WO2021085307A1 - 除湿システム - Google Patents

除湿システム Download PDF

Info

Publication number
WO2021085307A1
WO2021085307A1 PCT/JP2020/039770 JP2020039770W WO2021085307A1 WO 2021085307 A1 WO2021085307 A1 WO 2021085307A1 JP 2020039770 W JP2020039770 W JP 2020039770W WO 2021085307 A1 WO2021085307 A1 WO 2021085307A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
zone
dehumidifying rotor
purge
pipeline
Prior art date
Application number
PCT/JP2020/039770
Other languages
English (en)
French (fr)
Inventor
稔 小笠原
Original Assignee
五和工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五和工業株式会社 filed Critical 五和工業株式会社
Priority to CN202080072904.9A priority Critical patent/CN114585431B/zh
Priority to JP2021553530A priority patent/JPWO2021085307A1/ja
Priority to EP20882656.0A priority patent/EP4052779A4/en
Publication of WO2021085307A1 publication Critical patent/WO2021085307A1/ja
Priority to US17/728,323 priority patent/US20220241719A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/4009Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • F24F2003/1446Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only by condensing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/1458Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification using regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/1458Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification using regenerators
    • F24F2003/1464Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification using regenerators using rotating regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • F24F2203/1036Details

Definitions

  • the present invention relates to a dehumidifying system, particularly a dehumidifying system used to maintain a low dew point environment in a dry room.
  • a low dew point environment is required for the development and manufacture of lithium-ion batteries and organic EL displays.
  • a dry room is widely used as a device for creating and maintaining a low dew point environment, and the dry room is provided with a dehumidifying system for controlling the dew point in the dry room.
  • This type of dehumidification system has a dehumidifying rotor, where the input side of the dehumidifying rotor's suction zone and the dry room are connected by an indoor air inlet pipeline, while the output side of the dehumidifying rotor's suction zone and the dry room are dry.
  • an air circulation passage is formed from a dry room, an indoor air introduction pipeline, a suction zone of a dehumidifying rotor, and a dry air supply pipeline.
  • the indoor air containing the moisture in the dry room is introduced into the indoor air introduction pipeline, the moisture is removed while passing through the adsorption zone of the dehumidifying rotor, and the dry air from the adsorption zone of the dehumidifying rotor is dried and the air supply pipe. It is supplied to the dry room through the road, whereby the air in the dry room is maintained at a desired low dew point (see, for example, Patent Documents 1 and 2).
  • the air in the dry room is polluted by the exhaled air of the worker and various gases generated during the processing of substances, so that the air in the dry room is appropriately ventilated to the dry room.
  • Exhaust air is exhausted to the outside through the provided exhaust port, and fresh outside air is taken into the dry room from the outside.
  • the dehumidification system is provided with an outside air introduction pipe for taking in the outside air.
  • the outside air introduction pipe is connected to the indoor air introduction pipe of the dehumidification system and becomes the outside air introduction pipe.
  • a cooler is provided. In this way, the outside air sucked from the outside air introduction pipe and condensed and dehumidified by the cooler is mixed with the indoor air of the dry room flowing in the indoor air introduction pipe, and is introduced into the adsorption zone of the dehumidifying rotor to be adsorbed and dehumidified.
  • the outside air that has just been condensed and dehumidified has a much higher dew point temperature (significantly higher water content) than the indoor air with a low dew point in the dry room, and therefore, the moisture that should be adsorbed in the adsorption zone of the dehumidifying rotor. Most of it is water contained in the outside air.
  • the dew point temperature of the mixed air of the outside air and the indoor air of the dry room must be lowered at once to a predetermined low dew point in the dry room in the adsorption zone of the dehumidifying rotor, which consumes a large amount of electric power.
  • the conventional dehumidification system consumes more power for dehumidifying the outside air taken into the dry room (dehumidification system) rather than dehumidifying the indoor air in the dry room, and in this respect, the conventional dehumidification system.
  • the system has the disadvantages of high wasteful power consumption and very poor energy utilization efficiency.
  • an object of the present invention is to provide a dehumidifying system that exhibits a high energy-saving effect.
  • a dehumidifying system for maintaining a low dew point environment in a dry room, which has at least a suction zone, a regeneration zone, and a purge zone in order along the rotation direction of the rotor.
  • the dehumidifying rotor one end connected to the dry room, the other end connected to the input side of the suction zone of the dehumidifying rotor, and one end connected to the output side of the suction zone of the dehumidifying rotor.
  • a first dry air supply pipeline whose other end is connected to the dry room, a fan provided in the indoor air introduction pipeline, and a cooler provided on the downstream side of the fan in the indoor air introduction pipeline.
  • the desiccant air conditioner includes a second regenerated exhaust pipeline for discharging the regenerated exhaust, and an outside air introduction pipeline, and further discharges from the purge zone of the dehumidifying rotor.
  • a regenerating air supply line that supplies the regenerated air to the regenerating zone of the dehumidifying rotor, a heater provided in the regenerating air supply line, and an upstream side of the fan in the room air introduction line from the desiccant air conditioner.
  • a dehumidifying system comprising: a second dry air supply conduit for supplying dry air to the vehicle.
  • the "dry room” shall include not only the dry room but also any device capable of maintaining a low dew point environment inside a glove box, a chamber, or the like. The same applies below.
  • the desiccant air conditioner has another dehumidifying rotor having a suction zone, a purge zone and a regeneration zone in this order along the rotation direction of the rotor, and the suction zone of the other dehumidifying rotor.
  • the output end of the first regenerated exhaust pipeline is connected to the input side of the above, while the input end of the purge air supply pipeline is connected to the output side of the suction zone of the other dehumidifying rotor, and the other dehumidifying rotor is connected.
  • the input end of the second regeneration exhaust pipeline is connected to the output side of the regeneration zone, and the desiccant air conditioner is further connected to another fan provided in the first regeneration exhaust pipeline.
  • the purge air supply line has another cooler provided on the downstream side of the other fan in the first regeneration exhaust line and another fan provided in the purge air supply line.
  • the second dry air supply line branches from the upstream side of the further fan, and the output end of the outside air introduction line is connected to the upstream side of the other fan in the first regenerated exhaust line.
  • the desiccant air conditioner includes a damper provided in the second dry air supply pipeline, another cooler provided in the outside air introduction pipeline, and the other in the outside air introduction pipeline.
  • Another purge provided on the downstream side of the cooler and another purge branching from the upstream side of the further fan in the purge air supply line to supply purging air to the purge zone of the other dehumidifying rotor.
  • another regenerated air supply line that supplies the regenerating air discharged from the purge zone of the other dehumidifying rotor to the regenerating zone of the other dehumidifying rotor, and the other regenerated air supply line. It also has another heater, and the input end of the second regeneration exhaust pipe line is connected to the output side of the regeneration zone of the other dehumidifying rotor.
  • the dehumidifying system includes a dehumidifying rotor and a desiccant air conditioner, and the air flow in the dehumidifying system is, in principle, through the suction zone of the dehumidifying rotor and the first closed loop conduit through the dry room. It is separated into a circulating air flow and a circulating air flow in a dehumidifying rotor regeneration zone, a dehumidifying rotor purge zone, and a second closed loop conduit through the desiccant air conditioner.
  • the desiccant air conditioner is provided with a regeneration exhaust pipe and an outside air introduction pipe.
  • a conduit for supplying dry air from the desiccant air conditioner to the conduit portion between the dry room of the first closed loop conduit and the suction zone of the dehumidifying rotor is provided.
  • the moisture to be adsorbed in the adsorption zone of the dehumidifying rotor is the first. It is limited to the closed loop pipeline and is a small amount. Further, in the second closed loop pipe, the water content in the first closed loop pipe adsorbed by the dehumidifying rotor may be removed, so that the amount of water to be adsorbed by the desiccant air conditioner is also small.
  • the amount of power consumed by the dehumidifying rotor and desiccant air conditioner can be reduced.
  • the dry room when fresh air is required in the dry room due to ventilation in the dry room, the dry room is exhausted to the outside, and the required amount of outside air is discharged to the outside through the outside air introduction pipeline in the second closed loop of the dehumidification system. It is taken into the circular pipeline, dehumidified by the desiccant air conditioner, and supplied as dry air from the desiccant air conditioner to the first closed loop pipeline.
  • the mixed air of the dry air and the indoor air of the dry room is dehumidified in the adsorption zone of the dehumidifying rotor, adjusted to a predetermined low dew point, and then supplied to the dry room.
  • the first and second closed loop pipelines are basically separated, and the outside air is first introduced into the second closed loop conduit, dehumidified by the desiccant air conditioner, and then the first. It is supplied to the closed loop pipeline.
  • the dew point temperature of the dry air supplied from the desiccant air conditioner is much lower than the dew point temperature of the outside air condensed and dehumidified by the cooler, and the amount of water to be adsorbed in the adsorption zone of the dehumidifying rotor is compared with the conventional example. And significantly less. In addition, the amount of water to be adsorbed by the desiccant air conditioner is also small.
  • the amount of electric power consumed by the dehumidifying rotor and the desiccant air conditioner can be small.
  • the power consumption of the dehumidifying system is significantly reduced, and the energy utilization efficiency is extremely improved.
  • (A) is a diagram showing a schematic configuration of a dehumidifying system according to an embodiment of the present invention
  • (B) is a schematic cross-sectional view of a dehumidifying rotor of the dehumidifying system of (A).
  • (A) is a diagram showing a schematic configuration of an example of a desiccant air conditioner of the dehumidifying system of FIG. 1, and (B) is a schematic cross-sectional view of a dehumidifying rotor of the desiccant air conditioner of (A).
  • FIG. 1 (A) is a diagram showing a schematic configuration of a dehumidifying system according to an embodiment of the present invention
  • FIG. 1 (B) is a schematic cross section of a dehumidifying rotor of the dehumidifying system shown in FIG. 1 (A). It is a figure.
  • a first dehumidifying rotor 1 having at least a suction zone 1a, a regeneration zone 1b, and a purge zone 1c, a desiccant air conditioner 2, and a second Purging air is supplied from the regeneration zone 1b of the dehumidifying rotor 1 of 1 to the purge zone 1c of the first dehumidifying rotor 1 from the desiccant air conditioner 2 and the first regeneration exhaust pipeline 3 for supplying the regeneration exhaust to the desiccant air conditioner 2.
  • the first purged air supply line 4 to be supplied and the first regenerated air supply line for supplying the regenerating air discharged from the purge zone 1c of the first dehumidifying rotor 1 to the regenerating zone 1b of the first dehumidifying rotor 1. 7 is provided.
  • the desiccant air conditioner 2 has a second regenerated exhaust pipe line 5 for discharging the regenerated exhaust gas and an outside air introduction pipe line 6.
  • a first heater 8 is provided in the first regenerated air supply pipe 7, one end 10a of the indoor air introduction pipe 10 is connected to the dry room 9, and the other end 10b of the indoor air introduction pipe 10 is the first dehumidifying. It is connected to the input side of the suction zone 1a of the rotor 1.
  • one end 11a of the first dry air supply pipe 11 is connected to the output side of the suction zone 1a of the first dehumidifying rotor 1, and the other end 11b of the first dry air supply pipe 11 is connected to the dry room 9. It is connected.
  • a first fan 12 is provided in the indoor air introduction pipe 10, and a first cooler (cooling coil) 13 is provided on the downstream side of the first fan 12 in the indoor air introduction pipe 10.
  • the second dry air supply line 14 for supplying dry air from the desiccant air conditioner 2 to the upstream side of the first fan 12 in the indoor air introduction line 10 and the first dry air.
  • a dew point meter 15 provided in the supply pipe 11 and a dew point meter 16 arranged in the dry room 9 are provided.
  • FIG. 2 (A) is a diagram showing a schematic configuration of an example of a desiccant air conditioner of the dehumidifying system of FIG. 1, and FIG. 2 (B) is a schematic cross section of a dehumidifying rotor of the desiccant air conditioner of FIG. 2 (A). It is a figure.
  • the desiccant air conditioner 2 has a second dehumidifying rotor 20 having a suction zone 20a, a purge zone 20b, and a regeneration zone 20c in this order along the rotation direction of the rotor.
  • the output end of the first regeneration exhaust pipe line 3 is connected to the input side of the suction zone 20a of the second dehumidifying rotor 20, while the second dehumidifying rotor 20
  • the input end of the first purge air supply line 4 is connected to the output side of the suction zone 20a
  • the input end of the second regenerated exhaust line 5 is connected to the output side of the regeneration zone 20c of the second dehumidifying rotor 20.
  • the desiccant air conditioner 2 also has a second fan 21 provided in the first regeneration exhaust pipe line 3 and a second fan 21 provided in the first regeneration exhaust pipe line 3 on the downstream side of the second fan 21. It has a cooler (cooling coil) 22 and a third fan 23 provided in the first purge air supply pipe line 4.
  • the second dry air supply line 14 branches from the upstream side of the third fan 23 in the first purge air supply line 4, and the second fan 21 in the first regenerated exhaust line 3 has a branch.
  • the output end of the outside air introduction pipe 6 is connected to the upstream side.
  • a motor damper 30 is provided in the second dry air supply line 14, and a dew point meter 24 is provided at an appropriate position in the first purge air supply line 4.
  • the desiccant air conditioner 2 further includes a third cooler 25 provided in the outside air introduction pipe 6, a motor damper 26 provided on the downstream side of the third cooler 25 in the outside air introduction pipe 6, and a first purge.
  • a second purge air supply line 27 that branches from the upstream side of the third fan 23 in the air supply line 4 and supplies purging air to the purge zone 20b of the second dehumidifying rotor 20 and a second dehumidifying rotor 20.
  • a second regenerated air supply line 28 that supplies the regenerated air discharged from the purge zone 20b to the regenerated zone 20c of the second dehumidifying rotor 20 and a second regenerated air supply line 28 provided in the second regenerated air supply line 28. It has a heater 29.
  • the input end of the second regeneration exhaust pipe line 26 is connected to the output side of the regeneration zone 20c of the second dehumidifying rotor 20.
  • the dry room 9 is provided with an exhaust pipe line 17, and the exhaust pipe line 17 is provided with a fourth fan 18 and a motor damper 19 on the upstream side thereof.
  • the motor damper 19 of the exhaust pipe line 17 is closed and the fourth fan 18 is stopped.
  • the air flow in the dehumidifying system basically passes through the suction zone 1a of the dehumidifying rotor 1 and the dry room 9, and the first closed loop-shaped pipeline (indoor air introduction pipeline 10 and the first dry air supply pipe).
  • the air in the dry room 9 is introduced into the first cooler 13 through the indoor air introduction pipeline 10 and condensed by the first cooler 13. Moisture is removed and supplied to the adsorption zone 1a of the first dehumidifying rotor 1.
  • the rotor In the adsorption zone 1a, the rotor adsorbs the moisture in the supplied air. Then, the dry air from which the moisture has been removed by the rotor is supplied to the dry room 9 through the first dry air supply pipe 11.
  • the air heated by the first heater 8 is introduced into the regeneration zone 1b of the first dehumidifying rotor 1, and the moisture contained in the rotor 1 is introduced. To absorb.
  • the rotor is regenerated (dried) by this air and moves from the regeneration zone 1b to the purge zone 1c.
  • the moist air used for the regeneration of the rotor is discharged from the regeneration zone and introduced into the second cooler 22 of the desiccant air conditioner 2.
  • the air introduced into the second cooler 22 is condensed to remove moisture.
  • the air discharged from the second cooler 22 is introduced into the suction zone 20a of the second dehumidifying rotor 20 of the desiccant air conditioner 2.
  • the rotor In the adsorption zone 20a, the rotor adsorbs the moisture in the introduced air. Then, dry air is supplied from the adsorption zone 20a to the purge zone 1c of the first dehumidifying rotor 1 through the first purge air supply line 4.
  • the rotor In the purge zone 1c, the rotor is cooled by the supplied air, while the air is heated by the rotor. The rotor cooled in the purge zone 1c moves to the suction zone 1a.
  • a part of the dry air flowing through the first purge air supply line 4 is supplied to the purge zone 20b of the second dehumidifying rotor 20 through the second purge air supply line 27.
  • the rotor In the purge zone 20b, the rotor is cooled by the supplied air, while the air is heated by the rotor.
  • the rotor cooled in the purge zone 20b moves to the regeneration zone 20c.
  • the air discharged from the purge zone 20b is supplied to the regeneration zone 20c through the second regeneration air supply line.
  • the air is heated by the second heater 29 while flowing through the second regenerated air supply line.
  • the rotor In the regeneration zone 20c, the rotor is regenerated (dried) by the supplied air and moves from the regeneration zone 20c to the adsorption zone 20a, while the air used for the regeneration of the rotor and absorbing moisture is the second regeneration exhaust. It is discharged to the outside through the pipeline 5.
  • the opening degree of the motor damper 26 is adjusted, and an amount of outside air corresponding to the amount of air discharged to the outside from the regeneration zone 20c of the second dehumidifying rotor 20 passes through the outside air introduction pipe 6 to the first regeneration exhaust. It is taken into the pipeline 3 (first closed loop pipeline). While flowing in the outside air introduction pipe 6, the outside air is condensed by the third cooler 25 to remove moisture.
  • the dry room 9 When the air in the dry room 9 is polluted by the exhaled breath of a worker in the dry room 9 or various gases generated during the treatment of substances, the dry room 9 is ventilated. At the time of ventilation, the motor damper 19 is opened, the fourth fan 18 is operated, and the air in the dry room 9 is discharged to the outside through the exhaust pipe line 17.
  • the motor damper 30 is opened at a predetermined opening degree, and an amount of outside air corresponding to the amount of exhaust gas from the dry room 9 through the exhaust pipe line 17 is taken in from the outside air introduction pipe line 6 of the desiccant air conditioner 2.
  • the taken-in air is dehumidified by the desiccant air conditioner 2 and supplied as dry air from the desiccant air conditioner 2 to the indoor air introduction pipeline 10 (second closed loop pipeline) through the second dry air supply pipeline 14.
  • the mixed air of the dry air and the indoor air of the dry room 9 is dehumidified in the adsorption zone 1a of the first dehumidifying rotor 1, adjusted to a predetermined low dew point, and then supplied to the dry room 9.
  • the air in the dry room 9 is maintained at the low dew point, fresh air is supplied into the dry room 9, and the ventilation of the dry room 9 is completed.
  • the dehumidifying system includes a first dehumidifying rotor 1 and a desiccant air conditioner 2, and the air flow in the dehumidifying system is basically the suction zone 1a and the dry room 9 of the first dehumidifying rotor 1.
  • the desiccant air conditioner 2 is provided with a regeneration exhaust pipe line 5 and an outside air introduction pipe line 6, and from the desiccant air conditioner 2, the dry room 9 of the first closed loop pipe line and the suction zone 1a of the first dehumidifying rotor 1 are provided.
  • a conduit 16 for supplying dry air is provided in the conduit portion between them.
  • the dry room 9 When the dry room 9 is not ventilated (during normal operation), air circulates independently in each of the first and second closed loop pipes, and the moisture to be adsorbed in the adsorption zone 1a of the dehumidifying rotor 1 Is confined to the first closed loop conduit and is in small amounts. Further, in the second closed loop pipe, the water in the first closed loop pipe adsorbed by the dehumidifying rotor 1 may be removed, so that the amount of water to be adsorbed by the desiccant air conditioner 2 is also small. ..
  • the amount of electric power consumed by the entire dehumidifying system including the dehumidifying rotor 1 and the desiccant air conditioner 2 can be reduced.
  • the dry room 9 When fresh air is required in the dry room 9 due to ventilation in the dry room 9, the dry room 9 is exhausted to the outside, and the required amount of outside air is supplied to the dehumidification system through the outside air introduction pipeline 6. It is taken into the second closed-loop pipeline, dehumidified by the desiccant air conditioner 2, and supplied as dry air from the desiccant air conditioner 2 to the first closed-loop conduit.
  • the first and second closed loop pipelines are basically separated, and the outside air is first introduced into the second closed loop pipeline, dehumidified by the desiccant air conditioner 2, and then the first. It is supplied to the closed loop pipeline.
  • the amount of water to be adsorbed in the adsorption zone 1a of the dehumidifying rotor 1 is a conventional example. Remarkably less than. In addition, the amount of water to be adsorbed by the desiccant air conditioner is also small.
  • the amount of electric power consumed by the dehumidifying rotor and the desiccant air conditioner can be small.
  • the overall power consumption of the dehumidifying system including the dehumidifying rotor 1 and the desiccant air conditioner 2 is significantly reduced, and the energy utilization efficiency is significantly improved.
  • the configurations of the present invention are not limited to the above embodiments, and those skilled in the art will devise various modifications within the scope of the configurations described in the appended claims. Needless to say, you will get it.
  • the configuration of the desiccant air conditioner of the above embodiment is only an example, and as the desiccant air conditioner, any known configuration can be adopted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Drying Of Gases (AREA)
  • Central Air Conditioning (AREA)

Abstract

除湿ロータ1と、デシカント空調機2と、除湿ロータの再生ゾーン1bからデシカント空調機に再生排気を供給する第1再生排気管路3と、デシカント空調機から除湿ロータのパージゾーン1cにパージ空気を供給するパージ給気管路4と、パージゾーンから再生用空気を再生ゾーンに供給する再生給気管路7を備える。デシカント空調機は第2再生排気管路5と外気導入管路6を有する。ドライルーム9内の空気を除湿ロータの吸着ゾーン1aに導入する室内空気導入管路10と、吸着ゾーンから乾き空気をドライルームに供給する第1乾き空気供給管路11と、デシカント空調機から乾き空気を室内空気導入管路に供給する第2乾き空気供給管路14を備える。

Description

除湿システム
 本発明は、除湿システム、特に、ドライルーム内に低露点環境を維持するために使用される除湿システムに関するものである。
 リチウムイオン電池および有機ELディスプレイ等の開発や製造には低露点環境が必要とされる。
 そして、低露点環境を生成および維持する装置としてドライルームが広く使用されており、ドライルームには、ドライルーム内の露点を制御するための除湿システムが備えられる。
 この種の除湿システムは除湿ロータを有しており、除湿ロータの吸着ゾーンの入力側とドライルームが室内空気導入管路によって接続される一方、除湿ロータの吸着ゾーンの出力側とドライルームが乾き空気供給管路によって接続されることによって、ドライルーム、室内空気導入管路、除湿ロータの吸着ゾーンおよび乾き空気供給管路から空気循環路が形成されている。
 そして、ドライルームの水分を含んだ室内空気が室内空気導入管路に導入され、除湿ロータの吸着ゾーンを通過する間に水分を除去され、除湿ロータの吸着ゾーンから乾いた空気が乾き空気供給管路を通じてドライルームに供給され、それによって、ドライルーム内の空気が所望の低露点に維持されるようになっている(例えば、特許文献1、2参照)。
 ところで、ドライルーム内での作業中は、作業者の呼気や物質の処理中に発生する種々のガス等によってドライルーム内の空気が汚れるので、適宜ドライルーム内の換気が行われ、ドライルームに設けられた排気口を通じて外部に排気がなされるとともに、外部から新鮮な外気がドライルーム内に取り込まれる。
 そして、この外気の取り込みのために除湿システムに外気導入管路が備えられるが、従来の除湿システムにおいては、外気導入管路が除湿システムの室内空気導入管路に接続され、外気導入管路にクーラが設けられる。
 こうして、外気導入管路から吸入され、クーラによって凝縮除湿された外気が、室内空気導入管路内を流れるドライルームの室内空気と混合され、除湿ロータの吸着ゾーンに導入されて吸着除湿される。
 しかしながら、凝縮除湿されただけの外気は、ドライルームの低露点の室内空気と比べると露点温度がはるかに高く(含有水分量が著しく多く)、よって、除湿ロータの吸着ゾーンにおいて吸着すべき水分のほとんどが、外気に含まれた水分である。
 そして、この外気とドライルームの室内空気との混合空気の露点温度を、除湿ロータの吸着ゾーンにおいてドライルーム内の所定の低露点まで一気に低下させなければならず、そのために多大の電力が消費される。
 すなわち、従来の除湿システムは、ドライルームの室内空気の除湿よりも、むしろドライルーム(除湿システム)に取り込んだ外気の除湿のためにより多くの電力が消費されており、この点で、従来の除湿システムは、無駄な電力消費が多く、エネルギーの利用効率が非常に悪いという欠点を有している。
特許第3300565号公報 特許第6026231号公報
 したがって、本発明の課題は、高い省エネ効果を発揮する除湿システムを提供することにある。
 上記課題を解決するため、本発明によれば、ドライルーム内に低露点環境を維持するための除湿システムであって、ロータの回転方向に沿って順に少なくとも吸着ゾーン、再生ゾーンおよびパージゾーンを有する除湿ロータと、一端がドライルームに接続され、他端が前記除湿ロータの吸着ゾーンの入力側に接続された室内空気導入管路と、一端が前記除湿ロータの吸着ゾーンの出力側に接続され、他端が前記ドライルームに接続された第1の乾き空気供給管路と、前記室内空気導入管路に設けられたファンと、前記室内空気導入管路における前記ファンの下流側に設けられたクーラと、デシカント空調機と、前記除湿ロータの再生ゾーンから前記デシカント空調機に再生排気を供給する第1の再生排気管路と、前記デシカント空調機から前記除湿ロータのパージゾーンにパージ用空気を供給するパージ給気管路と、を備え、前記デシカント空調機は、再生排気を排出する第2の再生排気管路、および外気導入管路を有しており、さらに、前記除湿ロータのパージゾーンから排出された再生用空気を前記除湿ロータの再生ゾーンに供給する再生給気管路と、前記再生給気管路に設けられたヒータと、前記デシカント空調機から前記室内空気導入管路における前記ファンの上流側に乾き空気を供給する第2の乾き空気供給管路と、を備えたものであることを特徴とする除湿システムが提供される。
 ここで、「ドライルーム」には、ドライルームだけでなく、グローブボックスやチャンバ等の内部に低露点環境を維持し得る任意の装置もまた含まれるものとする。以下同様。
 本発明の好ましい実施例によれば、前記デシカント空調機は、ロータの回転方向に沿って順に吸着ゾーン、パージゾーンおよび再生ゾーンを有する別の除湿ロータを有し、前記別の除湿ロータの吸着ゾーンの入力側に前記第1の再生排気管路の出力端が接続される一方、前記別の除湿ロータの吸着ゾーンの出力側に前記パージ給気管路の入力端が接続され、前記別の除湿ロータの再生ゾーンの出力側には前記第2の再生排気管路の入力端が接続されており、前記デシカント空調機は、さらに、前記第1の再生排気管路に設けられた別のファンと、前記第1の再生排気管路における前記別のファンの下流側に設けられた別のクーラと、前記パージ給気管路に設けられたさらに別のファンと、を有し、前記パージ給気管路における前記さらに別のファンの上流側から前記第2の乾き空気供給管路が分岐し、前記第1の再生排気管路における前記別のファンの上流側に前記外気導入管路の出力端が接続されており、前記デシカント空調機は、さらに、前記第2の乾き空気供給管路に設けられたダンパと、前記外気導入管路に設けられたさらに別のクーラと、前記外気導入管路における前記別のクーラの下流側に設けられた別のダンパと、前記パージ給気管路における前記さらに別のファンの上流側から分岐し、前記別の除湿ロータのパージゾーンにパージ用空気を供給する別のパージ給気管路と、前記別の除湿ロータのパージゾーンから排出された再生用空気を前記別の除湿ロータの再生ゾーンに供給する別の再生給気管路と、前記別の再生給気管路に設けられた別のヒータと、を有し、前記別の除湿ロータの再生ゾーンの出力側に前記第2の再生排気管路の入力端が接続されている。
 本発明によれば、除湿システムは除湿ロータおよびデシカント空調機を備え、除湿システム内の空気の流れが、原則的に、除湿ロータの吸着ゾーンおよびドライルームを通る第1の閉ループ状管路内を循環する空気の流れと、除湿ロータの再生ゾーン、除湿ロータのパージゾーン、およびデシカント空調機を通る第2の閉ループ状管路内を循環する空気の流れに分離される。また、デシカント空調機に再生排気管路および外気導入管路が備えられる。さらに、デシカント空調機から、第1の閉ループ状管路のドライルームおよび除湿ロータの吸着ゾーン間の管路部分に乾き空気を供給する管路が備えられる。
 そして、ドライルーム内の換気がされないとき(通常運転時)は、第1および第2の閉ループ状管路のそれぞれにおいて独立に空気が循環し、除湿ロータの吸着ゾーンにおいて吸着すべき水分は第1の閉ループ状管路内に限定され、少量である。また、第2の閉ループ状管路においては、除湿ロータが吸着した第1の閉ループ状管路内の水分を除去すればよいので、デシカント空調機によって吸着すべき水分量も少量となる。
 その結果、除湿ロータおよびデシカント空調機が消費する電力量は少なくて済む。
 また、ドライルーム内の換気によってドライルームに新鮮な空気が必要とされるときは、ドライルームから外部に排気がされるとともに、外気の必要量が外気導入管路を通じて除湿システムの第2の閉ループ状管路内に取り込まれ、デシカント空調機によって除湿され、デシカント空調機から乾き空気として第1の閉ループ状管路に供給される。
 そして、この乾き空気とドライルームの室内空気との混合空気が除湿ロータの吸着ゾーンにおいて除湿されて、所定の低露点に調湿された後、ドライルームに供給される。
 この場合も、第1および第2の閉ループ状管路が基本的に分離されており、外気は、まず第2の閉ループ状管路に導入され、デシカント空調機によって除湿された後、第1の閉ループ状管路に供給される。
 そして、デシカント空調機から供給される乾き空気の露点温度は、クーラによって凝縮除湿された外気の露点温度よりもはるかに低く、除湿ロータの吸着ゾーンにおいて吸着すべき水分の量は、従来例と比較して著しく少ない。また、デシカント空調機によって吸着すべき水分量も少量である。
 そのため、除湿ロータおよびデシカント空調機が消費する電力量は少なくて済む。
 こうして、本発明によれば、除湿システムの消費電力が大幅に減少し、エネルギー利用効率が極めて良くなる。
(A)は本発明の1実施例による除湿システムの概略構成を示す図であり、(B)は(A)の除湿システムの除湿ロータの模式的な断面図である。 (A)は図1の除湿システムのデシカント空調機の一例の概略構成を示す図であり、(B)は(A)のデシカント空調機の除湿ロータの模式的な断面図である。
 以下、添付図面を参照しつつ、本発明の構成を好ましい実施例に基づいて説明する。
 図1(A)は、本発明の1実施例による除湿システムの概略構成を示す図であり、図1(B)は、図1(A)に示した除湿システムの除湿ロータの模式的な断面図である。
 図1に示すように、本発明によれば、ロータの回転方向に沿って順に少なくとも吸着ゾーン1a、再生ゾーン1bおよびパージゾーン1cを有する第1の除湿ロータ1と、デシカント空調機2と、第1の除湿ロータ1の再生ゾーン1bからデシカント空調機2に再生排気を供給する第1の再生排気管路3と、デシカント空調機2から第1の除湿ロータ1のパージゾーン1cにパージ用空気を供給する第1のパージ給気管路4と、第1の除湿ロータ1のパージゾーン1cから排出された再生用空気を第1の除湿ロータ1の再生ゾーン1bに供給する第1の再生給気管路7が備えられる。
 また、デシカント空調機2は、再生排気を排出する第2の再生排気管路5と、外気導入管路6を有している。
 第1の再生給気管路7に第1のヒータ8が設けられ、ドライルーム9に室内空気導入管路10の一端10aが接続され、室内空気導入管路10の他端10bは第1の除湿ロータ1の吸着ゾーン1aの入力側に接続されている。
 さらに、第1の除湿ロータ1の吸着ゾーン1aの出力側に第1の乾き空気供給管路11の一端11aが接続され、第1の乾き空気供給管路11の他端11bはドライルーム9に接続されている。
 室内空気導入管路10に第1のファン12が設けられ、室内空気導入管路10における第1のファン12の下流側に第1のクーラ(冷却コイル)13が設けられている。
 また、本発明によれば、デシカント空調機2から室内空気導入管路10における第1のファン12の上流側に乾き空気を供給する第2の乾き空気供給管路14と、第1の乾き空気供給管路11に設けられた露点計15と、ドライルーム9内に配置された露点計16が備えられる。
 図2(A)は、図1の除湿システムのデシカント空調機の一例の概略構成を示す図であり、図2(B)は図2(A)のデシカント空調機の除湿ロータの模式的な断面図である。
 図2(B)に示すように、デシカント空調機2は、ロータの回転方向に沿って順に吸着ゾーン20a、パージゾーン20bおよび再生ゾーン20cを有する第2の除湿ロータ20を有している。
 また、図2(A)に示すように、第2の除湿ロータ20の吸着ゾーン20aの入力側に第1の再生排気管路3の出力端が接続される一方、第2の除湿ロータ20の吸着ゾーン20aの出力側に第1のパージ給気管路4の入力端が接続され、第2の除湿ロータ20の再生ゾーン20cの出力側には第2の再生排気管路5の入力端が接続されている。
 デシカント空調機2は、また、第1の再生排気管路3に設けられた第2のファン21と、第1の再生排気管路3における第2のファン21の下流側に設けられた第2のクーラ(冷却コイル)22と、第1のパージ給気管路4に設けられた第3のファン23とを有している。
 そして、第1のパージ給気管路4における第3のファン23の上流側から第2の乾き空気供給管路14が分岐しており、第1の再生排気管路3における第2のファン21の上流側に外気導入管路6の出力端が接続されている。
 第2の乾き空気供給管路14にはモータダンパ30が設けられ、第1のパージ給気管路4の適当な位置に露点計24が設けられている。
 デシカント空調機2は、さらに、外気導入管路6に設けられた第3のクーラ25と、外気導入管路6における第3のクーラ25の下流側に設けられたモータダンパ26と、第1のパージ給気管路4における第3のファン23の上流側から分岐し、第2の除湿ロータ20のパージゾーン20bにパージ用空気を供給する第2のパージ給気管路27と、第2の除湿ロータ20のパージゾーン20bから排出された再生用空気を第2の除湿ロータ20の再生ゾーン20cに供給する第2の再生給気管路28と、第2の再生給気管路28に設けられた第2のヒータ29とを有している。
 また、第2の除湿ロータ20の再生ゾーン20cの出力側に第2の再生排気管路26の入力端が接続されている。
 再び図1(A)を参照して、ドライルーム9に排気管路17が備えられ、排気管路17には第4のファン18と、その上流側にモータダンパ19が設けられている。
 本発明の除湿システムの運転中であって、ドライルーム9の換気がなされないとき、排気管路17のモータダンパ19は閉じられ、第4のファン18は停止している。
 そして、除湿システム内の空気の流れが、基本的に、除湿ロータ1の吸着ゾーン1aおよびドライルーム9を通る第1の閉ループ状管路(室内空気導入管路10および第1の乾き空気供給管路11から形成される)内を循環する空気の流れと、除湿ロータ1の再生ゾーン1b、除湿ロータ1のパージゾーン1c、およびデシカント空調機2を通る第2の閉ループ状管路(第1の再生排気管路3、第1のパージ給気管路4および第1の再生給気管路7から形成される)内を循環する空気の流れに分離される。
 第1の閉ループ管路内を空気が循環する間に、ドライルーム9内の空気が、室内空気導入管路10を通って第1のクーラ13に導入され、第1のクーラ13によって凝縮されて水分を除去され、第1の除湿ロータ1の吸着ゾーン1aに供給される。
 吸着ゾーン1aにおいて、ロータは供給された空気中の水分を吸着する。そして、ロータによって水分を除去された乾き空気が第1の乾き空気供給管路11を通ってドライルーム9に供給される。
 一方、第2の閉ループ状管路内を空気が循環する間に、第1のヒータ8によって加熱された空気が、第1の除湿ロータ1の再生ゾーン1bに導入され、ロータに含まれた水分を吸収する。一方、ロータは、この空気によって再生(乾燥)され、再生ゾーン1bからパージゾーン1cへ移動する。
 ロータの再生に使用され、水分を含んだ空気は、再生ゾーンから排出されてデシカント空調機2の第2のクーラ22に導入される。第2のクーラ22に導入された空気は、凝縮されて水分を除去される。第2のクーラ22から排出された空気は、デシカント空調機2の第2の除湿ロータ20の吸着ゾーン20aに導入される。
 吸着ゾーン20aにおいて、ロータは、導入された空気中の水分を吸着する。そして、乾き空気が吸着ゾーン20aから第1のパージ給気管路4を通って第1の除湿ロータ1のパージゾーン1cに供給される。
 パージゾーン1cでは、ロータが供給された空気によって冷却される一方、空気はロータによって加熱される。パージゾーン1cで冷却されたロータは、吸着ゾーン1aへ移動する。
 また、第1のパージ給気管路4を流れる乾き空気の一部は、第2のパージ給気管路27を通って第2の除湿ロータ20のパージゾーン20bに供給される。パージゾーン20bでは、ロータが供給された空気によって冷却される一方、空気はロータによって加熱される。パージゾーン20bで冷却されたロータは、再生ゾーン20cへ移動する。
 パージゾーン20bから排出された空気は、第2の再生給気管路を通って再生ゾーン20cに供給される。空気は、第2の再生給気管路内を流れる間に第2のヒータ29によって加熱される。
 再生ゾーン20cにおいて、ロータが、供給された空気によって再生(乾燥)され、再生ゾーン20cから吸着ゾーン20aへ移動する一方、ロータの再生に使用され、水分を吸収した空気は、第2の再生排気管路5を通って外部に排出される。
 そして、モータダンパ26の開度が調節されて、第2の除湿ロータ20の再生ゾーン20cから外部に排出される空気量に相当する量の外気が外気導入管路6を通って第1の再生排気管路3(第1の閉ループ状管路)に取り込まれる。
 外気は、外気導入管路6内を流れる間に、第3のクーラ25によって凝縮されて水分を除去される。
 ドライルーム9内の作業者の呼気や物質の処理中に発生する種々のガス等によってドライルーム9内の空気が汚れた場合には、ドライルーム9の換気が行われる。
 換気の際、モータダンパ19が開放されて、第4のファン18が作動せしめられ、ドライルーム9内の空気が排気管路17を通じて外部に排出される。
 同時に、モータダンパ30が所定の開度で開放され、ドライルーム9からの排気管路17を通じた排気量に相当する量の外気がデシカント空調機2の外気導入管路6から取り込まれる。取り込まれた空気は、デシカント空調機2によって除湿され、乾き空気としてデシカント空調機2から第2の乾き空気供給管路14を通じて室内空気導入管路10(第2の閉ループ状管路)に供給される。
 次いで、この乾き空気とドライルーム9の室内空気との混合空気が第1の除湿ロータ1の吸着ゾーン1aにおいて除湿されて、所定の低露点に調湿された後、ドライルーム9に供給され、それによって、ドライルーム9内の空気は低露点に維持されたままで、新鮮な空気がドライルーム9内に供給され、ドライルーム9の換気が完了する。
 本発明によれば、除湿システムは第1の除湿ロータ1およびデシカント空調機2を備え、除湿システム内の空気の流れが、基本的に、第1の除湿ロータ1の吸着ゾーン1aおよびドライルーム9を通る第1の閉ループ状管路内を循環する空気の流れと、第1の除湿ロータ1の再生ゾーン1b、第1の除湿ロータ1のパージゾーン1c、およびデシカント空調機2を通る第2の閉ループ状管路内を循環する空気の流れに分離される。
 さらに、デシカント空調機2に再生排気管路5および外気導入管路6が備えられ、デシカント空調機2から、第1の閉ループ状管路のドライルーム9および第1の除湿ロータ1の吸着ゾーン1a間の管路部分に乾き空気を供給する管路16が備えられる。
 そして、ドライルーム9内の換気がされないとき(通常運転時)は、第1および第2の閉ループ状管路のそれぞれにおいて独立に空気が循環し、除湿ロータ1の吸着ゾーン1aにおいて吸着すべき水分は第1の閉ループ状管路内に限定され、少量である。また、第2の閉ループ状管路においては、除湿ロータ1によって吸着された第1の閉ループ状管路内の水分を除去すればよいので、デシカント空調機2によって吸着すべき水分量も少量となる。
 その結果、除湿ロータ1およびデシカント空調機2を含む除湿システムの全体が消費する電力量は少なくて済む。
 また、ドライルーム9内の換気によってドライルーム9に新鮮な空気が必要とされるときは、ドライルーム9から外部に排気がされるとともに、外気の必要量が外気導入管路6を通じて除湿システムの第2の閉ループ状管路内に取り込まれ、デシカント空調機2によって除湿され、デシカント空調機2から乾き空気として第1の閉ループ状管路に供給される。
 この場合も、第1および第2の閉ループ状管路が基本的に分離されており、外気は、まず第2の閉ループ状管路に導入され、デシカント空調機2によって除湿された後、第1の閉ループ状管路に供給される。
 デシカント空調機2から供給される乾き空気の露点温度は、クーラによって凝縮除湿された外気の露点温度よりもはるかに低いので、除湿ロータ1の吸着ゾーン1aにおいて吸着すべき水分の量は、従来例と比較して著しく少ない。また、デシカント空調機によって吸着すべき水分量も少量である。
 そのため、除湿ロータおよびデシカント空調機が消費する電力量は少なくて済む。
 それによって、除湿ロータ1およびデシカント空調機2を含む除湿システムの全体の消費電力が大幅に減少し、エネルギー利用効率が著しく向上する。
 以上、本発明の好ましい実施例を説明したが、本発明の構成は上記実施例に限定されず、当業者が添付の請求の範囲に記載された構成の範囲内で種々の変形例を案出し得ることは言うまでもない。
 例えば、上記実施例のデシカント空調機の構成は一例にすぎず、デシカント空調機としては、公知の任意の構成のものが採用可能である。
1 第1の除湿ロータ
1a 吸着ゾーン
1b 再生ゾーン
1c パージゾーン
2 デシカント空調機
3 第1の再生排気管路
4 第1のパージ給気管路
5 第2の再生排気管路
6 外気導入管路
7 第1の再生給気管路
8 第1のヒータ
9 ドライルーム
10 室内空気導入管路
10a 一端
10b 他端
11 第1の乾き空気供給管路
11a 一端
11b 他端
12 第1のファン
13 第1のクーラ
14 第2の乾き空気供給管路
15 露点計
16 露点計
17 排気管路
18 第4のファン
19 モータダンパ
20 第2の除湿ロータ
20a 吸着ゾーン
20b パージゾーン
20c 再生ゾーン
21 第2のファン
22 第2のクーラ
23 第3のファン
24 露点計
25 第3のクーラ
26 モータダンパ
27 第2のパージ給気管路
28 第2の再生給気管路
29 第2のヒータ
30 モータダンパ

Claims (2)

  1.  ドライルーム内に低露点環境を維持するための除湿システムであって、
     ロータの回転方向に沿って順に少なくとも吸着ゾーン、再生ゾーンおよびパージゾーンを有する除湿ロータと、
     一端がドライルームに接続され、他端が前記除湿ロータの吸着ゾーンの入力側に接続された室内空気導入管路と、
     一端が前記除湿ロータの吸着ゾーンの出力側に接続され、他端が前記ドライルームに接続された第1の乾き空気供給管路と、
     前記室内空気導入管路に設けられたファンと、
     前記室内空気導入管路における前記ファンの下流側に設けられたクーラと、
     デシカント空調機と、
     前記除湿ロータの再生ゾーンから前記デシカント空調機に再生排気を供給する第1の再生排気管路と、
     前記デシカント空調機から前記除湿ロータのパージゾーンにパージ用空気を供給するパージ給気管路と、を備え、
     前記デシカント空調機は、再生排気を排出する第2の再生排気管路、および外気導入管路を有しており、さらに、
     前記除湿ロータのパージゾーンから排出された再生用空気を前記除湿ロータの再生ゾーンに供給する再生給気管路と、
     前記再生給気管路に設けられたヒータと、
     前記デシカント空調機から前記室内空気導入管路における前記ファンの上流側に乾き空気を供給する第2の乾き空気供給管路と、を備えたものであることを特徴とする除湿システム。
  2.  前記デシカント空調機は、
     ロータの回転方向に沿って順に吸着ゾーン、パージゾーンおよび再生ゾーンを有する別の除湿ロータを有し、
     前記別の除湿ロータの吸着ゾーンの入力側に前記第1の再生排気管路の出力端が接続される一方、前記別の除湿ロータの吸着ゾーンの出力側に前記パージ給気管路の入力端が接続され、前記別の除湿ロータの再生ゾーンの出力側には前記第2の再生排気管路の入力端が接続されており、
     前記デシカント空調機は、さらに、
     前記第1の再生排気管路に設けられた別のファンと、
     前記第1の再生排気管路における前記別のファンの下流側に設けられた別のクーラと、
     前記パージ給気管路に設けられたさらに別のファンと、を有し、
     前記パージ給気管路における前記さらに別のファンの上流側から前記第2の乾き空気供給管路が分岐し、前記第1の再生排気管路における前記別のファンの上流側に前記外気導入管路の出力端が接続されており、
     前記デシカント空調機は、さらに、
     前記第2の乾き空気供給管路に設けられたダンパと、
     前記外気導入管路に設けられたさらに別のクーラと、
     前記外気導入管路における前記別のクーラの下流側に設けられた別のダンパと、
     前記パージ給気管路における前記さらに別のファンの上流側から分岐し、前記別の除湿ロータのパージゾーンにパージ用空気を供給する別のパージ給気管路と、
     前記別の除湿ロータのパージゾーンから排出された再生用空気を前記別の除湿ロータの再生ゾーンに供給する別の再生給気管路と、
     前記別の再生給気管路に設けられた別のヒータと、を有し、
     前記別の除湿ロータの再生ゾーンの出力側に前記第2の再生排気管路の入力端が接続されていることを特徴とする請求項1に記載の除湿システム。
PCT/JP2020/039770 2019-10-29 2020-10-22 除湿システム WO2021085307A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080072904.9A CN114585431B (zh) 2019-10-29 2020-10-22 除湿系统
JP2021553530A JPWO2021085307A1 (ja) 2019-10-29 2020-10-22
EP20882656.0A EP4052779A4 (en) 2019-10-29 2020-10-22 DRYING SYSTEM
US17/728,323 US20220241719A1 (en) 2019-10-29 2022-04-25 Dehumidification system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-195837 2019-10-29
JP2019195837 2019-10-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/728,323 Continuation US20220241719A1 (en) 2019-10-29 2022-04-25 Dehumidification system

Publications (1)

Publication Number Publication Date
WO2021085307A1 true WO2021085307A1 (ja) 2021-05-06

Family

ID=75714512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039770 WO2021085307A1 (ja) 2019-10-29 2020-10-22 除湿システム

Country Status (5)

Country Link
US (1) US20220241719A1 (ja)
EP (1) EP4052779A4 (ja)
JP (1) JPWO2021085307A1 (ja)
CN (1) CN114585431B (ja)
WO (1) WO2021085307A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026231B2 (ja) 1980-03-22 1985-06-22 シャープ株式会社 表示パタ−ンの登録方式
JPH11188224A (ja) * 1997-12-26 1999-07-13 Takasago Thermal Eng Co Ltd 乾式減湿システム
JP2000240979A (ja) * 1999-02-18 2000-09-08 Taikisha Ltd 除湿装置
JP3300565B2 (ja) 1995-03-29 2002-07-08 高砂熱学工業株式会社 低露点空気供給システム
JP2004008914A (ja) * 2002-06-06 2004-01-15 Matsushita Electric Ind Co Ltd 乾式除湿装置
JP2005296724A (ja) * 2004-04-07 2005-10-27 Takenaka Komuten Co Ltd 低水分空気供給装置および低水分空気供給装置用ろ材
JP2011064439A (ja) * 2009-09-18 2011-03-31 Shinko Kogyo Co Ltd 超低露点温度の乾燥空気を供給するデシカント空調機
JP2011104542A (ja) * 2009-11-19 2011-06-02 Seibu Giken Co Ltd 吸着式除湿装置
JP2014014787A (ja) * 2012-07-10 2014-01-30 Techno Ryowa Ltd 除湿システム
WO2019181864A1 (ja) * 2018-03-20 2019-09-26 五和工業株式会社 除湿装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3316144B2 (ja) * 1996-08-30 2002-08-19 高砂熱学工業株式会社 低露点空気供給システム及び乾式減湿装置
JP2001077570A (ja) * 1999-09-06 2001-03-23 Fujitsu Ltd ロータ型除湿機およびロータ型除湿機の始動方法ならびに電子機器への取付け構造
JP4167114B2 (ja) * 2003-04-25 2008-10-15 東京エレクトロン株式会社 処理装置及びその運転方法
JP2014087761A (ja) * 2012-10-31 2014-05-15 Seibu Giken Co Ltd 乾燥室装置
CN104107618B (zh) * 2014-08-07 2017-02-08 石家庄天龙环保科技有限公司 低浓度大风量废气浓缩及减风系统
JP6383467B1 (ja) * 2017-07-19 2018-08-29 株式会社西部技研 除湿空調装置
CN107490052A (zh) * 2017-08-01 2017-12-19 浙江捷峰环境科技有限公司 一种超低露点除湿机组

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026231B2 (ja) 1980-03-22 1985-06-22 シャープ株式会社 表示パタ−ンの登録方式
JP3300565B2 (ja) 1995-03-29 2002-07-08 高砂熱学工業株式会社 低露点空気供給システム
JPH11188224A (ja) * 1997-12-26 1999-07-13 Takasago Thermal Eng Co Ltd 乾式減湿システム
JP2000240979A (ja) * 1999-02-18 2000-09-08 Taikisha Ltd 除湿装置
JP2004008914A (ja) * 2002-06-06 2004-01-15 Matsushita Electric Ind Co Ltd 乾式除湿装置
JP2005296724A (ja) * 2004-04-07 2005-10-27 Takenaka Komuten Co Ltd 低水分空気供給装置および低水分空気供給装置用ろ材
JP2011064439A (ja) * 2009-09-18 2011-03-31 Shinko Kogyo Co Ltd 超低露点温度の乾燥空気を供給するデシカント空調機
JP2011104542A (ja) * 2009-11-19 2011-06-02 Seibu Giken Co Ltd 吸着式除湿装置
JP2014014787A (ja) * 2012-07-10 2014-01-30 Techno Ryowa Ltd 除湿システム
WO2019181864A1 (ja) * 2018-03-20 2019-09-26 五和工業株式会社 除湿装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4052779A4

Also Published As

Publication number Publication date
EP4052779A1 (en) 2022-09-07
CN114585431A (zh) 2022-06-03
CN114585431B (zh) 2024-05-07
JPWO2021085307A1 (ja) 2021-05-06
EP4052779A4 (en) 2023-12-06
US20220241719A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
KR100775075B1 (ko) 데시칸트 제습기
KR20130089638A (ko) 저습 용도용 건조제 제습 기기의 성능을 개선하기 위한 시스템 및 방법
JP2006226596A (ja) 除加湿装置及び換気システム
KR101398897B1 (ko) 환기장치 및 이를 갖춘 공기조화기
JP5686311B2 (ja) ガス除去システム
JP2006308247A (ja) 調湿装置
JP5587571B2 (ja) 乾式減湿装置の運転方法
WO2019181864A1 (ja) 除湿装置
JP5805978B2 (ja) 吸着式除湿装置
WO2021085307A1 (ja) 除湿システム
JP2010110736A (ja) 乾式減湿装置の運転方法
JP5297289B2 (ja) 空調システム
JP4439379B2 (ja) 空調設備
JP4105922B2 (ja) 置換換気型低露点室及び置換換気による低露点室の空調方法
JP4046339B2 (ja) 環境試験システム
JP2006162131A (ja) 乾式除湿装置
JP2002336637A (ja) 除湿システム
KR102597628B1 (ko) 재생배기 없는 하이브리드 데시칸트 제습기 및 제습방법
WO2021117260A1 (ja) ガス除去濃縮装置
KR102127618B1 (ko) 제습 장치
JP2003161477A (ja) 加湿装置
JPWO2021085307A5 (ja)
KR20230110566A (ko) 수분 및 기타 소르베이트의 제거를 위한 시스템 및 방법
KR101162165B1 (ko) 가습기
JP2013184086A (ja) 吸着式除湿機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553530

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020882656

Country of ref document: EP

Effective date: 20220530