WO2021090792A1 - プローブ治具、及び検査装置 - Google Patents
プローブ治具、及び検査装置 Download PDFInfo
- Publication number
- WO2021090792A1 WO2021090792A1 PCT/JP2020/041012 JP2020041012W WO2021090792A1 WO 2021090792 A1 WO2021090792 A1 WO 2021090792A1 JP 2020041012 W JP2020041012 W JP 2020041012W WO 2021090792 A1 WO2021090792 A1 WO 2021090792A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- probe
- pitch
- constant
- welding
- probes
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/10—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
- G01R1/067—Measuring probes
- G01R1/073—Multiple probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/08—Measuring resistance by measuring both voltage and current
Definitions
- the present invention relates to a probe jig and an inspection device suitable for welding inspection of seat members.
- an ultrasonic bonding device for welding two sheet members by ultrasonic vibration has been known (see, for example, Patent Document 1).
- This ultrasonic bonding device sandwiches two sheets of materials to be bonded between a horn and an anvil and pressurizes them, and applies ultrasonic vibration parallel to the contact surfaces of these sheet members for welding.
- This ultrasonic bonding device applies a voltage between the horn and the anvil at the time of welding, measures the current flowing between the horn and the anvil, calculates the contact resistance from the measured values of the applied voltage and the current, and determines the bonding state. judge.
- protrusions protruding at predetermined intervals are formed at the tips of the horn and the anvil (see FIGS. 3 and 4 of Patent Document 1).
- the sheet member is welded by rubbing the horn and the protrusion at the tip of the anvil.
- the welding points are at predetermined intervals, and the welding state tends to be non-uniform.
- An object of the present invention is to provide a probe jig and an inspection device suitable for inspecting the welded state of a sheet body welded at predetermined intervals.
- a plurality of overlapping conductive sheets are welded in the thickness direction from one surface side at intervals of the first pitch, and from the other surface side at intervals of the second pitch. It is a probe jig used for inspecting a sheet body welded each time, and includes a plurality of probes and a support member that supports the plurality of probes at substantially equal probe intervals, and the probe intervals are the first. It is different from both the pitch and the second pitch.
- a probe jig suitable for an inspection method for inspecting the welded state of a sheet body welded at predetermined first and second pitch intervals based on a resistance value in the thickness direction is provided.
- the resistance value in the thickness direction of the sheet body is small at the welded portion and large at the other portions.
- the probe interval is different from both the first pitch and the second pitch, the possibility that the portion where the sheet body is welded and the probe periodically come into contact with each other is reduced. As a result, the measurement variation of the resistance value with respect to the position of the probe is reduced.
- the probe jig capable of reducing the measurement variation is suitable for the inspection of the welded state.
- the probe interval is smaller than the smaller of the first pitch and the second pitch.
- the probe interval is smaller than the smaller of the first pitch and the second pitch, so the probe is always located in the region sandwiched between the welded parts. As a result, it becomes easy to reflect the welding state of each welded portion in the inspection.
- the probe interval is larger than 1/2 of the first pitch and the second pitch, whichever is larger.
- the probe interval is less than 1/2 of the larger of the first and second pitches, there are two probes in the larger interval of the first and second pitches. Will be located. However, if at least one probe is located between the welded parts, the welded state can be reflected in the inspection. According to this configuration, the probe interval is larger than 1/2 of the first pitch and the second pitch, whichever is larger, so that the possibility that the number of probes increases more than necessary can be reduced.
- the support member supports the plurality of probes so as to form a probe row
- the first pitch is the product of a first constant and a second constant which is a natural number
- the second pitch is
- the product of the first constant and the third constant which is a natural number, the second constant and the third constant are mutually prime
- the pitch period is the first constant, the second constant
- the product of the third constant, the product of the probe interval and the fourth constant is the product of the pitch period and the fifth constant
- the fourth constant and the fifth constant are natural numbers and, respectively.
- the length between both ends of the probe row is preferably not more than twice the product of the probe spacing and the fourth constant.
- the portions where the sheet body is welded are distributed in a substantially rectangular welding region, and the support member supports the plurality of probes so as to form a plurality of probe rows, and the plurality of probe rows. It is preferable that the length of the welding region in the lateral direction is longer than the length of the welding region in the lateral direction, and the length of the plurality of probe rows in the longitudinal direction is longer than the length of the welding region in the longitudinal direction.
- the misalignment can be absorbed.
- the probe can be easily distributed and brought into contact with the entire welded region without accurately positioning the probe jig with respect to the welded region.
- the inspection device includes a pair of the above-mentioned probe jigs and an inspection processing unit for inspecting the sheet body, and the inspection processing unit includes the pair of probe jigs, respectively.
- the sheet is brought into contact with both sides of the sheet, a current is applied in the thickness direction of the sheet by the pair of probe jigs, the voltage between the pair of probe jigs is measured, and the sheet is based on the measured voltage. It is preferable to perform a body examination.
- the welded state of the sheet body welded at predetermined intervals of the first and second pitches can be inspected based on the resistance value in the thickness direction.
- the inspection device includes a pair of the above-mentioned probe jigs, an inspection processing unit for inspecting the sheet body, and an inclination determination unit for determining the inclination of the pair of probe jigs.
- the inspection processing unit brings the pair of probe jigs into contact with both surfaces of the sheet body, and applies a current in the thickness direction of the sheet body by the pair of probe jigs to the pair of probe jigs.
- the inclination determination unit measures the voltage between the probes, and the inclination determination unit determines the inclination of the pair of probe jigs with respect to the sheet body based on the voltage measured in the probe rows within three rows from the outside among the plurality of probe rows. judge.
- the probe jig and the inspection device having such a configuration are suitable for inspecting the welded state of the sheet body welded at predetermined intervals.
- FIG. 2 is a sectional view taken along line III-III of the horn 2H and the anvil 2A shown in FIG. It is explanatory drawing which shows an example of the welding area 105H, 115H which is the side in contact with a horn 2H in the welding area 105, 115 at the time of ultrasonic welding.
- the resistance value R measured in the state where the probe jig 3 is positioned at a deviation of 0.3 mm in the X direction from the position of the probe jig 3 in the case shown in FIG. 14 is shown.
- the resistance value R measured in the state where the probe jig 3 is positioned at a deviation of 0.3 mm in the Y direction from the position of the probe jig 3 in the case shown in FIG. 14 is shown.
- the inspection device 1 shown in FIG. 1 is a device that detects the welded state of the tab terminal of the lithium ion secondary battery, which is an example of the inspection object.
- XYZ orthogonal coordinate axes are appropriately shown in order to clarify the directional relationship.
- the lithium ion secondary battery 100 shown in FIG. 1 is configured by alternately stacking a plurality of positive electrode plates 101 and a plurality of negative electrode plates 111 with a separator (not shown) in between.
- the positive electrode plate 101 is formed by applying a positive electrode active material (not shown) to the surface of a positive electrode current collector 102 made of a metal foil such as aluminum foil or copper foil.
- the negative electrode plate 111 is configured by coating the surface of a negative electrode current collector 112 made of a metal foil such as aluminum foil with a negative electrode active material (not shown).
- each positive electrode current collector 102 is pulled out as a lead portion 103 (sheet) on one end side of the lithium ion secondary battery 100, and a part of each negative electrode current collector 112 is used as a lead portion 113 (sheet). It has been pulled out.
- Each lead portion 103 is pulled out toward one side of the one end, and each lead portion 113 is pulled out toward the side opposite to the lead portion 103. As a result, the lead portion 103 and the lead portion 113 are prevented from overlapping.
- Each lead portion 103 is laminated and brought into close contact with each other, and is welded to each other in a welding region 105 indicated by a strip-shaped net to form a tab terminal 104 (sheet body) of a positive electrode.
- the lead portions 113 are laminated and brought into close contact with each other, and are welded to each other in a welding region 115 indicated by a strip-shaped net to form a tab terminal 114 (sheet body) of the negative electrode.
- the welding regions 105 and 115 are welded by so-called ultrasonic welding.
- FIG. 1 shows a state before the lead portions 103 and 113 are welded.
- the horn 2H and the anvil 2A are arranged to face each other.
- the facing surfaces of the horn 2H and the anvil 2A have substantially the same shape and size as, for example, the welding regions 105 and 115.
- minute protrusions 21H and 21A are formed at positions corresponding to the intersections of the grids inclined by 45 degrees with respect to the X direction, which is the long direction of the horn 2H and the anvil 2A. ing.
- the plurality of protrusions 21H and 21A form a row in the X direction, and a plurality of protrusions 21H and 21A are arranged in a plurality of rows in the Y direction.
- the protrusions 21H and 21A are displaced from the adjacent rows in the X direction.
- the tab terminals 104 and 114 are sandwiched between the horn 2H and the anvil 2A and pressure-welded, and the horn 2H is ultrasonically vibrated to weld the lead portions 103 and 113 rubbed by the protrusions 21H and 21A.
- the portion welded from one surface side of the lead portions 103 and 113 by the protrusion 21H is referred to as a welding point 7H
- the portion welded from the other surface side of the lead portions 103 and 113 by the protrusion 21A is referred to as a welding point 7A.
- the welding points 7H and 7A are collectively referred to as a welding point 7.
- the regions surrounding the outer edge of the group in which the plurality of welding points 7H are gathered are the welding regions 105H and 115H, and the regions surrounding the outer edge of the group in which the plurality of welding points 7A are gathered are the welding regions 105A and 115A.
- the region surrounded by the outermost edge when the welding region 105H and the welding region 105A are overlapped in a plan view is referred to as a welding region 105
- the welding region 115H and the welding region 115A are overlapped in a plan view.
- the region surrounded by the outermost edge is referred to as a welding region 115.
- the welding point 7H is formed with a recess recessed from the surface of the welding region 105H
- the welding point 7A is formed with a recess recessed from the surface of the welding region 105A.
- the distance between the protrusions 21H adjacent to each other is the shortest between the protrusions 21H adjacent to each other in the direction of inclination with respect to the X direction. Since the welding point 7H is arranged at a position corresponding to the protrusion 21H, the distance between the welding points 7H adjacent to each other is also the shortest between the welding points 7H adjacent to each other in the direction inclined with respect to the X direction. As shown in FIG. 4, the distance between the welding points 7H in the direction in which the distance is the shortest is referred to as a first pitch PH.
- the distance between the protrusions 21A adjacent to each other is the shortest between the protrusions 21A adjacent to each other in the direction of inclination with respect to the X direction. Since the welding point 7A is arranged at a position corresponding to the protrusion 21A, the distance between the welding points 7A adjacent to each other is also the shortest between the welding points 7A adjacent to each other in the direction inclined with respect to the X direction. As shown in FIG. 5, the distance between the welding points 7A in the direction in which the distance is the shortest is referred to as a second pitch PA.
- the distance between the protrusions 21H of the horn 2H is smaller than the distance between the protrusions 21A of the anvil 2A. Therefore, the first pitch PH at the welding point 7H is smaller than the second pitch PA at the welding point 7A.
- the welding points 7H and 7A are represented by circles in FIGS. 4 and 5, the welding points 7H and 7A are not limited to circles.
- the welding points 7H and 7A may have a rectangular shape or other shape.
- the first pitch PH and the second pitch PA of the welding points 7H and 7A are determined by the distance between the substantially centers of the welding points 7H and 7A regardless of the shape of the welding points 7H and 7A.
- the inspection device 1 shown in FIG. 1 is a battery holding unit (not shown) that holds the detection units 4U and 4D, the inspection unit 5, and the lithium ion secondary battery 100 to be inspected at a predetermined position between the detection units 4U and 4D. And have.
- the detection units 4U and 4D include probe jigs 3U and 3D.
- the detection units 4U and 4D are made to be able to move the probe jigs 3U and 3D in the three axial directions of X, Y and Z orthogonal to each other by the drive mechanism (not shown), and further move the probe jigs 3U and 3D to Z. It is rotatable around the shaft.
- the detection unit 4U is located above the lithium ion secondary battery 100 fixed to the battery holding unit (not shown).
- the detection unit 4D is located below the lithium ion secondary battery 100 fixed to the battery holding unit (not shown).
- the detection units 4U and 4D are configured so that the probe jigs 3U and 3D can be attached and detached.
- the probe jigs 3U and 3D are jigs for sequentially bringing the probes Pu and Pd into contact with the tab terminals 104 and 114 of the lithium ion secondary battery 100.
- the probe jigs 3U and 3D may be capable of collectively contacting the tab terminals 104 and 114 with the probes Pu and Pd to the two tab terminals 104 and 114 at the same time.
- the probe attached to the probe jig 3U located above is referred to as probe Pu
- the probe attached to the probe jig 3D located below is referred to as probe Pd.
- the detection units 4U and 4D are collectively referred to as the detection unit 4
- the probes Pu and Pd are collectively referred to as the probe P.
- the probe jigs 3U and 3D each include a support member 31 that holds the tips of a plurality of probes Pu and Pd toward the welding regions 105 and 115 of the tab terminals 104 and 114, and a base plate 321.
- the base plate 321 is provided with an electrode (not shown) that contacts and conducts with the rear end portion of each probe Pu, Pd.
- the detection units 4U and 4D electrically connect the rear ends of the probes Pu and Pd to the inspection unit 5 via the electrodes of the base plate 321 and the connection circuits 41U and 41D described later, and switch the connection. Or something.
- the probes Pu and Pd have a substantially rod-like shape as a whole.
- the support member 31 is formed with a plurality of through holes for supporting the probes Pu and Pd.
- the support member 31 has a shape and size corresponding to the welding regions 105 and 115.
- the support member 31 supports the probes Pu and Pd so as to bring the plurality of probes Pu and Pd into contact with substantially the entire region in the welding region 105 in a substantially even distribution.
- the probes Pu and Pd are arranged at positions corresponding to the intersections of the grids inclined by 45 degrees with respect to the X direction.
- a plurality of probes P are arranged side by side in the X direction to form a probe row, and the plurality of probe rows are arranged in parallel.
- the distance from the first probe P to the last probe P of the probe row, that is, the length of the probe row is defined as the row length L.
- the distance between the probes P adjacent to each other is the shortest between the probes P adjacent to each other in the direction of inclination with respect to the X direction.
- the distance between the probes P in the direction in which the distance is the shortest is referred to as a probe distance PP.
- the probe interval PP is smaller than the smaller of the first pitch PH and the second pitch PA. Further, the probe interval PP is larger than 1/2 of the larger one of the first pitch PH and the second pitch PA.
- first pitch PH is represented by the product of an arbitrary first constant C1 and a natural number second constant C2.
- the second pitch PA is represented by the product of the first constant C1 and the third constant C3 which is a natural number.
- the second constant C2 and the third constant C3 are relatively prime.
- the product of the first constant C1, the second constant C2, and the third constant C3 is defined as the pitch period Pcyc.
- the pitch period Pcyc corresponds to a period in which the positions of the welding points 7H lined up at the first pitch PH and the positions of the welding points 7A lined up at the second pitch PA coincide with each other.
- the product of the probe interval PP and the arbitrary fourth constant C4 is equal to the product of the pitch period Pcyc and the arbitrary fifth constant C5.
- the fourth constant C4 and the fifth constant C5 are natural numbers and are relatively prime.
- the row length L of the probe row is not more than twice the product of the probe interval PP and the fourth constant C4.
- the second constant C2 and the third constant C3 are natural numbers and are relatively prime
- the fourth constant C4 and the fifth constant C5 are natural numbers. And are relatively prime to each other.
- the probe interval PP of the probe jig 3 is set to the equations (1) to (1) by appropriately setting the first constant C1, the second constant C2, the third constant C3, the fourth constant C4, and the fifth constant C5. All of (9) are satisfied.
- the second constant C2 and the third constant C3 are natural numbers and are relatively prime
- the fourth constant C4 and the fifth constant C5 are natural numbers.
- Conditions that are relatively prime to each other are called probe interval conditions.
- the probe spacing PP 1.1 mm
- the first pitch PH 1.5 mm
- the second pitch PA 2.0 mm
- the probe jigs 3U and 3D are configured in the same manner as each other except that the mounting directions to the detection units 4U and 4D are upside down.
- the probe jigs 3U and 3D are collectively referred to as the probe jig 3.
- the probe jig 3 can be replaced according to the lithium ion secondary battery 100 to be inspected.
- the inspection for the tab terminal 104 and the welding area 105 is the same as the inspection for the tab terminal 114 and the welding area 115.
- the description of the tab terminal 114 and the welding region 115 will be omitted, and the tab terminal 104 and the welding region 105 will be described as inspection targets.
- the probe P is indicated by a black circle
- the welding point 7H is indicated by a white circle
- the welding point 7A is indicated by a double circle.
- the welding region 105 has a substantially rectangular shape that is long in the X direction and connects the outer edges of the welding points 7H and 7A with a straight line.
- the rows of probes P arranged in the X direction are arranged from the first row to the sixth row.
- the distance W2 between the rows of the probes P in the first row and the sixth row on both outer sides is larger than the width W1 in the Y direction of the welding region 105.
- the probe rows can be arranged on both outer sides of the welding region 105 in the Y direction.
- each row of the probe P extends in the X direction, which is the long direction of the welding region 105
- the distance W2 between the two outer rows is shorter than the row length L of each row. Therefore, the distance W2 corresponds to the length of the plurality of probe rows in the lateral direction.
- the width W1 of the welding region 105 in the Y direction is the length of the welding region 105 in the lateral direction.
- the row length L of each row of the probe P is longer than the length W3 in the X direction, which is the long direction of the welding region 105.
- the position of the probe jig 3 is slightly deviated from the welding region 105. Can absorb deviations. As a result, even if the probe jig 3 is not accurately positioned with respect to the welding region 105, the probe P can be easily distributed and brought into contact with the entire area of the welding region 105.
- the probe interval condition by satisfying the probe interval condition, the variation in the resistance value R caused by the displacement of the probe jig 3 with respect to the welding region 105 is reduced. Therefore, by satisfying the probe interval condition, making the distance W2 larger than the width W1 and the row length L longer than the length W3, the probe jig 3 is accurately positioned with respect to the welding region 105 with high accuracy.
- the positioning mechanism of the above can be eliminated.
- FIG. 7 shows an example in which a pair of probe rows can be arranged on both outer sides of the welding region 105 in the Y direction.
- the probe rows that can be arranged outside the welding region 105 in the Y direction may be a plurality of rows, for example, three rows.
- the inspection device 1 shown in FIG. 8 includes, for example, a plurality of probes Pu, Pd, connection circuits 41U, 41D, and an inspection unit 5.
- the inspection unit 5 includes, for example, a power supply circuit 51, a voltage detection unit 52, a control unit 53, and the like.
- FIG. 8 shows a state in which the probes Pu and Pd are brought into contact with the tab terminal 104.
- the tab terminal 104 shown in FIG. 8 is a cross section of the tab terminal 104 shown in FIG. 1 cut along the X direction.
- the probes Pu1,3,5,7,9, ..., N, and the probes Pd1,3,5,7,9, ..., N are in each row of probes Pu, Pd arranged along the X direction. , The probe number is attached.
- the probe numbers assigned to the probes Pu and Pd correspond to the X coordinates in the X direction indicating the position of the welding region 105 in which each probe P contacts.
- the probes Pu and Pd are arranged at positions corresponding to the intersections of the grids inclined by 45 degrees with respect to the X direction. Therefore, the probes Pu and Pd in each row extending in the X direction have the probes Pu and Pd.
- Columns with even numbers and columns with odd numbers are arranged alternately as probe numbers.
- probes Pu and Pd having odd-numbered probe numbers are illustrated in a row, and the other probes P are not shown.
- each probe P is equipped with two contacts for four-terminal measurement. That is, each probe P includes a contact Ti for supplying a current and a contact Tv for measuring a voltage.
- the probe provided with the two contacts includes, for example, a probe in which two needle pins (contacts) are paired as described in Japanese Patent Application Laid-Open No. 2006-329998, and for example, a special probe.
- a coaxial probe including a tubular first contact and a second contact inserted inside the first contact, as described in Open 2012-154670, can be used.
- each of the rod-shaped probes arranged in a grid pattern may be used as a contactor, and two probes (contactors) may be used as a set as one probe.
- resistance measurement is not limited to the four-terminal measurement method.
- One probe P may be composed of one contact. Then, by using one probe P for current supply and voltage measurement, resistance measurement by the two-terminal measurement method may be performed.
- connection circuit 41U is connected to each electrode of the base plate 321 in the probe jig 3U, a positive electrode terminal of the power supply circuit 51, and a positive electrode terminal of the voltage detection unit 52.
- the connection circuit 41D is connected to each electrode of the base plate 321 in the probe jig 3D, a negative electrode terminal of the power supply circuit 51, and a negative electrode terminal of the voltage detection unit 52.
- the connection circuits 41U and 41D are configured by using, for example, a plurality of switching elements.
- connection circuits 41U and 41D select a pair of probes Pu and Pd facing each other with the tab terminal 104 in between in response to the control signal from the control unit 53.
- the positive electrode of the power supply circuit 51 is attached to the contact Ti of the selected probe Pu
- the positive electrode of the voltage detection unit 52 is attached to the contact Tv of the probe Pu
- the positive electrode of the power supply circuit 51 is attached to the contact Ti of the probe Pd.
- the negative electrode is connected to the contactor Tv of the probe Pd with the negative electrode of the voltage detection unit 52.
- the power supply circuit 51 is a constant current power supply circuit such as a switching power supply circuit.
- the power supply circuit 51 outputs a constant DC current I set in advance according to a control signal from the control unit 53.
- the voltage detection unit 52 is a voltage measurement circuit configured by using, for example, a voltage dividing resistor or an analog digital converter.
- the voltage detection unit 52 measures the voltage V between the contact Tv of the probe Pu and the contact Tv of the probe Pd in the pair of probes Pu and Pd selected by the connection circuits 41U and 41D, and measures the measured value. Is transmitted to the control unit 53.
- the control unit 53 is a so-called microcomputer.
- the control unit 53 includes, for example, a CPU (Central Processing Unit) that executes a predetermined arithmetic process, a RAM (Random Access Memory) that temporarily stores data, a flash memory that stores a predetermined control program, and an HDD (Hard Disk Drive). ) Or a non-volatile storage device such as an SSD (Solid State Drive), and peripheral circuits thereof and the like. Then, the control unit 53 functions as an inspection processing unit 531 and an inclination determination unit 532, for example, by executing the above-mentioned control program.
- a CPU Central Processing Unit
- RAM Random Access Memory
- HDD Hard Disk Drive
- SSD Solid State Drive
- the inspection processing unit 531 controls the drive mechanism (not shown) to move and position the detection units 4U and 4D, and brings the tips of the probes Pu and Pd into contact with the tab terminal 104 of the lithium ion secondary battery 100. As shown in FIG. 7, the inspection processing unit 531 arranges about 1 to 3 rows of probe rows outside the welding region 105 in the Y direction, and positions the probes P so that the probes P are distributed over the entire welding region 105.
- the inspection processing unit 531 is in the contact position of the probes Pu and Pd in the welding region 105, and the inspection current I in the direction of penetrating the welding region 105 via the probes Pu and Pd of the probe jig 3.
- the voltage V is acquired from the pair of front and back probes Pu and Pd.
- the inspection processing unit 531 can measure the resistance value of the tab terminal 104 between the pair of front and back probes P at the contact position of each probe P.
- each probe P is provided with contacts Ti and Tv, and the current supply and the voltage measurement are performed by different contacts, so that the resistance can be measured by the four-terminal measurement method. As a result, the resistance measurement accuracy is improved.
- the inspection device 1 separately includes a current measurement circuit for measuring the current I output from the power supply circuit 51, and the inspection processing unit 531 calculates the resistance value R based on the current I measured by the current measurement circuit. You may. Further, if the current I is a fixed value, the inspection processing unit 531 may use the voltage V as it is as information representing the resistance value. Further, as described above, the inspection processing unit 531 may measure the resistance by the two-terminal measurement method.
- the inspection processing unit 531 inspects the tab terminal 104 based on the resistance value R obtained by this resistance measurement.
- the tilt determination unit 532 determines the tilt of the probe jigs 3U and 3D with respect to the welding region 105 based on the voltage measured in the probe rows within three rows from the outside among the plurality of probe rows.
- the inclination of the probe jig 3 is the inclination of the probes P arranged in the elongated direction of the probe jig 3 in the row direction with respect to the row direction of the welding points 7 arranged in the elongated direction of the tab terminals 104 on the XY plane. It shall mean.
- the inspection processing unit 531 controls the drive mechanism (not shown) to move and position the detection units 4U and 4D, and brings the tip of each probe Pu into contact with the welding region 105H of the lithium ion secondary battery 100 to bring the welding region into a welding region.
- the tip of each probe Pd is brought into contact with 105A (step S1).
- the welding points 7H and 7A and the probe P are arranged.
- the inspection processing unit 531 measures the resistance value R in the thickness direction of the tab terminal 104 between the respective pairs of probes Pu and Pd facing each other (steps S2 and S3).
- the inspection processing unit 531 sequentially selects a pair of probes Pu and Pd facing each other from the probe jig 3.
- the inspection processing unit 531 connects the contact Ti of the selected pair of probes Pu and Pd to the power supply circuit 51 and connects the contact Tv to the voltage detection unit 52 by the connection circuits 41U and 41D.
- the inspection processing unit 531 supplies a current I in the direction of penetrating the tab terminal 104 in the thickness direction by the power supply circuit 51 between the contact Ti of the probe Pu and the contact Ti of the probe Pd, and at that time.
- the voltage V between the contact Tv of the probe Pu and the contact Tv of the probe Pd is measured by the voltage detection unit 52.
- the inspection processing unit 531 measures the voltage V corresponding to each pair of probes Pu and Pd by sequentially selecting a pair of probes Pu and Pd facing each other and repeating current supply and voltage measurement (step S2).
- the inspection processing unit 531 determines the resistance value R of each coordinate position corresponding to the position of the probe Pu and Pd at the tab terminal 104 based on the voltage V between the probes Pu and Pd of each pair measured in step S2. Is calculated based on the following formula (10) (step S3).
- the resistance value R shown in FIGS. 10 to 16 was obtained by simulation.
- the horizontal axis indicates the order of the probes
- the vertical axis indicates the resistance value R
- the resistance values R obtained in the probe rows of the 1st to 6th columns are shown.
- the horizontal axis shows the corresponding probe pairs in the order counted from the beginning of the probes Pu and Pd in each probe sequence.
- the column length L (130) ⁇ PP (1.1) ⁇ C4 (60) ⁇ 2 132.
- the resistance value R measured by the probes P in the second to fifth rows located inside the substantially welding region 105 is within the range of 18 ⁇ to 35 ⁇ , and there is little variation.
- the resistance value R measured by the probe P in the first row located outside the welding region 105 exceeds 36 ⁇ and is clearly higher than the resistance value R measured by the probe P in the second to fifth rows. It is a large value.
- the probes P in the second to fifth rows located substantially inside the welding region 105 have a plurality of welding points 7 surrounding the probe P so as to surround the probe P. Exists. Therefore, the current I flows through a plurality of welding points 7 surrounding the probe P.
- the resistance value R measured in steps S2 and S3 is a combined resistance in which the resistances of the plurality of welding points 7 in the thickness direction are connected in parallel.
- the welding point 7 exists only on one side when viewed from the probe P.
- the number of welding points 7 through which the current I flows is smaller than that of the probes P in the second to fifth rows, so that the number of parallel resistors is reduced and the resistance value R in the thickness direction is likely to increase. Therefore, as shown in FIG. 10, the resistance value R measured by the probe P in the first row located outside the welding region 105 is the probe in the second to fifth rows located substantially inside the welding region 105. It becomes larger than the resistance value R measured by P.
- FIGS. 11 to 13 show the influence of the positional relationship between the welded portions 71H and 71A and the probe jig 3 on the resistance value R when the probe interval condition is satisfied.
- the position of the probe jig 3 that is, the contact position of each probe Pd.
- the resistance value R fluctuates due to the difference.
- the case where the first pitch PH is 1.5 mm, the second pitch PA is 2.0 mm, and the probe spacing PP is 1.0 mm corresponds to an example in which the probe spacing condition is not satisfied.
- the resistance value R measured by the probes P in the third and fifth rows is periodically reduced for every six probes.
- the resistance value R measured by the probe P in the fifth row is periodically reduced in the first cycle of every six probes and the second cycle deviated by two probes from the first cycle. ..
- the resistance value R measured by the probe P in the first row increases periodically for every two probes
- the resistance value R measured by the probe P in the third row, the fifth row, and the sixth row increases. It increases periodically for every six probes.
- the resistance value R when the probe interval condition is not satisfied varies depending on the probe position in one graph and varies depending on the position of the probe jig 3 between different graphs. All of the above are larger than the graphs of FIGS. 11 to 13.
- the inspection device 1 does not need to position the probe jig 3 with high accuracy. As a result, by satisfying the probe interval condition, the positioning mechanism can be simplified and the cost of the inspection device 1 can be easily reduced.
- the welding portion 71H extends from the welding point 7H toward the welding region 105A.
- the welding portion 71H is the widest at the welding point 7H, and becomes narrower as the distance from the welding point 7H increases.
- the welding portion 71A extends from the welding point 7A toward the welding region 105H.
- the welding portion 71A is the widest at the welding point 7A, and becomes narrower as the distance from the welding point 7A increases.
- the resistance value of the welding portion 71H in the thickness direction of the tab terminal 104 becomes the smallest near the welding point 7H and increases as the distance from the welding point 7H increases.
- the resistance value of the welding portion 71A in the thickness direction of the tab terminal 104 becomes the smallest near the welding point 7A and increases as the distance from the welding point 7A increases.
- the distance between the welded portion 71H and the welded portion 71A changes depending on the position.
- the welded portion 71H and the welded portion 71A may overlap. At the portion where the welded portion 71H and the welded portion 71A overlap, the resistance becomes extremely low.
- FIG. 18 roughly shows the current path CP flowing through the tab terminal 104 when the current I is passed from the probe Pu to the probe Pd.
- the amount of current is roughly indicated by the thickness of the line of the current path CP.
- the current flowing through the tab terminal 104 flows through the low-resistance welding portion 71H at a position close to the welding point 7H, but as the welding portion 71H becomes thinner and the resistance increases, the welding portion passes through the lead portion 103. Divide into 71A. In this way, in the tab terminal 104, the current flows by dividing the current into the plurality of welding portions 71H and 71A and the plurality of lead portions 103, and the current path length becomes long. As the current path length increases, the resistance value R increases.
- the current path CP changes according to the positional relationship between the welded portions 71H and 71A and the probes Pu and Pd, and therefore the resistance value R changes.
- the resistance value R increases or decreases periodically depending on the position.
- the cycle of increase / decrease of the resistance value R is less than 1/2 of the row length L, the resistance value R measured by the probe P in one row frequently increases / decreases, and as a result, the tab terminal 114 is normally welded.
- the value of the resistance value R varies.
- the reference value Rref for pass / fail judgment must be set to a large value that does not exceed even if the resistance value R fluctuates. However, if the reference value Rref is set to a large value, the resistance value R of the welding defective portion does not exceed the reference value Rref, and there is a possibility that the defect cannot be detected.
- the probe interval PP is smaller than the smaller of the first pitch PH and the second pitch PA, so that the probe P is always in the region sandwiched between the welding points 7H and 7A. Will be located.
- the probe interval PP is smaller than the smaller of the first pitch PH and the second pitch PA, so that the probe P is always in the region sandwiched between the welding points 7H and 7A. Will be located.
- the resistance value R increases or decreases with each distance of the probe interval PP ⁇ C4.
- the row length L is not more than twice the probe interval PP ⁇ C4 at which periodicity occurs. Then, if the probe interval PP satisfies the equations (5) to (9), the period in which the resistance value R measured by the probes P in one row fluctuates is two or less, and the variation in the resistance value R is almost ignored. it can.
- the measurement is performed with the probe P in one row. It is more preferable that the resistance value R to be formed does not have periodicity and the variation in the resistance value R can be further reduced.
- the inspection processing unit 531 sets the reference value Rref in the resistance value R measured in the probe rows other than the probe rows on both outer sides in the Y direction based on the resistance value R measured in steps S2 and S3. It is determined whether or not there is a resistance value R that exceeds (step S4).
- the resistance value R measured in the probe rows other than the probe rows on both outer sides in the Y direction corresponds to the resistance value R in the substantially welding region 105.
- the inspection processing unit 531 has a resistance value R exceeding the reference value Rref among the resistance values R measured in the remaining probe rows excluding two rows or three rows from both outer sides in the Y direction. It may be determined whether or not there is.
- the number of columns excluded from both outer sides in the Y direction in step S4 is not limited to three columns or less.
- step S4 the inspection processing unit 531 further excludes the resistance value R measured by the first and last probes P of each probe row, and sets the resistance value R measured by the remaining probe rows into the resistance value R. It may be determined whether or not there is a resistance value R that exceeds the reference value Rref.
- the inspection processing unit 531 further excludes the resistance values R measured by the three probes P from the beginning and the end of each probe row, and the resistance value R measured by the remaining probe rows. It may be determined whether or not there is a resistance value R exceeding the reference value Rref. This improves the certainty that the determination in step S4 is made based on the resistance value R in the welding region 105.
- the welding points 7H and 7A are omitted, and the cross-sectional structure of the tab terminal 104 is simplified.
- the current I supplied from the power supply circuit 51 is substantially the shortest in the thickness direction of the welding region 105, as shown by the current path A in FIG. It flows at a distance.
- the current I supplied from the power supply circuit 51 is as shown by the current paths B and C in FIG. The current flows so as to bypass the welding defect F, and the path through which the current flows becomes longer than the current path A.
- the resistance value R tends to be smaller as the welding state is better, and larger as the welding state is worse.
- step S4 If the resistance value R exceeds the reference value Rref, it is considered that welding failure has occurred in the vicinity of that location. Therefore, when there is a resistance value R exceeding the reference value Rref among the resistance values R measured in the substantially welded region 105 (YES in step S4), the inspection processing unit 531 has the resistance value R as the reference value Rref. It is determined that there is a welding defect in the vicinity of the coordinate position exceeding the above (step S5), and the process proceeds to step S7.
- step S6 determines that there is no welding defect.
- the resistance value R in a certain column exceeds the reference value Rref is, for example, a small reference number of about 1 to 3, the resistance value R exceeding the reference value Rref of the reference number is excluded.
- the determination may be made. In other words, if the resistance value R in a certain column exceeds the reference value Rref is less than or equal to the reference number, it may be determined that there is no welding defect (step S4) for that column.
- the number of resistance values R exceeding the reference value Rref is small among the resistance values R in a certain row, it is not a poor welding and foreign matter such as dust is present between the probe P and the tab terminal 104. There is a high possibility that it is pinched. Therefore, if the number of resistance values R exceeding the reference value Rref in a certain column is less than or equal to the reference number, the determination may be made by excluding the resistance value R exceeding the reference value Rref of the reference number. ..
- step S4 instead of excluding the resistance value R exceeding the reference value Rref of the reference number among the resistance values R in a certain column, the average value of the resistance values R in a certain column exceeds the reference value Rref. (YES in step S4), the inspection processing unit 531 determines that there is a welding defect at the position corresponding to the row (step S5), and when the average value of the resistance values R of a certain row does not exceed the reference value Rref (YES). NO) in step S4, the inspection processing unit 531 may determine that there is no welding defect at the position corresponding to the row (step S6).
- the horizontal axis of FIG. 19 is the tensile strength, and the vertical axis is the resistance value R.
- the tensile strength is the tensile force required to peel off the welded lead portion 103.
- the resistance value R is plotted as the average value of the resistance values R measured by the probes P in the second to fifth rows excluding both ends of the six rows of probes P shown in FIG.
- the probe interval PP satisfies the equations (5) to (9), the variation in the resistance value R measured by the probes P in one row is reduced, and the reference value Rref is determined as good or bad. It becomes easy to set an appropriate value suitable for. Further, since the probe interval PP satisfies the formulas (1) and (2), whether or not the welding state is good or bad based on the measured resistance value R regardless of which of the welding points 7H and 7A is defective. Can be determined.
- step S4 the accuracy of determining welding defects in step S4 can be improved.
- the probe interval PP does not satisfy any of the equations (3) and (4) and is 1/2 or less of the larger of the first pitch PH and the second pitch PA, the first Two probes P will be located within the larger interval of the pitch PH and the second pitch PA. However, if at least one probe P is located between the welding points 7, it is possible to detect welding defects. Therefore, when the probe interval PP is 1/2 or less of the larger of the first pitch PH and the second pitch PA, the number of probe Ps is larger than necessary, which may lead to an increase in cost. ..
- the probe interval PP satisfies the equations (3) and (4), and the probe interval PP is larger than 1/2 of the larger of the first pitch PH and the second pitch PA.
- the probe interval PP may be 1/2 or less of the larger of the first pitch PH and the second pitch PA. In this case, the number of probes P increases, but the resistance value R in the welding region 115 can be measured in detail.
- step S4 the inspection processing unit 531 determines the welding failure based on the resistance value R measured in the substantially welding region 105, that is, the resistance values R in the second to fifth columns shown in FIG. Therefore, the reference value Rref can be set in advance at the position of the reference value Rref shown in FIG.
- step S4 if, in step S4, the resistance values R in the first and sixth rows outside the welding region 105 are also included in the comparison target, the reference value Rref is set at the position of the assumed value Rk shown in FIG. Need to be done. In this case, since a value significantly larger than the resistance value R in the second to fifth columns is set as the reference value Rref, the accuracy of the pass / fail judgment in step S4 is lowered.
- step S4 by setting the resistance value R measured in the substantially welded region 105 as the determination target, it becomes easy to improve the quality determination accuracy of the welded state.
- the resistance value R exceeds the reference value Rref at the positions of the 11th to 14th probes P (in step S4). YES), it is determined that there is poor welding (step S5).
- the slope determination unit 532 can calculate the slope a and the constant b by obtaining the regression line using, for example, the least squares method, and perform linear approximation.
- FIG. 21 is a graph showing an example of the resistance value R when the probe jig 3 is tilted with respect to the tab terminal 104. According to FIG. 21, it can be seen that the graph of the resistance value R measured by the probe P in the sixth row located on the outermost side is the most inclined.
- the slope determination unit 532 compares the absolute value of the slope a of the approximate straight line with the preset reference slope aref (step S8).
- the reference inclination aref can be appropriately set according to the required inspection accuracy.
- the inclination determination unit 532 determines that the probe jig 3 is inclined with respect to the tab terminal 104 (step S9). End the process.
- the absolute value of the inclination a is not larger than the reference inclination aref (NO in step S8), the inclination determination unit 532 determines that the inclination of the probe jig 3 with respect to the tab terminal 104 is within an acceptable reference range. (Step S10), the process ends.
- the distance W2 between the probe rows on both outer sides is larger than the width W1 in the Y direction of the welding region 105. Therefore, it is highly possible that the probe rows within three rows from the outside are in contact with the tab terminal 104 outside the welding region 105. That is, the inclination determination unit 532 determines the inclination based on the resistance value R measured by the probe row that is likely to be in contact with the tab terminal 104 outside the welding region 105.
- the resistance value R is calculated based on the voltage V measured by the probe P in step S3. Therefore, the tilt determination unit 532 determines the tilt of the pair of probe jigs 3U and 3D with respect to the tab terminal 104 based on the voltage V measured in the probe rows within three rows from the outside among the plurality of probe rows. There is.
- the probe P located inside the welding region 105 approaches other welding portions 71H, 71A even if it is separated from one welding portion 71H, 71A. Therefore, even if the probe jig 3 is tilted with respect to the tab terminal 104, the length of the current path flowing between the pair of probes P on both sides of the tab terminal 104 does not change significantly. As a result, even if the probe jig 3 is tilted with respect to the tab terminal 104, the influence on the resistance value R measured by the probe P located inside the welding region 105 is small.
- the probe P located outside the welding region 105 moves away from any of the welding portions 71H and 71A as the distance from the welding region 105 increases. Therefore, when the probe jig 3 is tilted with respect to the tab terminal 104, the length of the current path flowing between the pair of probes P on both sides of the tab terminal 104 becomes longer as the distance between the welding region 105 and the probe P increases. As a result, when the probe jig 3 is tilted with respect to the tab terminal 104, the resistance value R measured by the probe P located outside the welding region 105 changes according to the tilt.
- the tilt determination unit 532 can determine the tilt of the probe jig 3 based on the resistance value R obtained by the outermost probe row.
- the inclination determination unit 532 linearly approximates the resistance values R obtained by the outermost probes P in the first and sixth rows, respectively, in step S7, and the inclination determination unit 532 linearly approximates the two obtained inclinations a, whichever is larger.
- the determination in step S8 may be performed based on a. Alternatively, the determination in step S8 may be performed based on the average value of the two slopes a.
- the inclination determination unit 532 may use the probe row in the second or third row from the outside instead of the outermost probe row described above.
- the inclination determination unit 532 linearly approximates the resistance value R obtained in each probe row within three rows from the outside in the Y direction in step S7, and has the largest inclination a among the obtained six rows of inclination a.
- the determination in step S8 may be performed based on a.
- the determination in step S8 may be performed based on the average value of the slopes a for the above six columns.
- the inspection device 1 does not include the tilt determination unit 532, and it is not necessary to execute steps S7 to S10.
- the distance W2 may be the width W1 or less
- the row length L may be the length W3 or less.
- the probe interval PP may be equal to or larger than the smaller interval of the first pitch PH and the second pitch PA.
- the probe interval PP may be different from at least both the first pitch PH and the second pitch PA, and does not necessarily satisfy the probe interval condition. If the probe interval PP is different from both the first pitch PH and the second pitch PA, the possibility that the welded portions 71H and 71A and the probe P periodically come into contact with each other is reduced. As a result, the measurement variation of the resistance value R with respect to the position of the probe P is reduced.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
重ね合わされた複数の導電性のリード部103が厚み方向に、一方の面側から第一ピッチPHの間隔毎に溶着され、他方の面側から第二ピッチPAの間隔毎に溶着されたタブ端子114の検査に用いられるプローブ治具3であって、複数のプローブPと、複数のプローブPを略等しいプローブ間隔PPで支持する支持部材31とを備え、プローブ間隔PPは、第一ピッチPH及び第二ピッチPAのいずれとも異なる。
Description
本発明は、シート部材の溶着検査に適したプローブ治具、及び検査装置に関する。
従来より、二枚のシート部材を超音波振動により溶着する超音波接合装置が知られている(例えば、特許文献1参照。)。この超音波接合装置は、ホーンとアンビルとの間に2枚の被接合材を挟んで加圧しつつ、これらのシート部材の接触面に平行に超音波振動を加えて溶着する。この超音波接合装置は、溶着の際に、ホーンとアンビル間に電圧を印加し、ホーンとアンビル間に流れる電流を測定し、印加電圧および電流の測定値から接触抵抗を算出して接合状態を判定する。
ところで、ホーンとアンビルの先端には、所定間隔で突起する突起部が形成されている(特許文献1の図3、図4参照)。上述の超音波接合装置は、このホーンとアンビルの先端の突起部でシート部材を摩擦することによって溶着させる。このように、所定間隔を空けて配置された突起部によってシート部材を溶着させるので、溶着箇所が所定間隔毎となり、溶着状態が不均一になり易い。
本発明の目的は、所定間隔毎に溶着されたシート体の溶着状態の検査に適したプローブ治具、及び検査装置を提供することである。
本発明の一例に係るプローブ治具は、重ね合わされた複数の導電性のシートが厚み方向に、一方の面側から第一ピッチの間隔毎に溶着され、他方の面側から第二ピッチの間隔毎に溶着されたシート体の検査に用いられるプローブ治具であって、複数のプローブと、前記複数のプローブを略等しいプローブ間隔で支持する支持部材とを備え、前記プローブ間隔は、前記第一ピッチ及び前記第二ピッチのいずれとも異なる。
この構成によれば、所定の第一及び第二ピッチの間隔毎に溶着されたシート体の溶着状態を、厚み方向の抵抗値に基づいて検査する検査方法に適したプローブ治具を提供することができる。すなわち、シート体の厚み方向の抵抗値は、溶着された箇所で小さく、それ以外の箇所で大きくなる。この構成によれば、プローブ間隔は、第一ピッチ及び第二ピッチのいずれとも異なるので、シート体が溶着された箇所とプローブとが周期的に接触する虞が低減される。その結果、プローブの位置に対する抵抗値の測定ばらつきが低減される。このように、測定ばらつきを低減することができるプローブ治具は、溶着状態の検査に適している。
また、前記プローブ間隔は、さらに、前記第一ピッチ及び前記第二ピッチのうち、小さい方よりも小さいことが好ましい。
この構成によれば、プローブ間隔は、第一ピッチ及び第二ピッチのうち小さい方より小さいので、溶着された箇所に挟まれた領域に常にプローブが位置することになる。その結果、溶着された箇所それぞれの溶着状態を検査に反映させることが容易になる。
また、前記プローブ間隔は、さらに、前記第一ピッチ及び前記第二ピッチのうち、大きい方の1/2よりも大きいことが好ましい。
もし仮に、プローブ間隔が、第一ピッチ及び第二ピッチのうち大きい方の1/2以下であった場合、第一ピッチ及び第二ピッチのうち大きい方の間隔の中に、プローブが二本、位置することになる。しかしながら、溶着箇所相互間に少なくとも一本、プローブが位置していれば、溶着状態を検査に反映させることが可能である。この構成によれば、プローブ間隔は、第一ピッチ及び第二ピッチのうち大きい方の1/2よりも大きいので、必要以上にプローブの数が増加する虞を低減することができる。
また、前記支持部材は、前記複数のプローブを、プローブ列をなすように支持し、前記第一ピッチは、第一定数と自然数である第二定数との積であり、前記第二ピッチは、前記第一定数と自然数である第三定数との積であり、前記第二定数と前記第三定数とは互いに素であり、ピッチ周期は、前記第一定数、前記第二定数、及び前記第三定数の積であり、前記プローブ間隔と第四定数との積は、前記ピッチ周期と第五定数との積であり、前記第四定数及び前記第五定数は、それぞれ自然数、かつ、互いに素であり、前記プローブ列の両端間の長さは、前記プローブ間隔と前記第四定数との積の二倍以下であることが好ましい。
この構成によれば、シート体が溶着された箇所とプローブとが周期的に接触する虞を低減することができる。
また、前記シート体が溶着された箇所は、略矩形状の溶着領域内に分布し、前記支持部材は、前記複数のプローブを、複数のプローブ列をなすように支持し、前記複数のプローブ列の短手方向の長さは、前記溶着領域の短手方向の長さよりも長く、前記複数のプローブ列の長手方向の長さは、前記溶着領域の長手方向の長さよりも長いことが好ましい。
この構成によれば、溶着領域に対してプローブ治具の位置が多少ずれた場合であっても、位置ずれを吸収できる。その結果、溶着領域に対してプローブ治具を精度よく位置決めしなくても、溶着領域の全域にプローブを分布させて接触させることが容易となる。
また、本発明の一例に係る検査装置は、上述のプローブ治具を一対と、前記シート体の検査を行う検査処理部とを備え、前記検査処理部は、前記一対のプローブ治具をそれぞれ前記シート体の両面に接触させ、前記一対のプローブ治具によって前記シート体の厚み方向に電流を印加し、前記一対のプローブ治具の間の電圧を測定し、測定された電圧に基づいて前記シート体の検査を行うことが好ましい。
この構成によれば、所定の第一及び第二ピッチの間隔毎に溶着されたシート体の溶着状態を、厚み方向の抵抗値に基づいて検査することができる。
また、本発明の一例に係る検査装置は、上述のプローブ治具を一対と、前記シート体の検査を行う検査処理部と、前記一対のプローブ治具の傾きを判定する傾き判定部とを備え、前記検査処理部は、前記一対のプローブ治具をそれぞれ前記シート体の両面に接触させ、前記一対のプローブ治具によって前記シート体の厚み方向に電流を印加し、前記一対のプローブ治具の間の電圧を測定し、前記傾き判定部は、前記複数のプローブ列のうち、外側から三列以内のプローブ列で測定された電圧に基づいて前記シート体に対する前記一対のプローブ治具の傾きを判定する。
この構成によれば、検査の際における、シート体に対する一対のプローブ治具の傾きを判定することができる。
このような構成のプローブ治具、及び検査装置は、所定間隔毎に溶着されたシート体の溶着状態の検査に適している。
以下、本発明に係る実施形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。図1に示す検査装置1は、検査対象物の一例である、リチウムイオン二次電池のタブ端子の溶着状態を検出する装置である。各図には、方向関係を明確にするために、適宜XYZ直交座標軸を示している。
図1に示すリチウムイオン二次電池100は、複数の正極板101と、複数の負極板111とが、図略のセパレータを間に挟んで交互に積層されて、構成されている。正極板101は、例えばアルミ箔、又は銅箔等の金属箔からなる正極集電体102の表面に、図略の正極活物質が塗布されて構成されている。負極板111は、例えばアルミ箔等の金属箔からなる負極集電体112の表面に、図略の負極活物質が塗布されて構成されている。
リチウムイオン二次電池100の一端側に、各正極集電体102の一部がそれぞれリード部103(シート)として引き出され、各負極集電体112の一部がそれぞれリード部113(シート)として引き出されている。各リード部103は前記一端の片側に寄せて引き出され、各リード部113はリード部103とは反対側に片寄らせて引き出されている。これにより、リード部103とリード部113とが重ならないようにされている。
各リード部103は積層、密着され、帯状の網がけで示す溶着領域105で互いに溶着されて、正極のタブ端子104(シート体)とされている。各リード部113は積層、密着され、帯状の網がけで示す溶着領域115で互いに溶着されて、負極のタブ端子114(シート体)とされている。溶着領域105,115は、いわゆる超音波溶着によって溶着されている。図1では、各リード部103,113が溶着される前の状態を示している。
以下、溶着領域105,115を超音波溶着する方法について説明する。図2に示すように、ホーン2Hとアンビル2Aとは、互いに対向配置されている。ホーン2H及びアンビル2Aの対向面は、例えば溶着領域105,115と略同一の形状、大きさとされている。
ホーン2H及びアンビル2Aの対向面には、ホーン2H及びアンビル2Aの長尺方向であるX方向に対して45度傾斜させた格子の交点に対応する位置に、微小な突起21H,21Aが形成されている。複数の突起21H,21Aは、X方向に列をなし、Y方向に複数列配置されている。突起21H,21Aは、隣接する列とは、X方向の位置がずれている。
ホーン2Hとアンビル2Aとの間にタブ端子104,114を挟んで圧接し、ホーン2Hを超音波振動させることによって、突起21H,21Aで摩擦された各リード部103,113が溶着する。突起21Hによって、リード部103,113の一方の面側から溶着された部分を溶着点7H、突起21Aによって、リード部103,113の他方の面側から溶着された部分を溶着点7Aと称する。また、溶着点7H,7Aを総称して溶着点7と称する。
複数の溶着点7Hが集まった群の外縁を囲んだ領域が溶着領域105H,115H、複数の溶着点7Aが集まった群の外縁を囲んだ領域が溶着領域105A,115Aとなる。以下、溶着領域105Hと溶着領域105Aとを平面視で重ね合わせたときの最外縁で囲まれた領域を溶着領域105と称し、溶着領域115Hと溶着領域115Aとを平面視で重ね合わせたときの最外縁で囲まれた領域を溶着領域115と称する。
外観上、多くの場合、溶着点7Hには、溶着領域105Hの表面から凹没した凹部が形成され、溶着点7Aには、溶着領域105Aの表面から凹没した凹部が形成される。
図3、図4に示すように、溶着領域105H,115Hには、ホーン2Hに設けられた突起21Hの配置と対応して、X方向に対して45度傾斜させた格子の交点に対応する位置に溶着点7Hが配置される。図3、図5に示すように、溶着領域105A,115Aには、アンビル2Aに設けられた突起21Aの配置と対応して、X方向に対して45度傾斜させた格子の交点に対応する位置に溶着点7Aが配置される。溶着領域115,115H,115Aは、溶着領域105,105A,105Hと同様であるので、以下、溶着領域115,115H,115Aについての説明を省略する。
互いに隣接する突起21H同士の間隔は、X方向に対して傾斜する方向に隣接する突起21H同士の間隔が最も短くなる。溶着点7Hは突起21Hと対応する位置に配置されるので、互いに隣接する溶着点7H同士の間隔もまた、X方向に対して傾斜する方向に隣接する溶着点7H同士の間隔が最も短くなる。図4に示すように、溶着点7H同士の最も距離が短くなる方向の間隔を、第一ピッチPHと称する。
同様に、互いに隣接する突起21A同士の間隔は、X方向に対して傾斜する方向に隣接する突起21A同士の間隔が最も短くなる。溶着点7Aは突起21Aと対応する位置に配置されるので、互いに隣接する溶着点7A同士の間隔もまた、X方向に対して傾斜する方向に隣接する溶着点7A同士の間隔が最も短くなる。図5に示すように、溶着点7A同士の最も距離が短くなる方向の間隔を、第二ピッチPAと称する。
ホーン2Hの突起21Hの隣接間隔は、アンビル2Aの突起21Aの隣接間隔よりも小さい。従って、溶着点7Hの第一ピッチPHは、溶着点7Aの第二ピッチPAよりも小さい。
なお、図4、図5では、溶着点7H,7Aを円形で表しているが、溶着点7H,7Aは円形に限らない。溶着点7H,7Aは、矩形その他の形状であってもよい。溶着点7H,7Aの第一ピッチPH、第二ピッチPAは、溶着点7H,7Aの形状に関わらず、溶着点7H,7Aの略中心間の距離によって定められる。
図1に示す検査装置1は、検出部4U,4Dと、検査部5と、検査対象のリチウムイオン二次電池100を検出部4U,4Dの間の所定位置に保持する図略の電池保持部とを備えている。検出部4U,4Dは、プローブ治具3U,3Dを備えている。検出部4U,4Dは、図略の駆動機構によって、プローブ治具3U,3Dを、互いに直交するX,Y,Zの三軸方向に移動可能にされ、さらにプローブ治具3U,3Dを、Z軸を中心に回動可能にされている。
検出部4Uは、図略の電池保持部に固定されたリチウムイオン二次電池100の上方に位置する。検出部4Dは、図略の電池保持部に固定されたリチウムイオン二次電池100の下方に位置する。検出部4U,4Dは、プローブ治具3U,3Dを着脱可能に構成されている。プローブ治具3U,3Dは、リチウムイオン二次電池100のタブ端子104,114に順次プローブPu,Pdを接触させるための治具である。
なお、プローブ治具3U,3Dは、タブ端子104,114を一括して二つのタブ端子104,114に同時にプローブPu,Pdを接触可能であってもよい。上方に位置するプローブ治具3Uに取り付けられたプローブをプローブPu、下方に位置するプローブ治具3Dに取り付けられたプローブをプローブPdと称する。以下、検出部4U,4Dを総称して検出部4と称し、プローブPu,Pdを総称してプローブPと称する。
プローブ治具3U,3Dは、それぞれ、複数のプローブPu,Pdの先端をタブ端子104,114の溶着領域105,115へ向けて保持する支持部材31と、ベースプレート321とを備えている。ベースプレート321には、各プローブPu,Pdの後端部と接触して導通する図略の電極が設けられている。検出部4U,4Dは、ベースプレート321の各電極と後述の接続回路41U,41Dとを介して各プローブPu,Pdの後端部を、検査部5と電気的に接続したり、その接続を切り替えたりする。
プローブPu,Pdは、全体として略棒状の形状を有している。支持部材31には、プローブPu,Pdを支持する複数の貫通孔が形成されている。支持部材31は、溶着領域105,115と対応する形状、大きさを有している。
図6を参照して、支持部材31は、溶着領域105内の略全領域に対して、略均等な分布で複数のプローブPu,Pdを接触させるように、プローブPu,Pdを支持する。プローブPu,Pdは、X方向に対して45度傾斜させた格子の交点に対応する位置に配設されている。
すなわち、複数のプローブPが、X方向に並んでプローブ列を形成し、このプローブ列が複数列、平行に配置されている。プローブ列の、先頭のプローブPから最後尾のプローブPまでの距離、すなわちプローブ列の長さを、列長さLとする。
互いに隣接するプローブP同士の間隔は、X方向に対して傾斜する方向に隣接するプローブP同士の間隔が最も短くなる。このプローブP同士の最も距離が短くなる方向の間隔を、プローブ間隔PPと称する。
プローブ間隔PPは、第一ピッチPH、第二ピッチPAのうち、小さい方よりも小さい。また、プローブ間隔PPは、第一ピッチPH、第二ピッチPAのうち、大きい方の1/2よりも大きい。
さらにまた、第一ピッチPHは、任意の第一定数C1と自然数である第二定数C2との積で表される。第二ピッチPAは、第一定数C1と自然数である第三定数C3との積で表される。第二定数C2と第三定数C3とは互いに素である。ここで、第一定数C1、第二定数C2、及び第三定数C3の積を、ピッチ周期Pcycとする。
ピッチ周期Pcycは、第一ピッチPHで並ぶ溶着点7Hの位置と、第二ピッチPAで並ぶ溶着点7Aの位置とが一致する周期に相当する。
さらに、プローブ間隔PPと任意の第四定数C4との積は、ピッチ周期Pcycと任意の第五定数C5との積に等しい。第四定数C4と第五定数C5とは、それぞれ自然数であって、かつ、互いに素である。プローブ列の列長さLは、プローブ間隔PPと第四定数C4との積の二倍以下である。
第一ピッチPH、第二ピッチPA、プローブ間隔PP、列長さL、第一定数C1、第二定数C2、第三定数C3、第四定数C4、及び第五定数C5の関係は、下記の式(1)~(9)で表される。
プローブ間隔PP<第一ピッチPH ・・・(1)
プローブ間隔PP<第二ピッチPA ・・・(2)
プローブ間隔PP>第一ピッチPH×1/2 ・・・(3)
プローブ間隔PP>第二ピッチPA×1/2 ・・・(4)
第一ピッチPH=C1×C2 ・・・(5)
第二ピッチPA=C1×C3 ・・・(6)
ピッチ周期Pcyc=C1×C2×C3 ・・・(7)
プローブ間隔PP×C4=Pcyc×C5 ・・・(8)
列長さL≦PP×C4×2 ・・・(9)
プローブ間隔PP<第一ピッチPH ・・・(1)
プローブ間隔PP<第二ピッチPA ・・・(2)
プローブ間隔PP>第一ピッチPH×1/2 ・・・(3)
プローブ間隔PP>第二ピッチPA×1/2 ・・・(4)
第一ピッチPH=C1×C2 ・・・(5)
第二ピッチPA=C1×C3 ・・・(6)
ピッチ周期Pcyc=C1×C2×C3 ・・・(7)
プローブ間隔PP×C4=Pcyc×C5 ・・・(8)
列長さL≦PP×C4×2 ・・・(9)
但し、式(1)~(9)において、第二定数C2と第三定数C3とは、自然数であって、かつ互いに素であり、第四定数C4と第五定数C5とは、自然数であって、かつ互いに素である。
すなわち、プローブ治具3のプローブ間隔PPは、第一定数C1、第二定数C2、第三定数C3、第四定数C4、及び第五定数C5を適宜設定することによって、式(1)~(9)を全て満たす。以下、式(1)~(9)で示され、第二定数C2と第三定数C3とは、自然数であって、かつ互いに素であり、第四定数C4と第五定数C5とは、自然数であって、かつ互いに素である条件を、プローブ間隔条件と称する。プローブ間隔条件を満たす具体例としては、例えば、プローブ間隔PP=1.1mm、第一ピッチPH=1.5mm、第二ピッチPA=2.0mm、列長さL=130mmとすることができる。
プローブ治具3U,3Dは、検出部4U,4Dへの取り付け方向が上下逆になる点を除き、互いに同様に構成されている。以下、プローブ治具3U,3Dを総称してプローブ治具3と称する。プローブ治具3は、検査対象のリチウムイオン二次電池100に応じて取り替え可能にされている。
タブ端子104及び溶着領域105に対する検査と、タブ端子114及び溶着領域115に対する検査は同様である。以下、タブ端子114及び溶着領域115に関する説明を省略し、タブ端子104及び溶着領域105を検査対象として説明する。
図7は、プローブPを黒丸、溶着点7Hを白丸、溶着点7Aを二重丸で示している。溶着領域105は、溶着点7H,7Aの外縁を直線で結んだX方向に長尺の略矩形形状を有している。
図7に示す例では、X方向に並ぶプローブPの列が、1列目から6列目まで、配置されている。そして、両外側の1列目と6列目のプローブPの列の距離W2は、溶着領域105のY方向の幅W1よりも大きい。このように、距離W2が幅W1よりも大きいことによって、溶着領域105のY方向の両外側に、プローブ列を配置可能となっている。
プローブPの各列は、溶着領域105の長尺方向であるX方向に延びるので、両外側の列間の距離W2は、各列の列長さLより短い。従って、距離W2は複数のプローブ列の短手方向の長さに相当する。また、溶着領域105はX方向に長尺であるから溶着領域105のY方向の幅W1は溶着領域105の短手方向の長さである。
また、プローブPの各列の列長さLは、溶着領域105の長尺方向であるX方向の長さW3よりも長い。
このように、距離W2が幅W1よりも大きく、列長さLが長さW3よりも長いことによって、溶着領域105に対してプローブ治具3の位置が多少ずれた場合であっても、位置ずれを吸収できる。その結果、溶着領域105に対してプローブ治具3を精度よく位置決めしなくても、溶着領域105の全域にプローブPを分布させて接触させることが容易となる。
また、後述するように、プローブ間隔条件を満たすことによって、溶着領域105に対するプローブ治具3の位置ずれによって生じる抵抗値Rのばらつきが低減される。従って、プローブ間隔条件を満たし、かつ距離W2を幅W1よりも大きく、列長さLを長さW3よりも長くすることによって、溶着領域105に対してプローブ治具3を精度よく位置決めする高精度の位置決め機構を不要とすることができる。
図7では、溶着領域105のY方向の両外側に、一対のプローブ列を配置可能な例を示している。溶着領域105のY方向の外側に配置可能なプローブ列は、複数列であってもよく、例えば三列であってもよい。
図8に示す検査装置1は、例えば、複数のプローブPu,Pd、接続回路41U,41D、及び検査部5を備えている。検査部5は、例えば電源回路51、電圧検出部52、及び制御部53等を備えている。
図8では、タブ端子104にプローブPu,Pdを接触させた状態を示している。図8に示すタブ端子104は、図1に示すタブ端子104を、X方向に沿って切断した断面で示している。プローブPu1,3,5,7,9,・・・,N、及びプローブPd1,3,5,7,9,・・・,Nは、X方向に沿って並ぶ各一列のプローブPu,Pdに、プローブ番号を付したものである。プローブPu,Pdに付されたプローブ番号は、各プローブPが接触する溶着領域105の位置を示すX方向のX座標に対応している。
プローブPu,Pdは、図6に示すようにX方向に対して45度傾斜させた格子の交点に対応する位置に配設されているため、X方向に延びる各列のプローブPu,Pdには、プローブ番号として、偶数が付される列と、奇数が付される列とが交互に配置されている。図8では、プローブ番号が奇数のプローブPu,Pdを一列例示し、他のプローブPの図示を省略している。プローブPの各列に番号を付与することで、当該列の番号は、各プローブPが接触する溶着領域105の位置を示すY方向のY座標に対応する。
各プローブPは、四端子測定法用の二つの接触子を備えている。すなわち、各プローブPは、それぞれ、電流供給用の接触子Tiと、電圧測定用の接触子Tvとを備えている。このように、二つの接触子を備えたプローブとしては、例えば、特開2006-329998号公報に記載されているような、二本のニードルピン(接触子)を一対にしたプローブや、例えば特開2012-154670号公報に記載されているような、筒形状の第一接触子と、第一接触子の内部に挿通された第二接触子とからなる同軸状のプローブを用いることができる。あるいは、格子状に配置された棒状のプローブのそれぞれを接触子とし、二本のプローブ(接触子)を一組にして一つのプローブとして用いてもよい。
なお、抵抗測定は四端子測定法に限らない。一つのプローブPは一つの接触子から構成されてもよい。そして、一つのプローブPを、電流供給と電圧測定とに用いることによって、二端子測定法による抵抗測定を行ってもよい。
接続回路41Uは、プローブ治具3Uにおけるベースプレート321の各電極と、電源回路51の正極端子と、電圧検出部52の正極端子とに接続されている。接続回路41Dは、プローブ治具3Dにおけるベースプレート321の各電極と、電源回路51の負極端子と、電圧検出部52の負極端子とに接続されている。接続回路41U,41Dは、例えば複数のスイッチング素子を用いて構成されている。
そして、接続回路41U,41Dは、制御部53からの制御信号に応じてタブ端子104を間に挟んで互いに対向する一対のプローブPu,Pdを選択する。接続回路41U,41Dは、選択されたプローブPuの接触子Tiに電源回路51の正極を、プローブPuの接触子Tvに電圧検出部52の正極を、プローブPdの接触子Tiに電源回路51の負極を、プローブPdの接触子Tvに電圧検出部52の負極を接続する。
電源回路51は、例えばスイッチング電源回路等の定電流電源回路である。電源回路51は、制御部53からの制御信号に応じて予め設定された一定の直流電流Iを出力する。電圧検出部52は、例えば分圧抵抗やアナログデジタルコンバータ等を用いて構成された、電圧測定回路である。電圧検出部52は、接続回路41U,41Dによって選択された、一対のプローブPu,Pdにおける、プローブPuの接触子TvとプローブPdの接触子Tvとの間の電圧Vを測定し、その測定値を制御部53へ送信する。
制御部53は、いわゆるマイクロコンピュータである。制御部53は、例えば所定の演算処理を実行するCPU(Central Processing Unit)、データを一時的に記憶するRAM(Random Access Memory)、所定の制御プログラム等を記憶するフラッシュメモリ、HDD(Hard Disk Drive)、又はSSD(Solid State Drive)等の不揮発性の記憶装置、及びこれらの周辺回路等を備えて構成されている。そして、制御部53は、例えば上述の制御プログラムを実行することによって、検査処理部531、及び傾き判定部532として機能する。
検査処理部531は、図略の駆動機構を制御して検出部4U,4Dを移動、位置決めさせ、リチウムイオン二次電池100のタブ端子104に各プローブPu,Pdの先端を接触させる。検査処理部531は、図7に示すように、溶着領域105のY方向の外側に、1~3列程度のプローブ列を配置し、溶着領域105全体にプローブPが分布するように位置決めする。
この状態で、検査処理部531は、溶着領域105における各プローブPu,Pdの接触位置で、プローブ治具3の各プローブPu,Pdを介して溶着領域105を貫通する方向に検査用の電流Iを供給させつつ、表裏一対のプローブPu,Pdから電圧Vを取得する。そして、検査処理部531は、得られた電圧Vに基づき、各接触位置における溶着領域105の厚み方向の抵抗値R=V/Iを算出する。これにより、検査処理部531は、各プローブPの接触位置において、表裏一対のプローブP間の、タブ端子104の抵抗値を測定することができる。
この場合、各プローブPが接触子Ti,Tvを備え、電流供給と電圧測定とが別の接触子によって行われるので、四端子測定法による抵抗測定が可能となる。その結果、抵抗測定精度が向上する。
なお、検査装置1は、電源回路51から出力された電流Iを測定する電流測定回路を別途備え、検査処理部531は、電流測定回路により測定された電流Iに基づいて抵抗値Rを算出してもよい。また、電流Iが固定値であれば、検査処理部531は、電圧Vをそのまま抵抗値を表す情報として用いてもよい。また、検査処理部531は、上述したように、二端子測定法による抵抗測定を行ってもよい。
検査処理部531は、この抵抗測定により得られた抵抗値Rに基づいてタブ端子104の検査を行う。
傾き判定部532は、複数のプローブ列のうち、外側から三列以内のプローブ列で測定された電圧に基づいて溶着領域105に対するプローブ治具3U,3Dの傾きを判定する。なお、プローブ治具3の傾きとは、XY平面における、タブ端子104の長尺方向に並ぶ溶着点7の列方向に対する、プローブ治具3の長尺方向に並ぶプローブPの列方向の傾きを意味するものとする。
次に、上述のように構成された検査装置1の動作について、図9に示すフローチャートを参照しつつ説明する。
まず、検査処理部531は、図略の駆動機構を制御して検出部4U,4Dを移動、位置決めさせ、リチウムイオン二次電池100における溶着領域105Hに各プローブPuの先端を接触させ、溶着領域105Aに各プローブPdの先端を接触させる(ステップS1)。これにより、例えば図7に示すように、溶着点7H,7A、及びプローブPが配置さ
れる。
れる。
次に、検査処理部531は、互いに対向する各対のプローブPu,Pd間におけるタブ端子104の厚み方向の抵抗値Rを測定する(ステップS2,S3)。
具体的には、検査処理部531は、プローブ治具3から、互いに対向する一対のプローブPu,Pdを順次選択する。検査処理部531は、接続回路41U,41Dによって、選択した一対のプローブPu,Pdの、接触子Tiを電源回路51に接続させ、接触子Tvを電圧検出部52に接続させる。
そして、検査処理部531は、プローブPuの接触子TiとプローブPdの接触子Tiとの間に、電源回路51によってタブ端子104を厚さ方向に貫通する方向の電流Iを供給させ、そのときプローブPuの接触子TvとプローブPdの接触子Tvとの間の電圧Vを、電圧検出部52によって測定させる。検査処理部531は、互いに対向する一対のプローブPu,Pdを順次選択して電流供給及び電圧測定を繰り返すことによって、各対のプローブPu,Pdに対応する電圧Vを測定する(ステップS2)。
次に、検査処理部531は、ステップS2で測定された各対のプローブPu,Pd間の電圧Vに基づき、タブ端子104における、プローブPu,Pdの位置に対応する各座標位置の抵抗値Rを、下記の式(10)に基づき算出する(ステップS3)。
抵抗値R=V/I ・・・(10)
図10~図16に示す抵抗値Rは、シミュレーションによって求めたものである。図10~図16に示すグラフは、横軸がプローブの順番、縦軸が抵抗値Rを示し、1~6列目のプローブ列で得られた抵抗値Rを示している。横軸は、各プローブ列におけるプローブPu,Pdの先頭から数えた順番で、対応するプローブ対を示している。
図10~図13に示す、プローブ間隔条件を満たす場合のグラフは、上述の、第一ピッチPHが1.5mm、第二ピッチPAが2.0mm、プローブ間隔PPが1.1mmの場合を示している。この条件で、列長さL=130mm、第一定数C1=0.5、第二定数C2=3、第三定数C3=4、第四定数C4=60、第五定数C5=11とすれば、式(1)~(9)が全て満たされる。従って、第一ピッチPH=1.5mm、第二ピッチPA=2.0mm、列長さL=130mmの場合、プローブ間隔PPを1.1mmとすることができる。
以下、各パラメータの数値をカッコ書きで示すと、式(1)から、プローブ間隔PP(1.1)<第一ピッチPH(1.5)。式(2)から、プローブ間隔PP(1.1)<第二ピッチPA(2.0)。式(3)から、プローブ間隔PP(1.1)>第一ピッチPH(1.5)×1/2=0.75。式(4)から、プローブ間隔PP(1.1)>第二ピッチPA(2.0)×1/2=1.0。式(5)から、第一ピッチPH(1.5)=C1(0.5)×C2(3)=1.5。式(6)から、第二ピッチPA(2.0)=C1(0.5)×C3(4)=2.0。式(7)から、ピッチ周期Pcyc=C1(0.5)×C2(3)×C3(4)=6。式(8)から、プローブ間隔PP(1.1)×C4(60)=Pcyc(6)×C5(11)=66。式(9)から、列長さL(130)≦PP(1.1)×C4(60)×2=132となる。
さらに、第二定数C2=3と、第三定数C3=4とは、自然数であって、かつ互いに素である。第四定数C4=60と、第五定数C5=11とは、自然数であって、かつ互いに素である。
図10に示すグラフでは、略溶着領域105の内側に位置する2列目~5列目のプローブPによって測定された抵抗値Rは、18μΩ~35μΩの範囲内に収まっており、ばらつきが少ない。一方、溶着領域105の外側に位置する1列目のプローブPによって測定された抵抗値Rは、36μΩを超え、2列目~5列目のプローブPによって測定された抵抗値Rよりも明らかに大きな値となっている。
ステップS2においてプローブPu,Pd間に電流Iを流す際、溶着領域105の略内側に位置する2列目~5列目のプローブPでは、プローブPを囲むように周囲に複数の溶着点7が存在する。そのため、電流Iは、プローブPを囲む複数の溶着点7を流れる。その結果、ステップS2,S3で測定される抵抗値Rは、複数の溶着点7の厚み方向の抵抗が並列接続された合成抵抗となる。
一方、溶着領域105の外側に位置する1列目及び6列目のプローブPでは、プローブPから見て、片側にしか溶着点7が存在しない。その結果、2列目~5列目のプローブPよりも、電流Iが流れる溶着点7の数が少なくなり、従って抵抗の並列数が減少して厚み方向の抵抗値Rが増大し易くなる。そのため、図10に示すように、溶着領域105の外側に位置する1列目のプローブPによって測定された抵抗値Rは、溶着領域105の略内側に位置する2列目~5列目のプローブPによって測定された抵抗値Rよりも大きくなる。
図11~図13は、プローブ間隔条件を満たす場合における、溶着部71H,71Aとプローブ治具3との位置関係が抵抗値Rに及ぼす影響を示している。図11~図13に示すように、第一ピッチPH、第二ピッチPA、及びプローブ間隔PPが各図の間で同一であっても、プローブ治具3の位置、すなわち各プローブPdの接触位置が異なることによって、抵抗値Rに変動が生じる。
一方、図14~図16に示す、プローブ間隔条件を満たさない場合のグラフは、第一ピッチPHが1.5mm、第二ピッチPAが2.0mm、プローブ間隔PPが1.0mmの場合を示している。この条件では、列長さL=130mmとしても、プローブ間隔条件の式(1)~(9)を全て満たすように第一定数C1、第二定数C2、第三定数C3、第四定数C4、及び第五定数C5を設定することができない。
例えば上述の第一定数C1=0.5、第二定数C2=3、第三定数C3=4、第四定数C4=60、及び第五定数C5=11を仮に用いた場合、式(1)から、プローブ間隔PP(1.0)<第一ピッチPH(1.5)。式(2)から、プローブ間隔PP(1.0)<第二ピッチPA(2.0)。式(3)から、プローブ間隔PP(1.0)>第一ピッチPH(1.5)×1/2=0.75。
式(4)から、プローブ間隔PP>第二ピッチPA×1/2であるが、プローブ間隔PP(1.0)=第二ピッチPA(2.0)×1/2=1.0となり、式(4)は成立しない。
式(5)から、第一ピッチPH(1.5)=C1(0.5)×C2(3)=1.5。式(6)から、第二ピッチPA(2.0)=C1(0.5)×C3(4)=2.0。式(7)から、ピッチ周期Pcyc=C1(0.5)×C2(3)×C3(4)=6。
式(8)から、プローブ間隔PP×C4=Pcyc×C5であるが、プローブ間隔PP(1.0)×C4(60)=60、Pcyc(6)×C5(11)=66となり、式(8)は成立しない。
式(9)から、列長さL≦PP×C4×2であるが、列長さL(130)>PP(1.0)×C4(60)×2=120となり、式(9)は成立しない。式(9)については、列長さLを120mmより短くすることによって成立する。しかしながら、式(4)については、第二ピッチPAが2.0mm、プローブ間隔PPが1.0mmの組合せでは満たすことができない。また、式(8)については、式(7)からプローブ間隔PP×C4=C1×C2×C3×C5を満たす第一定数C1、第二定数C2、第三定数C3、及び第五定数C5を設定することができればよい。
しかし、第二定数C2=3と第三定数C3=4とが自然数であって、互いに素であり、かつ第四定数C4=60と第五定数C5=11とが自然数であって、互いに素である条件を満たしつつ、式(8)を満足する第一定数C1、第二定数C2、第三定数C3、及び第五定数C5を設定することは困難である。
従って、第一ピッチPHが1.5mm、第二ピッチPAが2.0mm、プローブ間隔PPが1.0mmの場合は、プローブ間隔条件を満たさない場合の一例に相当している。
図14~図16は、プローブ間隔条件を満たさない場合における、溶着部71H,71Aとプローブ治具3との位置関係が抵抗値Rに及ぼす影響をグラフ化して示している。図14~図16によれば、プローブ間隔条件を満たさない場合の抵抗値Rは、プローブ間隔条件を満たす場合の抵抗値R(図11~図13)と比べて一見して抵抗値Rのばらつきが大きいことが判る。
図14では、三列目、五列目のプローブPで測定された抵抗値Rがプローブ六本毎に周期的に小さくなっている。図15では、五列目のプローブPで測定された抵抗値Rがプローブ六本毎の第一周期と、第一周期からプローブ二本分ずれた第二周期とで周期的に小さくなっている。
図16では、一列目のプローブPで測定された抵抗値Rがプローブ二本毎に周期的に大きくなり、三列目、五列目、六列目のプローブPで測定された抵抗値Rがプローブ六本毎に周期的に大きくなっている。図14~図16のグラフに示すように、プローブ間隔条件を満たさない場合の抵抗値Rは、一つのグラフ内でのプローブ位置によるばらつき、及び異なるグラフ間でのプローブ治具3の位置によるばらつきのいずれについても、図11~図13のグラフと比べて大きくなっている。
すなわち、プローブ間隔PPを、プローブ間隔条件を満たすように設定することによっ
て、抵抗値Rのばらつきを低減することができる。また、プローブ間隔条件を満たす場合には、図11~図13に示すように、プローブ治具3の位置ずれによる抵抗値Rの変化も小さい。従って、プローブ間隔条件を満たす場合には、タブ端子104に対するプローブ治具3の位置決め精度が低くても、抵抗値Rの測定精度に対する影響が少ない。従って、検査装置1は、プローブ治具3を高精度に位置決めする必要がない。その結果、プローブ間隔条件を満たすことによって、位置決め機構を簡素化し、検査装置1のコストを低減することが容易となる。
て、抵抗値Rのばらつきを低減することができる。また、プローブ間隔条件を満たす場合には、図11~図13に示すように、プローブ治具3の位置ずれによる抵抗値Rの変化も小さい。従って、プローブ間隔条件を満たす場合には、タブ端子104に対するプローブ治具3の位置決め精度が低くても、抵抗値Rの測定精度に対する影響が少ない。従って、検査装置1は、プローブ治具3を高精度に位置決めする必要がない。その結果、プローブ間隔条件を満たすことによって、位置決め機構を簡素化し、検査装置1のコストを低減することが容易となる。
図17に示すタブ端子104は、リード部103が八枚積層されている。リード部103相互間が溶着されている部分を、斜線のハッチングで溶着部71H,71Aとして示している。
溶着部71Hは、溶着点7Hから溶着領域105Aへ向かって延びる。溶着部71Hは、溶着点7Hで最も幅広であり、溶着点7Hから離れるに従って幅が狭くなる。溶着部71Aは、溶着点7Aから溶着領域105Hへ向かって延びる。溶着部71Aは、溶着点7Aで最も幅広であり、溶着点7Aから離れるに従って幅が狭くなる。
従って、タブ端子104の厚み方向における、溶着部71Hの抵抗値は、溶着点7H付近で最も小さくなり、溶着点7Hから離れるに従って増大する。タブ端子104の厚み方向における、溶着部71Aの抵抗値は、溶着点7A付近で最も小さくなり、溶着点7Aから離れるに従って増大する。
第一ピッチPHと第二ピッチPAとが異なっているので、溶着部71Hと溶着部71Aとの距離が、位置によって変化する。また、溶着部71Hと溶着部71Aとが重なる場合もある。溶着部71Hと溶着部71Aとが重なった部分では、極めて低抵抗となる。
図18に示す例では、溶着部71Hと溶着部71Aの間にプローブPu,Pdが位置している。図18には、プローブPuからプローブPdへ電流Iを流した場合に、タブ端子104中を流れる電流経路CPを大略的に示している。電流量を、大略的に電流経路CPの線の太さで示している。
タブ端子104中を流れる電流は、溶着点7Hに近い位置では大部分が低抵抗の溶着部71Hを流れるが、溶着部71Hが細くなって抵抗が増大するにつれて、リード部103を介して溶着部71Aに分流する。このように、タブ端子104中では、複数の溶着部71H,71A、及び複数のリード部103に分流して電流が流れ、電流経路長が長くなる。電流経路長が長くなると、抵抗値Rは増大する。溶着部71H,71A、及びプローブPu,Pdの位置関係に応じて、電流経路CPが変化し、従って抵抗値Rが変化する。
一方、溶着部71Hと溶着部71Aとが重なった部分における溶着点7H,7AにプローブPu,Pdが位置した場合、電流の大部分が溶着部71H,71Aを流れ、かつ電流経路長がタブ端子104の厚さと略等しく、最短距離で電流が流れる。その結果、抵抗値Rが極めて小さくなる。
ここで、第一ピッチPH又は第二ピッチPAが、プローブ間隔PPの倍数になっていた場合、位置によって周期的に抵抗値Rの増減が生じる。この抵抗値Rの増減の周期が列長さLの1/2に満たない場合、一列のプローブPで測定される抵抗値Rが頻繁に増減する結果、正常に溶着されたタブ端子114であっても、図11に示すように抵抗値Rの値がばらつくことになる。
正常であるにもかかわらず抵抗値Rの値がばらつくと、良否判定のための基準値Rrefを、抵抗値Rがばらついても超えないような大きな値に設定しなければならなくなる。しかしながら、基準値Rrefを大きな値に設定すると、溶着不良箇所の抵抗値Rが基準値Rrefを超えなくなり、不良を検出できない虞がある。
一方、式(1)(2)によれば、プローブ間隔PPは、第一ピッチPH及び第二ピッチPAのうち小さい方より小さいので、各溶着点7H,7Aに挟まれた領域に常にプローブPが位置することになる。その結果、各溶着点7H,7Aのいずれに不良があった場合であっても、測定された抵抗値Rに基づき溶着状態の良否を判定することが可能となる。
また、式(8)によれば、プローブ間隔PP×C4と、ピッチ周期Pcyc×C5とが等しいから、プローブ間隔PP×C4の距離毎に、抵抗値Rが増減する周期性が生じる。しかしながら、式(9)によれば、列長さLは、周期性が生じるプローブ間隔PP×C4の2倍以下である。そうすると、プローブ間隔PPが、式(5)~(9)を満たしていれば、一列のプローブPで測定される抵抗値Rが変動する周期は二周期以下となり、抵抗値Rのばらつきをほとんど無視できる。
その結果、基準値Rrefを、良否判定のために適した適切な値に設定することが容易となる。
なお、プローブ列の列長さLを、プローブ間隔PPと第四定数C4との積より小さくし、式(9)の代わりに下記の式(9a)を用いた場合、一列のプローブPで測定される抵抗値Rには周期性が生じず、抵抗値Rのばらつきをさらに低減できる点でより好ましい。
列長さL<PP×C4 ・・・(9a)
次に、検査処理部531は、ステップS2,S3で測定された抵抗値Rに基づいて、Y方向両外側のプローブ列以外のプローブ列で測定された抵抗値Rの中に、基準値Rrefを超える抵抗値Rが有るか否かを判定する(ステップS4)。Y方向両外側のプローブ列以外のプローブ列で測定された抵抗値Rは、略溶着領域105内の抵抗値Rに相当する。あるいは、ステップS4において、検査処理部531は、Y方向両外側から二列又は三列ずつを除外した残りのプローブ列で測定された抵抗値Rの中に、基準値Rrefを超える抵抗値Rが有るか否かを判定するようにしてもよい。ステップS4においてY方向両外側から除外する列数は、三列以下に限らない。
また、検査処理部531は、ステップS4において、各プローブ列の先頭及び最後尾のプローブPで測定された抵抗値Rをさらに除外して残りのプローブ列で測定された抵抗値Rの中に、基準値Rrefを超える抵抗値Rが有るか否かを判定するようにしてもよい。あるいは、検査処理部531は、ステップS4において、各プローブ列の先頭及び最後尾からそれぞれ三本のプローブPで測定された抵抗値Rをさらに除外して残りのプローブ列で測定された抵抗値Rの中に、基準値Rrefを超える抵抗値Rが有るか否かを判定するようにしてもよい。これにより、ステップS4における判定が、溶着領域105内の抵抗値Rに基づいて行われる確実性が向上する。
図8では、溶着不良により抵抗値Rが増大する理由を説明するために、溶着点7H,7Aを省略し、タブ端子104の断面構造を簡略化して示している。タブ端子104で複数枚のリード部103が正常に溶着されていた場合、図8の電流経路Aで示すように、電源回路51から供給された電流Iは、溶着領域105の厚み方向に略最短距離で流れる。一方、リード部103の溶着に不良があり、正常に溶着していない溶着欠陥Fが存在していた場合、電源回路51から供給された電流Iは、図8の電流経路B,Cで示すように溶着欠陥Fを迂回するように流れ、電流が流れる経路が電流経路Aより長くなる。
従って、抵抗値Rは、溶着状態が良好であるほど小さな値になり、溶着状態が悪くなるほど大きな値になる傾向がある。
抵抗値Rが基準値Rrefを超える場合、その箇所近傍で溶着不良が生じていると考えられる。従って、略溶着領域105内で測定された抵抗値Rの中に、基準値Rrefを超える抵抗値Rがあった場合(ステップS4でYES)、検査処理部531は、抵抗値Rが基準値Rrefを超えた座標位置近傍に溶着不良ありと判定し(ステップS5)、ステップS7へ移行する。
一方、基準値Rrefを超える抵抗値Rがなかった場合(ステップS4でNO)、検査処理部531は、溶着不良なしと判定し(ステップS6)、ステップS7へ移行する。
なお、ステップS4において、Y方向両外側から何列かを除外して判定を行う例に限らない。或る列の抵抗値Rのうち、基準値Rrefを超えるものが、例えば1~3個程度の僅かな基準個数以下であった場合、その基準個数の基準値Rrefを超えた抵抗値Rを除外して判定を行ってもよい。言い換えると、或る列の抵抗値Rのうち、基準値Rrefを超えるものが基準個数以下であった場合、その列に対しては、溶着不良なし(ステップS4)と判定してもよい。
或る列の抵抗値Rのうち、基準値Rrefを超えた抵抗値Rの個数が僅かな個数であった場合、溶着不良ではなく、プローブPとタブ端子104との間に塵等の異物が挟まっている可能性が高い。従って、或る列の抵抗値Rのうち、基準値Rrefを超えるものが基準個数以下であった場合、その基準個数の基準値Rrefを超えた抵抗値Rを除外して判定を行ってもよい。
あるいは、ステップS4において、或る列の抵抗値Rのうち基準個数の基準値Rrefを超えた抵抗値Rを除外する代わりに、或る列の抵抗値Rの平均値が基準値Rrefを超える場合(ステップS4でYES)、検査処理部531は、その列に対応する位置で溶着不良ありと判定し(ステップS5)、或る列の抵抗値Rの平均値が基準値Rrefを超えない場合(ステップS4でNO)、検査処理部531は、その列に対応する位置で溶着不良なしと判定(ステップS6)してもよい。
図19の横軸は引張強度、縦軸は抵抗値Rである。引張強度は、溶着されたリード部103を剥離させるのに必要な引っ張り力である。抵抗値Rは、図7に示す六列のプローブPのうち、両端を除いた二列目~五列目のプローブPで測定された抵抗値Rの平均値でプロットしている。
図19によれば、おおよそ抵抗値Rが小さいほど引張強度が増大し、従って溶着が良好であると考えられ、おおよそ抵抗値Rが大きいほど引張強度が減少し、従って溶着が良好でないと考えられる。図19の例では、基準値Rrefを28μΩとすれば、引張強度が84g以上のタブ端子104を溶着不良なしと判定することができ、基準値Rrefを43μΩとすれば、引張強度が62g以上のタブ端子104を溶着不良なしと判定することができる。
ここで、上述したように、プローブ間隔PPが式(5)~(9)を満たしているので、一列のプローブPで測定される抵抗値Rのばらつきが低減され、基準値Rrefを、良否判定のために適した適切な値に設定することが容易となる。また、プローブ間隔PPが式(1)(2)を満たしているので、各溶着点7H,7Aのいずれに不良があった場合であっても、測定された抵抗値Rに基づき溶着状態の良否を判定することが可能となる。
その結果、ステップS4における、溶着不良の判定精度を向上させることができる。
また、もし仮に、プローブ間隔PPが、式(3)(4)のうちいずれかを満たさず、第一ピッチPH及び第二ピッチPAのうち大きい方の1/2以下であった場合、第一ピッチPH及び第二ピッチPAのうち大きい方の間隔の中に、プローブPが二本、位置することになる。しかしながら、溶着点7の間に少なくとも一本、プローブPが位置していれば、溶着不良の検出は可能である。そのため、プローブ間隔PPが、第一ピッチPH及び第二ピッチPAのうち大きい方の1/2以下であった場合には、必要以上にプローブPの数が多く、コストの増大を招く虞がある。
一方、プローブ治具3は、プローブ間隔PPが式(3)(4)を満たし、プローブ間隔PPが第一ピッチPH及び第二ピッチPAのうち大きい方の1/2より大きい。その結果、必要以上にプローブPの数が増加してコストの増大を招く虞を低減できる。
なお、プローブ間隔PPは、第一ピッチPH及び第二ピッチPAのうち大きい方の1/2以下であってもよい。この場合、プローブPの数は増加する代わりに、溶着領域115内の抵抗値Rをきめ細かく測定することが可能となる。
また、検査処理部531は、ステップS4において、略溶着領域105内で測定された抵抗値R、すなわち図10に示す2列目~5列目の抵抗値Rに基づいて溶着不良を判断する。従って、図10に示す基準値Rrefの位置に、基準値Rrefを予め設定することができる。
一方、もし仮に、ステップS4において、比較対象に溶着領域105外の1列目及び6列目の抵抗値Rも含めた場合には、図10に示す仮定値Rkの位置に基準値Rrefを設定する必要が生じる。この場合、2列目~5列目の抵抗値Rに対して大幅に大きな値が基準値Rrefとして設定されるので、ステップS4における良否判定の精度が低下する。
従って、ステップS4において、略溶着領域105内で測定された抵抗値Rを判定対象とすることによって、溶着状態の良否判定精度を向上させることが容易になる。
図20に示す例では、三列目、四列目のプローブPで測定された抵抗値Rのうち、11~14番目のプローブPの位置で抵抗値Rが基準値Rrefを超え(ステップS4でYES)、溶着不良ありと判定される(ステップS5)。
次に、ステップS7において、傾き判定部532は、Y方向における外側から三列以内のプローブ列のうちいずれか、例えば最も外側の六列目のプローブ列により得られた抵抗値Rを、下記の式(11)で直線近似する(ステップS7)。
X=aY+b ・・・(11)
X=aY+b ・・・(11)
傾き判定部532は、例えば最小二乗法を用いて回帰直線を求めることによって、傾きa及び定数bを算出し、直線近似を行うことができる。
図21は、プローブ治具3がタブ端子104に対して傾いている場合の抵抗値Rの一例を示すグラフである。図21によれば、最も外側に位置する六列目のプローブPで測定された抵抗値Rのグラフが最も傾いていることが判る。
次に、傾き判定部532は、近似直線の傾きaの絶対値と、予め設定された基準傾きarefとを比較する(ステップS8)。基準傾きarefは、要求される検査精度に応じて適宜設定することができる。
そして、傾きaの絶対値が基準傾きarefよりも大きければ(ステップS8でYES)、傾き判定部532は、プローブ治具3がタブ端子104に対して傾いていると判定し(ステップS9)、処理を終了する。一方、傾きaの絶対値が基準傾きarefよりも大きくなければ(ステップS8でNO)、傾き判定部532は、プローブ治具3のタブ端子104に対する傾きは許容できる基準範囲内であると判定し(ステップS10)、処理を終了する。
上述したように、両外側のプローブ列間の距離W2は、溶着領域105のY方向の幅W1よりも大きい。従って、外側から三列以内のプローブ列は、溶着領域105の外側でタブ端子104に接触している可能性が高い。すなわち、傾き判定部532は、溶着領域105の外側でタブ端子104に接触している可能性が高いプローブ列により測定された抵抗値Rに基づいて傾きを判定する。
抵抗値Rは、ステップS3においてプローブPによって測定された電圧Vに基づいて算出されたものである。従って、傾き判定部532は、複数のプローブ列のうち、外側から三列以内のプローブ列で測定された電圧Vに基づいてタブ端子104に対する一対のプローブ治具3U,3Dの傾きを判定している。
溶着領域105の内側に位置するプローブPは、ある溶着部71H,71Aから離れても他の溶着部71H,71Aに近づく。従って、プローブ治具3がタブ端子104に対して傾いても、タブ端子104両面の一対のプローブP間を流れる電流経路の長さは大きく変化しない。その結果、プローブ治具3がタブ端子104に対して傾いても、溶着領域105の内側に位置するプローブPで測定される抵抗値Rに与える影響は小さい。
一方、溶着領域105の外側に位置するプローブPは、溶着領域105から離れれば離れるほど、いずれの溶着部71H,71Aからも遠ざかる。従って、プローブ治具3がタブ端子104に対して傾むくと、溶着領域105とプローブPとの距離が離れるほどタブ端子104両面の一対のプローブP間を流れる電流経路の長さが長くなる。その結果、プローブ治具3がタブ端子104に対して傾むくと、溶着領域105の外側に位置するプローブPで測定される抵抗値Rは、その傾きに応じた変化を生じる。
従って、傾き判定部532は、最も外側のプローブ列により得られた抵抗値Rに基づいて、プローブ治具3の傾きを判定することができる。
なお、傾き判定部532は、例えば最も外側の一列目と六列目のプローブPで得られた抵抗値RをそれぞれステップS7で直線近似し、得られた二つの傾きaのうち大きい方の傾きaに基づきステップS8の判定を行ってもよい。あるいは、上記二つの傾きaの平均値に基づきステップS8の判定を行ってもよい。
あるいは、傾き判定部532は、上述の最も外側のプローブ列の代わりに、外側から二列目又は三列目のプローブ列を用いてもよい。あるいは、傾き判定部532は、Y方向における外側から三列以内の各プローブ列で得られた抵抗値RをそれぞれステップS7で直線近似し、得られた六列分の傾きaのうち最も大きい傾きaに基づきステップS8の判定を行ってもよい。あるいは、上記六列分の傾きaの平均値に基づきステップS8の判定を行ってもよい。
なお、検査装置1は、傾き判定部532を備えず、ステップS7~10を実行しなくてもよい。また、距離W2は幅W1以下であってもよく、列長さLは長さW3以下であってもよい。また、プローブ間隔PPは、第一ピッチPH及び第二ピッチPAのうち小さい方の間隔以上であってもよい。
また、プローブ間隔PPは、少なくとも第一ピッチPH及び第二ピッチPAのいずれとも異なっていればよく、必ずしもプローブ間隔条件を満たしていなくてもよい。プローブ間隔PPが第一ピッチPH及び第二ピッチPAのいずれとも異なっていれば、溶着部71H,71AとプローブPとが周期的に接触する虞が低減される。その結果、プローブPの位置に対する抵抗値Rの測定ばらつきが低減される。
1:検査装置、2A:アンビル、2H:ホーン、3,3U,3D:プローブ治具、4,4U,4、D:検出部、5:検査部、7,7H,7A:溶着点、21H,21A:突起、31:支持部材、41U,41D:接続回路、51:電源回路、52:電圧検出部、53:制御部、71H,71A:溶着部、100:リチウムイオン二次電池、101:正極板、102:正極集電体、103,113:リード部(シート)、104,114:タブ端子(シート体)、105,105A,105H,115,115A,115H:溶着領域、111:負極板、112:負極集電体、113:リード部、114:タブ端子、321:ベースプレート、531:検査処理部、532:傾き判定部、a:傾き、aref:基準傾き、A,B,C,CP:電流経路、C1:第一定数、C2:第二定数、C3:第三定数、C4:第四定数、C5:第五定数、F:溶着欠陥、I:電流、L:列長さ、P,Pu,Pd:プローブ、PA:第二ピッチ、PH:第一ピッチ、PP:プローブ間隔、Pcyc:ピッチ周期、R:抵抗値、Rk:仮定値、Rref:基準値、Ti,Tv:接触子、V:電圧、W1:幅、W2:距離、W3:長さ
Claims (7)
- 重ね合わされた複数の導電性のシートが厚み方向に、一方の面側から第一ピッチの間隔毎に溶着され、他方の面側から第二ピッチの間隔毎に溶着されたシート体の検査に用いられるプローブ治具であって、
複数のプローブと、
前記複数のプローブを略等しいプローブ間隔で支持する支持部材とを備え、
前記プローブ間隔は、前記第一ピッチ及び前記第二ピッチのいずれとも異なるプローブ治具。 - 前記プローブ間隔は、さらに、前記第一ピッチ及び前記第二ピッチのうち、小さい方よりも小さい請求項1に記載のプローブ治具。
- 前記プローブ間隔は、さらに、前記第一ピッチ及び前記第二ピッチのうち、大きい方の1/2よりも大きい請求項1又は2に記載のプローブ治具。
- 前記支持部材は、前記複数のプローブを、プローブ列をなすように支持し、
前記第一ピッチは、第一定数と自然数である第二定数との積であり、
前記第二ピッチは、前記第一定数と自然数である第三定数との積であり、
前記第二定数と前記第三定数とは互いに素であり、
ピッチ周期は、前記第一定数、前記第二定数、及び前記第三定数の積であり、
前記プローブ間隔と第四定数との積は、前記ピッチ周期と第五定数との積であり、
前記第四定数及び前記第五定数は、それぞれ自然数、かつ、互いに素であり、
前記プローブ列の両端間の長さは、前記プローブ間隔と前記第四定数との積の二倍以下である請求項1~3のいずれか1項に記載のプローブ治具。 - 前記シート体が溶着された箇所は、略矩形状の溶着領域内に分布し、
前記支持部材は、前記複数のプローブを、複数のプローブ列をなすように支持し、
前記複数のプローブ列の短手方向の長さは、前記溶着領域の短手方向の長さよりも長く、
前記複数のプローブ列の長手方向の長さは、前記溶着領域の長手方向の長さよりも長い請求項1~4のいずれか1項に記載のプローブ治具。 - 請求項1~5のいずれか1項に記載のプローブ治具を一対と、
前記シート体の検査を行う検査処理部とを備え、
前記検査処理部は、前記一対のプローブ治具をそれぞれ前記シート体の両面に接触させ、前記一対のプローブ治具によって前記シート体の厚み方向に電流を印加し、前記一対のプローブ治具の間の電圧を測定し、測定された電圧に基づいて前記シート体の検査を行う検査装置。 - 請求項5に記載のプローブ治具を一対と、
前記シート体の検査を行う検査処理部と、
前記一対のプローブ治具の傾きを判定する傾き判定部とを備え、
前記検査処理部は、前記一対のプローブ治具をそれぞれ前記シート体の両面に接触させ、前記一対のプローブ治具によって前記シート体の厚み方向に電流を印加し、前記一対のプローブ治具の間の電圧を測定し、
前記傾き判定部は、前記複数のプローブ列のうち、外側から三列以内のプローブ列で測定された電圧に基づいて前記シート体に対する前記一対のプローブ治具の傾きを判定する検査装置。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962933378P | 2019-11-09 | 2019-11-09 | |
US62/933,378 | 2019-11-09 | ||
JP2020-010303 | 2020-01-24 | ||
JP2020010303A JP2023022340A (ja) | 2019-11-09 | 2020-01-24 | プローブ治具、及び検査装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021090792A1 true WO2021090792A1 (ja) | 2021-05-14 |
Family
ID=75848028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/041012 WO2021090792A1 (ja) | 2019-11-09 | 2020-11-02 | プローブ治具、及び検査装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021090792A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7258197B1 (ja) | 2022-02-08 | 2023-04-14 | 日置電機株式会社 | データ処理制御装置、検査装置、データ処理制御方法、およびデータ処理制御用プログラム。 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03110459A (ja) * | 1989-09-25 | 1991-05-10 | Hitachi Ltd | スポツト溶接検査装置 |
JPH0480666A (ja) * | 1990-07-24 | 1992-03-13 | Mitsubishi Electric Corp | 電気特性評価装置 |
JP2008142739A (ja) * | 2006-12-08 | 2008-06-26 | Nissan Motor Co Ltd | 超音波接合装置およびその制御方法、並びに超音波接合の接合検査装置およびその接合検査方法 |
WO2017159709A1 (ja) * | 2016-03-18 | 2017-09-21 | 日本電産リード株式会社 | 検査装置 |
WO2019059395A1 (ja) * | 2017-09-22 | 2019-03-28 | 日本電産リード株式会社 | 溶着状態検出方法及び溶着状態検出装置 |
WO2019181458A1 (ja) * | 2018-03-23 | 2019-09-26 | 日本電産リード株式会社 | 抵抗測定装置、及び、抵抗測定治具 |
-
2020
- 2020-11-02 WO PCT/JP2020/041012 patent/WO2021090792A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03110459A (ja) * | 1989-09-25 | 1991-05-10 | Hitachi Ltd | スポツト溶接検査装置 |
JPH0480666A (ja) * | 1990-07-24 | 1992-03-13 | Mitsubishi Electric Corp | 電気特性評価装置 |
JP2008142739A (ja) * | 2006-12-08 | 2008-06-26 | Nissan Motor Co Ltd | 超音波接合装置およびその制御方法、並びに超音波接合の接合検査装置およびその接合検査方法 |
WO2017159709A1 (ja) * | 2016-03-18 | 2017-09-21 | 日本電産リード株式会社 | 検査装置 |
WO2019059395A1 (ja) * | 2017-09-22 | 2019-03-28 | 日本電産リード株式会社 | 溶着状態検出方法及び溶着状態検出装置 |
WO2019181458A1 (ja) * | 2018-03-23 | 2019-09-26 | 日本電産リード株式会社 | 抵抗測定装置、及び、抵抗測定治具 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7258197B1 (ja) | 2022-02-08 | 2023-04-14 | 日置電機株式会社 | データ処理制御装置、検査装置、データ処理制御方法、およびデータ処理制御用プログラム。 |
JP2023115772A (ja) * | 2022-02-08 | 2023-08-21 | 日置電機株式会社 | データ処理制御装置、検査装置、データ処理制御方法、およびデータ処理制御用プログラム。 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102640756B1 (ko) | 용착 상태 검출 방법 및 용착 상태 검출 장치 | |
JP3285568B2 (ja) | 基板の配線検査装置および配線検査方法 | |
JP2015117995A (ja) | 接触不良を検出する充放電試験装置 | |
WO2021090792A1 (ja) | プローブ治具、及び検査装置 | |
JP5261763B2 (ja) | 磁場測定による溶接箇所の検査方法 | |
TWI512308B (zh) | 檢測裝置及檢測方法 | |
US11585839B2 (en) | Resistance measuring device and resistance measuring jig | |
JP2023022340A (ja) | プローブ治具、及び検査装置 | |
JP5208787B2 (ja) | 回路基板検査装置および回路基板検査方法 | |
JP6335393B2 (ja) | 電池の接続部を試験するための方法および装置 | |
JP6633949B2 (ja) | 基板検査装置及び基板検査方法 | |
KR20230058932A (ko) | 전지셀의 전극 탭 단선 검사장치 | |
WO2007138831A1 (ja) | 基板検査方法及び基板検査装置 | |
JP5420303B2 (ja) | 回路基板検査装置および回路基板検査方法 | |
WO2024219490A1 (ja) | 測定方法及び測定システム | |
JP2014137231A (ja) | 検査治具の検査方法 | |
WO2023063083A1 (ja) | 測定装置、測定システム及び測定方法 | |
JP7349019B2 (ja) | キャパシタアセンブリ組立装置およびこれを用いたキャパシタアセンブリ組立方法 | |
JP5224384B2 (ja) | 導体の溶接方法及びその溶接装置 | |
JP6696523B2 (ja) | 抵抗測定方法、抵抗測定装置、及び基板検査装置 | |
JP2023548927A (ja) | 電池の溶接状態検査方法 | |
JP2001349920A (ja) | 配線検査装置および配線検査方法 | |
JP5828697B2 (ja) | 回路基板検査装置および回路基板検査方法 | |
JP2004093268A (ja) | 回路基板検査装置、回路基板検査装置用センサ基板および回路基板検査方法 | |
JP2010071803A (ja) | 回路基板検査装置および回路基板検査方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20884840 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20884840 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |