphazan, polyamino acid or polyorthoester.
  • the first encapsulating component may include not only a component including an amine group and/or a hydroxy group, but also a surface modified to include the functional group. That is, in the present invention, the first encapsulating component includes two or more amine groups; Two or more hydroxy groups; Alternatively, it may include all components having two or more amine groups and two or more hydroxy groups.
  • the first encapsulating component may have a molecular weight of 200 Da to 1,000,000 Da, for example, a molecular weight of 500 Da to 500,000 Da, and a molecular weight of 1,000 Da to 100,000 Da.
  • the first encapsulating component is 0.01 to 20 parts by weight, such as 0.05 to 15 parts by weight, 0.1 to 10 parts by weight, 0.5 to 5 parts by weight, 0.01 to 10 parts by weight, based on the weight of the total composition for preparing the microcapsules. It may be included in parts by weight, 0.05 to 5 parts by weight, 0.1 to 1 parts by weight, and 0.25 to 0.75 parts by weight.
  • the molecular weight of the first encapsulation component when the molecular weight of the first encapsulation component is less than 200 Da or the content is less than 0.01 parts by weight, there may be a problem of not crosslinking because there are few functional groups that can participate in the reaction for forming the outer wall of the microcapsule. 1 When the molecular weight of the encapsulation component exceeds 1,000,000 Da or the content exceeds 20 parts by weight, the viscosity may increase, resulting in a problem that the outer wall of the microcapsule is not formed and a hydrogel is formed.
  • the first encapsulating component may be chitosan.
  • the continuous phase 1 including the inorganic particles and the first encapsulating component may be mixed with the dispersed phase 1 including the second encapsulating component and the first capsule reinforcing component to prepare a pickering emulsion.
  • the present invention includes the step of preparing a dispersed phase 1 comprising a second encapsulating component and a first capsule reinforcing component.
  • the solvent of the dispersed phase 1 a solvent that is mixed with the continuous phase and is not mixed may be selected.
  • the solvent of the dispersed phase 1 is a hydrocarbon-based solvent having a linear or nonlinear structure such as pentane, hexane, cyclohexane, heptane, octane, isododecane, or dodecane;
  • a solvent containing an ether group such as ethyl ether, butyl ether, or methyl butyl ether;
  • a solvent containing an ester group such as ethyl acetate, butyl acetate or ethyl butyrate;
  • a solvent containing a ketone group such as methyl ethyl ketone;
  • a solvent containing benzene such as benzene, toluene or xylene;
  • Haloalkane solvents such as dichloromethane, dichloro
  • an effective material to be supported in the microcapsules may be selected.
  • the active substance is a substance that can maintain its activity by being supported on the microcapsule, and refers to a substance that exhibits its activity when the outer wall of the microcapsule is destroyed.
  • the active substance is a liquid at room temperature, it may be included as a solvent in a dispersed phase.
  • the effective material may be a fragrance oil, a sunscreen, a dye, a catalyst, an antioxidant, or a drug, but is not limited thereto.
  • the continuous phase 1 may be mixed with the dispersed phase 1 containing the second encapsulating component and the first capsule reinforcing component to prepare a pickering emulsion.
  • the second encapsulation component and the first capsule reinforcement component are materials that react with the first encapsulation component dissolved in the continuous phase to form the outer wall of the capsule and reduce material permeability to the capsule, and a material that is well soluble in the dispersed phase may be selected. .
  • the second encapsulation component reacts with the first encapsulation component to form an interfacial polymerizable polymer such as polyurea, polyurethane, polyacylamine, polyoxime, polycarbamate, polyester, polyamine ester, or polyamide to form a capsule It refers to an ingredient that can make a structure.
  • the second encapsulation component may be a monomer, oligomer, or polymer.
  • the second encapsulation component may be a compound represented by the following formula (1):
  • R 1 is an acrylate group or an alkylene group having 1 to 50 carbon atoms in which a hetero atom is substituted or unsubstituted; Cyclic hydrocarbons having 3 to 60 carbon atoms; Or a compound containing an alkylene group having 1 to 50 carbon atoms and a cyclic hydrocarbon having 3 to 60 carbon atoms, and X 1 to X 4 are each independently hydrogen, an amine group, an acyl halide group, an isocyanate group, a chloroformate group And an acrylate group, and n is an integer of 1 or more.
  • At least two of X 1 to X 4 have an amine group, an acyl halide group, an isocyanate group, a chloroformate group and an acrylate group, and n may be an integer of 1 to 3.
  • the second encapsulating component may be a polyisocyanate.
  • the second encapsulation component is 0.001 to 10 parts by weight, such as 0.005 to 8 parts by weight, 0.01 to 5 parts by weight, 0.05 to 1 part by weight, 0.1 to 0.5 parts by weight, based on the weight of the total composition for preparing the microcapsules. , 0.001 to 0.5 parts by weight, may be included in 0.125 to 0.375 parts by weight.
  • 0.001 to 0.5 parts by weight may be included in 0.125 to 0.375 parts by weight.
  • the first capsule reinforcing component is a material capable of increasing the density of the outer wall of the microcapsule, and may include a material having a ring structure or an inorganic material.
  • the first capsule reinforcing component is less compatible with the continuous phase and the dispersed phase, and thus may be included to prevent the active substance carried in the capsule from eluting outside or to delay the dissolution rate when formed as the outer wall of the capsule.
  • the first capsule reinforcing component reacts with the first encapsulation component and/or the second capsule reinforcement component, so that polyurea, polyurethane, polyacylamine, polyoxime, polycarbamate, polyester, polyamine ester or polyamide and Among the components capable of forming a capsule structure by forming the same interfacial polymerizable polymer, a component having a cyclic structure may be included.
  • the first capsule reinforcing component may include at least one compound selected from the group consisting of a monomer represented by the following formula (2), methylene diphenyl diisocyanate, naphthalene diisocyanate, and isophorone diisocyanate; Oligomers thereof; Or a polymer thereof:
  • R 2 to R 7 are each independently hydrogen; An alkyl group having 1 to 5 carbon atoms; An alkenyl group having 2 to 5 carbon atoms; Alkyl isocyanates having 1 to 5 carbon atoms; Isocyanate group; An alkylacyl halide group having 1 to 5 carbon atoms; Acyl halide group; An alkyl chloroformate group having 1 to 5 carbon atoms; Chloroformate group; An alkyl acrylate group having 1 to 5 carbon atoms; Or it may include an acrylate group, and any one or more of R 2 to R 7 in Formula 2 is a compound that may include one of an isocyanate group, an acyl halide group, a chloroformate group, or an acrylate group.
  • the monomer may be a polymer in which 1 to 13 are polymerized.
  • the number of the monomers is 13 or more, the stiffness of the material increases, and thus it is easily broken during the manufacturing process of the capsule, or the capsule shape cannot be maintained due to tension generated when the capsule is dried.
  • the first capsule reinforcing component may be methyldiphenyl diisocyanate, naphthalene diisocyanate, isophorone diisocyanate, or xylene diisocyanate as a component including isocyanate.
  • the first capsule reinforcing component is capable of reacting with an amine group or a hydroxy group of the first encapsulation component together with the second encapsulation component. It can be chosen differently.
  • the first capsule reinforcing component and/or the second encapsulation component may each have two or more acrylate groups or isocyanate groups.
  • a polybetaamino ester microcapsule can be formed;
  • polyurea microcapsules can be formed.
  • the component having an isocyanate group is methylene diisocyanate, 1,4-phenylene diisocyanate, and tolylene-2,4-diisocyanate.
  • -diisocyanate 1-chloromethyl-2,4-diisocyanatobenzene (1-Chloromethyl-2,4-diisocyanatobenzene), 4-chloro-6-methyl-1,3-phenylene diisocyanate (4-Chloro -6-methyl-1,3-phenylene diisocyanate), 1,3-bis(1-isocyanato-1-methylethyl)benzene (1,3-Bis(1-isocyanato-1-methylethyl)benzene), 3,3'-Dimethyl-4,4'-biphenylene diisocyanate (3,3'-Dimethyl-4,4'-biphenylene diisocyanate), 3,3'-dichloro-4,4'-diisocyana
  • the component having an acrylate group is ethylene glycol diacrylate, di (ethylene glycol) diacrylate (Di (ethylene glycol) diacrylate), tri (ethylene glycol) diacrylate (Tri ( ethylene glycol diacrylate), tetra(ethylene glycol) diacrylate, poly(ethylene glycol) diacrylate, propylene glycol diacrylate , Di (propylene glycol) diacrylate, Tri (propylene glycol) diacrylate (Tri (propylene glycol) diacrylate), Tetra (propylene glycol) diacrylate (Tetra (propylene glycol) diacrylate) ), Poly(propylene glycol) diacrylate, Butanediol diacrylate, Hexanediol diacrylate, Hexanediol ethoxylate diacrylate ), Neopentyl glycol propoxylate (1 PO/OH) diacrylate), trimethylol propane ethoxylate (1 EO/OH) methyl ether diacrylate), trimethyl
  • the first capsule reinforcing component and/or the second encapsulation component are each of two or more isocyanate groups, acyl halide groups, chloroformate groups, or acrylic groups. It may have a rate group.
  • a polyurethane microcapsule when the first encapsulating component has a hydroxy group, and the first capsule reinforcing component and/or the second encapsulating component has an isocyanate group, a polyurethane microcapsule can be formed; When the first capsule reinforcing component and/or the second encapsulating component has an acyl halide group, a chloroformate group or an acrylate group, a polyester microcapsule may be formed.
  • the component having a chloroformate group is ethylenebis (chloroformate), diglycolyl chloride, oxydiethylene bis (chloroformate). ), tri(ethylene glycol) bis(chloroformate) (Tri(ethyleneglycol) bis(chloroformate)), 1,4-phenylene bis(chloroformate) (1,4-Phenylene bis(chloroformate)), bisphenol A It may be selected from the group consisting of bis (chloroformate) (Bisphenol A bis (chloroformate)) and bisphenol Z bis (chloroformate) (Bisphenol Z bis (chloroformate)), but is not limited thereto.
  • the component having an acyl halide group is malonyl chloride, succinyl chloride, glutaryl chloride, adipoyl chloride, pimeloyl chloride. chloride), Suberoyl chloride, Sebacoyl chloride, Azelaic acid dichloride, and Dodecanedioyl dichloride. It is not limited.
  • the first capsule reinforcing component is 0.001 to 10 parts by weight, such as 0.005 to 8 parts by weight, 0.01 to 5 parts by weight, 0.05 to 1 part by weight, 0.1 to 0.5 parts by weight, based on the weight of the total composition for producing a microcapsule. It may be included in parts, 0.125 to 0.375 parts by weight. If the content of the first capsule reinforcing component is lower than 0.001 parts by weight, even if the encapsulation reaction occurs, there may be a problem that the outer wall of the capsule is formed thin enough not to be maintained, and if it exceeds 10 parts by weight, the viscosity increases and the capsule is not formed. Can cause problems.
  • the step of forming a pickering emulsion by mixing the continuous phase 1 and the dispersed phase 1 comprises a continuous phase 1 including inorganic particles and a first encapsulation component, a second encapsulation component, and a first capsule reinforcing component. It may be to stir the dispersed phase 1.
  • the stirring conditions for the reaction of the components may be a stirring speed of 10 to 16,000 rpm at room temperature, such as 20 to 30 °C, such as 50 to 13,000 rpm, and a speed of 100 to 10,000 rpm.
  • pickering emulsion refers to an emulsion form in which the interface is stabilized by solid particles.
  • Pickering emulsion has the advantage of low risk of environmental pollution because it can make an emulsion form without using an emulsifier.
  • the stability problem due to shear stress in the reactor and the long-term stability problem must be solved.
  • the present invention includes the step of encapsulating by mixing the continuous phase 2 containing the pickering emulsion and the second capsule reinforcing component.
  • solvent of the continuous phase like the solvent of the continuous phase 1, all solvents commonly used in the art may be included.
  • the second capsule strengthening component is at least one compound selected from the group consisting of a monomer represented by the following formula (3), melamine, and benzidine disulfonic acid; Oligomers thereof; Or a polymer thereof:
  • R 8 to R 13 are each independently hydrogen; Amine group; Hydroxy group; An alkyl group having 1 to 5 carbon atoms; An alkylamine group having 1 to 5 carbon atoms; A hydroxyalkyl group having 1 to 5 carbon atoms; Or it may include an alkenyl group having 2 to 5 carbon atoms, and in Formula 3, at least one of R 8 to R 13 is a compound that may include one of an amine group or a hydroxy group.
  • the second capsule strengthening component may be phenylenediamine, aminobenzylamine, or benzidine disulfonic acid.
  • the second capsule reinforcing component since the second capsule reinforcing component is highly reactive, it must be uniformly coated on the wall of the capsule to form microcapsules having excellent stability. Accordingly, the second capsule reinforcing component may be added after preparing the pickering emulsion.
  • the second capsule reinforcing component is 0.001 to 10 parts by weight, such as 0.005 to 8 parts by weight, 0.01 to 5 parts by weight, 0.05 to 3 parts by weight, 0.1 to 1 parts by weight, based on the weight of the total composition for preparing the microcapsules. Parts, it may be 0.5 to 0.75 parts by weight. If the content of the second capsule reinforcing component is lower than 0.001 parts by weight, even if the encapsulation reaction occurs, the outer wall of the capsule is formed thin enough to not be maintained, and if it exceeds 10 parts by weight, the viscosity increases and the capsule is not formed. Can cause problems.
  • the first encapsulation component and the second encapsulation component are 1: 0.1 to 100 weight ratio, such as 1: 0.1 to 50 weight ratio, 1: 0.1 to 25 weight ratio, 1: 0.1 to 10 weight ratio, 1 : 0.1 to 1 weight ratio, 1: 0.25 to 1 weight ratio, 0.3 to 0.8 weight ratio, may be included in a weight ratio of 0.4 to 0.6, the first encapsulation component and the first capsule reinforcing component is 1: 0.1 to 1 weight ratio, For example, it may be included in a weight ratio of 1: 0.25 to 1, a weight ratio of 0.3 to 0.8, and a weight ratio of 0.4 to 0.6.
  • first encapsulation component, the second encapsulation component, and the first capsule reinforcing component are in a weight ratio of 1: 0.1 to 100: 0.1 to 1, such as 1: 0.1 to 50: 0.1 to 1 weight ratio, 1: 0.1 to 25: 0.1 To 1 weight ratio, 1: 0.1 to 10: 0.1 to 1 weight ratio, 1: 0.1 to 1: 0.1 to 1 weight ratio, 1: 0.25 to 1: 0.25 to 1 weight ratio, 1: 0.3 to 0.8: 0.3 to 0.8
  • the weight ratio of, 1: 0.4 to 0.6: may be included in a weight ratio of 0.4 to 0.6.
  • the present invention may further include a capsule-reinforced inorganic precursor together with the second capsule-reinforced component in the above step.
  • the capsule-reinforced inorganic precursor may be applied to both the inside and the outside of the microcapsule, and may be included to prevent the effective material from being eluted or to delay the dissolution rate by forming a film separate from the wall of the capsule. In addition, it can play a role of helping to release the effective substance at an appropriate time by controlling the cracking property of the capsule.
  • the capsule-reinforced inorganic precursor may be a compound represented by Formula 4:
  • R 14 to R 17 are each independently hydrogen; An alkoxy group having 1 to 5 carbon atoms; An alkyl group having 1 to 5 carbon atoms; Alternatively, it may be a hydrocarbon compound having 1 to 5 carbon atoms including at least one functional group selected from the group consisting of an amine group, a thiol group, a hydroxy group, a carbonyl group, a carboxyl group, and an ether group.
  • the capsule reinforced inorganic precursor is tetramethyl orthosilicate, tetraethylorthosilicate, tetrapropyl orthosilicate, tetrabutyl orthosilicate, trimethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltriethoxysilane, methyl It may be selected from the group consisting of propyltrimethoxysilane, methylpropyltriethoxysilane, aminopropyltrimethoxysilane, and mercaptopropyltrimethoxysilane, but is not limited thereto.
  • the capsule-reinforced inorganic precursor may be tetraethylorthosilicate, methyltrimethoxysilane, or aminopropyltrimethylethoxysilane.
  • the capsule-reinforced inorganic precursor may be included in an amount of 0.01 to 10 parts by weight, for example, 0.005 to 8 parts by weight, or 0.01 to 5 parts by weight, based on 100 parts by weight of the total microcapsules.
  • the content of the capsule-reinforced inorganic precursor is less than 0.001 parts by weight, excellent stability cannot be imparted to the capsule, and when the content exceeds 10 parts by weight, an inorganic capsule is formed and may be easily broken.
  • the encapsulation reaction may occur due to contact between reactive polymers.
  • it may be performed at a temperature of 0 to 100° C., for example, 10 to 90° C., for 1 to 48 hours, for example 2 to 24 hours.
  • Stirring conditions may be 10 to 6,000 rpm, such as 50 to 5,000 rpm, 100 to 4,000 rpm.
  • the microcapsules prepared by using a combination of the first encapsulation component and the second capsule reinforcement component, and the second encapsulation component and the first capsule reinforcement component exhibit excellent stability and biodegradability.
  • the first encapsulation component and the second capsule reinforcement component are each a compound containing an amine group
  • the second encapsulation component and the first capsule reinforcement component are a compound containing an isocyanate group, respectively. It was confirmed that the stability and biodegradability effect was the most excellent in the capsule.
  • the method of manufacturing the microcapsules may further include adsorbing particles that promote natural decomposition to the microcapsules.
  • the particles for accelerating natural decomposition may be selected from the group consisting of titanium oxide, zinc oxide, zirconium oxide, tungsten oxide, platinum and platinum oxide, and gold chloride, but are not limited thereto.
  • the particles promoting natural decomposition may be included in the first solution (continuous phase).
  • the natural decomposition promoting particles may have a diameter of 1 to 900 nm, for example, 1.5 to 750 nm, and a diameter of 2 to 500 nm. If the size of the particles for accelerating natural decomposition is smaller than 1 nm, there may be a problem that the effect of accelerating natural decomposition is difficult to appear.
  • the particles that promote natural decomposition may be particles that promote biodegradation and/or photodegradation, and preferably, particles that promote photodegradation.
  • the natural decomposition promoting particles may be included in a concentration of 0.1 to 10,000 ppm, for example, 1 to 8,000 ppm, or 2 to 5,000 ppm. If the concentration of the natural decomposition accelerating particle is lower than 0.1 ppm, the decomposition accelerating effect does not appear, and if it is higher than 10,000 ppm, the decomposition accelerating effect does not appear by interfering with the transmission of light. have.
  • the method of manufacturing the microcapsules may further include the step of adding a dispersion stabilizer after the encapsulation reaction.
  • the dispersion stabilizer may be added to increase the dispersibility of the microcapsules generated after the reaction.
  • the dispersion stabilizer gum arabic, polysaccharide, pectin, alginate, arabinogalactan, carrageenan, gellan gum, xanthan gum, guar gum, acrylate/acrylic polymer, starch, water-swellable clay, acrylate/aminoacrylic Rate copolymers or mixtures thereof, maltodextrins, alginate esters, gelatin, protein hydrolysates or quaternized forms thereof, synthetic polymers or copolymers such as poly(vinyl pyrrolidone-co-vinyl acetate), poly( Vinyl alcohol-co-vinyl acetate), poly(maleic acid), poly(alkylene oxide), poly(vinylmethylether), poly(vinyl)
  • the method of manufacturing the microcapsules may further perform a concentration and/or drying process as necessary.
  • the step of adjusting the pH using an acid or a basic substance may be further performed.
  • FIG. 1 The method for manufacturing microcapsules according to the present invention is schematically illustrated in FIG. 1 below.
  • the present invention provides a microcapsule manufactured according to the above manufacturing method. That is, the present invention provides a microcapsule comprising a first encapsulation component, a second encapsulation component, a first capsule reinforcement component, a second capsule reinforcement component, and inorganic particles.
  • microcapsule means a capsule having a diameter in the range of 1 to 1000 ⁇ m.
  • the microcapsules may have a diameter of 0.1 to 100 ⁇ m, for example, 1 to 80 ⁇ m, and a diameter of 2 to 50 ⁇ m.
  • the outer wall thickness of the microcapsules may have a thickness of 0.03 to 10 ⁇ m.
  • the capsule When the diameter of the microcapsules is smaller than 0.1 ⁇ m, the capsule is not broken and it is difficult to realize the effect of the capsule for releasing the active ingredient, and when the diameter is larger than 100 ⁇ m, the capsule is easily made by shear stress generated during product manufacturing. There may be a problem that may be broken or a foreign body sensation may occur.
  • the microcapsules manufactured according to the manufacturing method of the present invention may have excellent stability and natural degradability properties.
  • the natural degradability refers to a property that is decomposed in nature without undergoing a separate process and treatment by microorganisms, light, or the like. That is, the naturally degradable microcapsules of the present invention may include biodegradable and photodegradable microcapsules. Accordingly, the present invention can provide a biodegradable microcapsule and/or a photodegradable microcapsule.
  • "stability" is usually a monomolecular substance, which delays the spontaneous or involuntary outflow of an effective substance having high permeability from one isolated space to another space, and more specifically, from the inside of the capsule to the external environment.
  • the stability according to the present invention is that the microcapsules including the supporting material are put in an aqueous surfactant solution and stored at a temperature of 40 to 60° C. for 7 days, and then the supporting material in the capsule is extracted, compared with the amount of the initial supporting material, in the capsule.
  • the surfactant may include a surfactant commonly used in the art.
  • the surfactant is anionic surfactant of fatty acid sodium, monoalkyl sulfate, alkylpolyoxyethylene sulfate, alkylbenzenesulfonate or monoalkylphosphate; Cationic surfactants of dialkyldimethylammonium salts or alkylbenzylmethylammonium salts; Amphoteric surfactants such as alkylsulfobetaine or alkylcarboxybetaine; Alternatively, it may be a nonionic surfactant of polyoxyethylene alkyl ether, fatty acid sorbitan ester, fatty acid diethanolamine, or alkyl monoglyceryl ether, but is not limited thereto. In one embodiment, the surfactant may be a polysorbate nonionic surfactant.
  • biodegradability refers to the degree of decomposition by microorganisms, and according to the OECD 301D test method, when the decomposition by microorganisms is 20% or more for 28 days in a dark room at room temperature, preferably 30% or more, More preferably, it may mean a case of 40% or more.
  • the "photodegradability" is, according to the OECD 316 test method, when the decomposition according to the wavelength of light is 50% or more when exposed to light for 12 hours per day for a total of 30 days using a xenon lamp in an aqueous condition, preferably It may mean a case of 60% or more, more preferably 70% or more.
  • biodegradable microcapsules in the present invention may mean a capsule having a degree of biodegradation of 50% or more, preferably 60% or more, and more preferably 70% or more.
  • microcapsules prepared according to the above manufacturing method may be used as a carrier for a fragrance product, a functional material, or a poorly soluble material depending on the type of active material.
  • the active material may be selected from the group consisting of fragrance oils, sunscreens, dyes, catalysts, antioxidants, and drugs.
  • the present invention can provide a fragrance product comprising the microcapsules.
  • the scent fragrance product may include, but is not limited to, a fragrance fragrance spray, a fragrance liquid product, a detergent, a face wash, a body product, a hair product, or a fabric softener composition.
  • the present invention can provide a sunscreen cosmetic composition comprising the microcapsules.
  • the sunscreen include inorganic sunscreens such as titanium dioxide (TiO 2 ), zinc oxide (ZnO), silicate or talc; Or isoamyl-p-methoxycinnamate, octylmethoxycinnamate, ethylhexyltriazone, oxybenzone, diethylaminohydroxybenzoyl hexylbenzoate, octocryleneoctylsalicylate, butylmethoxydibenzoylmethane, octyl It may be an organic sunscreen agent such as salicylate, benzophenone, and anthranilate, but is not limited thereto.
  • the microcapsule of the present invention may be provided as a carrier for improving the stability of the functional material or poorly soluble material.
  • the functional substance or poorly soluble substance include antioxidants such as retinol or resverastrol; Or it may include a poorly soluble substance such as cholesterol or ceramide, but is not limited thereto.
  • microcapsules prepared according to the manufacturing method according to the present invention can exhibit high versatility, biodegradability and long-term stability, and can stably support an active substance in the capsule even in the presence of a surfactant.
  • FIG. 1 is a schematic diagram of a method of manufacturing a microcapsule according to the present invention.
  • Figure 2 shows the comparison of performance/stability in the presence of a surfactant after storing the microcapsules according to the present invention at 50° C. for 7 days.
  • Microcapsules were prepared according to the composition of Table 1 below.
  • 1 g of silica was dispersed in 68 g of distilled water, and 1 g of the first encapsulating component (hereinafter referred to as a biodegradable polymer), which is a biodegradable polymer corresponding to each of Examples 1 to 6, was added to form continuous phase 1.
  • a biodegradable polymer which is a biodegradable polymer corresponding to each of Examples 1 to 6
  • a biodegradable polymer which is a biodegradable polymer corresponding to each of Examples 1 to 6
  • Polyurea microcapsules of Comparative Examples 1 and 2 were prepared according to the composition of Table 1 below. First, after dissolving 1 g of polyethyleneimine in 69 g of distilled water, a polymerization reaction was conducted at 80° C. for 12 hours while mixing a solution in which 0.5 g of polyisocyanate was dissolved in 29.5 g of dodecaine to obtain the polyurea microcapsules of Comparative Example 1. Was prepared.
  • the biodegradability of the microcapsules prepared in Examples 1 to 6 and Comparative Examples 1 and 2 was compared.
  • the biodegradability of the microcapsules was measured using the OECD 301D method after extracting the capsule wall.
  • the OECD 301D method is a method of measuring dissolved oxygen consumption using a closed test bottle, and is a method of measuring the biodegradability of capsules, which is a non-aqueous test substance, based on the theoretical oxygen demand (ThOD) over time.
  • ThOD theoretical oxygen demand
  • the biodegradability was calculated by the following general formula 1.
  • Polyurea microcapsules were prepared according to the composition of Table 2 below.
  • 1 g of silica was dispersed in 58 g of distilled water and 1 g of chitosan, which is a biodegradable polymer (first encapsulation component), was added to prepare a continuous phase 1, and 1 g of phenylenediamine, a second capsule reinforcing component, was added to 9 g of distilled water. Put to prepare a continuous phase 2.
  • a combination of polyisocyanate as a second encapsulating component and methyldiphenyldiisocyanate as a first capsule reinforcing component was added to prepare a dispersed phase.
  • the dispersed phase was added to the continuous phase 1 and stirred at 2,000 rpm to prepare a Pickering emulsion. Thereafter, continuous phase 2 was added to the Pickering emulsion, and interfacial polymerization was performed at 80° C. for 12 hours to prepare polyurea microcapsules.
  • Microcapsules were prepared according to the composition of Table 2 below.
  • the microcapsules of Comparative Example 3 were prepared in the same manner as in Examples 1 to 6, except that the second encapsulation component, polyisocyanate, was not included, and Comparative Examples 4 to 6 did not contain a biodegradable polymer.
  • stability is a measure of the ability of the capsule to retain the fragrance oil in the capsule even in a harsh environment where the surrounding environment is surrounded by an emulsifier.
  • the stability is based on 100 parts by weight of the total composition, 1 part by weight of microcapsules were added to 5 parts by weight of Tween20 aqueous solution and stored at 50° C. for 7 days, and then ethanol and a tip sonicator (FisherbrandTM, Fisher Scientific, USA) were used. Then, the fragrance oil in the capsule was extracted, and the content was measured with a UV spectrometer (FastTrackTM UV Vis Technology, Mettler Toledo, USA) to compare the stability. Biodegradability was measured in the same manner as in Experimental Example 1.
  • Example 1 Comparative Example 3
  • Example 7 Comparative Example 4
  • Comparative Example 5 Comparative Example 6
  • Example 8 Comparative Example 7
  • Example 9 Distilled Water 68 68 68 68 68 68 68 68 Silica One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One
  • the microcapsules of Comparative Examples 4 to 6 that do not contain a biodegradable polymer showed low biodegradability and stability
  • the microcapsules of Comparative Examples 3, 5 and 7 that do not contain a second encapsulation component have a dense capsule wall. It was not formed and showed low stability.
  • the first capsule strengthening component it was also possible to confirm the tendency of the biodegradability to be lowered depending on the amount used.
  • the second encapsulating polymer and the second capsule reinforcing component are used in combination, it was confirmed that the capsule wall was formed densely, thereby improving the stability of the capsule.
  • Polyurea microcapsules were prepared according to the composition of Table 3 below. First, 1 g of silica was dispersed in 58 g of distilled water, and 1 g of chitosan, a biodegradable polymer, was added to prepare a continuous phase 1, and 1 g of the second capsule strengthening component (phenylenediamine, aminobenzylamine and benzidine disulfonic acid) was added to distilled water. Into 9 g, continuous phase 2 was prepared.
  • the second capsule strengthening component phenylenediamine, aminobenzylamine and benzidine disulfonic acid
  • a dispersed phase was prepared by adding a second encapsulating component and a first capsule strengthening component (methyldiphenyl diisocyanate, naphthalene diisocyanate, isophorone diisocyanate, and xylene diisocyanate) to 29.5 g of fragrance oil. Then, the dispersed phase was added to the continuous phase 1 and stirred at 2,000 rpm to prepare a Pickering emulsion. Thereafter, continuous phase 2 was added to the Pickering emulsion, and interfacial polymerization was performed at 80° C. for 12 hours to prepare polyurea microcapsules.
  • a first capsule strengthening component methyldiphenyl diisocyanate, naphthalene diisocyanate, isophorone diisocyanate, and xylene diisocyanate
  • Example 10 Example 11
  • Example 12 Example 13 Comparative Example 8
  • Example 14 Example 15
  • Example 16 Example 17
  • Example 18 Distilled Water 68 68 68 68 68 68 68 68 68 Silica One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One One Chitosan 0.5 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
  • the microcapsule according to the present invention is used in combination with the first encapsulation component (biodegradable polymer) and the second capsule reinforcement component, and when the second encapsulation component and the first capsule reinforcement component are used in combination, stability and biodegradation It can exhibit a remarkable effect in the figure.
  • Microcapsules were prepared according to the composition of Table 4 below. First, 1 g of silica was dispersed in 58 g of distilled water, and 1 g of chitosan, a biodegradable polymer, was added to prepare continuous phase 1, and 1 g of phenylene diamine, a second capsule reinforcing component, was added to 9 g of distilled water to form continuous phase 2.
  • a dispersion phase was prepared by adding a combination of polyisocyanate as a second encapsulating component and methyldiphenyl isocyanate as a first capsule reinforcing component to 29.5 g of fragrance oil.
  • the dispersed phase was added to the continuous phase 1 and stirred at 2,000 rpm to prepare a Pickering emulsion. Thereafter, the continuous phase 2 and the capsule reinforced inorganic precursor (tetraethyl orthosilicate, methyltrimethoxysilane and aminopropyltrimethylethoxysilane) were added to the Pickering emulsion, and interfacial polymerization was performed at 80° C. for 12 hours. Capsules were prepared.
  • Example 10 Example 19 Example 20 Example 21 Example 22 Distilled Water 68 67.5 67 67.5 67 Silica One One One One One One Chitosan 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Phenylenediamine 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Polyisocyanate 0.25 0.25 0.25 0.25 0.25 Methyl diphenyl diisocyanate 0.25 0.25 0.25 0.25 0.25 Tetraethylorthosilicate - 0.5 One - - Methyltrimethoxysilane - - - 0.5 One Aminopropyltrimethylethoxysilane - - - - - Incense oil 29.5 29.5 29.5 29.5 Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 stability(%) 60 80 70 75 65 Biodegradability (%) 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
  • Microcapsules were prepared according to the composition of Table 5 below. First, by dispersing silica and biodegradation promoting particles (TiO 2 and ZnO) in 58 g of distilled water, 1 g of chitosan, a biodegradable polymer, was added to prepare continuous phase 1, and 1 g of phenylene diamine, a second capsule reinforcing component, was added to distilled water 9 Put in g to prepare a continuous phase 2. A dispersion phase was prepared by adding a combination of a second encapsulating component of polyisocyanate and a first capsule reinforcing component of methyldiphenyl diisocyanate to 29.5 g of fragrance oil.
  • silica and biodegradation promoting particles TiO 2 and ZnO
  • the dispersed phase was added to the continuous phase 1 and stirred at 2,000 rpm to prepare a Pickering emulsion.
  • the stability, biodegradability and photodegradability of the microcapsules prepared in the previous examples were measured. Stability and biodegradability were measured by the same method as in Experimental Example 2, and photodegradability was measured by referring to OECD 316 method.
  • energy equivalent to about 10,000 W/m 2 which is about 4 weeks based on the annual average amount of sunlight in Seoul, is irradiated using a Xenon lamp using a Suntest XLS+, and then COD (Chemical Oxygen Demand) before and after values were compared, and the decomposition degree was measured by the following general formula 2.
  • ECHA European Chemicals Agency
  • Example 19 Example 23 Example 24 Example 25 Example 26 Distilled Water 67.5 67.5 67.5 67 67 Silica One 0.5 0.5 One One TiO 2 - 0.5 - 0.5 - ZnO - - 0.5 - 0.5 Chitosan 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Polyisocyanate 0.25 0.25 0.25 0.25 0.25 0.25 Methyl diphenyl diisocyanate 0.25 0.25 0.25 0.25 0.25 Tetraethylorthosilicate 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Incense oil 29.5 29.5 29.5 29.5 29.5 Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 stability (%) 80 80 80 80 80 80 80 Biodegradability (%) 40 40 40 40 40 40 40 40 40 Photo resolution (%) 20 35 22 74 61 Natural degradability (%) 52 61 53.2 84.4 7
  • Microcapsules were prepared according to the composition of Table 6 below. Tween20, gum arabic, and pre-melamine formaldehyde solution were dispersed in 54.5 g of distilled water to prepare a continuous phase. An emulsion was prepared by slowly putting 30 g of perfume (dispersion phase) in the continuous phase at 2,000 rpm. After lowering to 1000 rpm, the pH was lowered to 5 with citric acid, and the capsule formation reaction was performed at 70° C. for 3 hours. After terminating the reaction by adjusting the pH to 7.5 using tromethamine, a melamine-formaldehyde resin capsule was prepared by adding and adsorbing biodegradation promoting particles.
  • Microcapsules were prepared according to the composition of Table 6 below. 0.5 g of polyvinyl alcohol was dissolved in 63 g of distilled water to prepare a continuous phase. To 30 g of perfume, 1.8 g of methacrylic acid and 4 g of pentaerytritol triacrylate, 2,2' azobis-(2-methylbutyronitryl (2,2' azobis-( 2-methylbutyronitrile)) 0.2 g was dissolved to prepare a dispersed phase.After making an emulsion by slowly adding the dispersed phase to the continuous phase at 2,000 rpm, it was reacted at 80°C for 6 hours to proceed with the capsule formation reaction. A series capsule was prepared.
  • Example 25 Comparative Example 9 Comparative Example 10 Distilled Water 67 54 63 Silica One - - TiO 2 0.5 0.5 0.5 Chitosan 0.5 - - Phenylenediamine 0.5 - - Polyisocyanate 0.25 - - Methyl diphenyl diisocyanate 0.25 - - Tetraethylorthosilicate 0.5 - - Tween 20 - 2 - Arabic gum - 5 - Pre-melamine formaldehyde Solution - 7.5 - Tromethamine - 0.5 - Citric acid - 0.5 - Polyvinyl alcohol - - 0.5 Methacrylic acid - - 1.8 Pentaerytritol triacrylate - - 4 2,2'-azobis-(2-methylbutyronitrile) (2,2' azobis-(2-methylbutyronitrile) - - 0.2 Incense oil 29.5 30 30 Total 100 100 100 stability (%) 80 90 85 Biodegradability (%)
  • biodegradability is higher than that of Comparative Examples 9 and 10, It was confirmed that it has photodegradability and biodegradability.
  • Washing evaluation was performed to confirm applicability as a fabric softener using the microcapsules prepared in the previous examples.
  • a commercially available cotton towel (30 cm ⁇ 20 cm) was repeatedly washed 5 times in a washing machine using a standard amount of general laundry detergent, and then dehydrated. Based on 100 parts by weight of the total composition, 1 part by weight of the previously prepared microcapsules was added to an aqueous solution containing 5 parts by weight of Tween20, and the composition was stored at 50° C. for 7 days. The composition was quantified to a standard amount of use (0.67 ml/L washing water) in an agitated washing machine, and then treated with a rinsing course, and the cotton towel was taken out by dehydration.
  • the cotton towel was dried at a humidity of 30% and a temperature of 25° C. for 12 hours.
  • three time points (right after washing, after drying and after rubbing) were set, and 20 experienced panelists performed sensory evaluation to evaluate the fragrance intensity.
  • the fragrance intensity was given as 0 points for a cotton towel without microcapsules, from the lowest point 0 to the highest point 5 points, and this was repeated three or more times and expressed as the average value.
  • the sensory evaluation treated immediately after the composition containing the microcapsules was prepared and the sensory evaluation processed after the composition was stored for 7 days are shown in Table 7 and FIG. 2, respectively.
  • Example 7 Example 7
  • Example 8 Example 10
  • Example 23 Example 25 Immediately after washing 1.21 1.81 1.34 1.31 1.2 1.13 1.08 1.27 after drying 0.86 0.58 0.61 0.76 0.55 0.57 0.68 0.59 After rubbing 0.75 0.64 1.21 1.52 2.58 3.51 3.41 3.46
  • Example 19 including a biodegradable polymer, an encapsulating polymer, and a capsule reinforcing polymer
  • the stability and fragrance of the capsule were strong, Particularly, in the case of Example 19 using the capsule-reinforced inorganic precursor, it was confirmed that the most excellent stability and fragrance odor were maintained.
  • the stability and scent properties similar to those of Example 19 were maintained.
  • the capsules of Example 25 to which particles to promote decomposition were added were diluted in distilled water to a concentration of 500 ppm. After that, the degree of decomposition in natural sunlight was compared using a particle size analyzer (Mastersize 3000, Malvern) to measure the change in the size of the capsule over time.
  • a particle size analyzer Mastersize 3000, Malvern
  • the capsule was decomposed by sunlight for 25 days, resulting in a smaller size, and it was confirmed that the capsule was decomposed even in water, but no decomposition occurred in the opaque container, so that the size of the capsule was changed. Did. Through the above results, it can be confirmed that the capsules exist stably in the form of a product, but decomposition occurs when discharged to the natural system after use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Cosmetics (AREA)

Abstract

본 발명은 마이크로캡슐의 제조방법에 관한 것으로, 본 발명의 제조방법에 따라 제조된 마이크로캡슐은 높은 범용성, 자연 분해성 및 장기 안정성을 나타낼 수 있으며, 계면활성제의 존재 하에서도 캡슐 내 유효물질을 안정하게 담지할 수 있다.

Description

자연 분해성 마이크로캡슐 및 이의 제조방법
본 발명은 자연 분해성 마이크로캡슐의 제조방법 및 상기 제조방법에 따라 제조된 마이크로캡슐에 관한 것이다.
유효성분의 효과적인 전달을 위해 캡슐화 방법을 사용하고 있으며, 적은 용량의 사용으로도 정확한 전달을 하여 부작용, 유효성분의 안정성 유지 및 비용에 관한 문제를 줄일 수 있어 의/약학 분야에서 약물의 표적 전달, 위생용품에 있어 향료의 안정성 유지 및 사용자가 원하는 시점에서의 발향, 화장품 분야에서 효능 물질의 빛, 열 등 외부 자극으로부터의 안정성 유지 및 피부 전달, 농업 분야에서의 살충제, 식품 분야에서의 영양성분의 안정성 및 흡수 효율 강화 등 산업 분야에 다양한 형태와 목적으로 응용되고 있다.
국제 기구들에서는 자연계에서 분해가 되지 않고 축적되어 심각한 환경오염을 유발할 수 있는 미세플라스틱 (지름 5 mm 이하의 인간이 임의로 만든 물질로 자연에 배출 시 분해되지 않고 축적되는 중합체) 오염의 원인 중 하나로 마이크로캡슐을 지목하고 있다. 그러나 미세플라스틱 범주에서 벗어나기 위해 무기입자로 제조한 캡슐은 건조시 발생하는 장력이나 충격에 약해 쉽게 깨어지고 천연 고분자로 제조하면 물질 고유의 미세 다공성으로 인해 캡슐 내부의 유효성분이 용출되어 캡슐의 안정성이 유지되지 않는 문제점이 있으며, 미세 다공성을 줄여 안정성을 높이기 위해 가교결합을 이용하면 분해성이 낮아지는 문제점이 있다. 또한 쉽게 분해되도록 에스테르 결합이 도입된 물질을 사용하면 제형의 가혹한 조건 (pH 변화, 온도 변화)를 버티지 못해 사용 전에 분해되는 문제점이 있지만 현재까지도 해결책이 알려져 있지 않거나 전무한 상태이다.
실제 자연환경에서 물질의 분해는 미생물과 빛, 가수분해 등에 의해 일어나며 국제 표준 측정법으로 지정된 물질의 분해성은 미생물과 빛에 의한 분해 법이 지정되어 있다. 보다 자세하게는 OECD 301D 시험법에 의거하여 상온의 암실에서 28일동안 미생물에 의한 분해가 60% 이상인 경우 '즉시 분해되는 물질', 20 내지 60%인 경우 '생분해성이 있는 물질', 20% 아래인 경우 '분해성이 없는 물질'로 분류되고 있으나, OECD 316 시험법에 의거하여서는 수계조건에서 제논 램프를 이용 일간 12시간, 총 30일동안 빛이 조사되었을 때 일어나는 분해도 측정방법이 제시되어 있다. 탄화수소 물질이 물과 이산화탄소로 분해되는데 있어서 실제 자연환경에서는 빛만으로는 화학적 분해를 유도하는 에너지가 부족하기 때문에 광촉매를 도입하여 분해를 촉진시키는 예가 있으나 폴리에틸렌, 폴리프로필렌, 폴리스티렌 등 탄화수소 사슬이 주성분인 물질의 경우 완전히 분해되기 어려운 한계가 있다.
한편으로 유효성분은 대개 단분자 물질로 투과성이 높거나 산화성이 강해 외부환경으로부터 산소, 활성산소, 유리기 등의 산화물질이 침투하여 산화되는 문제가 있어 캡슐의 안정성 유지를 위해 캡슐 막의 격리성을 높이는 방법에 대한 관심이 높아지고 있다. 유효성분의 효과적인 담지를 위해 캡슐화에 사용되는 소재는 유기소재 고분자부터 무기소재까지 폭넓은 스펙트럼으로 사용되며 캡슐 막의 투과성을 낮추기 위해 고분자 계면중합, 이온 결합을 통한 Layer-by-Layer, pH에 따른 용해도 변화를 통한 고형화 등의 방법이 제안되었다. 그러나 이러한 방법들로 캡슐 막을 강화하여도 제형 내 계면활성제나 이온성분, 용매 존재 하의 가혹환경에서 유효성분이 용출되는 한계가 있다.
일 예로 폴리우레아의 계면중합으로 만들어진 캡슐의 경우 유효성분 방출 성능은 우수하나 계면활성제에 의해 유효성분의 용출이 일어나 안정성에 문제가 있다고 보고된 바 있다. 다른 예로, US 9,944,886 B2와 [J. Hitchcock et al., Long-Term Retention of Small, Volatile Molecular Species within Metallic Microcapsules, ACS Appl. Mater. Interfaces 2015, 7, 27, 14808-14815] 문헌에서는 소수성이 높은 물질인 폴리메타아크릴레이트로 제조된 캡슐의 경우 유기용매에서 수분 내에 용출되어 이를 해결하기 위해 원자간 간격이 수 옹스트롬 (Å)으로 유효성분이 빠져나가기 어려운 금속으로 캡슐을 코팅하여 캡슐의 안정성을 개선하는 방법을 사용하였으나, 사용 가능한 물질이 금이나 은으로 한정되어 상용화에 한계가 있다. 또 다른 일 예로, US 9,943,487 B2에서는 캡슐의 안정성을 높이기 위해 도파민을 캡슐 외벽에 코팅하여 열과 유기용매에 대한 안정성을 높였으나, 제조방법이 까다로워 상용화에 한계가 있다는 문제가 있다.
따라서 자연에 배출되었을 때 분해가 일어나 환경오염이 되지 않으면서 높은 범용성 및 안정성을 가질 뿐 아니라, 쉽게 제조하여 경제성이 높으며 유효성분의 활성을 손쉽게 조절할 수 있는 캡슐 소재 개발이 필요한 실정이다.
본 발명자들은 담지되는 유효물질의 용출을 방지하여 장기 안정성을 유지하고 자연 분해성이 우수한 마이크로캡슐을 개발하고자 연구한 결과, 제 1 캡슐화 성분, 제 2 캡슐화 성분, 제 1 캡슐 강화 성분 및 제 2 캡슐 강화 성분을 이용하여 피커링 에멀전을 제조하고 상기 피커링 에멀전을 캡슐화하면 높은 범용성과 우수한 자연 분해성 및 안정성을 가질 뿐만 아니라 유효물질의 활성을 손쉽게 조절할 수 있는 마이크로캡슐을 제조할 수 있음을 확인하고 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 높은 범용성, 자연 분해성 및 안정성을 갖는 마이크로캡슐의 제조방법 및 이에 따라 제조된 마이크로캡슐을 제공하는 것이다.
상기 과제를 해결하기 위한 수단으로서, 본 발명은
무기입자 및 제 1 캡슐화 성분을 포함하는 연속상 1과, 제 2 캡슐화 성분 및 제 1 캡슐 강화 성분을 포함하는 분산상 1을 혼합하여 피커링 에멀전을 제조하는 단계; 및
제 2 캡슐 강화 성분을 포함하는 연속상 2와 상기 피커링 에멀전을 혼합하여 캡슐화하는 단계를 포함하는 마이크로캡슐의 제조방법으로서,
상기 제 1 캡슐화 성분 및 제 2 캡슐 강화 성분은 아민기 또는 하이드록시기를 각각 또는 모두 2개 이상 포함할 수 있고,
상기 제 2 캡슐화 성분 및 제 1 캡슐 강화 성분은 각각 아민기, 이소시아네이트기, 아실할라이드기, 클로로포메이트기 및 아크릴레이트기로 이루어진 군에서 선택된 작용기를 2개 이상 포함할 수 있다.
또한, 상기 제조방법에 따라 제조된 마이크로캡슐을 제공할 수 있다.
또한 본 발명에서는,
무기입자, 제 1 캡슐화 성분, 제 2 캡슐화 성분, 제 1 캡슐 강화 성분 및 제 2 캡슐 강화 성분을 포함하는 마이크로캡슐을 제공할 수 있다.
상기 제 1 캡슐화 성분과 제 2 캡슐 강화 성분은 하나 이상의 동일한 작용기를 가질 수 있으며, 상기 동일한 작용기는 특히 아민기일 수 있다. 상기 제 2 캡슐화 성분과 제 1 캡슐 강화 성분은 하나 이상의 동일한 작용기를 가질 수 있으며, 상기 동일한 작용기는 특히 이소시아네이트기일 수 있다.
이하, 본 발명의 구성을 상세하게 설명한다.
본 발명의 마이크로캡슐의 제조방법은,
무기입자 및 제 1 캡슐화 성분을 포함하는 연속상 1과 제 2 캡슐화 성분 및 제 1 캡슐 강화 성분을 포함하는 분산상 1을 혼합하여 피커링 에멀전을 제조하는 단계; 및
제 2 캡슐 강화 성분을 포함하는 연속상 2와 상기 피커링 에멀전을 혼합하여 캡슐화하는 단계를 포함한다.
보다 구체적으로, 본 발명은 무기입자 및 제 1 캡슐화 성분을 포함하는 연속상 1을 제조하는 단계를 포함한다.
상기 연속상 1의 용매로는 당업계에서 통상적으로 사용되는 용매를 모두 포함할 수 있다.
한 구체예에서, 상기 연속상 1의 용매는 증류수일 수 있다.
본 발명에 있어서, 상기 무기입자는 마이크로캡슐의 기초 구조인 피커링 에멀전을 형성하기 위한 목적으로 첨가되는 것으로, 금속, 비금속 또는 이들의 혼합물일 수 있으나, 이에 제한되는 것은 아니다. 본 발명에서 상기 무기입자는 수상에 용해되지 않고 분산상에 흡착될 수 있는 무기입자라면 그 종류가 제한되지 않는다. 예컨대 상기 무기입자로는 티타늄, 바나듐, 망간, 철, 코발트, 니켈, 구리, 니오븀, 몰리브덴, 루테늄, 로듐, 팔라듐, 은, 아연, 하프늄, 탄탈륨, 텅스텐, 이리듐, 백금, 금, 인듐, 주석, 칼슘, 알루미늄 또는 마그네슘과 같은 금속; 필로실리케이트, 이노실리케이토, 소로실리케이트 또는 텍토실리케이트의 실리카와 같은 비금속; 또는 이들의 혼합물에서 선택될 수 있다.
한 구체예에서, 상기 무기입자는 실리카일 수 있다.
또한, 상기 무기입자는 1 내지 900 nm의 직경, 예컨대 1.5 내지 750 nm의 직경, 2 내지 500 nm의 직경을 갖는 것일 수 있다.
본 발명에 있어서, 상기 무기입자의 함량은 마이크로캡슐의 제조를 위한 전체 조성의 중량을 기준으로, 0.001 내지 5 중량부, 예컨대 0.005 내지 4 중량부, 0.01 내지 3 중량부, 0.1 내지 2 중량부, 0.5 내지 1.5 중량부로 포함될 수 있다.
본 발명에 있어서, 제 1 캡슐화 성분은 생분해성 고분자를 의미하며, 연속상에 용해되어 후술되는 분산상에 존재하는 제 2 캡슐화 성분과 계면중합 반응하여 캡슐의 외벽을 형성하고 용이하게 분해되기 위해 포함될 수 있다.
본 발명에 있어서, 상기 제 1 캡슐화 성분은 분자 내 아민기 및/또는 하이드록시기를 갖는 생분해성 고분자이라면 특별히 제한되지 않는다. 상기 생분해성 고분자는 천연 성분 또는 합성 성분일 수 있으며, 모노머, 올리고머 또는 폴리머일 수 있다. 상기 천연 성분으로는 셀룰로오스, 히알루론산, 잔탄검, 키토산 또는 헤파린과 같은 다당류; 하이드록시에틸셀룰로오스 또는 하이드록시프로필셀룰로오스와 같은 다당류의 일부 변형 물질; DNA 또는 RNA의 핵산; 콜라겐, 젤라틴 또는 실크 피브로인과 같은 단백질; 또는 폴리라이신, 폴리글루타믹산 또는 폴리아르기닌과 같은 폴리펩타이드를 포함할 수 있다. 상기 합성 성분으로는 폴리에스테르, 폴리포스파잔, 폴리아미노산 또는 폴리오르토에스테르와 같은 하이드록시기, 카르복시기 또는 아민기를 갖는 성분을 포함할 수 있다.
또한, 상기 제 1 캡슐화 성분은 아민기 및/또는 하이드록시기를 포함하는 성분뿐만 아니라 상기 작용기를 포함하도록 표면 개질된 것까지도 포함될 수 있다. 즉, 본 발명에서, 상기 제 1 캡슐화 성분은 2개 이상의 아민기; 2개 이상의 하이드록시기; 또는 2개 이상의 아민기와 2개 이상의 하이드록시기를 갖는 성분을 모두 포함하는 것일 수 있다.
또한, 상기 제 1 캡슐화 성분은 200 Da 내지 1,000,000 Da의 분자량, 예컨대 500 Da 내지 500,000 Da의 분자량, 1,000 Da 내지 100,000 Da의 분자량을 갖는 것일 수 있다. 또한, 상기 제 1 캡슐화 성분은 마이크로캡슐을 제조하기 위한 전체 조성의 중량을 기준으로, 0.01 내지 20 중량부, 예컨대 0.05 내지 15 중량부, 0.1 내지 10 중량부, 0.5 내지 5 중량부, 0.01 내지 10 중량부, 0.05 내지 5 중량부, 0.1 내지 1 중량부, 0.25 내지 0.75 중량부로 포함될 수 있다. 본 발명에 있어서, 상기 제 1 캡슐화 성분의 분자량이 200 Da 미만이거나 함량이 0.01 중량부 미만인 경우, 마이크로캡슐의 외벽 형성을 위한 반응에 참여할 수 있는 작용기가 적어 가교되지 않는 문제가 발생할 수 있고, 제 1 캡슐화 성분의 분자량이 1,000,000 Da을 초과하거나 함량이 20 중량부를 초과하게 되면 점도가 증가하여 마이크로캡슐의 외벽이 형성되지 않고 하이드로젤이 형성되는 문제가 발생할 수 있다.
한 구체예에서, 상기 제 1 캡슐화 성분은 키토산일 수 있다.
상기 무기입자와 제 1 캡슐화 성분을 포함하는 연속상 1은, 제 2 캡슐화 성분과 제 1 캡슐 강화 성분을 포함하는 분산상 1과 혼합되어 피커링 에멀전을 제조할 수 있다.
이에, 본 발명은 제 2 캡슐화 성분과 제 1 캡슐 강화 성분을 포함하는 분산상 1을 제조하는 단계를 포함한다.
상기 분산상 1의 용매로는 연속상과 혼합되어 섞이지 않는 용매를 선택할 수 있다. 본 발명에 있어서, 상기 연속상 1의 용매가 증류수인 경우, 상기 분산상 1의 용매는 펜탄, 헥산, 사이클로헥산, 헵탄, 옥탄, 이소도데칸 또는 도데칸과 같은 선형 또는 비선형 구조의 탄화수소계 용매; 에틸에테르, 부틸에테르, 또는 메틸부틸에테르와 같은 에테르기를 포함하는 용매; 에틸아세테이트, 부틸아세테이트 또는 에틸부티레이트와 같은 에스테르기를 포함하는 용매; 메틸에틸케톤과 같은 케톤기를 포함하는 용매; 벤젠, 톨루엔 또는 자일렌과 같은 벤젠을 포함하는 용매; 디클로로메탄, 디클로로에탄, 클로로포름 또는 사염화탄소와 같은 할로알칸계 용매; 또는 디메치콘 또는 사이클로메치콘과 같은 실리콘계 용매로 이루어진 군에서 선택되는 것일 수 있다. 상기 용매는 필요에 따라 연속상으로 적용될 수 있다.
또한, 상기 용매로는 마이크로캡슐 내에 담지하기 위한 유효물질을 선택할 수 있다. 본 발명에 있어서, 상기 유효물질은 마이크로캡슐에 담지되어 그 활성이 유지될 수 있는 물질이며, 마이크로캡슐의 외벽이 파괴될 때 그 활성이 발현되는 물질을 의미한다. 상기 유효물질이 상온에서 액체인 경우, 분산상의 용매로서 포함될 수 있다. 상기 유효물질로는 향 오일, 자외선 차단제, 염료, 촉매, 항산화제 또는 약물일 수 있으나, 이에 제한되는 것은 아니다.
상기 연속상 1은 제 2 캡슐화 성분과 제 1 캡슐 강화 성분이 포함된 분산상 1과 혼합하여 피커링 에멀전을 제조할 수 있다.
상기 제 2 캡슐화 성분과 제 1 캡슐 강화 성분은 연속상에 녹아 있는 제 1 캡슐화 성분과 반응하여 캡슐의 외벽을 구성하고 캡슐에 물질 투과성을 감소시키는 물질로, 분산상에 잘 녹는 물질이 선택될 수 있다. 상기 제 2 캡슐화 성분은 상기 제 1 캡슐화 성분과 반응하여, 폴리우레아, 폴리우레탄, 폴리아실아민, 폴리옥심, 폴리카바메이트, 폴리에스테르, 폴리아민에스테르 또는 폴리아미드와 같은 계면 중합 가능한 폴리머를 형성하여 캡슐 구조를 만들 수 있는 성분을 의미한다. 상기 제 2 캡슐화 성분은 모노머, 올리고머 또는 폴리머일 수 있다.
상기 제 2 캡슐화 성분은 하기 화학식 1로 표시되는 화합물일 수 있다:
[화학식 1]
Figure PCTKR2020009600-appb-img-000001
상기 화학식 1에서, R 1은 아크릴레이트기 또는 헤테로 원자가 치환 또는 비치환된 탄소수 1 내지 50의 알킬렌기; 탄소수 3 내지 60의 고리형 탄화수소; 또는 탄소수 1 내지 50의 알킬렌기 및 탄소수 3 내지 60의 고리형 탄화수소를 포함하는 화합물이고, X 1 내지 X 4는, 각각 독립적으로, 수소, 아민기, 아실할라이드기, 이소시아네이트기, 클로로포메이트기 및 아크릴레이트기로 이루어진 군에서 선택되며, n은 1 이상의 정수이다.
상기 화학식 1에서, X 1 내지 X 4 중 적어도 2개 이상은 아민기, 아실할라이드기, 이소시아네이트기, 클로로포메이트기 및 아크릴레이트기를 갖는 것이고, n은 1 내지 3의 정수일 수 있다.
한 구체예에서, 상기 제 2 캡슐화 성분은 폴리이소시아네이트일 수 있다.
상기 제 2 캡슐화 성분은 마이크로캡슐을 제조하기 위한 전체 조성의 중량을 기준으로, 0.001 내지 10 중량부, 예컨대 0.005 내지 8 중량부, 0.01 내지 5 중량부, 0.05 내지 1 중량부, 0.1 내지 0.5 중량부, 0.001 내지 0.5 중량부, 0.125 내지 0.375 중량부로 포함될 수 있다. 상기 제 2 캡슐화 성분의 함량이 0.001 중량부 미만인 경우, 캡슐화 반응이 일어나도 캡슐의 외벽이 유지되지 않을 만큼 얇게 형성되는 문제가 발생할 수 있고, 10 중량부를 초과하게 되면 점도가 증가하여 캡슐이 형성되지 않는 문제가 발생할 수 있다.
상기 제 1 캡슐 강화 성분은 마이크로캡슐 외벽의 치밀도를 높일 수 있는 물질로, 고리 구조를 갖는 물질 또는 무기 물질을 포함할 수 있다. 상기 제 1 캡슐 강화 성분은 연속상 및 분산상과 상용성이 적어 캡슐의 외벽으로 형성될 때 캡슐 내부에 담지되어 있는 유효물질이 밖으로 용출되지 않도록 막아주거나 용출 속도를 지연시키기 위해 포함될 수 있다.
상기 제 1 캡슐 강화 성분은 상기 제 1 캡슐화 성분 및/또는 제 2 캡슐 강화 성분과 반응하여, 폴리우레아, 폴리우레탄, 폴리아실아민, 폴리옥심, 폴리카바메이트, 폴리에스테르, 폴리아민에스테르 또는 폴리아미드와 같은 계면 중합 가능한 고분자를 형성하여 캡슐 구조를 만들 수 있는 성분 중 고리 구조를 갖는 성분을 포함할 수 있다.
상기 제 1 캡슐 강화 성분은 하기 화학식 2로 표시되는 모노머, 메틸렌디페닐디이오시아네이트, 나프탈렌디이소시아네이트 및 이소포론디이소시아네이트로 이루어진 군에서 선택되는 하나 이상의 화합물; 이의 올리고머; 또는 이의 폴리머일 수 있다:
[화학식 2]
Figure PCTKR2020009600-appb-img-000002
상기 화학식 2에서 R 2 내지 R 7은, 각각 독립적으로, 수소; 탄소수 1 내지 5의 알킬기; 탄소수 2 내지 5의 알케닐기; 탄소수 1 내지 5의 알킬이소시아네이트; 이소시아네이트기; 탄소수 1 내지 5의 알킬아실할라이드기; 아실할라이드기; 탄소수 1 내지 5의 알킬클로로포메이트기; 클로로포메이트기; 탄소수 1 내지 5의 알킬아크릴레이트기; 또는 아크릴레이트기를 포함할 수 있고, 상기 화학식 2의 R 2 내지 R 7중 어느 하나 이상은 이소시아네이트기, 아실할라이드기, 클로로포메이트기 또는 아크릴레이트기 중 하나를 포함할 수 있는 화합물이다. 상기 화학식 2에서, 상기 모노머는 1 내지 13개가 중합된 폴리머일 수 있다. 상기 모노머가 13개 이상인 경우, 물질의 강성(stiffness)이 증가하여 캡슐의 제조 과정에서 쉽게 깨지거나, 캡슐 건조시 발생되는 장력(tension)에 의해 캡슐 형태를 유지할 수 없게 되는 문제가 발생할 수 있다.
한 구체예에서, 상기 제 1 캡슐 강화 성분은 이소시아네이트를 포함하는 성분으로서 메틸디페닐 디이소시아네이트, 나프탈렌 디이소시아네이트, 이소포론 디이소시아네이트 또는 자일렌 디이소시아네이트일 수 있다.
상기 제 1 캡슐 강화 성분은 제 2 캡슐화 성분과 함께 제 1 캡슐화 성분의 아민기 또는 하이드록시기와 반응할 수 있는 것으로, 제 1 캡슐화 성분의 분자 내 아민기 또는 하이드록시기의 포함 여부에 따라 작용기가 다르게 선택될 수 있다.
한 구체예에서, 상기 제 1 캡슐화 성분이 2개 이상의 아민기를 가질 때, 제 1 캡슐 강화 성분 및/또는 제 2 캡슐화 성분으로는 각각 2개 이상의 아크릴레이트기 또는 이소시아네이트기를 갖는 것일 수 있다. 본 발명 따른 마이크로캡슐에서, 상기 제 1 캡슐화 성분이 아민기를 갖고, 제 1 캡슐 강화 성분 및/또는 제 2 캡슐화 성분이 아크릴레이트기를 갖는 경우, 폴리베타아미노 에스테르 마이크로캡슐을 형성할 수 있으며; 제 1 캡슐 강화 성분 및/또는 제 2 캡슐화 성분이 이소시아네이트기를 갖는 경우, 폴리우레아 마이크로캡슐을 형성할 수 있다.
본 발명에 있어서, 이소시아네이트기를 갖는 성분은 메틸렌 디이소시아네이트(Methylene diisocyanate), 1,4-페닐렌 디이소시아네이트(1,4-Phenylene diisocyanate), 톨릴렌-2,4-디이소시아네이트(Tolylene-2,4-diisocyanate), 1-클로로메틸-2,4-디이소시아네이토벤젠(1-Chloromethyl-2,4-diisocyanatobenzene), 4-클로로-6-메틸-1,3-페닐렌 디이소시아네이트(4-Chloro-6-methyl-1,3-phenylene diisocyanate), 1,3-비스(1-이소시아네이토-1-메틸에틸)벤젠(1,3-Bis(1-isocyanato-1-methylethyl)benzene), 3,3'-디메틸-4,4'-비페닐렌 디이소시아네이트(3,3'-Dimethyl-4,4'-biphenylene diisocyanate), 3,3'-디클로로-4,4'-디이소시아네이토-1,1'-비페닐(3,3'-Dichloro-4,4'-diisocyanato-1,1'-biphenyl), 4,4'-옥시비스(페닐 이소시아네이트)(4,4'-Oxybis(phenylisocyanate)), 4,4'-메틸렌비스(페닐 이소시아네이트)(4,4'-Methylenebis(phenylisocyanate)), 4,4'-메틸렌비스(2,6-디에틸렌페닐 이소시아네이트)(4,4'-Methylenebis(2,6-diethylphenyl isocyanate)), 이소프렌 디이소시아네이트(Isophorone diisocyanate), 트랜스-1,4-시클로헥실렌 디이소시아네이트(trans-1,4-Cyclohexylene diisocyanate), 1,3-비스(이소시아네이토메틸)시클로헥산(1,3-Bis(isocyanatomethyl)cyclohexane), 4,4'-메틸렌비스(시클로헥실 이소시아네이트)(4,4'-Methylenebis(cyclohexyl isocyanate)), 디이소시아네이토부탄(Diisocyanatobutane), 헥사메틸렌 디이소시아네이트(Hexamethylenediisocyanate), 디오시아네이토옥탄(Diisocyanatooctane), 디이소시아네이토도데칸 (Diisocyanatododecane) 및 1,6-디이소시아네이토-2,2,4-트리메틸헥산(1,6-Diisocyanato-2,2,4-trimethylhexane)으로 이루어진 군에서 선택된 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 아크릴레이트기를 갖는 성분은 에틸렌글리콜 디아크릴레이트(Ethylene glycol diacrylate), 디(에틸렌글리콜) 디아크릴레이트(Di(ethylene glycol) diacrylate), 트리(에틸렌글리콜)디아크릴레이트 (Tri(ethylene glycol) diacrylate), 테트라(에틸렌글리콜)디아크릴레이트 (Tetra(ethylene glycol) diacrylate), 폴리(에틸렌글리콜)디아크릴레이트 (Poly(ethylene glycol) diacrylate), 프로필렌글리콜 디아크릴레이트(Propylene glycol diacrylate), 디(프로필렌글리콜)디아크릴레이트(Di(propylene glycol) diacrylate), 트리(프로필렌글리콜)디아크릴레이트(Tri(propylene glycol) diacrylate), 테트라(프로필렌글리콜)디아크릴레이트(Tetra(propylene glycol) diacrylate), 폴리(프로필렌글리콜)디아크릴레이트(Poly(propylene glycol) diacrylate), 부탄디올 디아크릴레이트(Butanediol diacrylate), 헥산디올 디아크릴레이트(Hexanediol diacrylate), 헥산디올 에톡실레이트 디아크릴레이트 (Hexanediol ethoxylate diacrylate), 네오펜틸 글리콜 프로폭실레이트(1 PO/OH) 디아크릴레이트(Neopentyl glycol propoxylate (1 PO/OH) diacrylate), 트리메틸올 프로판 에톡실레이트 (1 EO/OH) 메틸 에테르 디아크릴레이트(Trimethylolpropane ethoxylate (1 EO/OH) methyl ether diacrylate), 네오펜틸글리콜 디아크릴레이트 (Neopentyl glycol diacrylate), 펜타에리스리톨 트리아크릴레이트 (Pentaerythritol triacrylate), 트리메틸올프로판 트리아크릴레이트 (Trimethylolpropane triacrylate), 트리메틸올프로판 프로폭실레이트 트리아크릴레이트(Trimethylolpropane propoxylate triacrylate), 트리스[2-(아크릴로일옥시)에틸]이소시아누레이트(Tris[2-(acryloyloxy)ethyl] isocyanurate), 트리메틸올프로판 에톡실레이트 트리아크릴레이트(Trimethylolpropane ethoxylate triacrylate), 디(트리메틸올프로판)테트라아크릴레이트(Di(trimethylolpropane) tetraacrylate), 펜타에리스리톨 테트라아크릴레이트(Pentaerythritol tetraacrylate) 및 하이드록시피발릴 하이드록시피발레이트 비스[6-(아크릴로일옥시)헥사노에이트](Hydroxypivalyl hydroxypivalate bis[6-(acryloyloxy)hexanoate])로 이루어진 군에서 선택된 것일 수 있으나, 이에 제한되는 것은 아니다.
다른 구체예에서, 상기 제 1 캡슐화 성분이 2개 이상의 하이드록시기를 가질 때, 제 1 캡슐 강화 성분 및/또는 제 2 캡슐화 성분은 각각 2개 이상의 이소시아네이트기, 아실할라이드기, 클로로포메이트기 또는 아크릴레이트기를 갖는 것일 수 있다. 본 발명에 따른 마이크로캡슐에서, 상기 제 1 캡슐화 성분이 하이드록시기를 갖고, 제 1 캡슐 강화 성분 및/또는 제 2 캡슐화 성분이 이소시아네이트기를 갖는 경우, 폴레우레탄 마이크로캡슐을 형성할 수 있으며; 제 1 캡슐 강화 성분 및/또는 제 2 캡슐화 성분이 아실할라이드기, 클로로포메이트기 또는 아크릴레이트기를 갖는 경우, 폴리에스테르 마이크로캡슐을 형성할 수 있다.
본 발명에 있어서, 클로로포메이트기를 갖는 성분은 에틸렌비스(클로로포메이트)(Ethylenebis(chloroformate)), 디글리콜릴 클로라이드(Diglycolyl chloride), 옥시디에틸렌 비스(클로로포메이트)(oxydiethylene bis(chloroformate)), 트리(에틸렌 글리콜)비스(클로로포메이트)(Tri(ethyleneglycol) bis(chloroformate)), 1,4-페닐렌 비스(클로로포메이트)(1,4-Phenylene bis(chloroformate)), 비스페놀 A 비스(클로로포메이트)(Bisphenol A bis(chloroformate)) 및 비스페놀 Z 비스(클로로포메이트)(Bisphenol Z bis(chloroformate))로 이루어진 군에서 선택된 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 아실할라이드기를 갖는 성분은 말로닐 클로라이드(Malonyl chloride), 숙시닐 클로라이드(Succinyl chloride), 글루타릴 클로라이드(Glutaryl chloride), 아디포일 클로라이드(Adipoyl chloride), 피멜로일 클로라이드(Pimeloyl chloride), 수베로일 클로라이드(Suberoyl chloride), 세바코일 클로라이드(Sebacoyl chloride), 아제라익 에시드 디클로라이드(Azelaic acid dichloride) 및 도데칸디오일 디클로라이드(Dodecanedioyl dichloride)로 이루어진 군에서 선택된 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 제 1 캡슐 강화 성분은 마이크로캡슐을 제조하기 위한 전체 조성의 중량을 기준으로, 0.001 내지 10 중량부, 예컨대 0.005 내지 8 중량부, 0.01 내지 5 중량부, 0.05 내지 1 중량부, 0.1 내지 0.5 중량부, 0.125 내지 0.375 중량부로 포함될 수 있다. 상기 제 1 캡슐 강화 성분의 함량이 0.001 중량부보다 낮으면 캡슐화 반응이 일어나도 캡슐의 외벽이 유지되지 않을 만큼 얇게 형성되는 문제가 발생할 수 있고, 10 중량부를 초과하게 되면 점도가 증가하여 캡슐이 형성되지 않는 문제가 발생할 수 있다.
본 발명에 있어서, 상기 연속상 1과 분산상 1을 혼합하여 피커링 에멀전을 형성하는 단계는 무기입자 및 제 1 캡슐화 성분을 포함하는 연속상 1과, 제 2 캡슐화 성분 및 제 1 캡슐 강화 성분을 포함하는 분산상 1을 교반하는 것일 수 있다. 이때 상기 성분들이 반응하기 위한 교반 조건은 상온, 예컨대 20 내지 30 ℃에서 10 내지 16,000 rpm의 교반 속도, 예컨대 50 내지 13,000 rpm, 100 내지 10,000 rpm의 속도일 수 있다. 이후 수행되는 캡슐화 반응은 서로 섞이지 않는 분산상과 연속상 사이의 계면에서 반응성 고분자가 반응하여 캡슐의 막을 형성하기 때문에, 캡슐화 반응이 일어나기 전에 피커링 에멀전을 형성하여야 캡슐의 크기를 조절할 수 있다.
본 발명에 있어서, "피커링 에멀전"은 고체 입자에 의해 계면이 안정화된 에멀전 형태를 의미한다. 피커링 에멀전은 유화제를 사용하지 않고 에멀전 형태를 만들 수 있기 때문에 환경 오염에 대한 위험이 적다는 장점이 있다. 그러나, 피커링 에멀전을 제품에 응용하기 위해서는 반응기에서 전단 응력(shear stress)에 의한 안정성 문제와 장기 안정성 문제를 해결해야 하는 문제가 있다.
또한, 본 발명은 상기 피커링 에멀전과 제 2 캡슐 강화 성분을 포함하는 연속상 2를 혼합하여 캡슐화하는 단계를 포함한다.
상기 연속상 2의 용매로는 상기 연속상 1의 용매와 마찬가지로 당업계에서 통상적으로 사용되는 용매를 모두 포함할 수 있다.
본 발명에 있어서, 상기 제 2 캡슐 강화 성분은 하기 화학식 3으로 표시되는 모노머, 멜라민 및 벤지딘디설폰산으로 이루어진 군에서 선택되는 하나 이상의 화합물; 이의 올리고머; 또는 이의 폴리머일 수 있다:
[화학식 3]
Figure PCTKR2020009600-appb-img-000003
상기 화학식 3에서 R 8 내지 R 13은, 각각 독립적으로, 수소; 아민기; 하이드록시기; 탄소수 1 내지 5의 알킬기; 탄소수 1 내지 5의 알킬아민기; 탄소수 1 내지 5의 하이드록시알킬기; 또는 탄소수 2 내지 5의 알케닐기를 포함할 수 있고, 상기 화학식 3은 R 8 내지 R 13 중 어느 하나 이상은 아민기 또는 하이드록시기 중 하나를 포함할 수 있는 화합물이다.
한 구체예에서, 상기 제 2 캡슐 강화 성분은 페닐렌디아민, 아미노벤질아민 또는 벤지딘디설폰산일 수 있다.
상기 단계에서, 제 2 캡슐 강화 성분은 반응성이 강하기 때문에 캡슐의 벽면에 균일하게 코팅되어야 안정성이 우수한 마이크로캡슐을 형성할 수 있다. 이에, 상기 제 2 캡슐 강화 성분은 피커링 에멀전을 제조한 이후에 후첨될 수 있다.
상기 제 2 캡슐 강화 성분은 마이크로캡슐을 제조하기 위한 전체 조성의 중량을 기준으로, 0.001 내지 10 중량부, 예컨대 0.005 내지 8 중량부, 0.01 내지 5 중량부, 0.05 내지 3 중량부, 0.1 내지 1 중량부, 0.5 내지 0.75 중량부일 수 있다. 상기 제 2 캡슐 강화 성분의 함량이 0.001 중량부보다 낮으면 캡슐화 반응이 일어나도 캡슐의 외벽이 유지되지 않을 만큼 얇게 형성되는 문제가 발생할 수 있고, 10 중량부를 초과하게 되면 점도가 증가하여 캡슐이 형성되지 않는 문제가 발생할 수 있다.
본 발명에 있어서, 상기 제 1 캡슐화 성분 및 제 2 캡슐화 성분은 1: 0.1 내지 100의 중량비, 예컨대 1: 0.1 내지 50의 중량비, 1: 0.1 내지 25의 중량비, 1: 0.1 내지 10의 중량비, 1: 0.1 내지 1의 중량비, 1: 0.25 내지 1의 중량비, 0.3 내지 0.8의 중량비, 0.4 내지 0.6의 중량비로 포함될 수 있으며, 제 1 캡슐화 성분 및 제 1 캡슐 강화 성분은 1: 0.1 내지 1 의 중량비, 예컨대 1: 0.25 내지 1의 중량비, 0.3 내지 0.8의 중량비, 0.4 내지 0.6의 중량비로 포함될 수 있다. 또한, 제 1 캡슐화 성분, 제 2 캡슐화 성분 및 제 1 캡슐 강화 성분은 1: 0.1 내지 100: 0.1 내지 1의 중량비, 예컨대 1: 0.1 내지 50: 0.1 내지 1의 중량비, 1: 0.1 내지 25: 0.1 내지 1의 중량비, 1: 0.1 내지 10: 0.1 내지 1의 중량비, 1: 0.1 내지 1: 0.1 내지 1의 중량비, 1: 0.25 내지 1:0.25 내지 1의 중량비, 1: 0.3 내지 0.8: 0.3 내지 0.8의 중량비, 1: 0.4 내지 0.6: 0.4 내지 0.6의 중량비로 포함될 수 있다.
또한, 본 발명은 상기 단계에서, 제 2 캡슐 강화 성분과 함께 캡슐 강화 무기물 전구체를 추가로 포함할 수 있다. 상기 캡슐 강화 무기물 전구체는 마이크로캡슐의 내부와 외부에 모두 적용될 수 있고, 캡슐의 벽과는 별도로 막을 형성하여 캡슐 내부의 유효물질이 용출되지 않도록 막아주거나 용출속도를 지연시키기 위해 포함될 수 있다. 또한, 캡슐의 깨짐성을 조절하여 적당한 시점에 유효물질이 방출될 수 있도록 도와주는 역할을 할 수 있다.
상기 캡슐 강화 무기물 전구체는 하기 화학식 4로 표시되는 화합물일 수 있다:
[화학식 4]
Figure PCTKR2020009600-appb-img-000004
상기 화학식 4에서, R 14 내지 R 17은, 각각 독립적으로, 수소; 탄소수 1 내지 5의 알콕시기; 탄소수 1 내지 5의 알킬기; 또는 아민기, 티올기, 하이드록시기, 카보닐기, 카르복시기 및 에테르기로 이루어진 군에서 선택된 하나 이상의 작용기를 포함하는 탄소수 1 내지 5의 탄화수소 화합물일 수 있다.
상기 캡슐 강화 무기물 전구체는 테트라메틸오르토실리케이트, 테트라에틸오르토실리케이트, 테트라프로필오르토실리케이트, 테트라부틸오르토실리케이트, 트리메톡시실란, 메틸트리메톡시실란, 에틸트리메톡시실란, 프로필트리에톡시실란, 메틸프로필트리메톡시실란, 메틸프로필트리에톡시실란, 아미노프로필트리메톡시실란 및 메르캅토프로필트리메톡시실란으로 이루어진 군에서 선택된 것일 수 있으나, 이에 제한되는 것은 아니다.
한 구체예에서, 상기 캡슐 강화 무기물 전구체는 테트라에틸오르토실리케이트, 메틸트리메톡시실란 또는 아미노프로필트리메틸에톡시실란일 수 있다.
상기 캡슐 강화 무기물 전구체는 전체 마이크로캡슐 100 중량부를 기준으로, 0.01 내지 10 중량부, 예컨대 0.005 내지 8 중량부, 0.01 내지 5 중량부로 포함될 수 있다. 상기 캡슐 강화 무기물 전구체의 함량이 0.001 중량부 미만인 경우, 캡슐에 우수한 안정성을 부여할 수 없으며, 10 중량부를 초과하게 되면 무기물 캡슐이 형성되어 쉽게 깨지는 문제가 발생할 수 있다.
상기 캡슐화 반응은 반응성 고분자간의 접촉으로 인해 반응이 일어날 수 있다. 이때, 반응 속도의 조절을 위해 0 내지 100 ℃의 온도, 예컨대 10 내지 90 ℃의 온도에서 1 내지 48시간동안, 예컨대 2 내지 24시간 동안 진행될 수 있다. 교반 조건은 10 내지 6,000 rpm, 예컨대 50 내지 5,000 rpm, 100 내지 4,000 rpm일 수 있다.
하기 실시예에서는, 제 1 캡슐화 성분과 제 2 캡슐 강화 성분을 조합하여 사용하고, 제 2 캡슐화 성분 및 제 1 캡슐 강화 성분을 조합 사용하여 제조한 마이크로캡슐에서 우수한 안정성 및 생분해성을 나타내는 것을 확인하였다. 특히, 제 1 캡슐화 성분과 제 2 캡슐 강화 성분이 각각 아민기를 포함하는 화합물이고, 제 2 캡슐화 성분 및 제 1 캡슐 강화 성분이 각각 이소시아네이트기를 포함하는 화합물일 때, 상기 성분들을 조합 사용하여 제조한 마이크로캡슐에서 안정성 및 생분해성 효과가 가장 우수하게 나타났음을 확인하였다.
본 발명에 있어서, 상기 마이크로캡슐의 제조방법은 마이크로캡슐에 자연 분해 촉진 입자를 흡착시키는 단계를 추가로 포함할 수 있다. 상기 자연 분해 촉진 입자는 티타늄산화물, 아연산화물, 지르코늄산화물, 텅스텐산화물, 백금 및 백금 산화물, 및 염화금으로 이루어진 군에서 선택될 수 있으나, 이에 제한되는 것은 아니다. 상기 자연 분해 촉진 입자는 제 1 용액(연속상)에 포함될 수도 있다. 또한, 상기 자연 분해 촉진 입자는 1 내지 900 nm의 직경, 예컨대 1.5 내지 750 nm의 직경, 2 내지 500 nm의 직경을 갖는 것일 수 있다. 상기 자연 분해 촉진 입자의 크기가 1 nm 보다 작으면 자연 분해 촉진 효과가 나타나기 어려운 문제가 발생할 수 있다.
상기 자연 분해 촉진 입자는, 생분해 및/또는 광분해 촉진 입자일 수 있고, 바람직하게는 광분해 촉진 입자일 수 있다.
상기 자연 분해 촉진 입자는 0.1 내지 10,000 ppm의 농도, 예컨대 1 내지 8,000 ppm의 농도, 2 내지 5,000 ppm의 농도로 포함될 수 있다. 상기 자연 분해 촉진 입자의 농도가 0.1 ppm보다 낮으면 분해 촉진 효과가 나타나지 않으며, 10,000 ppm보다 높으면 빛의 투과를 방해하여 분해 촉진 효과가 나타나지 않고 점도에 영향을 미쳐 캡슐화 반응이 일어나지 않는 문제가 발생할 수 있다.
본 발명에 있어서, 상기 마이크로캡슐의 제조방법은 캡슐화 반응 후 분산 안정화제를 첨가하는 단계를 추가로 포함할 수 있다. 상기 분산 안정화제로는 반응 후 생성된 마이크로캡슐의 분산성을 높이기 위해 첨가될 수 있다. 상기 분산 안정화제로는, 아라비아검, 다당류, 펙틴, 알기네이트, 아라비노갈락탄, 카라기난, 젤란검, 잔탄검, 구아검, 아크릴레이트/아크릴 중합체, 전분, 수-팽윤성 점토, 아크릴레이트/아미노아크릴레이트 공중합체 또는 이들의 혼합물, 말토덱스트린, 알기네이트에스테르, 젤라틴, 단백질 가수분해물 또는 이들의 4차화된 형태, 합성 중합체 또는 공중합체, 예컨대 폴리(비닐 피롤리돈-코-비닐 아세테이트), 폴리(비닐 알코올-코-비닐 아세테이트), 폴리(말레산), 폴리(알킬렌옥사이드), 폴리(비닐메틸에테르), 폴리(비닐에테르-코-말레산 무수물), 폴리(에틸렌이민), 폴리((메트)아크릴아미드), 폴리(알킬렌옥사이드-코-디메틸실록산) 및 폴리(아미노디메틸실록산)으로 이루어진 군에서 선택된 것일 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 마이크로캡슐의 제조방법은 필요에 따라 농축 및/또는 건조 과정을 추가로 진행할 수 있다. 또한, 산 또는 염기성 물질을 이용하여 pH를 조절하는 단계를 추가로 진행할 수 있다.
본 발명에 따른 마이크로캡슐의 제조방법은 하기 도 1에 도식화하여 나타내었다.
또한, 본 발명은 상기 제조방법에 따라 제조된 마이크로캡슐을 제공한다. 즉, 본 발명은 제 1 캡슐화 성분, 제 2 캡슐화 성분, 제 1 캡슐 강화 성분, 제 2 캡슐 강화 성분 및 무기입자를 포함하는 마이크로캡슐을 제공한다.
본 발명에서, "마이크로캡슐"은 직경이 1 내지 1000 ㎛의 범위를 갖는 캡슐을 의미한다. 본 발명에 있어서, 상기 마이크로캡슐은 0.1 내지 100 ㎛의 직경, 예컨대 1 내지 80 ㎛의 직경, 2 내지 50 ㎛의 직경을 갖는 것일 수 있다. 상기 마이크로캡슐의 외벽 두께는 0.03 내지 10 ㎛를 갖는 것일 수 있다.
상기 마이크로캡슐의 직경이 0.1 ㎛ 보다 작은 경우, 캡슐이 깨지지 않아 유효성분을 방출시키기 위한 캡슐의 효과를 구현해내기 어려우며, 직경이 100 ㎛ 보다 큰 경우, 제품 제조시 발생하는 shear stress에 의해 캡슐이 쉽게 깨지거나 이물감이 발생할 수 있는 문제가 발생할 수 있다.
본 발명의 제조방법에 따라 제조된 마이크로캡슐은 우수한 안정성 및 자연 분해성 특성을 갖는 것일 수 있다. 상기 자연 분해성은 미생물, 빛 등에 의해 별도의 공정 및 처리를 거치지 않고 자연에서 분해되는 성질을 의미한다. 즉, 본 발명의 자연 분해성 마이크로캡슐은 생분해성 및 광분해성 마이크로캡슐을 포함할 수 있다. 이에, 본 발명은 생분해성 마이크로캡슐 및/또는 광분해성 마이크로캡슐을 제공할 수 있다. 본 발명에서, "안정성"은 대개 단분자 물질로 투과성이 높은 유효물질이, 격리된 한 공간에서 다른 공간으로, 보다 구체적으로는 캡슐 내부에서 외부 환경으로 자발적이나 비자발적으로 유출되는 현상을 지연시키거나 완전히 방지하는 능력을 의미하며, 다른 한편으로는 산화성이 강해 외부환경으로부터 산소, 활성산소, 유리기 등의 산화물질이 침투하여 유효물질이 산화되는 현상을 지연시키거나 완전히 방지하는 능력까지도 포함할 수 있다. 본 발명에 따른 안정성은, 담지물질을 포함한 마이크로캡슐을 계면활성제 수용액에 넣고 40 내지 60 ℃의 온도에서 7일동안 보관한 후 캡슐 내 담지물질을 추출하여, 초기 담지물질의 양과 비교하여, 캡슐에 남아있는 담지물질의 양이 40% 이상인 경우, 바람직하게는 50% 이상, 보다 바람직하게는 60% 이상인 경우를 의미한다. 상기 계면활성제는 당업계에 통상적으로 사용되는 계면활성제를 포함할 수 있다. 상기 계면활성제는 지방산 나트륨, 모노알킬 황산염, 알킬폴리옥시에틸렌 황산염, 알킬벤젠술폰산염 또는 모노알킬인산염의 음이온성 계면활성제; 디알킬디메틸암모늄염 또는 알킬벤질메틸암모늄염의 양이온성 계면활성제; 알킬설포베타인 또는 알킬카르복시베타인의 양성 계면활성제; 또는 폴리옥시에틸렌알킬에테르, 지방산 솔비탄에스테르, 지방산디에탄올아민 또는 알킬모노글리세릴에테르의 비이온성 계면활성제일 수 있으나, 이에 제한되는 것은 아니다. 한 구체예에서, 상기 계면활성제는 폴리솔베이트 비이온성 계면활성제일 수 있다.
또한, 본 발명에서, "생분해성"은 미생물에 의한 분해 정도를 나타내는 것으로, OECD 301D 시험법에 따라 상온의 암실에서 28일동안 미생물에 의한 분해가 20% 이상인 경우, 바람직하게는 30% 이상, 보다 바람직하게는 40% 이상인 경우를 의미할 수 있다.
또한, 상기, "광분해성"은 OECD 316 시험법에 따라 수계 조건에서 제논램프를 이용하여 일간 12시간, 총 30일 동안 광에 노출시켰을 때 광의 파장에 따른 분해가 50% 이상인 경우, 바람직하게는 60% 이상, 보다 바람직하게는 70% 이상인 경우를 의미할 수 있다.
또한, 본 발명에서의 자연 분해성 마이크로캡슐은, 자연분해도가 50% 이상인 캡슐을 의미할 수 있으며, 바람직하게는 60% 이상, 보다 바람직하게는 70% 이상인 경우를 의미할 수 있다.
또한, 상기 제조방법에 따라 제조된 마이크로캡슐은 유효물질의 종류에 따라 발향 제품, 기능성 물질 또는 난용성 물질의 담지체로써 사용될 수 있다. 본 발명에 있어서, 상기 유효물질은 향 오일, 자외선 차단제, 염료, 촉매, 항산화제 및 약물로 이루어진 군에서 선택된 것일 수 있다.
예컨대, 상기 유효물질이 향 오일인 경우, 본 발명은 상기 마이크로캡슐을 포함하는 발향 제품을 제공할 수 있다. 상기 발향 제품으로는 발향 스프레이, 방향 액상 제품, 세정제, 세안제, 바디 용품, 헤어 용품 또는 섬유유연제 조성물을 포함할 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 유효물질이 자외선 차단제인 경우, 본 발명은 상기 마이크로캡슐을 포함하는 자외선 차단용 화장료 조성물을 제공할 수 있다. 상기 자외선 차단제로는 이산화티타늄(TiO 2), 산화아연(ZnO), 규산염 또는 탈크와 같은 무기 자외선 차단제; 또는 이소아밀-p-메톡시신나메이트, 옥틸메톡시신나메이트, 에틸헥실트리아존, 옥시벤존, 디에틸아미노하이드록시벤조일 헥실벤조에이트, 옥토크릴렌옥틸살리실레이트, 부틸메톡시디벤조일메탄, 옥틸살리실레이트, 벤조페논, 안트라닐레이트와 같은 유기 자외선 차단제일 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 유효물질이 기능성 물질 또는 난용성 물질인 경우, 상기 기능성 물질 또는 난용성 물질의 안정성 개선을 위한 담지체로써 본 발명의 마이크로캡슐을 제공할 수 있다. 상기 기능성 물질 또는 난용성 물질로는 레티놀 또는 레스베라스트롤과 같은 항산화제; 또는 콜레스테롤 또는 세라마이드와 같은 난용성 물질을 포함할 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실험예 및 제조예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실험예 및 제조예에 한정되는 것이 아니라, 서로 다른 다양한 형태로 구현될 것이며, 단지 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
본 발명에 따른 제조방법에 따라 제조된 마이크로캡슐은 높은 범용성, 생분해성 및 장기 안정성을 나타낼 수 있으며, 계면활성제의 존재 하에서도 캡슐 내 유효물질을 안정하게 담지할 수 있다.
도 1은 본 발명에 따른 마이크로캡슐의 제조방법을 도식화한 것이다.
도 2는 본 발명에 따른 마이크로캡슐을 50 ℃에서 7일동안 보관한 후, 계면활성제의 존재 하에서 성능/안정성을 비교하여 나타낸 것이다.
도 3은 본 발명에 따른 마이크로캡슐의 분해 촉진 정도를 확인한 결과이다.
이하, 본 발명을 하기 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
본 실시예 및 비교예에 사용된 물질 및 시약들은 화장품 원료 제조사 및 상업용 공급 업체에서 구입하여 사용하였고, 표기된 함량은 중량% 기준이다.
실시예 1 내지 6. 폴리우레아 마이크로캡슐의 제조
하기 표 1의 조성에 따라 마이크로캡슐을 제조하였다. 먼저, 증류수 68 g에 실리카 1 g을 분산시킴과 동시에 각 실시예 1 내지 6에 해당하는 생분해성 고분자인 제 1 캡슐화 성분(이하, 생분해성 고분자라 통칭함) 1 g을 첨가하여 연속상 1을 제조하였다. 도데카인 29.5 g에 0.5 g의 제 2 캡슐화 성분인 폴리이소시아네이트를 넣고 분산상을 제조하였다. 그런 다음, 연속상 1에 분산상을 첨가하고 2,000 rpm으로 교반하여 피커링 에멀전을 제조하였다. 그 후, 상기 피커링 에멀전을 80 ℃에서 12시간동안 계면중합 반응하여 폴리우레아 마이크로캡슐을 제조하였다.
비교예 1 및 2. 폴리우레아 마이크로캡슐의 제조
비교예 1 및 2의 폴리우레아 마이크로캡슐은 하기 표 1의 조성에 따라 제조하였다. 먼저, 증류수 69 g에 폴리에틸렌이민 1 g을 녹인 후, 도데카인 29.5 g에 0.5 g의 폴리이소시아네이트를 녹인 용액을 섞으면서 80 ℃에서 12시간동안 중합 반응을 진행하여 비교예 1의 폴리우레아 마이크로캡슐을 제조하였다.
다음으로, 증류수 68 g에 실리카 1 g을 분산시킴과 동시에 폴리에틸렌이민 1 g을 넣고 연속상 1을 제조하였다. 도데카인 29.5 g에 0.5 g의 폴리이소시아네이트를 넣고 분산상을 제조하였다. 그런 다음, 연속상 1에 분산상을 넣고 2,000 rpm으로 피커링 에멀전을 제조하였다. 그 후 상기 피커링 에멀전을 80 ℃에서 12시간동안 계면중합 반응을 진행하여 비교예 2의 폴리우레아 마이크로캡슐을 제조하였다.
실험예 1. 생분해성 고분자를 포함하는 마이크로캡슐의 생분해도 비교
상기 실시예 1 내지 6 및 비교예 1 및 2에서 제조한 마이크로캡슐의 생분해성을 비교하였다. 본 실험예에서 마이크로캡슐의 생분해성 측정은 캡슐벽을 추출한 후 OECD 301D법을 이용하여 측정하였다. 구체적으로, 상기 OECD 301D법은 밀폐 시험병을 이용한 용존산소소모량 측정시험 방법이고, 비수용성 시험물질인 캡슐의 생분해성을 측정하는 방법으로, 이론적 산소요구량 (Theoretical Oxygen Demand, ThOD)에 대해 시간에 따른 산소 소모량 (Biochemical Oxygen Demand, BOD)을 측정하여 아래의 일반식 1로 생분해도를 계산하였다.
[일반식 1]
Figure PCTKR2020009600-appb-img-000005
비교예 1 비교예 2 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6
증류수 (Distilled Water) 69 68 68 68 68 68 68 68
실리카 (Silica) - 1 1 1 1 1 1 1
폴리에틸렌이민 (Polyethyleneimine) 1 1 - - - - - -
키토산 (Chitosan) - - 1 - - - - -
폴리라이신 (Polylysine) - - - 1 - - - -
젤라틴 (Gelatin) - - - - 1 - - -
실크 피브로인 (Silk Fibroin) - - - - - 1 - -
하이드롤라이즈드케라틴 (Hydrolyzed Keratin) - - - - - - 1 -
폴리(2-아크릴아미도글리콜산)(Poly(2-acrylamidoglycolic acid) (PAGA)) - - - - - - - 1
폴리이소시아네이트 (polyisocyanate) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
도데카인 (Dodecane) 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5
Total 100 100 100 100 100 100 100 100
생분해도(%) 20 20 55 40 80 45 50 50
생분해성 고분자의 포함 여부에 따른 마이크로캡슐의 생분해도를 측정한 결과(표 1), 피커링 에멀전을 형성하지 않은 비교예 1을 제외하고는 모두 캡슐화 반응이 일어났으며, 천연 생분해성 고분자인 키토산, 폴리라이신, 젤라틴, 실크 피브로인, 케라틴 또는 PAGA로 제조한 실시예 1 내지 6의 마이크로캡슐의 경우, 합성 고분자인 폴리에틸렌이민보다 상대적으로 높은 생분해도를 나타냈다.
실시예 7 내지 9. 폴리우레아 마이크로캡슐의 제조
하기 표 2의 조성에 따라 폴리우레아 마이크로캡슐을 제조하였다. 먼저, 증류수 58 g에 실리카 1 g을 분산시킴과 동시에 생분해성 고분자(제 1 캡슐화 성분)인 키토산 1g을 넣어 연속상 1을 제조하고, 제 2 캡슐 강화 성분인 페닐렌디아민 1g을 증류수 9 g에 넣어 연속상 2를 제조하였다. 향 오일 29.5 g에 제 2 캡슐화 성분인 폴리이소시아네이트와 제 1 캡슐 강화 성분인 메틸디페닐디이소시아네이트의 조합 0.5 g을 넣고 분산상을 제조하였다. 그런 다음, 연속상 1에 분산상을 넣고 2,000 rpm으로 교반하여 피커링 에멀전을 제조하였다. 그 후 상기 피커링 에멀전에 연속상 2를 넣고 80 ℃에서 12시간동안 계면중합 반응을 진행하여 폴리우레아 마이크로캡슐을 제조하였다.
비교예 3 내지 7. 폴리우레아 마이크로캡슐의 제조
하기 표 2의 조성에 따라 마이크로캡슐을 제조하였다. 비교예 3의 마이크로캡슐은 제 2 캡슐화 성분인 폴리이소시아네이트를 포함하지 않는 것을 제외하고는 상기 실시예 1 내지 6과 동일한 방법으로 제조하였으며, 비교예 4 내지 6은 생분해성 고분자를 포함하지 않는다.
실험예 2. 캡슐 강화 성분을 포함하는 마이크로캡슐의 안정성 및 생분해도 비교
상기 실시예 7 내지 9에서 제조한 마이크로캡슐의 안정성과 생분해성을 확인하였다. 본 실험예에서, 안정성이란 주변 환경이 유화제로 둘러 싸여 있는 가혹한 환경 내에서도 캡슐이 캡슐 내 향 오일을 유지하려는 능력을 측정한 것이다. 구체적으로, 상기 안정성은 전체 조성물 100 중량부를 기준으로, 5 중량부의 Tween20 수용액에 마이크로캡슐 1 중량부를 넣고 50 ℃에서 7일동안 보관한 후 에탄올과 tip sonicator (Fisherbrand™, Fisher Scientific, USA)를 이용하여 캡슐 내 향 오일을 추출하였고, UV spectrometer (FastTrack™ UV Vis Technology, Mettler Toledo, USA)로 그 함량을 측정하여 안정성을 비교하였다. 생분해성은 상기 실험예 1과 동일한 방법으로 측정하였다.
실시예 1 비교예 3 실시예 7 비교예 4 비교예 5 비교예 6 실시예 8 비교예 7 실시예 9
증류수 (Distilled Water) 68 68 68 68 68 68 68 68 68
실리카 (Silica) 1 1 1 1 1 1 1 1 1
키토산 (Chitosan) 1 1 1 - - - 0.5 0.5 0.5
페닐렌디아민 (Phenylenediamine) - - - 1 1 1 0.5 0.5 0.5
폴리이소시아네이트 (Polyisocyanate) 0.5 - 0.25 0.5 - 0.25 0.5 - 0.25
메틸디페닐디이소시아네이트 (Methyl diphenyl diisocyanate) - 0.5 0.25 - 0.5 0.25 - 0.5 0.25
향 오일 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5
Total 100 100 100 100 100 100 100 100 100
안정성(%) 0 5 15 0 5 0 20 10 60
생분해도(%) 55 40 45 20 20 20 45 35 40
실험 결과, 생분해성 고분자를 포함하지 않는 비교예 4 내지 6의 마이크로캡슐은 낮은 생분해도와 안정성을 보였고, 제 2 캡슐화 성분을 포함하지 않는 비교예 3, 5 및 7의 마이크로캡슐은 캡슐 벽이 치밀하게 형성되지 않아 낮은 안정성을 나타냈다. 제 1 캡슐 강화 성분을 사용하는 경우, 그 사용량에 따라 생분해도가 낮아지는 경향도 확인할 수 있었다. 반면, 제 2 캡슐화 고분자와 제 2 캡슐 강화 성분을 조합하여 사용하는 경우, 캡슐 벽이 치밀하게 형성되어 캡슐의 안정성이 향상되는 것을 확인할 수 있었다.
실시예 10 내지 18. 폴리우레아 마이크로캡슐의 제조
하기 표 3의 조성에 따라 폴리우레아 마이크로캡슐을 제조하였다. 먼저, 증류수 58 g에 실리카 1 g을 분산시킴과 동시에 생분해성 고분자인 키토산을 1g 넣어 연속상 1을 제조하고, 제 2 캡슐 강화 성분(페닐렌디아민, 아미노벤질아민 및 벤지딘디설폰산) 1g을 증류수 9 g에 넣어 연속상 2를 제조하였다. 향 오일 29.5 g에 제 2 캡슐화 성분과 제 1 캡슐 강화 성분(메틸디페닐 디이소시아네이트, 나프탈렌 디이소시아네이트, 이소포론 디이소시아네이트 및 자일렌 디이소시아네이트)을 넣어 분산상을 제조하였다. 그런 다음, 연속상 1에 분산상을 넣고 2,000 rpm으로 교반하여 피커링 에멀전을 제조하였다. 그 후 상기 피커링 에멀전에 연속상 2를 넣고 80 ℃에서 12시간동안 계면중합 반응을 진행하여 폴리우레아 마이크로캡슐을 제조하였다.
실험예 3. 캡슐 강화 성분을 포함하는 마이크로캡슐의 안정성 비교
상기 실시예 10 내지 18에서 제조한 마이크로캡슐의 안정성과 생분해도를 비교하였다. 상기 안정성과 생분해도는 상기 실험예 2와 동일한 방법으로 측정하였다.
실시예10 실시예11 실시예12 실시예13 비교예 8 실시예14 실시예15 실시예16 실시예17 실시예18
증류수 (Distilled Water) 68 68 68 68 68 68 68 68 68 68
실리카 (Silica) 1 1 1 1 1 1 1 1 1 1
키토산 (Chitosan) 0.5 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
페닐렌디아민 (Phenylenediamine) 0.5 0.75 0.5 0.5 - - - 0.5 0.5 0.5
사이클로헥산디아민 (Cyclohexanediamine) - - - - 0.5 - - - - -
아미노벤질아민 (Aminobenzylamine) - - - - - 0.5 - - - -
벤지딘디설폰산 (Benzidinedisulfonic Acid) - - - - - - 0.5 - - -
폴리이소시아네이트 (Polyisocyanate) 0.25 0.25 0.125 0.375 0.25 0.25 0.25 0.25 0.25 0.25
메틸 디페닐 디이소시아네이트 (Methyl diphenyl diisocyanate) 0.25 0.25 0.375 0.125 0.25 0.25 0.25 - - -
나프탈렌 디이소시아네이트 (Naphthalene diisocyanate) - - - - - - - 0.25 - -
이소포론 디이소시아네이트 (Isophorone diisocyanate) - - - - - - - - 0.25 -
자일렌 디이소시아네이트 (Xylene diisocyanate) - - - - - - - - - 0.25
향 오일 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5
Total 100 100 100 100 100 100 100 100 100 100
안정성(%) 60 55 50 40 25 55 40 55 50 55
생분해도(%) 40 30 40 40 40 40 40 40 40 40
자연분해도(%) 76 68.5 70 64 55 73 64 73 70 73
실험 결과, 제 1 캡슐화 고분자인 생분해성 고분자와 조합되어 사용되는 제 2 캡슐 강화 성분으로 페닐렌디아민 뿐만 아니라 아미노벤질아민 및 벤지딘디설폰산을 사용했을 때에도 우수한 생분해도와 안정성을 나타내는 것을 확인할 수 있었다. 또한, 제 2 캡슐화 성분과 조합되어 사용되는 제 1 캡슐 강화 성분으로 메틸디페닐 디이소시아네이트 뿐만 아니라 나프탈렌 디이소시아네이트, 이소포론 디이소시아네이트 및 자일렌 디이소시아네이트를 사용했을 때에도 우수한 생분해도와 안정성을 보였다. 이에, 본 발명에 따른 마이크로캡슐은 제 1 캡슐화 성분(생분해성 고분자)과 제 2 캡슐 강화 성분을 조합해서 사용하고, 제 2 캡슐화 성분과 제 1 캡슐 강화 성분을 조합해서 사용하는 경우, 안정성과 생분해도에 있어서 현저한 효과를 나타낼 수 있다.
한편, 비교예 8의 경우, 마이크로캡슐의 안정성이 상대적으로 매우 낮게 나타나는 결과를 보였다. 이는 비교예 8이 제 2 캡슐 강화 성분으로 방향족 화합물이 아닌 단순 고리형 화합물인 사이클로헥산디아민을 마이크로캡슐의 제조에 사용한 결과이며, 이를 통해 마이크로캡슐의 안정성을 위해서는 제 2 캡슐 강화 성분으로서 단순 고리형 화합물이 아닌 방향족 화합물이 필수적이어야 함을 나타낸다.
실시예 19 내지 22. 폴리우레아 마이크로캡슐의 제조
하기 표 4의 조성에 따라 마이크로캡슐을 제조하였다. 먼저 증류수 58 g에 실리카 1 g을 분산시킴과 동시에 생분해성 고분자인 키토산 1 g을 넣어 연속상 1을 제조하고, 제 2 캡슐 강화 성분인 페닐렌 디아민 1 g을 증류수 9 g에 넣어 연속상 2를 제조하였다. 향 오일 29.5 g에 제 2 캡슐화 성분인 폴리이소시아네이트와 제 1 캡슐 강화 성분인 메틸디페닐 이소시아네이트의 조합을 넣어 분산상을 제조하였다. 그런 다음, 연속상 1에 분산상을 넣고 2,000 rpm으로 교반하여 피커링 에멀전을 제조하였다. 그 후 상기 피커링 에멀전에 연속상 2와 캡슐 강화 무기물 전구체(테트라에틸오르토실리케이트, 메틸트리메톡시실란 및 아미노프로필트리메틸에톡시실란)를 넣고 80 ℃에서 12시간동안 계면중합 반응을 진행하여 폴리우레아 마이크로캡슐을 제조하였다.
실험예 4. 캡슐 강화 고분자를 포함하는 마이크로캡슐의 안정성 및 생분해도 비교
상기 실시예 19 내지 24에서 제조한 마이크로캡슐의 안정성 및 생분해도를 측정하였다. 안정성과 생분해도는 앞선 실험예 2와 동일한 방법으로 측정하였다.
실시예10 실시예19 실시예20 실시예21 실시예22
증류수 (Distilled Water) 68 67.5 67 67.5 67
실리카 (Silica) 1 1 1 1 1
키토산 (Chitosan) 0.5 0.5 0.5 0.5 0.5
페닐렌디아민 (Phenylenediamine) 0.5 0.5 0.5 0.5 0.5
폴리이소시아네이트 (Polyisocyanate) 0.25 0.25 0.25 0.25 0.25
메틸 디페닐 디이소시아네이트 (Methyl diphenyl diisocyanate) 0.25 0.25 0.25 0.25 0.25
테트라에틸오르토실리케이트 (Tetraethylorthosilicate) - 0.5 1 - -
메틸트리메톡시실란 (Methyltrimethoxysilane) - - - 0.5 1
아미노프로필트리메톡시실란 (Aminopropyltrimethylethoxysilane) - - - - -
향 오일 29.5 29.5 29.5 29.5 29.5
Total 100 100 100 100 100
안정성(%) 60 80 70 75 65
생분해도(%) 40 40 40 40 40
실험 결과, 캡슐 강화 무기물 전구체를 더 포함하는 실시예 19 내지 22의 마이크로캡슐에서 캡슐 강화 무기물 전구체를 포함하지 않는 실시예 10의 마이크로캡슐에 비해 안정성이 증가하는 결과를 확인할 수 있었다. 그러나, 상기 캡슐 강화 무기물 전구체의 함량이 증가할수록 캡슐 제조시 쉽게 깨져서 안정성이 오히려 낮아지는 경향을 보이는 것을 확인할 수 있었다.
실시예 23 내지 26. 마이크로캡슐의 제조
하기 표 5의 조성에 따라 마이크로캡슐을 제조하였다. 먼저, 증류수 58g에 실리카와 생분해 촉진 입자(TiO 2 및 ZnO)를 분산시킴과 동시에 생분해성 고분자인 키토산 1g을 넣어 연속상 1을 제조하고, 제 2 캡슐 강화 성분인 페닐렌 디아민 1 g을 증류수 9 g에 넣어 연속상 2를 제조하였다. 향 오일 29.5 g에 제 2 캡슐화 성분인 폴리이소시아네이트와 제 1 캡슐 강화 성분인 메틸디페닐 디이소시아네이트의 조합을 넣어 분산상을 제조하였다. 그런 다음, 연속상 1에 분산상을 넣고 2,000 rpm으로 교반하여 피커링 에멀전을 제조하였다. 그 후 상기 피커링 에멀전에 연속상 2와 캡슐 강화 무기물 전구체인 테트라에틸오르토실리케이트를 넣고 80 ℃에서 12시간동안 계면중합 반응을 진행하여 폴리우레아 마이크로캡슐을 제조하였다.
실험예 5. 생분해 촉진 입자를 포함하는 마이크로캡슐의 생분해성 확인
앞서 실시예에서 제조한 마이크로캡슐의 안정성, 생분해성 및 광분해성을 측정하였다. 안정성과 생분해도는 앞선 실험예 2와 동일한 방법으로 측정하였으며, 광분해성은 OECD 316법을 참고하여 측정하였다. 분해 측정 기간은 서울의 연평균 일광량을 기준으로 4주에 해당하는 에너지인 약 10,000 W/m 2에 해당하는 에너지를 썬테스트기 (Suntest XLS+)를 이용하여 제논램프를 이용하여 조사한 후, COD (Chemical Oxygen Demand)의 전후 값을 비교하여 아래의 일반식 2로 분해도를 측정하였다.
[일반식 2]
Figure PCTKR2020009600-appb-img-000006
유럽화학물질청 (ECHA)에 따르면, 분해도에 따라 명확하게 정의되지는 않았으나, 일반적인 생분해도의 경우 미생물에 의해 4주동안 20% 이상 60% 미만으로 분해되면 분해성이 있는 물질로, 60% 이상으로 분해되면 즉시 분해될 수 있는 물질로 분류하고 있다. 광분해도에 관한 정의는 아직 명확하게 내려지지 않았으나, 실제 환경에서는 미생물과 태양광, 가수분해, 열분해 등이 모두 적용되며, 그 중 가장 영향을 미칠 수 있는 두 가지 요소인 미생물 및 광분해에 대한 고려가 필요하다.
실시예19 실시예23 실시예24 실시예25 실시예26
증류수 (Distilled Water) 67.5 67.5 67.5 67 67
실리카 (Silica) 1 0.5 0.5 1 1
TiO 2 - 0.5 - 0.5 -
ZnO - - 0.5 - 0.5
키토산 (Chitosan) 0.5 0.5 0.5 0.5 0.5
페닐렌디아민 (Phenylenediamine) 0.5 0.5 0.5 0.5 0.5
폴리이소시아네이트 (Polyisocyanate) 0.25 0.25 0.25 0.25 0.25
메틸 디페닐 디이소시아네이트 (Methyl diphenyl diisocyanate) 0.25 0.25 0.25 0.25 0.25
테트라에틸오르토실리케이트 (Tetraethylorthosilicate) 0.5 0.5 0.5 0.5 0.5
향 오일 29.5 29.5 29.5 29.5 29.5
Total 100 100 100 100 100
안정성 (%) 80 80 80 80 80
생분해도(%) 40 40 40 40 40
광분해도(%) 20 35 22 74 61
자연분해도(%) 52 61 53.2 84.4 76.6
실험 결과, 생분해 촉진 입자가 포함된 실시예 23 내지 26의 경우, 생분해 촉진 입자의 첨가가 캡슐의 안정성과 생분해성에는 큰 영향을 미치지 않았으나, 광분해성이 촉진되는 것을 확인할 수 있었다.
비교예 9. 폴리우레아 마이크로캡슐의 제조
하기 표 6의 조성에 따라 마이크로캡슐을 제조하였다. Tween20, 아라비아 검, 프리-멜라민 포름알데하이드 수용액 (Pre-melamine formaldehyde solution)을 증류수 54.5 g에 분산시켜 연속상을 제조하였다. 연속상에 향료 30 g(분산상)을 2,000 rpm에서 서서히 넣어 에멀전을 제조하였다. 1000 rpm으로 낮춘 뒤 시트르산으로 pH를 5로 낮춘 뒤 70 ℃에서 3시간 동안 캡슐 생성 반응을 진행하였다. 트로메타민 (Tromethamine)을 이용하여 pH를 7.5로 맞춰 반응을 종결시킨 뒤 생분해 촉진 입자를 첨가 및 흡착시켜 멜라민-포름알데하이드 레진 (Melamine-formaldehyde resin) 캡슐을 제조하였다.
비교예 10. 폴리우레아 마이크로캡슐의 제조
하기 표 6의 조성에 따라 마이크로캡슐을 제조하였다. 폴리비닐알코올 0.5 g을 증류수 63 g에 녹여 연속상을 제조하였다. 향료 30 g에 메타크릴산 (Methacrylic acid) 1.8 g과 펜타에리트리톨 트리아크릴레이트 (Pentaerytritol triacrylate) 4 g, 2,2' 아조비스-(2-메틸부티로나이트릴 (2,2' azobis-(2-methylbutyronitrile)) 0.2 g을 녹여 분산상을 제조하였다. 연속상을 2,000 rpm으로 분산상을 서서히 넣어 에멀전을 만든 후 80 ℃로 6시간 반응시켜 캡슐 생성 반응을 진행하였고 생분해 촉진 입자를 첨가 및 흡착시켜 아크릴계열 캡슐을 제조하였다.
실험예 6. 마이크로캡슐의 안정성, 생분해성 및 광분해성 측정
앞서 실시예에서 제조한 마이크로캡슐의 안정성, 생분해성 및 광분해성을 측정하였다. 안정성, 생분해도 및 광분해성은 앞선 실험예 5와 동일한 방법으로 측정하였다.
실시예25 비교예9 비교예10
증류수 (Distilled Water) 67 54 63
실리카 (Silica) 1 - -
TiO 2 0.5 0.5 0.5
키토산 (Chitosan) 0.5 - -
페닐렌디아민 (Phenylenediamine) 0.5 - -
폴리이소시아네이트 (Polyisocyanate) 0.25 - -
메틸 디페닐 디이소시아네이트 (Methyl diphenyl diisocyanate) 0.25 - -
테트라에틸오르토실리케이트 (Tetraethylorthosilicate) 0.5 - -
Tween 20 - 2 -
아라비아검 (Arabic gum) - 5 -
프리-멜라민 포름알데하이드 수용액 (Pre-melamine formaldehyde Solution) - 7.5 -
트로메타민 (Tromethamine) - 0.5 -
시트르산 (Citric acid) - 0.5 -
폴리비닐알코올 (Polyvinyl alcohol) - - 0.5
메타크릴산 (Methacrylic acid) - - 1.8
펜타에리트리톨 트리아크릴레이트 (Pentaerytritol triacrylate) - - 4
2,2'- 아조비스-(2-메틸부티로나이트릴) (2,2' azobis-(2-methylbutyronitrile) - - 0.2
향 오일 29.5 30 30
Total 100 100 100
안정성 (%) 80 90 85
생분해도 (%) 40 15 18
광분해도 (%) 74 10 15
자연분해도 (%_ 84.4 24 30.3
실험 결과, 본 발명에서와 같이 제 1 캡슐화 성분, 제 2 캡슐화 성분, 제 1 캡슐 강화 성분 및 제 2 캡슐 강화 성분을 포함하는 마이크로캡슐의 경우, 그렇지 않은 비교예 9 및 10에 비해 높은 생분해성, 광분해성 및 자연분해성을 갖는 것을 확인할 수 있었다.
실험예 7. 세탁 후 향 강도 평가
앞서 실시예에서 제조한 마이크로캡슐을 이용하여 섬유 유연제로서의 적용성을 확인하기 위해 세탁 평가를 진행하였다. 먼저 시험용 섬유는 시판되는 면 타올 (30 cm × 20 cm)은 일반 세탁세제의 표준 사용량을 사용하여 세탁기로 5회 반복 세탁한 후 탈수하였다. 전체 조성물 100 중량부를 기준으로, 5 중량부의 Tween20를 포함하는 수용액에 앞서 제조한 마이크로캡슐 1 중량부를 넣은 후, 상기 조성물을 50 ℃에서 7일동안 보관하였다. 교반식 세탁기에 상기 조성물을 표준 사용량 (0.67 ml/L 세탁수)이 되도록 정량하여 넣은 후 헹굼 코스로 처리하고, 탈수하여 면 타올을 꺼냈다. 그런 다음, 면 타올을 습도 30%, 온도 25 ℃에서 12시간동안 건조하였다. 이때, 3가지 시점 (세탁 직후, 건조 후 및 마찰 후)을 설정하여 20명의 숙련된 패널리스트가 관능 평가를 진행하여 향 강도를 평가하였다. 향 강도는 마이크로캡슐을 무처리한 면 타올을 0점으로 기준삼아, 최저 0점에서 최고 5점까지 부여하게 하고, 이를 3번 이상 반복하여 그 평균값으로 나타냈다. 마이크로캡슐이 포함된 조성물을 제조한 직후에 처리한 관능 평가와 상기 조성물을 7일간 보관한 후에 처리한 관능평가를 하기 표 7 및 도 2에 각각 나타내었다.
<평가 기준>
0점: 향이 거의 남아있지 않음.
5점: 향이 많이 남아있음.
7일 후 비교예2 실시예1 실시예7 실시예8 실시예10 실시예19 실시예 23 실시예 25
세탁 직후 1.21 1.81 1.34 1.31 1.2 1.13 1.08 1.27
건조 후 0.86 0.58 0.61 0.76 0.55 0.57 0.68 0.59
마찰 후 0.75 0.64 1.21 1.52 2.58 3.51 3.41 3.46
상기 표 7과 도 2에서 보는 것과 같이, 생분해성 고분자, 캡슐화 고분자 및 캡슐 강화 고분자를 포함하는 실시예 7, 8, 10 및 실시예 19의 경우, 캡슐의 안정성과 발향성이 강하게 나타났으며, 특히 캡슐 강화 무기물 전구체를 사용한 실시예 19의 경우 가장 우수한 안정성과 발향성을 유지하는 것을 확인할 수 있었다. 또한, 자연 분해 촉진 입자를 적용한 실시예 23 및 25의 경우, 실시예 19와 유사한 수준의 안정성 및 발향성이 유지되는 것을 확인할 수 있었다. 상기 결과를 통해 자연 분해 촉진 입자의 적용이 캡슐의 성능에는 영향을 미치지 않았음을 확인하였다.
실험예 8. 분해 촉진 효과 확인
본 발명의 마이크로캡슐의 분해 촉진 효과를 확인하기 위해 자연 분해 촉진 입자를 첨가한 실시예 25의 캡슐을 농도가 500 ppm이 되도록 증류수에 희석하였다. 이후 자연 태양광에서 분해가 일어나는 정도를 시간에 따른 캡슐의 크기 변화를 입도분석기 (Mastersize 3000, Malvern)을 이용하여 비교하였다. 분해 촉진 효과를 확인하기 위해 투명한 용기, 불투명한 용기 및 특별히 제작한 수계조건에서 벽면이 불투명한 폴리프로필렌 용기(50 cm x 50 cm x 50 cm)에 100L의 물을 채우고 깊이 15 cm가 되도록 샘플을 채운 후, 용기를 고정시켜 자연광에 의한 분해 정도를 시간에 따른 크기 변화로 확인하였다(도 3).
도 3에서 보는 것과 같이, 태양광에 의해 25일동안 캡슐이 분해되어 크기가 작아졌고, 물 속에서도 캡슐의 분해가 일어나는 것을 확인하였으나, 불투명한 용기 내에서는 분해가 전혀 일어나지 않아 캡슐의 크기 변화가 나타나지 않았다. 상기 결과를 통해, 캡슐이 제품 형태로는 안정하게 존재하지만, 사용 후 자연계로 배출시 분해가 일어남을 의미하는 것을 확인할 수 있다.

Claims (25)

  1. 무기입자 및 제 1 캡슐화 성분을 포함하는 연속상 1 과, 제 2 캡슐화 성분 및 제 1 캡슐 강화 성분을 포함하는 분산상 1을 혼합하여 피커링 에멀전을 제조하는 단계; 및
    제 2 캡슐 강화 성분을 포함하는 연속상 2와 상기 피커링 에멀전을 혼합하여 캡슐화하는 단계를 포함하는 마이크로캡슐의 제조방법으로서,
    상기 제 1 캡슐화 성분 및 제 2 캡슐 강화 성분은 각각 아민기 또는 하이드록시기를 포함하고,
    상기 제 2 캡슐화 성분 및 제 1 캡슐 강화 성분은 각각 아민기, 이소시아네이트기, 아실할라이드기, 클로로포메이트기 및 아크릴레이트기로 이루어진 군에서 선택된 작용기를 2개 이상 포함하는 화합물, 상기 화합물을 모노머로 하는 올리고머 또는 상기 화합물을 모노머로 하는 폴리머인 마이크로캡슐의 제조방법.
  2. 제1항에 있어서,
    상기 캡슐에 자연 분해 촉진 입자를 흡착시키는 단계를 추가로 포함하는 마이크로캡슐의 제조방법.
  3. 제1항에 있어서,
    무기입자는 금속 입자, 비금속 입자 또는 이들의 혼합인 마이크로캡슐의 제조방법.
  4. 제1항에 있어서,
    제 1 캡슐화 성분은 생분해성 고분자인 마이크로캡슐의 제조방법.
  5. 제1항에 있어서,
    제 1 캡슐화 성분은 마이크로캡슐을 제조하기 위한 전체 조성의 중량을 기준으로, 0.001 내지 20 중량부로 포함되는 마이크로캡슐의 제조방법.
  6. 제1항에 있어서,
    제 2 캡슐화 성분은 하기 화학식 1로 표시되는 화합물인 마이크로캡슐의 제조방법:
    [화학식 1]
    Figure PCTKR2020009600-appb-img-000007
    상기 화학식 1에서, R 1은 아크릴레이트기 또는 헤테로 원자가 치환 또는 비치환된 탄소수 1 내지 50의 알킬렌기; 탄소수 3 내지 60의 고리형 탄화수소; 또는 탄소수 1 내지 50의 알킬렌기 및 탄소수 3 내지 60의 고리형 탄화수소를 포함하는 화합물이고,
    X 1 내지 X 4는, 각각 독립적으로, 수소, 아민기, 아실할라이드기, 이소시아네이트기, 클로로포메이트기 및 아크릴레이트기로 이루어진 군에서 선택되며,
    n은 1 이상의 정수이다.
  7. 제1항에 있어서,
    제 2 캡슐화 성분은 마이크로캡슐을 제조하기 위한 전체 조성의 중량을 기준으로, 0.001 내지 10 중량부로 포함되는 마이크로캡슐의 제조방법.
  8. 제1항에 있어서,
    제 1 캡슐화 성분 및 제 2 캡슐 강화 성분이 아민기를 가질 때, 제 2 캡슐화 성분 및 제 1 캡슐 강화 성분은 아크릴레이트기 또는 이소시아네이트기를 갖는 마이크로캡슐의 제조방법.
  9. 제1항에 있어서,
    제 1 캡슐화 성분 및 제 2 캡슐 강화 성분이 하이드록시기를 가질 때, 제 2 캡슐화 성분 및 제 1 캡슐 강화 성분은 이소시아네이트기, 아실할라이드, 클로로포메이트 또는 아크릴레이트기를 갖는 마이크로캡슐의 제조방법.
  10. 제1항에 있어서,
    제 1 캡슐 강화 성분은 하기 화학식 2로 표시되는 모노머, 메틸렌디페닐디이소시아네이트, 나프탈렌디이소시아네이트, 및 이소포론디이소시아네이트로 이루어진 군에서 선택되는 하나 이상의 화합물; 이의 올리고머; 또는 이의 폴리머인 마이크로캡슐의 제조방법:
    [화학식 2]
    Figure PCTKR2020009600-appb-img-000008
    상기 화학식 2에서, R 2 내지 R 7은, 각각 독립적으로, 수소; 탄소수 1 내지 5의 알킬기; 탄소수 2 내지 5의 알케닐기; 탄소수 1 내지 5의 알킬이소시아네이트; 이소시아네이트기; 탄소수 1 내지 5의 알킬아실할라이드기; 아실할라이드기; 탄소수 1 내지 5의 알킬클로로포메이트기; 클로로포메이트기; 탄소수 1 내지 5의 알킬아크릴레이트기; 또는 알킬아크릴레이트기를 포함하고,
    상기 화학식 2의 R 2 내지 R 7 중 어느 하나 이상은 이소시아네이트기, 아실할라이드기, 클로로포메이트기 또는 아크릴레이트기 중 하나를 포함하는 화합물이다.
  11. 제1항에 있어서,
    제 2 캡슐 강화 성분은 하기 화학식 3으로 표시되는 모노머, 멜라민, 및 벤지딘디설폰산으로 이루어진 군에서 선택되는 하나 이상의 화합물; 이의 올리고머; 또는 이의 폴리머인 마이크로캡슐의 제조방법:
    [화학식 3]
    Figure PCTKR2020009600-appb-img-000009
    상기 화학식 3에서 R 8 내지 R 13은, 각각 독립적으로, 수소; 아민기; 하이드록시기; 탄소수 1 내지 5의 알킬기; 탄소수 1 내지 5의 알킬아민기; 탄소수 1 내지 5의 하이드록시알킬기; 또는 탄소수 2 내지 5의 알케닐기를 포함하고,
    상기 화학식 3의 R 8 내지 R 13 중 어느 하나 이상은 아민기 또는 하이드록시기 중 하나를 포함하는 화합물이다.
  12. 제1항에 있어서,
    상기 제 1 캡슐화 성분 및 제 2 캡슐화 성분은 1: 0.1 내지 1의 중량비로 포함되는 마이크로캡슐의 제조방법.
  13. 제1항에 있어서,
    상기 제 1 캡슐화 성분 및 제 2 캡슐 강화 성분은 1: 0.1 내지 100의 중량비로 포함되는 마이크로캡슐의 제조방법.
  14. 제1항에 있어서,
    상기 제 1 캡슐화 성분, 제 2 캡슐화 성분 및 제 1 캡슐 강화 성분은 1: 0.01 내지 100: 0.01 내지 1의 중량비로 포함되는 마이크로캡슐의 제조방법.
  15. 제1항에 있어서,
    피커링 에멀전은 캡슐 강화 무기물 전구체를 추가로 포함하는 마이크로캡슐의 제조방법.
  16. 제15항에 있어서,
    캡슐 강화 무기물 전구체는 하기 화학식 4로 표시되는 화합물인 마이크로캡슐의 제조방법:
    [화학식 4]
    Figure PCTKR2020009600-appb-img-000010
    상기 화학식 4에서, R 14 내지 R 17은, 각각 독립적으로, 수소; 탄소수 1 내지 5의 알콕시기; 탄소수 1 내지 5의 알킬기; 또는 아민기, 티올기, 하이드록시기, 카보닐기, 카르복시기 및 에테르기로 이루어진 군에서 선택된 하나 이상의 작용기를 포함하는 탄소수 1 내지 5의 탄화수소 화합물이다.
  17. 제15항에 있어서,
    캡슐 강화 무기물 전구체는 마이크로캡슐을 제조하기 위한 전체 조성의 중량을 기준으로 0.001 내지 10 중량부로 포함되는 마이크로캡슐의 제조방법.
  18. 제2항에 있어서,
    상기 자연 분해 촉진 입자는 티타늄산화물, 아연산화물, 지르코늄산화물, 텅스텐산화물, 백금, 백금 산화물, 염화금으로 이루어진 군에서 선택되는 마이크로캡슐의 제조방법.
  19. 제2항에 있어서,
    상기 자연 분해 촉진 입자는 0.1 내지 10,000 ppm의 농도로 포함되는 마이크로캡슐의 제조방법.
  20. 제1항에 있어서,
    피커링 에멀전은 향 오일, 자외선 차단제, 염료, 촉매, 항산화제 및 약물로 이루어진 군에서 선택되는 유효물질을 포함하는 마이크로캡슐의 제조방법.
  21. 제1항에 있어서,
    제 1 캡슐화 성분과 제 2 캡슐화 성분이 반응하여 형성된 폴리머가 마이크로캡슐의 캡슐 외벽을 형성하는 마이크로캡슐의 제조방법.
  22. 제1항 내지 제21항 중 어느 한 항에 따라 제조된 마이크로캡슐.
  23. 제22항에 있어서,
    상기 마이크로캡슐은 0.1 내지 100 ㎛의 직경을 갖는 마이크로캡슐.
  24. 제22항에 따른 마이크로캡슐을 포함하는 섬유유연제 조성물.
  25. 제 1 캡슐화 성분, 제 2 캡슐화 성분, 제 1 캡슐 강화 성분, 제 2 캡슐 강화 성분 및 무기입자를 포함하는 마이크로캡슐.
PCT/KR2020/009600 2019-11-05 2020-07-21 자연 분해성 마이크로캡슐 및 이의 제조방법 WO2021091046A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022525905A JP2023501313A (ja) 2019-11-05 2020-07-21 自然分解性マイクロカプセル及びその製造方法
EP20886052.8A EP4056262A4 (en) 2019-11-05 2020-07-21 BIODEGRADABLE MICROCAPSULE AND METHOD FOR MANUFACTURING SAME
US17/774,337 US20230002706A1 (en) 2019-11-05 2020-07-21 Naturally degradable microcapsules and a method of preparing the same
CN202080075555.6A CN114616052B (zh) 2019-11-05 2020-07-21 自然降解性微胶囊及其制备方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2019-0140514 2019-11-05
KR20190140514 2019-11-05
KR10-2019-0169897 2019-12-18
KR1020190169897A KR102355447B1 (ko) 2019-11-05 2019-12-18 자연 분해성 마이크로캡슐 및 이의 제조방법
KR10-2019-0169898 2019-12-18
KR1020190169898A KR20210054429A (ko) 2019-11-05 2019-12-18 자연 분해성 마이크로캡슐의 제조방법

Publications (1)

Publication Number Publication Date
WO2021091046A1 true WO2021091046A1 (ko) 2021-05-14

Family

ID=75849245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/009600 WO2021091046A1 (ko) 2019-11-05 2020-07-21 자연 분해성 마이크로캡슐 및 이의 제조방법

Country Status (5)

Country Link
US (1) US20230002706A1 (ko)
EP (1) EP4056262A4 (ko)
JP (1) JP2023501313A (ko)
CN (1) CN114616052B (ko)
WO (1) WO2021091046A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023061901A3 (en) * 2021-10-15 2023-06-15 Syngenta Crop Protection Ag Microencapsulation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117551440B (zh) * 2024-01-10 2024-03-26 东营煜煌能源技术有限公司 一种泡沫树脂固砂剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004216241A (ja) * 2003-01-14 2004-08-05 Toyo Ink Mfg Co Ltd マイクロカプセルおよびその製造方法
US20060199011A1 (en) * 2003-04-17 2006-09-07 Basf Aktiengesellschaft Use of aqueous microcapsule dispersions as heat transfer liquids
US20160158121A1 (en) * 2009-09-18 2016-06-09 International Flavors & Fragrances Inc. Polyurea capsule compositions
US20160354749A1 (en) * 2013-12-19 2016-12-08 Firmenich Sa Hybrid microcapsules
US9943487B2 (en) 2015-05-26 2018-04-17 The Board Of Trustees Of The University Of Illinois Polydopamine-coated capsules
US9944886B2 (en) 2014-12-16 2018-04-17 Noxell Corporation Coated microcapsules
KR20190068369A (ko) * 2017-12-08 2019-06-18 주식회사 엘지화학 마이크로캡슐의 제조방법

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL196973B1 (pl) * 1998-07-30 2008-02-29 Syngenta Ltd Mikrokapsułka, wodna zawiesina mikrokapsułek, kompozycja zawierająca mikrokapsułki, sposób wytwarzania mikrokapsułki oraz sposób zwalczania szkodnika
JP2004502519A (ja) * 2000-06-05 2004-01-29 シンジェンタ リミテッド 新規マイクロカプセル
DE10163162A1 (de) * 2001-12-20 2003-07-03 Basf Ag Mikrokapseln
US20080085417A1 (en) * 2006-09-13 2008-04-10 Sumitomo Chemical Company, Limited Optical film coated with adhesive
US11311467B2 (en) * 2009-09-18 2022-04-26 International Flavors & Fragrances Inc. Polyurea capsules prepared with a polyisocyanate and cross-linking agent
CN102600778B (zh) * 2012-02-29 2014-12-03 华南理工大学 一种纳米复合环氧树脂自修复微胶囊及其制备方法
WO2013142055A2 (en) * 2012-03-22 2013-09-26 Momentive Performance Materials Inc. Organo-modified silicone polymers
GB201210156D0 (en) * 2012-06-08 2012-07-25 Imerys Minerals Ltd Microcapsules
WO2015126844A1 (en) * 2014-02-18 2015-08-27 Rohm And Haas Company Microcapsules
CN107107019B (zh) * 2014-12-16 2021-06-18 诺赛尔股份有限公司 包衣微胶囊
US20180272308A1 (en) * 2015-09-28 2018-09-27 International Flavors & Fragrances Inc. Hybrid capsules
CN108348885B (zh) * 2015-10-26 2021-07-02 诺赛尔股份有限公司 提供活性物的受控释放的微胶囊和组合物
KR102184376B1 (ko) * 2015-11-25 2020-11-30 주식회사 엘지화학 양친성 고분자를 포함하는 미셀
CN105833811B (zh) * 2016-03-27 2018-06-22 华南理工大学 一种双胶囊自修复环氧涂层及其制备方法
JP7416620B2 (ja) * 2016-07-27 2024-01-17 フイルメニツヒ ソシエテ アノニム マイクロカプセルの製造方法
CN109715286A (zh) * 2016-09-20 2019-05-03 弗门尼舍有限公司 混合微胶囊
CN208320758U (zh) * 2018-02-02 2019-01-04 成都优创复材科技有限公司 一种纯多元胺的微液滴化装置
JP7482796B2 (ja) * 2018-07-03 2024-05-14 エルジー ハウスホールド アンド ヘルスケア リミテッド 有機・無機ハイブリッドマイクロカプセルの製造方法
CN109294526B (zh) * 2018-11-29 2020-12-29 航天特种材料及工艺技术研究所 一种基于微乳液体系的杂化壁材包覆的相变亚微米胶囊的制备方法
CN110172261A (zh) * 2019-05-10 2019-08-27 浙江梅盛实业股份有限公司 一种分散染料微胶囊的制备方法及人工皮革的染色工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004216241A (ja) * 2003-01-14 2004-08-05 Toyo Ink Mfg Co Ltd マイクロカプセルおよびその製造方法
US20060199011A1 (en) * 2003-04-17 2006-09-07 Basf Aktiengesellschaft Use of aqueous microcapsule dispersions as heat transfer liquids
US20160158121A1 (en) * 2009-09-18 2016-06-09 International Flavors & Fragrances Inc. Polyurea capsule compositions
US20160354749A1 (en) * 2013-12-19 2016-12-08 Firmenich Sa Hybrid microcapsules
US9944886B2 (en) 2014-12-16 2018-04-17 Noxell Corporation Coated microcapsules
US9943487B2 (en) 2015-05-26 2018-04-17 The Board Of Trustees Of The University Of Illinois Polydopamine-coated capsules
KR20190068369A (ko) * 2017-12-08 2019-06-18 주식회사 엘지화학 마이크로캡슐의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. HITCHCOCK ET AL.: "Long-Term Retention of Small, Volatile Molecular Species within Metallic Microcapsules", ACS APPL. MATER. INTERFACES, vol. 7, no. 27, 2015, pages 14808 - 14815, XP055325552, DOI: 10.1021/acsami.5b03116
See also references of EP4056262A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023061901A3 (en) * 2021-10-15 2023-06-15 Syngenta Crop Protection Ag Microencapsulation

Also Published As

Publication number Publication date
US20230002706A1 (en) 2023-01-05
CN114616052B (zh) 2024-09-13
EP4056262A1 (en) 2022-09-14
CN114616052A (zh) 2022-06-10
EP4056262A4 (en) 2023-11-22
JP2023501313A (ja) 2023-01-18

Similar Documents

Publication Publication Date Title
WO2021091046A1 (ko) 자연 분해성 마이크로캡슐 및 이의 제조방법
CN113853250B (zh) 可生物降解的微胶囊的制备方法和以该方式获得的微胶囊
EP3799953A1 (en) Method for preparing organic/inorganic hybrid microcapsule
EP0537467B1 (de) Mikrokapseln aus Isocyanaten mit polyethylenoxidhaltigen Gruppen
EP0347895B1 (en) Method for preparing a particulate material comprising a platinum-containing hydrosilylation catalyst and a silicone resin.
WO2016209062A1 (en) Two-component bioink, 3d biomaterial comprising the same and method for preparing the same
KR20070011575A (ko) 활성제의 보호를 위한 왁스 입자 및 다기능 자율 치료 복합재료
ATE239769T1 (de) Verfahren zur herstellung von farbpigmenten
AU720884B2 (en) Continuous production of capsules containing a sensitive material
JPS5949260A (ja) 熱活性化触媒を有する室温硬化性ポリシロキサン
DE69917054T2 (de) Behandlung von substratoberfläche
JP2020500707A (ja) 光重合工程を含むサイズ制御されたマイクロカプセルの製造方法
KR102355447B1 (ko) 자연 분해성 마이크로캡슐 및 이의 제조방법
US5064894A (en) Non-agglomerating elastomeric organopolysiloxane particulates produced by polycondensation crosslinking
CN109679055A (zh) 一种抗紫外改性的可降解微胶囊材料及其制备方法与应用
CA1099597A (en) Production of microcapsules
JPH09173823A (ja) 分解性マイクロカプセルの製法
EP2225308B1 (en) One component self-crosslinking reactive siloxane-terminated polypropylene oxide emulsion and process for preparing the same
CN116490068A (zh) 生物可降解的递送颗粒
US20240091730A1 (en) Method for stabilizing effective ingredient by using mineral material
KR102458057B1 (ko) 조절된 크기의 마이크로캡슐 및 마이크로입자의 제조 방법
CN116806141A (zh) 利用矿物质材料的有效成分稳定化方法
EP4101528A1 (de) Mittel enthaltend farbneutrale abbaubare mikrokapseln
CN118437241A (zh) 一种无醛相变香精微胶囊及其制备方法、应用
WO2022258808A1 (de) Mittel enthaltend farbneutrale abbaubare mikrokapseln

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886052

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022525905

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020886052

Country of ref document: EP

Effective date: 20220607