WO2021088956A1 - 一种超细Pd四面体纳米材料及其制备方法和应用 - Google Patents
一种超细Pd四面体纳米材料及其制备方法和应用 Download PDFInfo
- Publication number
- WO2021088956A1 WO2021088956A1 PCT/CN2020/126995 CN2020126995W WO2021088956A1 WO 2021088956 A1 WO2021088956 A1 WO 2021088956A1 CN 2020126995 W CN2020126995 W CN 2020126995W WO 2021088956 A1 WO2021088956 A1 WO 2021088956A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- add
- tetrahedron
- tetrahedral
- preparation
- pdcl
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 33
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 23
- 238000006243 chemical reaction Methods 0.000 claims abstract description 12
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 7
- 239000003381 stabilizer Substances 0.000 claims abstract description 7
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims abstract description 5
- 239000002243 precursor Substances 0.000 claims abstract description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 44
- 101150003085 Pdcl gene Proteins 0.000 claims description 25
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 24
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 24
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 24
- 239000007864 aqueous solution Substances 0.000 claims description 21
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical group O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 20
- 238000001816 cooling Methods 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 14
- 239000003054 catalyst Substances 0.000 claims description 5
- 239000000446 fuel Substances 0.000 claims description 4
- 238000005119 centrifugation Methods 0.000 claims description 2
- 239000007810 chemical reaction solvent Substances 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 8
- 229910052760 oxygen Inorganic materials 0.000 abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 6
- 239000001301 oxygen Substances 0.000 abstract description 6
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 4
- 230000009467 reduction Effects 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 229910002093 potassium tetrachloropalladate(II) Inorganic materials 0.000 abstract 1
- 239000011259 mixed solution Substances 0.000 description 43
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 36
- 239000000243 solution Substances 0.000 description 32
- 239000012467 final product Substances 0.000 description 20
- 238000003756 stirring Methods 0.000 description 18
- 238000001228 spectrum Methods 0.000 description 11
- 239000000047 product Substances 0.000 description 9
- 239000002159 nanocrystal Substances 0.000 description 8
- 239000013078 crystal Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 238000006722 reduction reaction Methods 0.000 description 5
- 230000001788 irregular Effects 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- ZDZHCHYQNPQSGG-UHFFFAOYSA-N binaphthyl group Chemical group C1(=CC=CC2=CC=CC=C12)C1=CC=CC2=CC=CC=C12 ZDZHCHYQNPQSGG-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000010411 electrocatalyst Substances 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000035040 seed growth Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0553—Complex form nanoparticles, e.g. prism, pyramid, octahedron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/07—Metallic powder characterised by particles having a nanoscale microstructure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/921—Alloys or mixtures with metallic elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention relates to an ultrafine Pd tetrahedral nano material, a preparation method and application thereof, and belongs to the technical field of small-size Pd nano material preparation.
- Oxygen reduction reaction is one of the typical electrochemical reactions in energy conversion and storage devices such as fuel cells and metal-air batteries, and has caused extensive research in recent years.
- High-performance electrocatalysts designed for oxygen reduction reactions are of vital importance to electrochemical energy conversion and storage devices such as fuel cells and metal-air batteries.
- the precious metal Pt is currently the most commonly used ORR catalyst, but due to its high price and small reserves, it is difficult to achieve large-scale commercial applications.
- Existing research results show that the catalytic activity and selectivity of Pd nanomaterials strongly depend on its morphology, structure and specific crystal faces exposed on the surface.
- Pd nanocrystals can be divided into three main steps: (1) metal ion nucleation; (2) evolution into an intermediate product with a clear structure; (3) growth into a final product with a unique morphology. That is to say, each step is accompanied by the increase of particle size and the merging and dissolution of particles, so it is very difficult to control the size of the final product below 5nm.
- each step is accompanied by the increase of particle size and the merging and dissolution of particles, so it is very difficult to control the size of the final product below 5nm.
- the separation, purification and collection of such small-sized nanocrystals with the existing technology is also an urgent problem to be solved. Based on the above considerations, the preparation of Pd nanocrystals with controllable morphology/crystal plane and high purity sub-5nm faces a huge challenge.
- the object of the present invention is to provide an ultrafine Pd tetrahedron and its preparation method and application.
- the present invention obtains sub-5nm high-purity Pd tetrahedron through a simple and efficient solvothermal method. This method is not only simple and quick to operate, but also the prepared sub-5nm Pd tetrahedron has the advantages of large specific surface area and many active sites. It exhibits excellent electrocatalytic activity and stability for oxygen reduction reactions, and satisfies applications and applications in related fields. Development requirements.
- a method for preparing Pd tetrahedral nanomaterials includes the following steps: using K 2 PdCl 4 as a precursor, C 20 H 14 and NH 3 ⁇ H 2 O as a structure directing agent, adding a stabilizer and a reducing agent, and heating reaction, That is, the Pd tetrahedral nano material is obtained.
- the reaction uses N,N-dimethylformamide (DMF) as a solvent.
- DMF N,N-dimethylformamide
- the stabilizer is selected from polyvinylpyrrolidone (PVP), and the reducing agent is selected from HCHO.
- the temperature of the heating reaction is 100°C to 140°C, and the time is 15 minutes to 4 hours.
- the preparation method includes the following steps:
- the molar ratio of the K 2 PdCl 4 , C 20 H 14 and NH 3 ⁇ H 2 O is 0.025: (0.0625-1): (0.125-2).
- the invention also provides the Pd tetrahedral nano material prepared by the preparation method.
- the ultrafine Pd tetrahedron prepared by the above preparation method has the characteristics of regular morphology, high purity and small size, and the size is about 4.9 ⁇ 1nm.
- the present invention finally provides the application of the Pd tetrahedral nano material as a fuel cell catalyst.
- the sub-5 nanometer Pd tetrahedron prepared by the present invention has the advantages of larger specific surface area, more active sites, etc., and therefore has superior electrocatalytic activity and stability for oxygen reduction.
- the preparation process of the present invention is simple and easy to implement, easy to operate, and beneficial to large-scale production.
- the prepared ultrafine tetrahedron has regular appearance, high purity and small size, and can realize large-scale production.
- ultrafine Pd tetrahedrons have superior electrocatalytic activity and stability for oxygen reduction.
- Figure 1 is a TEM spectrum of the ultrafine Pd tetrahedron prepared according to the method of the present invention
- Figure 2 is the HADDF-STEM spectrum of the ultrafine Pd tetrahedron prepared according to the method of the present invention
- Figure 3 is a graph of the particle size distribution of the ultrafine Pd tetrahedron prepared according to the method of the present invention.
- Figure 4 is an XRD pattern of the ultrafine Pd tetrahedron prepared according to the method of the present invention.
- Figure 5 is a TEM spectrum of the ultrafine Pd tetrahedron prepared according to the method of the present invention without adding NH 3 ⁇ H 2 O;
- Figure 6 is a TEM spectrum of the ultrafine Pd tetrahedron prepared according to the method of the present invention without PVP;
- Figure 7 is the HADDF-STEM spectrum of the ultrafine Pd tetrahedron prepared according to the method of the present invention at different times ((a) 5 min, (b) 10 min and (c) 15 min);
- Figure 8 is a TEM spectrum of ultrafine Pd tetrahedrons prepared according to the method of the present invention at different times, where a is 3h and b is 4h;
- Figure 9 is the TEM spectrum of the ultrafine Pd tetrahedron prepared according to the method of the present invention under different amounts of binaphthyl and ammonia water, where a is 0.0625mmol of C 20 H 14 and 0.125mmol of NH 3 ⁇ H 2 O, and b is 0.125 mmol of C 20 H 14 and 0.25 mmol of NH 3 ⁇ H 2 O, c is 0.5 mmol of C 20 H 14 and 1 mmol of NH 3 ⁇ H 2 O, d is 1 mmol of C 20 H 14 and 2 mmol of NH 3 ⁇ H 2 O;
- Figure 10 is a TEM chart of ultrafine Pd tetrahedrons prepared according to the method of the present invention at different temperatures, where a is 100°C, b is 110°C, c is 130°C, and d is 140°C;
- Figure 11 is the ORR polarization curve of the ultrafine Pd tetrahedron prepared according to the method of the present invention and the commercial Pd black in a 0.1M KOH solution;
- Figure 12 is the ORR polarization curve of the ultrafine Pd tetrahedron prepared according to the method of the present invention before and after the accelerated endurance test.
- a preparation method of ultrafine Pd tetrahedron including the following steps:
- a preparation method of ultrafine Pd tetrahedron including the following steps:
- a preparation method of ultrafine Pd tetrahedron including the following steps:
- a preparation method of ultrafine Pd tetrahedron including the following steps:
- a preparation method of ultrafine Pd tetrahedron including the following steps:
- a preparation method of ultrafine Pd tetrahedron including the following steps:
- a preparation method of ultrafine Pd tetrahedron including the following steps:
- a preparation method of ultrafine Pd tetrahedron including the following steps:
- a preparation method of ultrafine Pd tetrahedron including the following steps:
- a preparation method of ultrafine Pd tetrahedron including the following steps:
- a preparation method of ultrafine Pd tetrahedron including the following steps:
- a preparation method of ultrafine Pd tetrahedron including the following steps:
- a preparation method of ultrafine Pd tetrahedron including the following steps:
- a preparation method of ultrafine Pd tetrahedron including the following steps:
- a preparation method of ultrafine Pd tetrahedron including the following steps:
- a preparation method of ultrafine Pd tetrahedron including the following steps:
- a preparation method of ultrafine Pd tetrahedron including the following steps:
- a preparation method of ultrafine Pd tetrahedron including the following steps:
- the ultrafine Pd tetrahedrons prepared in the above examples were physically characterized by HRTEM, HADDF-STEM, XRD and other methods. It can be seen from the TEM ( Figure 1) and STEM ( Figure 2) spectra that the product is a standard tetrahedron with high purity and uniform size. It can be seen from the particle size distribution chart ( Figure 3) that the size of the tetrahedron is about 4.9 ⁇ 1nm.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electrochemistry (AREA)
- Catalysts (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
一种具有高纯度高产率的超细Pd四面体及其制备方法和应用,该方法以K2PdCl4为前驱体,C20H14和NH3·H2O为结构导向剂,加入稳定剂和还原剂,加热反应,即得所述Pd四面体纳米材料。与传统的Pd四面体相比,所制得的亚5纳米Pd四面体具有比表面积大、活性位点多等优点,因此具有更优越的氧气还原电催化活性和稳定性。此外,制备工艺简便易行,便于操作,有利于规模化生产,制备得到的超细四面体形貌规整、纯度高、尺寸小,可实现规模化生产。
Description
本申请要求于2019年11月7日提交中国专利局、申请号为CN201911080295.7、发明名称为“一种超细Pd四面体纳米材料及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及一种超细Pd四面体纳米材料及其制备方法和应用,属于小尺寸Pd纳米材料制备技术领域。
氧还原反应(ORR)是燃料电池和金属-空气电池等能量转换和储存装置中典型的电化学反应之一,近年来引起了人们的广泛研究。设计用于氧还原反应(ORR)的高性能电催化剂,对于燃料电池、金属-空气电池等电化学能量转换和储存装置具有至关重要的意义。目前贵金属Pt是目前最为常用的ORR催化剂,但是由于其价格高昂,储量少,很难实现大规模的商业化应用。Pd由于其与Pt的相似的电子结构,较低廉的价格,成为了一种极有潜力的可以用来替代Pt的催化剂。已有的研究结果表明,Pd纳米材料的催化活性和选择性强烈依赖于其形貌、结构和表面所暴露的特定晶面。在各种结构的Pd纳米材料中,表面被{111}面所覆盖的四面体因其比表面积高、比表面自由能低而受到人们的重视。然而,由于四面体结构的的表面积-体积比较大,对称性相比于其他多面体较低,所以很难在热力学控制下得到。
此外,尺寸控制已成为提高Pd纳米晶电催化活性和选择性的另一种有效策略。之前的研究表明,亚5nm的Pd纳米晶由于其表面原子丰富、电子效应强、表面悬浮键密度高等和尺寸相关的特性,可以表现出更高的电催化活性。在使用晶种生长法来构建更加复杂和多元化的纳米结构中,亚5nm的Pd纳米晶由于其超小的尺寸可以更好地控制产品的最终形状和尺寸,也是必不可少的晶种。因此,探索亚5nm的Pd纳米晶的制备工艺是一个重要课题。
然而,直接合成具有特定形状和晶面的亚5nm的Pd纳米晶仍然是一个巨大的挑战。一般来说,Pd纳米晶的形成可以分为三个主要步骤:(1)金属离子成核;(2)进化成具有明确结构的中间产物;(3)成长为具有独特形貌的终产物。也就是说,每一步都伴随着粒子尺寸的增大和粒子间的合并与溶解,所以使得最终产品的尺寸控制在5nm以下具有很大的难度。此外,以现有的技术分离、提纯和收集这样的小尺寸纳米晶也是一个迫切需要解决的问题。基于以上种种考虑,制备形貌/晶面可控且高纯度亚5nm的Pd纳米晶面临着巨大的挑战。
发明内容
发明目的:本发明的目的在于提供一种超细Pd四面体及其制备方法和应用,本发明通过一种简单高效的溶剂热法得到亚5nm的高纯度Pd四面体。该方法不仅操作简单快捷,而且制得的亚5nm的Pd四面体具有比表面积大,活性位点多等优点,对氧还原反应展现出优异的电催化活性和稳定性,满足了有关领域应用和发展的要求。
技术方案:为达到上述目的,本发明采用如下技术方案:
一种Pd四面体纳米材料的制备方法,包括以下步骤:以K
2PdCl
4为前驱体,C
20H
14和NH
3·H
2O为结构导向剂,加入稳定剂和还原剂,加热反应,即得所述Pd四面体纳米材料。
作为优选:
所述反应采用N,N-二甲基甲酰胺(DMF)为溶剂。
所述稳定剂选自聚乙烯吡咯烷酮(PVP),还原剂选自HCHO。
所述加热反应的温度为100℃~140℃,时间为15min~4h。
优选,所述制备方法包括以下步骤:
将K
2PdCl
4水溶液加到反应溶剂中,混匀,然后加入结构导向剂C
20H
14和NH
3·H
2O,超声,接着再加入稳定剂和还原剂,混匀,随后加热反应,结束后冷却,离心,洗涤,即得所述Pd四面体纳米材料。
优选,所述K
2PdCl
4、C
20H
14和NH
3·H
2O的摩尔比例为0.025:(0.0625~1):(0.125~2)。
本发明还提供了所述制备方法所制得的Pd四面体纳米材料。
上述制备方法所制得的超细Pd四面体,其具有形貌规整、纯度高、尺寸小的特点,尺寸约为4.9±1nm。
本发明最后提供了所述的Pd四面体纳米材料作为燃料电池催化剂的应用。与传统的Pd四面体相比,本发明所制得的亚5纳米Pd四面体具有比表面积大、活性位点多等优点,因此具有更优越的氧气还原电催化活性和稳定性。
技术效果:与现有技术相比,本发明制备工艺简便易行,便于操作,有利于规模化生产,制备得到的超细四面体形貌规整、纯度高、尺寸小,可实现规模化生产。和商业化催化剂相比,超细Pd四面体具有更优越的氧气还原电催化活性和稳定性。
说明书附图
图1是根据本发明方法制备的超细Pd四面体的TEM图谱;
图2是根据本发明方法制备的超细Pd四面体的HADDF-STEM图谱;
图3是根据本发明方法制备的超细Pd四面体的粒径分布图谱;
图4是根据本发明方法制备的超细Pd四面体的XRD图谱;
图5是根据本发明方法制备的超细Pd四面体不加NH
3·H
2O的TEM图谱;
图6是根据本发明方法制备的超细Pd四面体不加PVP的TEM图谱;
图7是根据本发明方法制备的超细Pd四面体在不同时间((a)5min,(b)10min和(c)15min)的HADDF-STEM图谱;
图8是根据本发明方法制备的超细Pd四面体在不同时间下的TEM图谱,其中,a为3h,b为4h;
图9是根据本发明方法制备的超细Pd四面体在不同联萘和氨水用量下的TEM图谱,其中,a为0.0625mmol的C
20H
14和0.125mmol的NH
3·H
2O,b为0.125mmol的C
20H
14和0.25mmol的NH
3·H
2O,c为0.5mmol的C
20H
14和1mmol的NH
3·H
2O,d为1mmol的C
20H
14和2mmol的NH
3·H
2O;
图10是根据本发明方法制备的超细Pd四面体在不同温度下的TEM图谱,其中,a为100℃,b为110℃,c为130℃,d为140℃;
图11是根据本发明方法制备的超细Pd四面体和商业化Pd黑对比的在0.1M KOH溶液中的ORR极化曲线;
图12是根据本发明方法制备的超细Pd四面体在经过加速耐久力测试前后的ORR极化曲线。
下面通过具体实施例对本发明所述的技术方案给予进一步详细的说明。
实施例1
一种超细Pd四面体的制备方法,包括以下步骤:
将0.5mL K
2PdCl
4(0.05M)水溶液加到8mL DMF中,室温下搅拌10min。然后向混合溶液中加入0.25mmol的C
20H
14和0.50mmol的NH
3·H
2O,超声10min,接着向混合溶液中加入35mg PVP,继续超声10min,再加入0.1mL HCHO溶液后,所得的混合液被转移至20mL小瓶中,随后在120℃下反应1h。冷却至室温后,用乙醇离心洗涤三次得到最终产物。
实施例2
一种超细Pd四面体的制备方法,包括以下步骤:
将0.5mL K
2PdCl
4(0.05M)水溶液加到8mL DMF中,室温下搅拌10min。然后向混合溶液中加入0.25mmol的C
20H
14,超声10min,接着向混合溶液中加入35mg PVP,继续超声10min,再加入0.1mL HCHO溶液后,所得的混合液被转移至20mL小瓶中,随后在120℃下反应1h。冷却至室温后,用乙醇离心洗涤三次得到最终产物。
实施例3
一种超细Pd四面体的制备方法,包括以下步骤:
将0.5mL K
2PdCl
4(0.05M)水溶液加到8mL DMF中,室温下搅拌10min。然后向混合溶液中加入0.25mmol的C
20H
14和0.50mmol的NH
3·H
2O,超声10min,接着向混合溶液中加入35mgPVP,继续超声10min,再加入0.1mL HCHO溶液后,所得的混合液被转移至20mL小瓶中,随后在120℃下反应5min。冷却至室温后,用乙醇离心洗涤三次得到最终产物。
实施例4
一种超细Pd四面体的制备方法,包括以下步骤:
将0.5mL K
2PdCl
4(0.05M)水溶液加到8mL DMF中,室温下搅拌10min。然后向混合溶液中加入0.25mmol的C
20H
14和0.50mmol的NH
3·H
2O, 超声10min,接着向混合溶液中加入35mgPVP,继续超声10min,再加入0.1mL HCHO溶液后,所得的混合液被转移至20mL小瓶中,随后在120℃下反应10min。冷却至室温后,用乙醇离心洗涤三次得到最终产物。
实施例5
一种超细Pd四面体的制备方法,包括以下步骤:
将0.5mL K
2PdCl
4(0.05M)水溶液加到8mL DMF中,室温下搅拌10min。然后向混合溶液中加入0.25mmol的C
20H
14和0.50mmol的NH
3·H
2O,超声10min,接着向混合溶液中加入35mgPVP,继续超声10min,再加入0.1mL HCHO溶液后,所得的混合液被转移至20mL小瓶中,随后在120℃下反应15min。冷却至室温后,用乙醇离心洗涤三次得到最终产物。
实施例6
一种超细Pd四面体的制备方法,包括以下步骤:
将0.5mL K
2PdCl
4(0.05M)水溶液加到8mL DMF中,室温下搅拌10min。然后向混合溶液中加入0.25mmol的C
20H
14和0.50mmol的NH
3·H
2O,超声10min,接着向混合溶液中加入35mgPVP,继续超声10min,再加入0.1mL HCHO溶液后,所得的混合液被转移至20mL小瓶中,随后在120℃下反应2h。冷却至室温后,用乙醇离心洗涤三次得到最终产物。
实施例7
一种超细Pd四面体的制备方法,包括以下步骤:
将0.5mL K
2PdCl
4(0.05M)水溶液加到8mL DMF中,室温下搅拌10min。然后向混合溶液中加入0.25mmol的C
20H
14和0.50mmol的NH
3·H
2O,超声10min,接着向混合溶液中加入35mgPVP,继续超声10min,再加入0.1mL HCHO溶液后,所得的混合液被转移至20mL小瓶中,随后在120℃下反应3h。冷却至室温后,用乙醇离心洗涤三次得到最终产物。
实施例8
一种超细Pd四面体的制备方法,包括以下步骤:
将0.5mL K
2PdCl
4(0.05M)水溶液加到8mL DMF中,室温下搅拌10min。然后向混合溶液中加入0.25mmol的C
20H
14和0.50mmol的NH
3·H
2O,超声10min,接着向混合溶液中加入35mgPVP,继续超声10min,再加入 0.1mL HCHO溶液后,所得的混合液被转移至20mL小瓶中,随后在120℃下反应4h。冷却至室温后,用乙醇离心洗涤三次得到最终产物。
实施例9
一种超细Pd四面体的制备方法,包括以下步骤:
将0.5mL K
2PdCl
4(0.05M)水溶液加到8mL DMF中,室温下搅拌10min。然后向混合溶液中加入0.25mmol的C 20H 14和0.50mmol的NH
3·H
2O,超声10min,接着向混合溶液中加入35mgPVP,继续超声10min,再加入1mL HCHO溶液后,所得的混合液被转移至20mL小瓶中,随后在120℃下反应1h。冷却至室温后,用乙醇离心洗涤三次得到最终产物。
实施例10
一种超细Pd四面体的制备方法,包括以下步骤:
将0.5mL K
2PdCl
4(0.05M)水溶液加到8mL DMF中,室温下搅拌10min。然后向混合溶液中加入0.0625mmol的C
20H
14和0.125mmol的NH
3·H
2O,超声10min,接着向混合溶液中加入35mg PVP,继续超声10min,再加入0.1mL HCHO溶液后,所得的混合液被转移至20mL小瓶中,随后在120℃下反应1h。冷却至室温后,用乙醇离心洗涤三次得到最终产物。
实施例11
一种超细Pd四面体的制备方法,包括以下步骤:
将0.5mL K
2PdCl
4(0.05M)水溶液加到8mL DMF中,室温下搅拌10min。然后向混合溶液中加入0.125mmol的C
20H
14和0.25mmol的NH
3·H
2O,超声10min,接着向混合溶液中加入35mg PVP,继续超声10min,再加入0.1mL HCHO溶液后,所得的混合液被转移至20mL小瓶中,随后在120℃下反应1h。冷却至室温后,用乙醇离心洗涤三次得到最终产物。
实施例12
一种超细Pd四面体的制备方法,包括以下步骤:
将0.5mL K
2PdCl
4(0.05M)水溶液加到8mL DMF中,室温下搅拌10min。然后向混合溶液中加入0.5mmol的C
20H
14和1mmol的NH
3·H
2O,超声10min,接着向混合溶液中加入35mgPVP,继续超声10min,再加入0.1mL HCHO溶液后,所得的混合液被转移至20mL小瓶中,随后在120℃下反应1h。冷却至室温后,用乙醇离心洗涤三次得到最终产物。
实施例13
一种超细Pd四面体的制备方法,包括以下步骤:
将0.5mL K
2PdCl
4(0.05M)水溶液加到8mL DMF中,室温下搅拌10min。然后向混合溶液中加入1mmol的C
20H
14和2mmol的NH
3·H
2O,超声10min,接着向混合溶液中加入35mg PVP,继续超声10min,再加入0.1mL HCHO溶液后,所得的混合液被转移至20mL小瓶中,随后在120℃下反应1h。冷却至室温后,用乙醇离心洗涤三次得到最终产物。
实施例14
一种超细Pd四面体的制备方法,包括以下步骤:
将0.5mL K
2PdCl
4(0.05M)水溶液加到8mL DMF中,室温下搅拌10min。然后向混合溶液中加入0.25mmol的C
20H
14和0.50mmol的NH
3·H
2O,超声10min,接着向混合溶液中加入35mgPVP,继续超声10min,再加入0.1mL HCHO溶液后,所得的混合液被转移至20mL小瓶中,随后在100℃下反应1h。冷却至室温后,用乙醇离心洗涤三次得到最终产物。
实施例15
一种超细Pd四面体的制备方法,包括以下步骤:
将0.5mL K
2PdCl
4(0.05M)水溶液加到8mL DMF中,室温下搅拌10min。然后向混合溶液中加入0.25mmol的C
20H
14和0.50mmol的NH
3·H
2O,超声10min,接着向混合溶液中加入35mgPVP,继续超声10min,再加入0.1mL HCHO溶液后,所得的混合液被转移至20mL小瓶中,随后在110℃下反应1h。冷却至室温后,用乙醇离心洗涤三次得到最终产物。
实施例16
一种超细Pd四面体的制备方法,包括以下步骤:
将0.5mL K
2PdCl
4(0.05M)水溶液加到8mL DMF中,室温下搅拌10min。然后向混合溶液中加入0.25mmol的C
20H
14和0.50mmol的NH
3·H
2O,超声10min,接着向混合溶液中加入35mgPVP,继续超声10min,再加入0.1mL HCHO溶液后,所得的混合液被转移至20mL小瓶中,随后在130℃下反应1h。冷却至室温后,用乙醇离心洗涤三次得到最终产物。
实施例17
一种超细Pd四面体的制备方法,包括以下步骤:
将0.5mL K
2PdCl
4(0.05M)水溶液加到8mL DMF中,室温下搅拌10min。然后向混合溶液中加入0.25mmol的C
20H
14和0.50mmol的NH
3·H
2O,超声10min,接着向混合溶液中加入35mgPVP,继续超声10min,再加入0.1mL HCHO溶液后,所得的混合液被转移至20mL小瓶中,随后在140℃下反应1h。冷却至室温后,用乙醇离心洗涤三次得到最终产物。
对比例
一种超细Pd四面体的制备方法,包括以下步骤:
将0.5mL K
2PdCl
4(0.05M)水溶液加到8mL DMF中,室温下搅拌10min。然后向混合溶液中加入0.25mmol的C
20H
14和0.50mmol的NH
3·H
2O,超声10min,再加入0.1mL HCHO溶液后,不加入PVP,所得的混合液被转移至20mL小瓶中,随后在120℃下反应1h。冷却至室温后,用乙醇离心洗涤三次得到最终产物。
采用HRTEM、HADDF-STEM、XRD等途径对以上实施例制备的超细Pd四面体进行物理表征。从TEM(图1)和STEM(图2)图谱可以看出,产品为标准的四面体,纯度高,尺寸均一。从粒径分布图(图3)图谱可以看出,四面体尺寸约为4.9±1nm。从XRD(图4)图谱可以看出位于40.11°、46.65°、68.12°、82.09°和86.61°五个强衍射峰分别对应于Pd(JCPDS:46-1043)的(111)、(200)、(220)、311)和(222)晶面,说明Pd是以面心立方晶体结构存在。从TEM(图5)可以看出,不加NH
3·H
2O,得到的产品是不规则的Pd纳米颗粒,说明NH
3·H
2O在体系中也是一种重要的形貌导向剂。从TEM(图6)图谱可以看出,当不加PVP时,所得产物发生严重团聚,说明高分子量的PVP有利于避免粒子的团聚。从HADDF-STEM(图7)图谱观察到在5min时收集的样品是不规则的Pd纳米颗粒,其直径为约2.5nm,然后,反应时间延长至10min,在样品的角度上开始出现略微圆角,当反应时间延长至15min时,圆角开始变得尖锐,形成直径为4.9nm的四面体形状。从TEM(图8)可以看出,将反应时间延长至2~4h,四面体的形状和尺寸不发生改变。从TEM(图9)可以看出,四面体的纯度取决于C
20H
14和NH
3·H
2O的用量,当0.0625mmol的C
20H
14和0.125mmol的NH
3·H
2O时,产品中有不规则的Pd纳米颗粒还有一小部分四面体,四面体的纯度低;当0.125mmol的C
20H
14和0.250mmol的NH
3·H
2O时,产品中大部分是四 面体,纯度较高;当0.5mmol的C
20H
14和1mmol的NH
3·H
2O及1mmol的C
20H
14和2mmol的NH
3·H
2O时,产品中绝大部分是四面体,纯度高。从TEM(图10)可以看出,反应温度为100℃时,产品大部分是不规则的Pd纳米颗粒,只有一小部分四面体。反应温度为110℃~130℃时,产品大部分是四面体,纯度高。反应温度为140℃时,四面体纯度降低。ORR性能测试(图11)曲线表明超细Pd四面体和商业化Pd黑对比具有非常优异的ORR性能。在经过1000圈加速耐久力测试(图12)后,半波电位仅负移5mV,说明超细Pd四面体具有良好的稳定性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (10)
- 一种Pd四面体纳米材料的制备方法,其特征在于,包括以下步骤:以K 2PdCl 4为前驱体,C 20H 14和NH 3·H 2O为结构导向剂,加入稳定剂和还原剂,加热反应,得所述Pd四面体纳米材料。
- 根据权利要求1所述的Pd四面体纳米材料的制备方法,其特征在于,所述反应采用N,N-二甲基甲酰胺为溶剂。
- 根据权利要求1所述的Pd四面体纳米材料的制备方法,其特征在于,所述稳定剂选自聚乙烯吡咯烷酮,还原剂选自HCHO。
- 根据权利要求1所述的Pd四面体纳米材料的制备方法,其特征在于,所述加热反应的温度为100℃~140℃,时间为15min~4h。
- 根据权利要求1~4任意一项所述的Pd四面体纳米材料的制备方法,其特征在于,包括以下步骤:将K 2PdCl 4水溶液加到反应溶剂中,混匀,然后加入结构导向剂C 20H 14和NH 3·H 2O,超声,接着再加入稳定剂和还原剂,混匀,随后加热反应,结束后冷却,离心,洗涤,得所述Pd四面体纳米材料。
- 根据权利要求5所述的Pd四面体纳米材料的制备方法,其特征在于,所述K 2PdCl 4水溶液的浓度为0.05mol/L。
- 根据权利要求1所述的Pd四面体纳米材料的制备方法,其特征在于,所述K 2PdCl 4、C 20H 14和NH 3·H 2O的摩尔比例为0.025:(0.0625~1):(0.125~2)。
- 权利要求1-7任一项所述制备方法所制得的Pd四面体纳米材料。
- 根据权利要求8所述的Pd四面体纳米材料,其特征在于,所述Pd四面体纳米材料的尺寸为4.9±1nm。
- 权利要求8或9所述的Pd四面体纳米材料作为燃料电池催化剂的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911080295.7 | 2019-11-07 | ||
CN201911080295.7A CN110842212A (zh) | 2019-11-07 | 2019-11-07 | 一种超细Pd四面体纳米材料及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021088956A1 true WO2021088956A1 (zh) | 2021-05-14 |
Family
ID=69598926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/126995 WO2021088956A1 (zh) | 2019-11-07 | 2020-11-06 | 一种超细Pd四面体纳米材料及其制备方法和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110842212A (zh) |
WO (1) | WO2021088956A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110842212A (zh) * | 2019-11-07 | 2020-02-28 | 南京师范大学 | 一种超细Pd四面体纳米材料及其制备方法和应用 |
CN112697781B (zh) * | 2020-11-26 | 2023-01-31 | 南京师范大学 | 一种可视化Hg2+检测材料的制备方法及其制备的检测材料和应用 |
CN113036169A (zh) * | 2021-03-15 | 2021-06-25 | 电子科技大学 | 一种纳米钯催化剂的制法及其在小分子氧化中的应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5710187A (en) * | 1995-05-22 | 1998-01-20 | The Regents Of The University Of California | Highly cross-linked nanoporous polymers |
CN101646491A (zh) * | 2007-03-30 | 2010-02-10 | Ifp公司 | 在两种还原剂存在下合成立方金属纳米颗粒的方法 |
CN102205252A (zh) * | 2010-03-31 | 2011-10-05 | 中国科学院福建物质结构研究所 | 一种超活性纳米钯颗粒的合成方法 |
CN102513542A (zh) * | 2011-11-21 | 2012-06-27 | 南京师范大学 | 液相还原法制备多孔状Pd纳米球的方法及制得的纳米球 |
CN103373892A (zh) * | 2012-04-25 | 2013-10-30 | 华中科技大学 | 一种基于三蝶烯的三维纳米石墨烯及其制备方法 |
CN105013476A (zh) * | 2015-06-26 | 2015-11-04 | 陕西师范大学 | 一种化学功能化Pd纳米线的制备方法 |
CN110842212A (zh) * | 2019-11-07 | 2020-02-28 | 南京师范大学 | 一种超细Pd四面体纳米材料及其制备方法和应用 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108031834B (zh) * | 2017-12-15 | 2019-07-05 | 复旦大学 | 不同形貌手性修饰钯纳米材料的原位合成方法 |
CN108543944B (zh) * | 2018-03-13 | 2019-11-12 | 南京师范大学 | 一种多孔蒲公英状Pd纳米枝晶的制备方法及其所得材料和应用 |
CN108666590B (zh) * | 2018-04-27 | 2020-05-05 | 南京师范大学 | 一种树冠状多级PdAg纳米枝晶的制备方法及其所得材料和应用 |
-
2019
- 2019-11-07 CN CN201911080295.7A patent/CN110842212A/zh active Pending
-
2020
- 2020-11-06 WO PCT/CN2020/126995 patent/WO2021088956A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5710187A (en) * | 1995-05-22 | 1998-01-20 | The Regents Of The University Of California | Highly cross-linked nanoporous polymers |
CN101646491A (zh) * | 2007-03-30 | 2010-02-10 | Ifp公司 | 在两种还原剂存在下合成立方金属纳米颗粒的方法 |
CN102205252A (zh) * | 2010-03-31 | 2011-10-05 | 中国科学院福建物质结构研究所 | 一种超活性纳米钯颗粒的合成方法 |
CN102513542A (zh) * | 2011-11-21 | 2012-06-27 | 南京师范大学 | 液相还原法制备多孔状Pd纳米球的方法及制得的纳米球 |
CN103373892A (zh) * | 2012-04-25 | 2013-10-30 | 华中科技大学 | 一种基于三蝶烯的三维纳米石墨烯及其制备方法 |
CN105013476A (zh) * | 2015-06-26 | 2015-11-04 | 陕西师范大学 | 一种化学功能化Pd纳米线的制备方法 |
CN110842212A (zh) * | 2019-11-07 | 2020-02-28 | 南京师范大学 | 一种超细Pd四面体纳米材料及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN110842212A (zh) | 2020-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021088956A1 (zh) | 一种超细Pd四面体纳米材料及其制备方法和应用 | |
Zhang et al. | Carbon supported PdNi alloy nanoparticles on SiO 2 nanocages with enhanced catalytic performance | |
Zhu et al. | Self-assembled 3D flower-like hierarchical β-Ni (OH) 2 hollow architectures and their in situ thermal conversion to NiO | |
Guo et al. | Synthesis and characterization of carbon sphere-silica core–shell structure and hollow silica spheres | |
CN101733049B (zh) | γ射线辐照制备核-壳结构复合材料的方法 | |
CN105289749B (zh) | 无定形Fe2O3@Cd‑MOF和磁性Fe3O4@Cd‑MOF纳米复合材料及其制备方法 | |
CN111013603B (zh) | 用于乙炔选择性加氢反应的负载型PdCu双金属催化剂及其制备方法 | |
WO2019136822A1 (zh) | 核壳型金-氧化钌纳米复合材料及其制备方法 | |
CN109665512A (zh) | 一种多壁碳纳米管的制备方法 | |
Yao et al. | Controlled synthesis of core-shell composites with uniform shells of a covalent organic framework | |
KR20180129307A (ko) | 이산화탄소 환원용 구리 전기촉매의 제조방법 | |
Yin et al. | Controlled synthesis of hollow α-Fe2O3 microspheres assembled with ionic liquid for enhanced visible-light photocatalytic activity | |
US20210261418A1 (en) | Method for synthesizing high-purity carbon nanocoils based on composite catalyst formed by multiple small-sized catalyst particles | |
CN100540456C (zh) | 一种纳米硅线/碳复合材料及其制备方法和用途 | |
CN114260027B (zh) | 一种制备金属氧化物@金属有机骨架核壳材料的方法 | |
CN114618551A (zh) | 一种负载型纳米合金催化剂及普适性制备方法 | |
Cheng et al. | Synthesis of flower-like and dendritic platinum nanostructures with excellent catalytic activities on thermal decomposition of ammonium perchlorate | |
CN113548684A (zh) | 一种介孔氧化铝基核壳复合材料及其单胶束导向界面组装方法和应用 | |
Long et al. | Enhancing the catalytic efficiency of the Heck coupling reaction by forming 5 nm Pd octahedrons using kinetic control | |
Su et al. | Recent progress in strategies for preparation of metal-organic frameworks and their hybrids with different dimensions | |
CN108393080B (zh) | 一种纳米碳/氧化钛多孔微球的制备方法 | |
CN102423704A (zh) | 一种直接甲酸燃料电池用钯纳米催化剂的制备方法 | |
CN111389398B (zh) | 分级中空二氧化硅限域氧化亚铜可见光催化剂的制备方法 | |
TW201041217A (en) | Hybrid catalyst, method of fabricating the same, and fuel cell comprising the same | |
Yi et al. | Recent advances in the engineering and electrochemical applications of amorphous-based nanomaterials: A comprehensive review |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20883708 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20883708 Country of ref document: EP Kind code of ref document: A1 |