WO2021084708A1 - 仮固定用樹脂組成物、基板搬送用サポートテープ及び電子機器装置の製造方法 - Google Patents

仮固定用樹脂組成物、基板搬送用サポートテープ及び電子機器装置の製造方法 Download PDF

Info

Publication number
WO2021084708A1
WO2021084708A1 PCT/JP2019/042884 JP2019042884W WO2021084708A1 WO 2021084708 A1 WO2021084708 A1 WO 2021084708A1 JP 2019042884 W JP2019042884 W JP 2019042884W WO 2021084708 A1 WO2021084708 A1 WO 2021084708A1
Authority
WO
WIPO (PCT)
Prior art keywords
temporary fixing
film
support
substrate
fixing material
Prior art date
Application number
PCT/JP2019/042884
Other languages
English (en)
French (fr)
Inventor
実佳 田中
省吾 祖父江
真治 入澤
紗瑛子 小川
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to US17/771,017 priority Critical patent/US20220363954A1/en
Priority to CN201980101702.XA priority patent/CN114600229A/zh
Priority to JP2021554002A priority patent/JP7392730B2/ja
Priority to KR1020227006420A priority patent/KR102662018B1/ko
Priority to PCT/JP2019/042884 priority patent/WO2021084708A1/ja
Priority to TW109136831A priority patent/TW202118844A/zh
Publication of WO2021084708A1 publication Critical patent/WO2021084708A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10724Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyamide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10779Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyester
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/25Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/383Natural or synthetic rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/37Applications of adhesives in processes or use of adhesives in the form of films or foils for repositionable or removable tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/304Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/50Additional features of adhesives in the form of films or foils characterized by process specific features
    • C09J2301/502Additional features of adhesives in the form of films or foils characterized by process specific features process for debonding adherents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2479/00Presence of polyamine or polyimide
    • C09J2479/08Presence of polyamine or polyimide polyimide
    • C09J2479/086Presence of polyamine or polyimide polyimide in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2483/00Presence of polysiloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding

Definitions

  • the present disclosure relates to a method for manufacturing a resin composition for temporary fixing, a support tape for transporting a substrate, and an electronic device.
  • a semiconductor wafer is ground from the back surface side to make it thinner.
  • the mainstream is to attach a tape called a so-called BG tape (back grind tape) to the semiconductor wafer and carry out the grinding process with the semiconductor wafer supported.
  • BG tape back grind tape
  • the semiconductor wafer used in the grinding process has a circuit formed on the surface side, and due to the influence thereof, warpage is likely to occur when the wafer is thinned by grinding.
  • the BG tape is a tape material that is easily deformed, it cannot sufficiently support the thinned semiconductor wafer, and the semiconductor wafer tends to warp. Therefore, a method of fixing the wafer to the support via an adhesive, grinding the back surface, and transporting the wafer has also been proposed (see, for example, Patent Documents 1 and 2 below).
  • a coreless substrate that does not use a core layer in which a glass cloth is impregnated with a thermosetting resin is used.
  • Development is being actively carried out. Since a coreless substrate does not have a core layer, it is possible to reduce the layer thickness of the substrate.
  • there is no highly elastic core layer it is difficult to secure the rigidity of the substrate itself, and it is difficult to secure the rigidity of the substrate itself. Handleability during the manufacturing process becomes an issue.
  • the present inventors secure rigidity by attaching a support to a substrate via a temporary fixing material to form a laminated body, and improve handleability in a semiconductor element manufacturing process. I'm considering a method.
  • the manufacturing process since the reflow process is performed in the state of the laminated body, peeling between the support and the substrate (between the support and the temporary fixing material or between the temporary fixing material and the substrate) at the time of reflow is performed.
  • foaming which is the starting point of peeling, is likely to occur.
  • the temporary fixing material and the support are peeled off from the substrate at room temperature after the reflow step, there is a problem that the temporary fixing material and the support are peeled off and the temporary fixing material tends to remain on the substrate side.
  • the present disclosure describes a temporary fixing resin composition, a support tape for transporting a substrate, and a resin composition for temporary fixing, which can suppress peeling between a support and a substrate during reflow and can be peeled from the substrate after reflow.
  • An object of the present invention is to provide a method for manufacturing an electronic device.
  • the present disclosure is a temporary fixing resin composition for temporarily fixing a support for transporting a substrate to an organic substrate, which is a thermoplastic resin, a thermosetting resin, and an inorganic filler.
  • a resin composition for temporary fixing which has an elastic modulus of 350 to 550 MPa at 25 ° C. after being heated at 130 ° C. for 30 minutes and 170 ° C. for 2 hours when formed into a film.
  • the support and the organic substrate at the time of reflow are obtained. It is possible to achieve both the suppression of peeling between the layers and the peelability of the temporary fixing material from the organic substrate after reflow.
  • the temporary fixing resin composition contains a thermoplastic resin, a thermosetting resin, and an inorganic filler, and the elastic modulus after heating when formed into a film is 350 to 550 MPa at 25 ° C.
  • the organic substrate is bent during transportation when manufacturing a semiconductor element and is handled. Problems such as decreased sex can be improved. Then, even when the reflow step is performed in the state of the laminated body in the manufacturing process of the semiconductor element, by using the temporary fixing resin composition, as described above, between the support and the substrate at the time of reflow. It is possible to achieve both the suppression of peeling and the peelability from the substrate after reflow.
  • the temporary fixing resin composition may further contain a curing accelerator. Further, the temporary fixing resin composition may further contain a silicone compound.
  • the temporary fixing resin composition is 90 ° C. at 25 ° C. with a substrate having a surface of solder resist AUS308 after being heated at 130 ° C. for 30 minutes and 170 ° C. for 2 hours when formed into a film.
  • the peel strength may be 30 to 150 N / m.
  • the resin composition for temporary fixing When the resin composition for temporary fixing is formed into a film, it has a 90 ° peel strength of 80 to 400 N at 25 ° C. after being heated at 130 ° C. for 30 minutes and 170 ° C. for 2 hours. It may be / m.
  • the 90 ° peel strength measured under the above conditions is within the above range, the suppression of peeling between the support and the organic substrate during reflow and the peelability of the temporary fixing material from the organic substrate after reflow are further improved. It can be compatible at the standard.
  • the inorganic filler may have an organic group on the surface.
  • the said organic group may contain a vinyl group or an epoxy group.
  • the content of the inorganic filler in the temporary fixing resin composition may be 20 to 100 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • the present disclosure also includes a support film for transporting an organic substrate and a temporary fixing material layer provided on the support film for temporarily fixing the organic substrate and the support film, and the temporary fixing is provided.
  • a support tape for transporting a substrate wherein the material layer is formed by using the above-mentioned temporary fixing resin composition of the present disclosure.
  • the substrate transport support tape can improve the handling property of the organic substrate, suppress the peeling between the support and the organic substrate at the time of reflow, and the peelability of the temporary fixing material from the organic substrate after the reflow. Can be compatible with each other.
  • the support film may be a polyethylene terephthalate film, a polybutylene terephthalate film, a polyethylene naphthalate film, a polypropylene film, a polyamide film or a polyimide film.
  • the 90 ° peel strength at 25 ° C. between the support film and the temporary fixing material layer is 80 to 400 N / It may be m.
  • the 90 ° peel strength measured under the above conditions is within the above range, the suppression of peeling between the support and the organic substrate during reflow and the peelability of the temporary fixing material from the organic substrate after reflow are further improved. It can be compatible at the standard.
  • the present disclosure also includes a first step of attaching a support to an organic substrate via a temporary fixing material to obtain a laminated body, a second step of heating the temporary fixing material of the laminated body, and the second step.
  • the third step of mounting the semiconductor chip on the organic substrate of the laminated body, the fourth step of sealing the semiconductor chip mounted on the organic substrate with a sealing material, and the fourth step were performed.
  • a fifth step of peeling the support and the temporary fixing material from the organic substrate of the laminated body is provided, and the temporary fixing material is formed by using the temporary fixing resin composition of the present disclosure.
  • Provided is a method for manufacturing an electronic device.
  • the above-mentioned manufacturing method of an electronic device it is possible to manufacture an electronic device including a thin semiconductor element using an organic substrate with high productivity. That is, in the above-mentioned manufacturing method, since the temporary fixing material is formed by using the above-mentioned temporary fixing resin composition of the present disclosure, (i) the organic substrate and the support are bonded together in the first step. (For example, the thin organic substrate can be easily transported), and (ii) the temporary fixing material that has undergone the second step can be used in the third and fourth steps.
  • the organic substrate and the support can be sufficiently fixed, the semiconductor chip can be mounted and sealed efficiently, and (iii) the substrate surface can be easily peeled off from the organic substrate in the fifth step without soiling the substrate surface. It can be effective.
  • the thickness of the organic substrate may be 200 ⁇ m or less. Further, the organic substrate may be a coreless substrate.
  • the support may be a polyethylene terephthalate film, a polybutylene terephthalate film, a polyethylene naphthalate film, a polypropylene film, a polyamide film or a polyimide film.
  • the support is in the form of a tape and may be continuously supplied.
  • the thin organic substrate can be continuously conveyed, and the productivity can be improved without making a large capital investment.
  • the laminate can be obtained by using a support tape provided with a support film as the support and a temporary fixing material layer made of the temporary fixing material provided on the support film.
  • the variation of the temporary fixing material can be made smaller than in the case of applying the liquid temporary fixing material to form the temporary fixing material layer on the organic substrate or the support. , It becomes easy to make the semiconductor element obtained after processing uniform. In addition, it becomes easy to use the temporary fixing material without waste.
  • the 90 ° peel strength between the organic substrate and the temporary fixing material at 25 ° C. may be 30 to 150 N / m.
  • the 90 ° peel strength is within the above range, it is possible to achieve both suppression of peeling between the support and the organic substrate during reflow and peelability of the temporary fixing material from the organic substrate after reflow at a higher level. Can be done.
  • the 90 ° peel strength between the support and the temporary fixing material at 25 ° C. may be 80 to 400 N / m.
  • the 90 ° peel strength is within the above range, it is possible to achieve both suppression of peeling between the support and the organic substrate during reflow and peelability of the temporary fixing material from the organic substrate after reflow at a higher level. Can be done.
  • a resin composition for temporary fixing, a support tape for transporting a substrate, and an electronic device capable of suppressing peeling between a support and a substrate during reflow and being peelable from the substrate after reflow can be achieved at the same time.
  • a method of manufacturing the device can be provided.
  • the temporary fixing resin composition according to the present disclosure can sufficiently fix the organic substrate and the support for transportation, and can easily peel off the support from the organic substrate without soiling the surface of the substrate.
  • the substrate transport support tape according to the present disclosure can improve the handleability of the organic substrate and can be easily peeled off from the organic substrate without soiling the substrate surface.
  • FIG. 1A and 1B are views showing an embodiment of a support tape for transporting a substrate
  • FIG. 1A is a top view
  • FIG. 1B is a schematic cross-sectional view taken along line II of FIG. 1A
  • 2A and 2B are views showing another embodiment of the substrate transport support tape
  • FIG. 2A is a top view
  • FIG. 2B is a schematic cross-sectional view taken along line II-II of FIG. 2A.
  • 3A to 3C are schematic cross-sectional views for explaining an embodiment of a method for manufacturing an electronic device.
  • 4 (d) to 4 (e) are schematic cross-sectional views for explaining an embodiment of a method for manufacturing an electronic device.
  • 5 (f) to 5 (h) are schematic cross-sectional views for explaining an embodiment of a method for manufacturing an electronic device.
  • (meth) acrylic acid means acrylic acid or methacrylic acid
  • (meth) acrylate means acrylate or the corresponding methacrylate
  • a or B may include either A or B, or both.
  • the term “layer” includes not only a structure having a shape formed on the entire surface but also a structure having a shape partially formed when observed as a plan view.
  • the term “process” is used not only as an independent process but also as a term as long as the desired action of the process is achieved even when it cannot be clearly distinguished from other processes. included.
  • the numerical range indicated by using "-” indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • each component in the composition is the sum of the plurality of substances present in the composition unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. Means quantity. Further, the exemplary materials may be used alone or in combination of two or more unless otherwise specified.
  • the upper limit value or the lower limit value of the numerical range of one step may be replaced with the upper limit value or the lower limit value of the numerical range of another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • the temporary fixing resin composition contains a thermoplastic resin, a thermosetting resin, and an inorganic filler.
  • the temporary fixing resin composition may further contain a curing agent, a curing accelerator, or other components in addition to the above components.
  • the temporary fixing resin composition according to the present embodiment can be used as a temporary fixing material for temporarily fixing a support for transporting a substrate to an organic substrate.
  • thermoplastic resin can be used without particular limitation as long as it is a resin having thermoplasticity before the organic substrate and the support are bonded to each other.
  • the thermoplastic resin may be a resin that forms a crosslinked structure by heating or the like. Examples of such a resin include polymers having a crosslinkable functional group.
  • polymer having a crosslinkable functional group examples include a thermoplastic polyimide resin, a (meth) acrylic copolymer having a crosslinkable functional group, a urethane resin polyphenylene ether resin, a polyetherimide resin, a phenoxy resin, and a modified polyphenylene ether resin. Be done. Among these, a (meth) acrylic copolymer having a crosslinkable functional group is preferable.
  • the (meth) acrylic copolymer having a crosslinkable functional group one obtained by a polymerization method such as pearl polymerization or solution polymerization may be used, or a commercially available product may be used.
  • the polymer having a crosslinkable functional group may have a crosslinkable functional group in the polymer chain or at the end of the polymer chain.
  • Specific examples of the crosslinkable functional group include an epoxy group, an alcoholic hydroxyl group, a phenolic hydroxyl group, a carboxyl group and the like.
  • a carboxyl group is preferable.
  • the carboxyl group can be introduced into the polymer chain by using acrylic acid.
  • the glass transition temperature of the thermoplastic resin (hereinafter, may be referred to as “Tg”) is preferably ⁇ 50 ° C. to 50 ° C., more preferably ⁇ 40 ° C. to 20 ° C.
  • Tg is in such a range, it is possible to obtain more sufficient fluidity while suppressing the deterioration of handleability due to excessive increase in tacking force, and further lower the elastic modulus after curing. Therefore, it is possible to further prevent the peel strength from becoming too high.
  • Tg is an intermediate point glass transition temperature value when a thermoplastic resin is measured using differential scanning calorimetry (DSC, for example, "Thermo Plus 2" manufactured by Rigaku Co., Ltd.). Specifically, the Tg is a midpoint glass transition calculated by a method based on JIS K 7121: 1987 by measuring the change in calorific value under the conditions of a temperature rising rate of 10 ° C./min and a measurement temperature of -80 to 80 ° C. The temperature.
  • the weight average molecular weight of the thermoplastic resin is not particularly limited, and is preferably 100,000 to 1.2 million, more preferably 200,000 to 1,000,000. When the weight average molecular weight of the thermoplastic resin is in such a range, it becomes easy to secure the film-forming property and the fluidity.
  • the weight average molecular weight is a polystyrene-equivalent value using a calibration curve made of standard polystyrene by gel permeation chromatography (GPC).
  • thermoplastic resin One type of thermoplastic resin may be used alone, or two or more types may be used in combination.
  • the content of the thermoplastic resin in the temporary fixing resin composition of the present embodiment can be 35 to 80 parts by mass with respect to 100 parts by mass of the total amount of the composition, and has embedding property, peelability from a substrate, and a support. From the viewpoint of adhesiveness with, 40 to 70 parts by mass is preferable, and 40 to 60 parts by mass is more preferable.
  • thermosetting resin examples include epoxy resin, acrylic resin, silicone resin, phenol resin, thermosetting polyimide resin, polyurethane resin, melamine resin, and urea resin.
  • the epoxy resin is not particularly limited as long as it is cured and has a heat resistant effect.
  • the epoxy resin bifunctional epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin, novolak type epoxy resins such as phenol novolac type epoxy resin and cresol novolac type epoxy resin can be used.
  • the epoxy resin generally known ones such as a polyfunctional epoxy resin, a glycidylamine type epoxy resin, a heterocyclic epoxy resin, and an alicyclic epoxy resin can be applied.
  • Bisphenol A type epoxy resins include jER® series (Epicoat 807, Epicoat 815, Epicoat 825, Epicoat 827, Epicoat 828, Epicoat 834, Epicoat 1001, Epicoat 1004, Epicoat 1007, Epicoat 1009) manufactured by Mitsubishi Chemical Corporation. , "Epoxy” is a registered trademark), DER-330, DER-301, DER-361 manufactured by Dow Chemical Co., Ltd., and YD8125, YDF8170 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., and the like.
  • Examples of the phenol novolac type epoxy resin include Epicoat 152 and Epicoat 154 manufactured by Japan Epoxy Resin Co., Ltd., EPPN-201 manufactured by Nippon Kayaku Co., Ltd., and DEN-438 manufactured by Dow Chemical Co., Ltd.
  • Examples of o-cresol novolac type epoxy resins include EOCN-102S, EOCN-103S, EOCN-104S, EOCN-1012, EOCN-1025, EOCN-1027 ("EOCN” is a registered trademark), Nippon Kayaku Co., Ltd. Examples thereof include YDCN701, YDCN702, YDCN703, and YDCN704 manufactured by Sumikin Chemical Co., Ltd.
  • Epon 1031S manufactured by Japan Epoxy Resin Co., Ltd., Araldite 0163 manufactured by Huntsman Japan Co., Ltd., Denacol EX-611, EX-614, EX-614B, EX-622 manufactured by Nagase ChemteX Corporation. , EX-512, EX-521, EX-421, EX-411, EX-321 and the like (“Araldite” and “Denacol” are registered trademarks).
  • Amine-type epoxy resins include Epicoat 604 manufactured by Japan Epoxy Resin Co., Ltd., YH-434 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., and TETRAD-X and TETRAD-C manufactured by Mitsubishi Gas Chemical Company (“TETRAD” is a registered trademark). , ELM-120 manufactured by Sumitomo Chemical Co., Ltd. and the like.
  • heterocyclic-containing epoxy resin examples include Araldite PT810 manufactured by Chivas Specialty Chemicals, ERL4234, ERL4299, ERL4221 and ERL4206 manufactured by UCC.
  • the above-mentioned epoxy resin may be used alone or in combination of two or more.
  • thermosetting resin When an epoxy resin is used as the thermosetting resin, it is preferable to use an epoxy resin curing agent together.
  • the epoxy resin curing agent a known curing agent that is usually used can be used.
  • the epoxy resin curing agent include bisphenols having two or more phenolic hydroxyl groups in one molecule, such as amines, polyamides, acid anhydrides, polysulfides, boron trifluoride, bisphenol A, bisphenol F, and bisphenol S.
  • examples thereof include phenolic resins such as phenol novolac resin, bisphenol A novolak resin, and cresol novolak resin.
  • the epoxy resin curing agent is preferably a phenol resin such as a phenol novolac resin, a bisphenol A novolak resin, or a cresol novolak resin.
  • phenolic resins as the epoxy resin curing agent, for example, those manufactured by DIC Co., Ltd., trade names: Phenolite LF2882, Phenolite LF2822, Phenolite TD-2090, Phenolite TD-2149, Phenolite VH -4150, Phenolite VH4170, Meiwa Kasei Co., Ltd., Product name: H-1, Japan Epoxy Resin Co., Ltd., Product name: jER Cure MP402FPY, EpiCure YL6065, EpiCure YLH129B65, Mitsui Chemicals Co., Ltd., Product name: Millex Examples include XL, Millex XLC, Millex RN, Millex RS, and Millex VR (“Phenolite”, “Epoxy”, and “Milex” are registered trademarks).
  • thermosetting resin and the curing agent may be used alone or in combination of two or more.
  • the content of the thermosetting resin in the temporary fixing resin composition of the present embodiment is preferably 10 to 500 parts by mass, more preferably 15 to 300 parts by mass, and 20 to 100 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • the portion is more preferable.
  • the temporary fixing material can easily have sufficient low-temperature stickability, heat resistance, curability and peelability.
  • the content of the thermosetting resin is 10 parts by mass or more, the stickability and heat resistance are improved, and the retention of the organic substrate at the time of manufacturing the electronic device is also improved, and the parts constituting the electronic device (for example). , Semiconductor chips, etc.) tend to be less likely to be damaged.
  • thermosetting resin when the content of the thermosetting resin is 500 parts by mass or less, the viscosity before curing is unlikely to be excessively low, and it can be cured in a relatively short time, and the retention between the organic substrate and the support and the organic It tends to be easy to achieve both the peelability of the substrate and the support.
  • the inorganic filler examples include silica, alumina, boron nitride, titania, glass, iron oxide, and ceramics.
  • the inorganic filler can be added for the purpose of imparting low thermal expansion and low hygroscopicity to the temporary fixing resin composition and the film-shaped temporary fixing material.
  • the inorganic filler one type may be used alone, or two or more types may be used in combination.
  • the inorganic filler preferably has an organic group on the surface. Since the surface of the inorganic filler is modified with an organic group, the dispersibility and formation of the temporary fixing resin composition in an organic solvent when preparing a coating liquid for forming a film-like temporary fixing material. It becomes easy to improve the adhesion and heat resistance of the film-shaped temporary fixing material.
  • the inorganic filler having an organic group on the surface can be obtained, for example, by mixing a silane coupling agent represented by the following general formula (B-1) and the inorganic filler and stirring at a temperature of 30 ° C. or higher. .. It is possible to confirm that the surface of the inorganic filler is modified by an organic group by UV (ultraviolet) measurement, IR (infrared) measurement, XPS (X-ray photoelectron spectroscopy) measurement, or the like.
  • X represents an organic group selected from the group consisting of a phenyl group, a glycidoxy group, an acryloyl group, a methacryloyl group, a mercapto group, an amino group, a vinyl group, an isocyanate group and a methacryloyl group.
  • s represents 0 or an integer of 1 to 10
  • R 11 , R 12 and R 13 each independently represent an alkyl group having 1 to 10 carbon atoms.
  • alkyl group having 1 to 10 carbon atoms examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an isopropyl group and an isobutyl group. Be done.
  • the alkyl group having 1 to 10 carbon atoms is preferably a methyl group, an ethyl group and a pentyl group from the viewpoint of easy availability.
  • X is preferably an amino group, a glycidoxy group, a mercapto group and an isocyanate group, and more preferably a glycidoxy group and a mercapto group.
  • the s in the formula (B-1) is preferably 0 to 5, more preferably 0 to 4, from the viewpoint of suppressing the fluidity of the temporary fixing material at the time of high heat and improving the heat resistance.
  • Preferred silane coupling agents are, for example, trimethoxyphenylsilane, dimethyldimethoxyphenylsilane, triethoxyphenylsilane, dimethoxymethylphenylsilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, N-.
  • 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanuppropyltriethoxysilane, and 3-mercaptopropyltrimethoxysilane are preferable, and trimethoxyphenylsilane and 3-glycid are preferable.
  • trimethoxyphenylsilane and 3-glycid are preferable.
  • Xipropyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane are more preferred.
  • silane coupling agent may be used alone, or two or more types may be used in combination.
  • the amount of the coupling agent used is preferably 0.01 to 50 parts by mass, preferably 0.05 parts by mass, based on 100 parts by mass of the inorganic filler, from the viewpoint of balancing the effect of improving heat resistance and storage stability. Parts to 20 parts by mass are more preferable, and 0.5 to 10 parts by mass is further preferable from the viewpoint of improving heat resistance.
  • the average particle size of the inorganic filler is from the viewpoint of achieving both coatability when the temporary fixing resin composition is formed into a film, embedding property, and peelability of the temporary fixing material from the substrate after reflow at a higher level. Therefore, it is preferably 1 to 1000 nm, more preferably 5 to 750 nm, and even more preferably 10 to 500 nm.
  • the average particle size of the inorganic filler can be measured by, for example, a nanoparticle size distribution measuring device (manufactured by Shimadzu Corporation, trade name: SALD-7500 nano).
  • the content of the inorganic filler in the temporary fixing resin composition of the present embodiment is 100 parts by mass of the thermoplastic resin from the viewpoint of improving the handleability of the film-shaped temporary fixing material in the B stage state and improving the low thermal expansion property. On the other hand, 300 parts by mass or less is preferable, 200 parts by mass or less is more preferable, and 100 parts by mass or less is further preferable. Further, the content of the inorganic filler is the thermoplastic resin 100 from the viewpoint of suppressing peeling between the support and the substrate during reflow and the peelability of the temporary fixing material from the substrate after reflow at a higher level.
  • It is preferably 20 parts by mass or more, more preferably 25 parts by mass or more, further preferably 30 parts by mass or more, and particularly preferably 35 parts by mass or more with respect to parts by mass.
  • ⁇ Curing accelerator examples include imidazoles, dicyandiamide derivatives, dicarboxylic acid dihydrazide, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, 2-ethyl-4-methylimidazole-tetraphenylborate, 1,8-diazabicyclo [5, 4,0] Undecene-7-tetraphenylborate and the like can be mentioned.
  • the temporary fixing resin composition of the present embodiment contains a (meth) acrylic copolymer having an epoxy group as a thermoplastic resin, it further contains a curing accelerator that promotes curing of the epoxy group contained in this copolymer. It is preferable to do so.
  • a curing accelerator include imidazoles and 1,8-diazabicyclo [5,4,0] undecene-7-tetraphenylborate.
  • one type may be used alone, or two or more types may be used in combination.
  • the content of the curing accelerator in the temporary fixing resin composition of the present embodiment is preferably 0.01 to 5.0 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • the content of the curing accelerator is 0.01 parts by mass or more, it becomes easy to sufficiently cure the temporary fixing resin composition by the thermal history when manufacturing the semiconductor element, and the organic substrate and the support can be separated from each other. It can be fixed more securely.
  • the content of the curing accelerator is 5.0 parts by mass or less, the melt viscosity of the temporary fixing resin composition does not increase excessively, and it becomes easy to secure storage stability.
  • components other than the above components include silicone compounds, organic fillers, silane coupling agents, and the like.
  • the silicone compound can be used without particular limitation as long as it has a polysiloxane structure.
  • silicone-modified resin straight silicone oil, non-reactive modified silicone oil, reactive modified silicone oil and the like can be mentioned.
  • the temporary fixing resin composition contains a silicone compound, when the film-shaped temporary fixing material formed from the temporary fixing resin composition is peeled off from the organic substrate that has undergone a predetermined process, the temperature is as low as 100 ° C. or lower. Even if it is, it can be easily peeled off without using a solvent.
  • silicone-modified resin examples include a silicone-modified alkyd resin.
  • a solvent is used when the film-shaped temporary fixing material formed from the temporary fixing resin composition is peeled off from the organic substrate that has undergone a predetermined process. It can be peeled off more easily without any need.
  • modified silicone oil examples include polyether-modified silicone, alkyl-modified silicone, and epoxy-modified silicone.
  • the silicone compound can be used alone or in combination of two or more.
  • the content of the silicone compound in the temporary fixing resin composition is preferably 0 to 100 parts by mass, more preferably 0.01 to 80 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • the content of the silicone compound is within the above range, it is possible to achieve both the adhesiveness to the organic substrate during processing and the peelability to the organic substrate after processing at a higher level.
  • the temporary fixing resin composition of the present embodiment does not contain a silicone compound or the content of the silicone compound is 10% by mass based on the total amount of the temporary fixing resin composition from the viewpoint of suppressing contamination of the organic substrate. It may be as follows. According to the temporary fixing resin composition of the present embodiment, even if the content of the silicone compound is 10% by mass or less, the peelability of the temporary fixing material from the organic substrate can be ensured, so that the organic substrate is contaminated. It is possible to achieve both the suppression of the above and the peelability of the temporary fixing material from the organic substrate.
  • organic filler examples include carbon, rubber-based filler, silicone-based fine particles, polyamide fine particles, polyimide fine particles, and the like.
  • the content of the organic filler in the temporary fixing resin composition of the present embodiment is preferably 300 parts by mass or less, more preferably 200 parts by mass or less, and further preferably 100 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
  • the lower limit of the content of the organic filler is not particularly limited, and may be 5 parts by mass or more with respect to 100 parts by mass of the thermoplastic resin.
  • the temporary fixing resin composition according to the present embodiment has an elastic modulus of 350 to 550 MPa at 25 ° C. after being heated at 130 ° C. for 30 minutes and 170 ° C. for 2 hours when formed into a film.
  • the elastic modulus after heating is measured by the following procedure.
  • a film having a thickness of 240 ⁇ m is produced by laminating four films of a resin composition for temporary fixing having a thickness of 60 ⁇ m at 80 ° C. This is heated under predetermined conditions (for example, heated in an oven at 130 ° C. for 30 minutes and then at 170 ° C. for 2 hours), and then cut into 4 mm width and 33 mm length in the thickness direction.
  • the cut out film was set in a dynamic viscoelastic device (trade name: Rheogel-E4000, manufactured by UMB Co., Ltd.), and a tensile load was applied to measure the film at a frequency of 10 Hz and a heating rate of 5 ° C./min. Record the measured value of.
  • the elastic modulus at 25 ° C. after heating is 360 to 360, from the viewpoint of achieving both suppression of peeling between the support and the substrate during reflow and peelability of the temporary fixing material from the substrate after reflow at a higher level. It is preferably 520 MPa, more preferably 370 to 500 MPa, and even more preferably 442 to 490 MPa.
  • the elastic modulus at 25 ° C. after heating can be adjusted by, for example, the type and blending amount of the inorganic filler, the type and blending amount of the thermoplastic resin, the type and blending amount of the thermosetting resin, and the like.
  • the temporary fixing resin composition according to the present embodiment is formed into a film, laminated on a substrate having a surface of solder resist AUS308, and heated at 130 ° C. for 30 minutes and 170 ° C. for 2 hours.
  • the 90 ° peel strength at 25 ° C. between may be 30 to 150 N / m, 40 to 100 N / m or 40 to 80 N / m.
  • the 90 ° peel strength is within the above range, it becomes difficult for the organic substrate and the temporary fixing material to peel off, and it becomes easier to mount and seal the semiconductor chip on the organic substrate reinforced by the support, and reflow. It is possible to achieve both the suppression of peeling between the support and the organic substrate at the time and the peelability of the temporary fixing material from the organic substrate after reflow at a higher level.
  • a substrate material: glass epoxy substrate, substrate thickness: 1000 ⁇ m
  • a roll laminator manufactured by Taisei Laminator Co., Ltd., First Laminator VA- It is placed on the stage of 400III
  • the temporary fixing resin composition formed in the form of a film having a thickness of 60 ⁇ m is installed so as to be attached to the substrate. This is attached under the conditions of a speed of 0.4 m / min, a temperature of 80 ° C., and a pressure of 0.2 MPa to prepare a sample for measurement.
  • the obtained measurement sample is heated under predetermined heating conditions (for example, heated at 130 ° C. for 30 minutes and 170 ° C. for 2 hours), and then cut into 10 mm widths.
  • a peeling test is carried out at a speed of 300 mm / min by a peeling tester set so that the peeling angle is 90 °, and the peeling strength at that time is defined as 90 ° peeling strength.
  • the temporary fixing resin composition according to the present embodiment is made into a film, laminated on a polyimide film as a support (manufactured by Toray DuPont Co., Ltd., trade name: 100EN, thickness 25 ⁇ m), and at 130 ° C. Even if the 90 ° peel strength at 25 ° C. with the support after heating for 30 minutes and 170 ° C. for 2 hours is 80 N / m or more, 100 N / m or more, or 120 N / m or more. It may be 500 N / m or less, 400 N / m or less, or 300 N / m or less. When the 90 ° peel strength is within the above range, it is possible to achieve both suppression of peeling between the support and the organic substrate during reflow and peelability of the temporary fixing material from the organic substrate after reflow at a higher level. ..
  • the temporary fixing resin composition of the present embodiment can form a film-shaped temporary fixing material.
  • it becomes easier to control the film thickness of the temporary fixing material and it is possible to reduce the variation in the thickness of the laminated body of the organic substrate, the temporary fixing material and the support.
  • the film-shaped temporary fixing material can be attached to the organic substrate or the support by a simple method such as laminating, and is excellent in workability.
  • the thickness of the film-shaped temporary fixing material is not particularly limited, and is preferably 10 to 350 ⁇ m from the viewpoint of sufficiently fixing the organic substrate and the support for transportation.
  • the thickness is 10 ⁇ m or more, the variation in thickness at the time of coating is small, and since the thickness is sufficient, the strength of the temporary fixing material or the cured product of the temporary fixing material becomes good, and the organic substrate And the support for transportation can be more sufficiently fixed.
  • the thickness is 350 ⁇ m or less, the thickness of the temporary fixing material is less likely to vary, and it becomes easy to reduce the amount of residual solvent in the temporary fixing material by sufficient drying, so that the cured product of the temporary fixing material can be prepared. Foaming when heated can be further reduced.
  • the substrate transport support tape of the present embodiment includes a support film for transporting the organic substrate and a temporary fixing material layer provided on the support film for temporarily fixing the organic substrate and the support film. ..
  • the temporary fixing material layer contains a thermoplastic resin, a thermosetting resin, and an inorganic filler, and has an elastic modulus of 350 to 550 MPa at 25 ° C. after being heated at 130 ° C. for 30 minutes and 170 ° C. for 2 hours. May be.
  • Such a temporary fixing material layer can be formed from the temporary fixing resin composition of the present embodiment described above.
  • FIG. 1 is a diagram showing an embodiment of a support tape for transporting a substrate
  • FIG. 1 (A) is a top view
  • FIG. 1 (B) is drawn along line I-I of FIG. 1 (A). It is a schematic cross-sectional view along.
  • the substrate transport support tape 10 shown in these figures includes a support film 1, a temporary fixing material layer 2A made of the temporary fixing resin composition of the present embodiment, and a protective film 3 in this order.
  • the support film 1 is not particularly limited as long as it can convey an organic substrate, and examples thereof include a polyethylene terephthalate film, a polybutylene terephthalate film, a polyethylene naphthalate film, a polyethylene film, a polypropylene film, a polyamide film, and a polyimide film. Be done. Among these, polyethylene terephthalate film, polybutylene terephthalate film, polyethylene naphthalate film, polypropylene film, polyamide film and polyimide film are preferable from the viewpoint of excellent flexibility and toughness, and polyimide is further preferable from the viewpoint of heat resistance and strength. Film is more preferred.
  • the thickness of the support film 1 can be appropriately set depending on the desired strength and flexibility, and is preferably 3 to 350 ⁇ m. When the thickness is 3 ⁇ m or more, sufficient film strength tends to be obtained, and when the thickness is 350 ⁇ m or less, sufficient flexibility tends to be obtained. From such a viewpoint, the thickness of the support film 1 is more preferably 5 to 200 ⁇ m, and further preferably 7 to 150 ⁇ m.
  • the protective film 3 is not particularly limited, and examples thereof include a polyethylene terephthalate film, a polybutylene terephthalate film, a polyethylene naphthalate film, a polyethylene film, and a polypropylene film.
  • the protective film 3 is preferably a polyethylene terephthalate film, a polyethylene film or a polypropylene film from the viewpoint of flexibility and toughness. Further, from the viewpoint of improving the peelability from the temporary fixing material layer, it is preferable to use a film that has been subjected to a mold release treatment with a silicone-based compound, a fluorine-based compound, or the like as the protective film 3.
  • the thickness of the protective film 3 can be appropriately set depending on the desired strength and flexibility, and is preferably 10 to 350 ⁇ m, for example. When the thickness is 10 ⁇ m or more, sufficient film strength tends to be obtained, and when the thickness is 350 ⁇ m or less, sufficient flexibility tends to be obtained. From such a viewpoint, the thickness of the protective film 3 is more preferably 15 to 200 ⁇ m, and further preferably 20 to 150 ⁇ m.
  • the temporary fixing material layer 2A prepares a varnish by mixing and kneading each component constituting the temporary fixing resin composition of the present embodiment in an organic solvent, and the prepared varnish is applied onto the support film 1. It can be formed by a method of drying.
  • the organic solvent is not particularly limited, and can be determined in consideration of the volatility during film formation from the boiling point. Specifically, from the viewpoint of making it difficult for the film to cure during film formation, methanol, ethanol, 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, methyl ethyl ketone, acetone, methyl isobutyl ketone, toluene, xylene, etc.
  • a solvent having a relatively low boiling point is preferable.
  • One of these solvents may be used alone, or two or more of these solvents may be used in combination.
  • the solid content concentration in the varnish is preferably 10 to 80% by mass.
  • Mixing and kneading can be performed by using a disperser such as a normal stirrer, a raker, a triple roll, or a ball mill, and combining these as appropriate.
  • the drying is not particularly limited as long as the organic solvent used is sufficiently volatilized, and can be usually heated at 60 ° C. to 200 ° C. for 0.1 to 90 minutes.
  • the protective film 3 can be attached on the temporary fixing material layer 2A to obtain the substrate transport support tape 10.
  • the substrate transport support tape 10 can be easily stored, for example, by winding it in a roll shape. Further, the roll-shaped support tape 10 for transporting a substrate can be stored in a state of being cut out to a suitable size.
  • FIG. 2A and 2B are views showing another embodiment of the substrate transport support tape, FIG. 2A is a top view, FIG. 2B is a top view, and FIG. 2B is II-II of FIG. 2A. It is a schematic cross-sectional view along the line.
  • the substrate transport support tape 20 shown in these figures includes a support film 1a, a temporary fixing material layer 2B composed of a first resin layer 2a and a second resin layer 2b, and a support film 1b in this order.
  • the first resin layer 2a and the second resin layer 2b may be composed of the same composition or may be composed of different compositions.
  • the support film 1a is used as a support film for transportation. Can be done.
  • the organic substrate and the supporting film for transportation can be sufficiently fixed, and the supporting film for transportation can be easily separated from the organic substrate. It is possible to achieve both peeling and peeling.
  • the first resin layer 2a can be designed so as to have excellent adhesiveness to the support film 1a, which is a support film for transportation.
  • the temporary fixing material layer 2B is prepared in the same manner as or separately from a laminate prepared by mixing and kneading the above components in an organic solvent to prepare a varnish, applying the varnish on the support film 1a, and drying the varnish.
  • the varnish can be formed by applying the varnish on the support film 1b, drying the varnish, and laminating the laminated body.
  • the first resin layer 2a and the second resin layer 2b are formed of the same varnish, there is an advantage that the residual amount of the organic solvent can be sufficiently reduced even if a relatively thick temporary fixing material layer is formed.
  • the first resin layer 2a and the second resin layer 2b may be integrated into a single-layer structure, or an interface may exist between the two layers to maintain the two-layer structure.
  • the method for manufacturing an electronic device using the temporary fixing resin composition according to the present embodiment can be roughly divided into the following five steps.
  • FIG. 4 and FIG. 5 are schematic cross-sectional views for explaining an embodiment of a method for manufacturing an electronic device.
  • FIGS. 3, 4 and 5 show a case where the temporary fixing material (temporary fixing material layer) is the temporary fixing material layer 2A of the substrate transport support tape 10 shown in FIG. 1 (B).
  • the composition of the temporary fixing material is not limited to this.
  • the support film 1 is attached to the organic substrate 30 via the temporary fixing material layer 2A to obtain a laminated body 15 ((a) in FIG. 3).
  • the organic substrate 30 for example, a substrate having a thickness of 10 to 1000 ⁇ m can be used. From the viewpoint of reducing the thickness of the semiconductor element or the electronic device, the thickness of the organic substrate 30 may be 200 ⁇ m or less, or 100 ⁇ m or less. From the viewpoint of maintaining the strength of the package and reducing the warp, the thickness of the organic substrate 30 may be 30 ⁇ m or more, or 50 ⁇ m or more.
  • the organic substrate 30 may be a coreless substrate.
  • Examples of the material of the coreless substrate include a build-up material such as an epoxy resin composition.
  • the organic substrate 30 may have a composition containing an acrylate-based resin on its surface.
  • the organic substrate 30 is used by a roll laminator, and the support film 1 is interposed via the temporary fixing material layer 2A. Can be laminated.
  • the substrate transport support tape 10 includes the protective film 3
  • the protective film 3 may be peeled off before laminating, or the temporary fixing material layer 2A and the support film 1 may be laminated while peeling off the protective film 3.
  • the roll laminator examples include the roll laminator VA400III (trade name) manufactured by Taisei Laminator.
  • the organic substrate 30 and the support film 1 are temporarily fixed to the temporary fixing material layer 2A at a pressure of 0.1 MPa to 1.0 MPa, a temperature of 40 ° C. to 150 ° C., and a speed of 0.1 to 1.0 m / min. Can be pasted together.
  • the tape-shaped substrate transport support tape 10 can be continuously supplied.
  • the organic substrate 30 reinforced by the tape-shaped support film 1 can be continuously conveyed, and the yield can be improved and the manufacturing time can be shortened.
  • a vacuum laminator can be used instead of the roll laminator.
  • Examples of the vacuum laminator include a vacuum laminator LM-50 ⁇ 50-S (trade name) manufactured by NPC Co., Ltd. and a vacuum laminator V130 (trade name) manufactured by Nichigo Morton Co., Ltd.
  • Laminating conditions include an atmospheric pressure of 1 hPa or less, a crimping temperature of 40 ° C. to 150 ° C. (preferably 60 ° C. to 120 ° C.), a laminating pressure of 0.01 to 0.5 MPa (preferably 0.1 to 0.5 MPa), and a holding time of 1 second.
  • the organic substrate 30 and the support film 1 can be bonded to each other via the temporary fixing material layer 2A in about 600 seconds (preferably 30 seconds to 300 seconds).
  • ⁇ (B) Second step> the temporary fixing material layer 2A of the laminated body 15 is heated.
  • the organic substrate 30 and the support film 1 are sufficiently fixed by the cured temporary fixing material layer 2C ((b) of FIG. 3), and the handleability of the organic substrate 30 is improved.
  • Heating can be performed using, for example, an explosion-proof dryer.
  • the heating conditions curing at 100 to 200 ° C. for 10 to 300 minutes (more preferably 20 to 210 minutes) is preferable. If the temperature is 100 ° C or higher, the temporary fixing material is sufficiently cured and problems are less likely to occur in the subsequent steps, and if the temperature is 200 ° C or lower, outgas is less likely to be generated during curing of the temporary fixing material, and the temporary fixing material is peeled off. Can be further suppressed. Further, if the heating time is 10 minutes or more, problems are unlikely to occur in the subsequent steps, and if it is 300 minutes or less, the work efficiency is unlikely to deteriorate.
  • the temporary fixing material layer 2C in FIG. 3B shows a cured product of the temporary fixing material layer 2A.
  • the semiconductor chip is mounted on the organic substrate of the laminate that has undergone the second step.
  • the semiconductor chip 40 can be mounted on the organic substrate 30 by using a flip chip bonder ((c) in FIG. 3).
  • the device to be mounted include FC3000L (trade name) manufactured by Toray Engineering Co., Ltd., and the mounting conditions can be arbitrarily selected according to the desired organic substrate and semiconductor chip.
  • the semiconductor chip may be mounted on the organic substrate by performing the reflow step.
  • the reflow step can be performed by heating the laminate on which the semiconductor chip is mounted at a temperature at which the solder melts.
  • the heating temperature is adjusted according to the type of solder, and is, for example, 190 to 280 ° C, preferably 220 to 270 ° C.
  • the semiconductor chip 40 mounted on the organic substrate 30 is sealed with the sealing material 50.
  • the sealing device include FFT1030G (trade name) manufactured by TOWA Corporation, and the sealing conditions can be arbitrarily selected according to the desired organic substrate, semiconductor chip, and sealing material. Further, the curing conditions of the sealing material after sealing can be arbitrarily selected depending on the type of sealing material.
  • the support film 1 and the temporary fixing material layer 2C are peeled from the organic substrate 30 of the laminate that has undergone the fourth step.
  • a peeling method one of a semiconductor chip mounting substrate or a support film in which a semiconductor chip is mounted and sealed on an organic substrate is horizontally fixed, and the other is lifted at a constant angle from the horizontal direction.
  • a method in which a protective film is attached to the sealing surface of the semiconductor chip mounting substrate and the semiconductor chip mounting substrate and the protective film are peeled off from the support film by a peel method and the like can be mentioned.
  • peeling methods are usually carried out at room temperature, but may be carried out at a temperature of about 40 to 100 ° C.
  • a cleaning step for removing the temporary fixing material can be provided.
  • the temporary fixing material can be removed, for example, by cleaning the semiconductor chip mounting substrate.
  • the cleaning liquid is not particularly limited as long as it can remove a part of the remaining temporary fixing material.
  • Examples of such a cleaning liquid include the above-mentioned organic solvent that can be used for diluting the resin composition for temporary fixing. These organic solvents may be used alone or in combination of two or more.
  • bases and acids may be added to the organic solvent.
  • bases amines such as ethanolamine, diethanolamine, triethanolamine, triethylamine and ammonia; and ammonium salts such as tetramethylammonium hydroxide can be used.
  • acids organic acids such as acetic acid, oxalic acid, benzenesulfonic acid and dodecylbenzenesulfonic acid can be used.
  • the amount added is preferably 0.01 to 10% by mass in terms of the concentration in the cleaning liquid.
  • an existing surfactant may be added to the cleaning liquid in order to improve the removability of the residue.
  • the cleaning method is not particularly limited, and examples thereof include a method of cleaning with a paddle using the above cleaning liquid, a cleaning method of spraying, and a method of immersing in a cleaning liquid tank.
  • the temperature is preferably 10 to 80 ° C., preferably 15 to 65 ° C., and finally the semiconductor chip mounting substrate is obtained by washing with water or alcohol and drying.
  • the temporary fixing material can be satisfactorily peeled off from the organic substrate, and the remaining temporary fixing material on the organic substrate can be suppressed, so that the cleaning can be performed. It is possible to omit the step.
  • the semiconductor chip mounting substrate 55 on which the semiconductor chip is mounted and sealed is further separated into the semiconductor element 60 by dicing ((f) and (g) in FIGS. 5).
  • FIG. 5H is a cross-sectional view schematically showing an electronic device 100 manufactured through the above steps.
  • a plurality of semiconductor elements 60 are arranged on the wiring board 70 via the solder balls 65.
  • the weight average molecular weight of acrylic rubber K-1 was measured by GPC, the weight average molecular weight was 400,000 in terms of polystyrene.
  • the Tg of the acrylic rubber K-1 was ⁇ 28 ° C.
  • Varnishes for forming the temporary fixing material layer were prepared with the composition of parts by mass shown in Table 1.
  • the prepared varnish is applied onto a polyimide film (manufactured by Toray DuPont Co., Ltd., trade name: 100EN, thickness 25 ⁇ m) as a support film, and heated and dried at 90 ° C. for 5 minutes and 120 ° C. for 5 minutes.
  • a temporary fixing material layer having a thickness of 60 ⁇ m was formed.
  • a protective film was laminated on the temporary fixing material layer to obtain a substrate transporting support tape having a structure of a support film, a temporary fixing material layer and a protective film.
  • the elastic modulus after heating, the 90 ° peel strength after heating, the presence or absence of peeling during reflow, and the peelability after reflow are determined by the methods shown below. evaluated. The evaluation results are shown in Table 2.
  • the elastic modulus was measured by the following procedure. First, four temporary fixing material layers having a thickness of 60 ⁇ m were laminated at 80 ° C. to prepare a film having a thickness of 240 ⁇ m. This was heated in an oven at 130 ° C. for 30 minutes and further at 170 ° C. for 2 hours, and then cut into 4 mm width and 33 mm length in the thickness direction. The cut out film was set in a dynamic viscoelastic device (trade name: Rheogel-E4000, manufactured by UMB Co., Ltd.), and a tensile load was applied to measure the film at a frequency of 10 Hz and a heating rate of 5 ° C./min. The measured value of was recorded.
  • a dynamic viscoelastic device trade name: Rheogel-E4000, manufactured by UMB Co., Ltd.
  • the 90 ° peel strength between the organic substrate and the temporary fixing material layer and between the support film and the temporary fixing material layer was evaluated by the following method.
  • Roll laminator manufactured by Taisei Laminator Co., Ltd., VA-400III
  • the obtained sample was heated at 130 ° C. for 30 minutes, then heated at 170 ° C. for 2 hours, and then cut into a width of 10 mm to obtain a film for measurement.
  • the measurement film was subjected to a peeling test at a speed of 300 mm / min with a peeling tester set so that the peeling angle was 90 °, and the peeling strength at that time was defined as 90 ° peeling strength.
  • the peel strength is the strength when the temporary fixing material layer is peeled from the organic substrate (organic substrate / temporary fixing material layer 90 ° peeling strength) and the strength when the support film is peeled from the temporary fixing material layer (support).
  • the film / temporary fixing material layer 90 ° peel strength) was measured respectively.
  • A No peeling (foaming) between the organic substrate / temporary fixing material layer and the support film / temporary fixing material layer.
  • B There is slight peeling (foaming) between at least one of the organic substrate / temporary fixing material layers and the support film / temporary fixing material layers. The area of the peeled (foamed) part is 2% or less of the total area.
  • C There is peeling (foaming) at least one of the organic substrate / temporary fixing material layer and the support film / temporary fixing material layer. The area of the peeled (foamed) part is more than 2% of the total area.
  • the elastic modulus is 25 ° C. after containing a thermoplastic resin, a thermosetting resin and an inorganic filler and being heated at 130 ° C. for 30 minutes and 170 ° C. for 2 hours.
  • the support tape for transporting the substrate of the embodiment provided with the temporary fixing material layer of 350 to 550 MPa peeling between the support film and the organic substrate during reflow can be suppressed, and the organic substrate after reflow can be suppressed. It was confirmed that excellent peelability of the temporary fixing material layer from the above can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)

Abstract

有機基板に基板搬送用の支持体を仮固定するための仮固定用樹脂組成物であって、熱可塑性樹脂、熱硬化性樹脂、及び、無機フィラーを含有し、フィルム状にしたときに、130℃で30分間及び170℃で2時間加熱された後の弾性率が25℃において350~550MPaである、仮固定用樹脂組成物。

Description

仮固定用樹脂組成物、基板搬送用サポートテープ及び電子機器装置の製造方法
 本開示は、仮固定用樹脂組成物、基板搬送用サポートテープ及び電子機器装置の製造方法に関する。
 スマートフォン、タブレットPC等の電子機器の多機能化に伴い、半導体素子を多段に積層することによって高容量化したスタックドMCP(Multi Chip Package)が普及している。半導体素子の実装には、ダイボンディング用接着剤としてフィルム状接着剤が広く用いられている。しかし、現行のワイヤボンドを使用した半導体素子の接続方式では、データの処理速度に限界があることから、電子機器の動作が遅くなる傾向にある。また、消費電力を低く抑え、充電せずにより長時間使用したいとのニーズが高まっていることから、省電力化も求められつつある。このような観点から、近年、更なる高速化及び省電力化を目的として、ワイヤボンドではなく貫通電極により半導体素子同士を接続する新しい構造の電子機器装置も開発されてきている。
 このように新しい構造の電子機器装置が開発されてきているものの、依然として高容量化も求められており、パッケージ構造に関わらず、半導体素子をより多段に積層できる技術の開発が進められている。しかし、より多くの半導体素子を限られたスペースに積層するためには、半導体素子の安定した薄型化が必要不可欠である。
 例えば、半導体ウェハを裏面側から研削して薄型化することが行われている。このときの研削工程では、いわゆるBGテープ(バックグラインドテープ)と呼ばれるテープを半導体ウェハに貼り付け、半導体ウェハをサポートした状態で研削工程を実施することが主流となっている。しかし、研削工程に供される半導体ウェハは、表面側に回路が形成されており、その影響により、研削によって薄型化されると反りが生じやすい。BGテープは、変形しやすいテープ素材であるから、薄型化された半導体ウェハを充分にサポートすることができず、半導体ウェハに反りが生じやすい。そこで、ウェハを粘着剤を介して支持体に固定して裏面研削及び搬送する方法も提案されている(例えば、下記特許文献1及び2を参照)。
特許第4565804号明細書 特許第4936667号明細書
 ところで、半導体素子の薄型化を図るために、基板については薄型の有機基板の使用が検討されており、具体的には、ガラスクロスに熱硬化樹脂を含浸させたコア層を用いないコアレス基板の開発が盛んに行われている。コアレス基板はコア層がないため、基板の層厚を薄くすることが可能であるが、一方で、高弾性のコア層がないために、基板自体の剛性を確保することが難しく、半導体素子の製造プロセス中でのハンドリング性が課題となる。
 このような背景から、本発明者らは、仮固定材を介して支持体を基板に貼り合わせ、積層体とすることで剛性を確保し、半導体素子の製造プロセス中でのハンドリング性を向上させる方法を検討している。しかしながら、上記製造プロセスでは、上記積層体の状態でリフロー工程を行うこととなるため、リフロー時に支持体及び基板間(支持体と仮固定材間、又は、仮固定材と基板間)での剥離、或いは剥離の起点となる発泡が生じやすいという問題がある。また、リフロー工程後に室温で基板から仮固定材及び支持体を剥がす際に、仮固定材と支持体間で剥離が生じ、仮固定材が基板側に残存しやすいという問題がある。
 本開示は上記事情を鑑み、リフロー時の支持体及び基板間の剥離の抑制と、リフロー後の基板からの剥離性とを両立することができる仮固定用樹脂組成物、基板搬送用サポートテープ及び電子機器装置の製造方法を提供することを目的とする。
 上記目的を達成するために、本開示は、有機基板に基板搬送用の支持体を仮固定するための仮固定用樹脂組成物であって、熱可塑性樹脂、熱硬化性樹脂、及び、無機フィラーを含有し、フィルム状にしたときに、130℃で30分間及び170℃で2時間加熱された後の弾性率が25℃において350~550MPaである、仮固定用樹脂組成物を提供する。
 上記仮固定用樹脂組成物によれば、当該仮固定用樹脂組成物からなる仮固定材を介して有機基板を基板搬送用の支持体に仮固定した場合に、リフロー時の支持体及び有機基板間の剥離の抑制と、リフロー後の有機基板からの仮固定材の剥離性とを両立することができる。これは、仮固定用樹脂組成物が熱可塑性樹脂、熱硬化性樹脂、及び、無機フィラーを含有すると共に、フィルム状にしたときの上記加熱後の弾性率が25℃において350~550MPaであることで、優れた耐熱性と支持体及び有機基板に対する適度な接着力とを有する仮固定材を形成することができ、リフロー時に支持体と仮固定材間、及び、仮固定材と有機基板間に剥離又は剥離の起点となる発泡が生じることを抑制しつつ、リフロー後の室温状態において、仮固定材が有機基板に残存することを抑制できるためであると考えられる。
 また、上記仮固定用樹脂組成物からなる仮固定材を介して有機基板に支持体を貼り付け、積層体とすることで、半導体素子を製造する際の搬送時に有機基板にたわみが生じてハンドリング性が低下するといった問題を改善することができる。そして、半導体素子の製造プロセスにおいて、上記積層体の状態でリフロー工程を行った場合であっても、上記仮固定用樹脂組成物を用いることで、上述した通り、リフロー時の支持体及び基板間の剥離の抑制と、リフロー後の基板からの剥離性とを両立することができる。
 上記仮固定用樹脂組成物は、硬化促進剤を更に含有してもよい。また、上記仮固定用樹脂組成物は、シリコーン化合物を更に含有してもよい。
 上記仮固定用樹脂組成物は、フィルム状にしたときに、130℃で30分間及び170℃で2時間加熱された後の、ソルダーレジストAUS308の表面を有する基板との間の25℃における90°剥離強度が30~150N/mであってもよい。上記条件で測定される90°剥離強度が上記範囲にあることで、リフロー時の支持体及び有機基板間の剥離の抑制と、リフロー後の有機基板からの仮固定材の剥離性とをより高水準で両立することができる。
 上記仮固定用樹脂組成物は、フィルム状にしたときに、130℃で30分間及び170℃で2時間加熱された後の、ポリイミドフィルムとの間の25℃における90°剥離強度が80~400N/mであってもよい。上記条件で測定される90°剥離強度が上記範囲にあることで、リフロー時の支持体及び有機基板間の剥離の抑制と、リフロー後の有機基板からの仮固定材の剥離性とをより高水準で両立することができる。
 上記仮固定用樹脂組成物において、上記無機フィラーは、表面に有機基を有するものであってもよい。また、上記有機基は、ビニル基又はエポキシ基を含んでもよい。表面に有機基を有する無機フィラーを用いることで、仮固定用樹脂組成物中での分散性を向上させることができると共に、得られる仮固定材の支持体及び有機基板に対する密着性、並びに耐熱性を向上させることができる。また、有機基がビニル基又はエポキシ基を含む場合に、上記効果がより一層奏されると共に、得られる仮固定材の支持体に対する接着力を特に高めることができる。
 上記仮固定用樹脂組成物における上記無機フィラーの含有量は、上記熱可塑性樹脂100質量部に対して20~100質量部であってもよい。無機フィラーの含有量を上記範囲とすることにより、リフロー時の支持体及び基板間の剥離の抑制と、リフロー後の基板からの仮固定材の剥離性とをより高水準で両立することができる。
 本開示はまた、有機基板を搬送するための支持フィルムと、該支持フィルム上に設けられた、上記有機基板と上記支持フィルムとを仮固定するための仮固定材層と、備え、上記仮固定材層が、上記本開示の仮固定用樹脂組成物を用いて形成されたものである、基板搬送用サポートテープを提供する。上記基板搬送用サポートテープは、有機基板のハンドリング性を向上させることができるとともに、リフロー時の支持体及び有機基板間の剥離の抑制と、リフロー後の有機基板からの仮固定材の剥離性とを両立することができる。
 上記基板搬送用サポートテープにおいて、上記支持フィルムは、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリプロピレンフィルム、ポリアミドフィルム又はポリイミドフィルムであってもよい。
 上記基板搬送用サポートテープにおいて、130℃で30分間及び170℃で2時間加熱された後の、上記支持フィルムと上記仮固定材層との間の25℃における90°剥離強度が80~400N/mであってもよい。上記条件で測定される90°剥離強度が上記範囲にあることで、リフロー時の支持体及び有機基板間の剥離の抑制と、リフロー後の有機基板からの仮固定材の剥離性とをより高水準で両立することができる。
 本開示はまた、有機基板に仮固定材を介して支持体を貼り合わせて積層体を得る第1工程と、上記積層体の上記仮固定材を加熱する第2工程と、上記第2工程を経た上記積層体の上記有機基板上に半導体チップを搭載する第3工程と、上記有機基板上に搭載された上記半導体チップを封止材で封止する第4工程と、上記第4工程を経た上記積層体の上記有機基板から上記支持体及び上記仮固定材を剥離する第5工程と、を備え、上記仮固定材は、上記本開示の仮固定用樹脂組成物を用いて形成されたものである、電子機器装置の製造方法を提供する。
 上記電子機器装置の製造方法によれば、有機基板を用いて薄型化した半導体素子を備える電子機器装置を高い生産性で製造することができる。すなわち、上記製造方法は、仮固定材が上記本開示の仮固定用樹脂組成物を用いて形成されたものであることにより、(i)第1工程において有機基板と支持体とを貼り合わせることができ、薄型の有機基板のハンドリング性が向上すること(例えば、薄型の有機基板の搬送が容易になること)、(ii)第2工程を経た仮固定材が、第3工程及び第4工程において有機基板と支持体とを充分固定でき、効率よく半導体チップの実装及び封止が可能となること、(iii)第5工程で基板表面を汚さずに有機基板から容易に剥離できること、等の効果を奏することができる。
 上記製造方法において、上記有機基板の厚さが200μm以下であってもよい。また、上記有機基板がコアレス基板であってもよい。
 上記製造方法において、上記支持体は、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリプロピレンフィルム、ポリアミドフィルム又はポリイミドフィルムであってもよい。
 上記第1工程において、上記支持体は、テープ状であり、連続して供給されてもよい。この場合、薄型の有機基板を連続的に搬送することができ、高額な設備投資をすることなく、生産性の向上を図ることができる。
 上記第1工程において、上記支持体としての支持フィルムと、該支持フィルム上に設けられた上記仮固定材からなる仮固定材層とを備えるサポートテープを用いて上記積層体を得ることができる。
 このようなサポートテープを用いる方法は、液状の仮固定材を塗布して有機基板又は支持体上に仮固定材層を形成する場合に比べて、仮固定材のばらつきをより小さくすることができ、加工後に得られる半導体素子の均一化が容易となる。また、仮固定材を無駄なく利用することが容易となる。
 上記第2工程を経た上記積層体において、上記有機基板と上記仮固定材との間の25℃における90°剥離強度が30~150N/mであってもよい。上記90°剥離強度が上記範囲にあることで、リフロー時の支持体及び有機基板間の剥離の抑制と、リフロー後の有機基板からの仮固定材の剥離性とをより高水準で両立することができる。
 上記第2工程を経た上記積層体において、上記支持体と上記仮固定材との間の25℃における90°剥離強度が80~400N/mであってもよい。上記90°剥離強度が上記範囲にあることで、リフロー時の支持体及び有機基板間の剥離の抑制と、リフロー後の有機基板からの仮固定材の剥離性とをより高水準で両立することができる。
 本開示によれば、リフロー時の支持体及び基板間の剥離の抑制と、リフロー後の基板からの剥離性とを両立することができる仮固定用樹脂組成物、基板搬送用サポートテープ及び電子機器装置の製造方法を提供することができる。
 本開示に係る仮固定用樹脂組成物は、有機基板と搬送用の支持体とを充分固定することができるとともに、基板表面を汚さずに有機基板から支持体を容易に剥離することができる。本開示に係る基板搬送用サポートテープは、有機基板のハンドリング性を向上させることができるとともに、基板表面を汚さずに有機基板から容易に剥離することができる。
図1は、基板搬送用サポートテープの一実施形態を示す図であり、(A)は上面図であり、(B)は(A)のI-I線に沿った模式断面図である。 図2は基板搬送用サポートテープの別の実施形態を示す図であり、(A)は上面図であり、(B)は(A)のII-II線に沿った模式断面図である。 図3(a)~図3(c)は、電子機器装置の製造方法の一実施形態を説明するための模式断面図である。 図4(d)~図4(e)は、電子機器装置の製造方法の一実施形態を説明するための模式断面図である。 図5(f)~図5(h)は、電子機器装置の製造方法の一実施形態を説明するための模式断面図である。
 以下、場合により図面を参照しつつ、本開示を実施するための形態について詳細に説明する。ただし、本開示は以下の実施形態に限定されるものではない。なお、本明細書において、「(メタ)アクリル酸」とは、アクリル酸又はメタクリル酸を意味し、「(メタ)アクリレート」とは、アクリレート又はそれに対応するメタクリレートを意味する。「A又はB」とは、AとBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。
 また、本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。また、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。また、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 さらに、本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また、例示材料は特に断らない限り単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 また、本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
[仮固定用樹脂組成物]
 本実施形態に係る仮固定用樹脂組成物は、熱可塑性樹脂、熱硬化性樹脂、及び、無機フィラーを含む。仮固定用樹脂組成物は、上記成分の他に、硬化剤、硬化促進剤、又はその他の成分を更に含んでいてもよい。
 本実施形態に係る仮固定用樹脂組成物は、有機基板に基板搬送用の支持体を仮固定するための仮固定材として用いることができる。
<熱可塑性樹脂>
 熱可塑性樹脂としては、有機基板と支持体とを貼り合わせる前において熱可塑性を有している樹脂であれば、特に制限なく用いることができる。本実施形態においては、熱可塑性樹脂が、加熱等により架橋構造を形成する樹脂であってもよい。このような樹脂としては、架橋性官能基を有するポリマーが挙げられる。
 架橋性官能基を有するポリマーとしては、熱可塑性ポリイミド樹脂、架橋性官能基を有する(メタ)アクリル共重合体、ウレタン樹脂ポリフェニレンエーテル樹脂、ポリエーテルイミド樹脂、フェノキシ樹脂、変性ポリフェニレンエーテル樹脂等が挙げられる。これらのなかでも、架橋性官能基を有する(メタ)アクリル共重合体が好ましい。
 架橋性官能基を有する(メタ)アクリル共重合体は、パール重合、溶液重合等の重合方法によって得られるものを用いてもよく、あるいは、市販品を用いてもよい。架橋性官能基を有するポリマーは、架橋性官能基をポリマー鎖中に有していても、ポリマー鎖末端に有していてもよい。架橋性官能基の具体例としては、エポキシ基、アルコール性水酸基、フェノール性水酸基、カルボキシル基等が挙げられる。架橋性官能基の中でも、カルボキシル基が好ましい。カルボキシル基は、アクリル酸を用いることによってポリマー鎖に導入することができる。
 熱可塑性樹脂のガラス転移温度(以下、「Tg」と表記する場合もある)は、-50℃~50℃であることが好ましく、-40℃~20℃であることがより好ましい。Tgがこのような範囲であれば、タック力が上がりすぎて取り扱い性が悪化することを抑制しつつ、より充分な流動性を得ることができ、更に硬化後の弾性率をより低くすることができるため、剥離強度が高くなりすぎることをより抑制できる。
 Tgは、示差走査熱量測定(DSC、例えば株式会社リガク製「Thermo Plus 2」)を用いて熱可塑性樹脂を測定したときの中間点ガラス転移温度値である。具体的には、上記Tgは、昇温速度10℃/分、測定温度:-80~80℃の条件で熱量変化を測定し、JIS K 7121:1987に準拠した方法によって算出した中間点ガラス転移温度である。
 熱可塑性樹脂の重量平均分子量は特に限定されず、好ましくは10万~120万であり、より好ましくは20万~100万である。熱可塑性樹脂の重量平均分子量がこのような範囲であれば、成膜性と流動性とを確保することが容易となる。重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)で標準ポリスチレンによる検量線を用いたポリスチレン換算値である。
 熱可塑性樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本実施形態の仮固定用樹脂組成物における熱可塑性樹脂の含有量は、組成物全量100質量部に対して35~80質量部とすることができ、埋め込み性、基板との剥離性及び支持体との接着性の観点から、40~70質量部が好ましく、40~60質量部がより好ましい。
<熱硬化性樹脂>
 熱硬化性樹脂としては、例えば、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、熱硬化型ポリイミド樹脂、ポリウレタン樹脂、メラミン樹脂、ユリア樹脂が挙げられる。
 エポキシ樹脂は、硬化して耐熱作用を有するものであれば特に限定されない。エポキシ樹脂は、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等の二官能エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂などを使用することができる。また、エポキシ樹脂は、多官能エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環含有エポキシ樹脂、脂環式エポキシ樹脂等、一般に知られているものを適用することができる。
 ビスフェノールA型エポキシ樹脂としては、三菱ケミカル株式会社製のjER(登録商標)シリーズ(エピコート807、エピコート815、エピコート825、エピコート827、エピコート828、エピコート834、エピコート1001、エピコート1004、エピコート1007、エピコート1009、「エピコート」は登録商標)、ダウケミカル社製のDER-330、DER-301、DER-361、及び新日鉄住金化学株式会社製のYD8125、YDF8170等が挙げられる。
 フェノールノボラック型エポキシ樹脂としては、ジャパンエポキシレジン株式会社製のエピコート152、エピコート154、日本化薬株式会社製のEPPN-201、ダウケミカル社製のDEN-438等が挙げられる。
 o-クレゾールノボラック型エポキシ樹脂としては、日本化薬株式会社製のEOCN-102S、EOCN-103S、EOCN-104S、EOCN-1012、EOCN-1025、EOCN-1027(「EOCN」は登録商標)、新日鉄住金化学株式会社製のYDCN701、YDCN702、YDCN703、YDCN704等が挙げられる。
 多官能エポキシ樹脂としては、ジャパンエポキシレジン株式会社製のEpon 1031S、ハンツマン・ジャパン株式会社製のアラルダイト0163、ナガセケムテックス株式会社製のデナコールEX-611、EX-614、EX-614B、EX-622、EX-512、EX-521、EX-421、EX-411、EX-321等が挙げられる(「アラルダイト」、「デナコール」は登録商標)。
 アミン型エポキシ樹脂としては、ジャパンエポキシレジン株式会社製のエピコート604、新日鉄住金化学株式会社製のYH-434、三菱ガス化学株式会社製のTETRAD-X及びTETRAD-C(「TETRAD」は登録商標)、住友化学株式会社製のELM-120等が挙げられる。
 複素環含有エポキシ樹脂としては、チバスペシャリティーケミカルズ社製のアラルダイトPT810、UCC社製のERL4234、ERL4299、ERL4221、ERL4206等が挙げられる。
 上述したエポキシ樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 熱硬化性樹脂としてエポキシ樹脂を使用する場合には、エポキシ樹脂硬化剤を合わせて使用することが好ましい。
 エポキシ樹脂硬化剤は、通常用いられている公知の硬化剤を使用することができる。エポキシ樹脂硬化剤としては、例えば、アミン類、ポリアミド、酸無水物、ポリスルフィド、三フッ化ホウ素、ビスフェノールA、ビスフェノールF、ビスフェノールS等のフェノール性水酸基を1分子中に2個以上有するビスフェノール類、フェノールノボラック樹脂、ビスフェノールAノボラック樹脂、クレゾールノボラック樹脂等のフェノール樹脂等が挙げられる。特に吸湿時の耐電食性に優れるという観点から、エポキシ樹脂硬化剤は、フェノールノボラック樹脂、ビスフェノールAノボラック樹脂、クレゾールノボラック樹脂等のフェノール樹脂が好ましい。
 上記エポキシ樹脂硬化剤としてのフェノール樹脂の中で好ましいものとしては、例えば、DIC株式会社製、商品名:フェノライトLF2882、フェノライトLF2822、フェノライトTD-2090、フェノライトTD-2149、フェノライトVH-4150、フェノライトVH4170、明和化成株式会社製、商品名:H-1、ジャパンエポキシレジン株式会社製、商品名:jERキュアMP402FPY、エピキュアYL6065、エピキュアYLH129B65及び三井化学株式会社製、商品名:ミレックスXL、ミレックスXLC、ミレックスRN、ミレックスRS、ミレックスVRが挙げられる(「フェノライト」、「エピキュア」、「ミレックス」は登録商標)。
 熱硬化性樹脂及び硬化剤はそれぞれ、1種を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 本実施形態の仮固定用樹脂組成物における熱硬化性樹脂の含有量は、熱可塑性樹脂100質量部に対して10~500質量部が好ましく、15~300質量部がより好ましく、20~100質量部が更に好ましい。熱硬化性樹脂の含有量が上記の範囲にあると、仮固定材は充分な低温貼り付け性、耐熱性、硬化性及び剥離性を兼ね備えることが容易となる。熱硬化性樹脂の含有量が10質量部以上であれば貼付性及び耐熱性が向上するとともに、電子機器装置の製造時における有機基板の保持性も向上し、電子機器装置を構成する部品(例えば、半導体チップなど)が損傷しにくい傾向がある。一方、熱硬化性樹脂の含有量が500質量部以下であれば、硬化前の粘度が過度に低くなりにくく、比較的短時間で硬化できると共に、有機基板と支持体との保持性と、有機基板と支持体との剥離性とを両立しやすくなる傾向にある。
<無機フィラー>
 無機フィラーとしては、例えば、シリカ、アルミナ、窒化ホウ素、チタニア、ガラス、酸化鉄、セラミック等が挙げられる。無機フィラーは、仮固定用樹脂組成物及びフィルム状の仮固定材に低熱膨張性及び低吸湿性を付与する目的で添加することができる。無機フィラーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 無機フィラーは表面に有機基を有するものが好ましい。無機フィラーの表面が有機基によって修飾されていることにより、フィルム状の仮固定材を形成するための塗工液を調製するときの仮固定用樹脂組成物の有機溶剤への分散性、並びに形成したフィルム状の仮固定材の密着性及び耐熱性を向上させることが容易となる。
 表面に有機基を有する無機フィラーは、例えば、下記一般式(B-1)で表されるシランカップリング剤と無機フィラーとを混合し、30℃以上の温度で攪拌することにより得ることができる。無機フィラーの表面が有機基によって修飾されたことは、UV(紫外線)測定、IR(赤外線)測定、XPS(X線光電子分光)測定等で確認することが可能である。
Figure JPOXMLDOC01-appb-C000001
[式(B-1)中、Xは、フェニル基、グリシドキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アミノ基、ビニル基、イソシアネート基及びメタクリロキシ基からなる群より選択される有機基を示し、sは0又は1~10の整数を示し、R11、R12及びR13は各々独立に、炭素数1~10のアルキル基を示す。]
 炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、イソプロピル基、イソブチル基が挙げられる。炭素数1~10のアルキル基は、入手が容易であるという観点から、メチル基、エチル基及びペンチル基が好ましい。
 Xは、耐熱性の観点から、アミノ基、グリシドキシ基、メルカプト基及びイソシアネート基が好ましく、グリシドキシ基及びメルカプト基がより好ましい。
 式(B-1)中のsは、高熱時における仮固定材の流動性を抑制し、耐熱性を向上させる観点から、0~5が好ましく、0~4がより好ましい。
 好ましいシランカップリング剤は、例えば、トリメトキシフェニルシラン、ジメチルジメトキシフェニルシラン、トリエトキシフェニルシラン、ジメトキシメチルフェニルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N,N’-ビス(3-(トリメトキシシリル)プロピル)エチレンジアミン、ポリオキシエチレンプロピルトリアルコキシシラン、ポリエトキシジメチルシロキサン等が挙げられる。これらの中でも、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、及び3-メルカプトプロピルトリメトキシシランが好ましく、トリメトキシフェニルシラン、3-グリシドキシプロピルトリメトキシシラン、及び3-メルカプトプロピルトリメトキシシランがより好ましい。
 シランカップリング剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記カップリング剤の使用量は、耐熱性を向上させる効果と保存安定性とのバランスを図る観点から、無機フィラー100質量部に対して、0.01~50質量部が好ましく、0.05質量部~20質量部がより好ましく、耐熱性向上の観点から、0.5~10質量部が更に好ましい。
 無機フィラーの平均粒子径は、仮固定用樹脂組成物をフィルム状にする際の塗工性、並びに、埋め込み性及びリフロー後の基板からの仮固定材の剥離性をより高水準で両立する観点から、1~1000nmであることが好ましく、5~750nmであることがより好ましく、10~500nmであることが更に好ましい。無機フィラーの平均粒子径は、例えば、ナノ粒子径分布測定装置(島津製作所製、商品名:SALD-7500nano)により測定することができる。
 本実施形態の仮固定用樹脂組成物における無機フィラーの含有量は、Bステージ状態におけるフィルム状の仮固定材の取扱い性の向上、及び低熱膨張性の向上の観点から、熱可塑性樹脂100質量部に対し、300質量部以下が好ましく、200質量部以下がより好ましく、100質量部以下が更に好ましい。また、無機フィラーの含有量は、リフロー時の支持体及び基板間の剥離の抑制と、リフロー後の基板からの仮固定材の剥離性とをより高水準で両立する観点から、熱可塑性樹脂100質量部に対し、20質量部以上であることが好ましく、25質量部以上であることがより好ましく、30質量部以上であることが更に好ましく、35質量部以上であることが特に好ましい。無機フィラーの含有量を上記範囲とすることにより、有機基板に対する接着性を充分に確保しつつ、所望の機能を仮固定材に付与することができる傾向にある。
<硬化促進剤>
 硬化促進剤としては、例えば、イミダゾール類、ジシアンジアミド誘導体、ジカルボン酸ジヒドラジド、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、2-エチル-4-メチルイミダゾール-テトラフェニルボレート、1,8-ジアザビシクロ[5,4,0]ウンデセン-7-テトラフェニルボレート等が挙げられる。
 本実施形態の仮固定用樹脂組成物が、熱可塑性樹脂としてエポキシ基を有する(メタ)アクリル共重合体を含む場合、この共重合体が有するエポキシ基の硬化を促進する硬化促進剤を更に含有することが好ましい。このような硬化促進剤としては、イミダゾール類、1,8-ジアザビシクロ[5,4,0]ウンデセン-7-テトラフェニルボレートが挙げられる。
 硬化促進剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本実施形態の仮固定用樹脂組成物における硬化促進剤の含有量は、熱可塑性樹脂100質量部に対して、0.01~5.0質量部が好ましい。硬化促進剤の含有量が0.01質量部以上であれば、半導体素子を製造するときの熱履歴によって仮固定用樹脂組成物を充分に硬化させることが容易となり、有機基板と支持体とをより確実に固定することができる。一方、硬化促進剤の含有量が5.0質量部以下であれば、仮固定用樹脂組成物の溶融粘度が過度に上昇しすぎず、保存安定性を確保しやすくなる。
<その他の成分>
 上記の成分以外の成分としては、シリコーン化合物、有機フィラー、並びに、シランカップリング剤等が挙げられる。
 シリコーン化合物としては、ポリシロキサン構造を有するものであれば特に制限なく用いることができる。例えば、シリコーン変性樹脂、ストレートシリコーンオイル、非反応性の変性シリコーンオイル、反応性の変性シリコーンオイル等が挙げられる。
 仮固定用樹脂組成物がシリコーン化合物を含有することで、仮固定用樹脂組成物から形成されるフィルム状の仮固定材を、所定の加工を経た有機基板から剥離する際、100℃以下の低温であっても、溶剤を用いることなく容易に剥離することが可能となる。
 シリコーン変性樹脂としては、シリコーン変性アルキド樹脂が挙げられる。仮固定用樹脂組成物がシリコーン変性アルキド樹脂を含有することで、仮固定用樹脂組成物から形成されるフィルム状の仮固定材を、所定の加工を経た有機基板から剥離する際、溶剤を用いることなく一層容易に剥離することが可能となる。
 変性シリコーンオイルとしては、ポリエーテル変性シリコーン、アルキル変性シリコーン、エポキシ変性シリコーンが挙げられる。
 上述したシリコーン化合物の市販品としては、東レ・ダウコーニング株式会社製の商品名:SH3773M、L-7001、SH-550、SH-710、信越化学工業株式会社製の商品名:X-22-163、KF-105、X-22-163B、X-22-163C、BYK社製の商品名:BYK-UV3500等が挙げられる。
 シリコーン化合物は、1種を単独で又は2種類以上を組み合わせて用いることができる。
 仮固定用樹脂組成物におけるシリコーン化合物の含有量は、熱可塑性樹脂100質量部に対して、0~100質量部が好ましく、0.01~80質量部がより好ましい。シリコーン化合物の含有量が上記範囲内であれば、加工時における有機基板に対する接着性と加工後における有機基板に対する剥離性とをより高水準で両立させることが可能となる。
 また、本実施形態の仮固定用樹脂組成物は、有機基板の汚染を抑制する観点からは、シリコーン化合物を含まない又はシリコーン化合物の含有量が仮固定用樹脂組成物全量を基準として10質量%以下であってもよい。本実施形態の仮固定用樹脂組成物によれば、シリコーン化合物の含有量が10質量%以下であっても有機基板からの仮固定材の剥離性を確保することができるため、有機基板の汚染を抑制と、有機基板からの仮固定材の剥離性とを両立させることができる。
 有機フィラーとしては、例えば、カーボン、ゴム系フィラー、シリコーン系微粒子、ポリアミド微粒子、ポリイミド微粒子等が挙げられる。
 本実施形態の仮固定用樹脂組成物における有機フィラーの含有量は、熱可塑性樹脂100質量部に対し、300質量部以下が好ましく、200質量部以下がより好ましく、100質量部以下が更に好ましい。有機フィラーの含有量の下限は特に制限はなく、熱可塑性樹脂100質量部に対し、5質量部以上であってもよい。有機フィラーの含有量を上記範囲とすることにより、有機基板に対する接着性を充分に確保しつつ、所望の機能を仮固定材に付与することができる傾向にある。
 本実施形態に係る仮固定用樹脂組成物は、フィルム状にしたときに、130℃で30分間及び170℃で2時間加熱された後の弾性率が25℃において350~550MPaである。
 加熱後の弾性率は、以下の手順で測定される。まず、厚さ60μmの仮固定用樹脂組成物のフィルムを、80℃で4枚ラミネートすることにより、厚さ240μmのフィルムを作製する。これを、所定の条件で加熱(例えば、130℃のオーブンで30分、さらに170℃で2時間加熱)した後、厚さ方向に4mm幅、長さ33mmに切り出す。切り出したフィルムを動的粘弾性装置(商品名:Rheogel-E4000、(株)UMB製)にセットし、引張り荷重をかけて、周波数10Hz、昇温速度5℃/分で測定し、25℃での測定値を記録する。
 上記加熱後の25℃における弾性率は、リフロー時の支持体及び基板間の剥離の抑制と、リフロー後の基板からの仮固定材の剥離性とをより高水準で両立する観点から、360~520MPaであることが好ましく、370~500MPaであることがより好ましく、442~490MPaであることが更に好ましい。
 上記の加熱後の25℃における弾性率は、例えば、無機フィラーの種類及び配合量、熱可塑性樹脂の種類及び配合量、熱硬化性樹脂の種類及び配合量等によって調整することができる。
 本実施形態に係る仮固定用樹脂組成物は、フィルム状にして、ソルダーレジストAUS308の表面を有する基板にラミネートし、130℃で30分及び170℃で2時間加熱された後の、上記基板との間の25℃における90°剥離強度が30~150N/m、40~100N/m又は40~80N/mであってもよい。90°剥離強度が上記範囲にあると、有機基板と仮固定材とが剥離しにくくなり、支持体で補強された有機基板上への半導体チップの実装及び封止が一層やりやすくなるとともに、リフロー時の支持体及び有機基板間の剥離の抑制と、リフロー後の有機基板からの仮固定材の剥離性とをより高水準で両立することができる。
 90°剥離強度は以下のように測定される。ソルダーレジスト「PSR-4000 AUS308」(太陽インキ(株)製、商品名)の表面を有する基板(材質:ガラスエポキシ基板、基板厚:1000μm)をロールラミネーター(大成ラミネーター株式会社製、ファーストラミネーターVA-400III)のステージ上に置き、厚さ60μmのフィルム状に形成した仮固定用樹脂組成物を基板に貼り付くように設置する。これを速度0.4m/分、温度80℃、圧力0.2MPaの条件で貼付け、測定用サンプルとする。得られた測定用サンプルを所定の加熱条件で加熱(例えば、130℃で30分及び170℃で2時間加熱)した後、10mm幅に切り出す。これを、剥離角度が90°となるように設定した剥離試験機により、300mm/分の速度で剥離試験を実施し、そのときの剥離強度を90°剥離強度とする。
 また、本実施形態に係る仮固定用樹脂組成物は、フィルム状にして、支持体としてのポリイミドフィルム(東レ・デュポン株式会社製、商品名:100EN、厚さ25μm)にラミネートし、130℃で30分及び170℃で2時間加熱された後の、上記支持体との間の25℃における90°剥離強度が、80N/m以上、100N/m以上、又は、120N/m以上であってもよく、500N/m以下、400N/m以下、又は、300N/m以下であってもよい。90°剥離強度が上記範囲にあると、リフロー時の支持体及び有機基板間の剥離の抑制と、リフロー後の有機基板からの仮固定材の剥離性とをより高水準で両立することができる。
 本実施形態の仮固定用樹脂組成物はフィルム状の仮固定材を形成することができる。この場合、仮固定材の膜厚を制御することがより容易となり、有機基板、仮固定材及び支持体の積層体における厚さのバラツキを軽減することができる。また、フィルム状の仮固定材は、ラミネート等の簡便な方法により有機基板又は支持体上に貼り合わせることができ、作業性にも優れている。
 フィルム状の仮固定材の厚さは、特に限定されず、有機基板と搬送用の支持体とを充分に固定するという観点から、10~350μmであることが好ましい。厚さが10μm以上であれば、塗工時の厚さのバラツキが少なくなり、また、厚さが充分であるため、仮固定材又は仮固定材の硬化物の強度が良好になり、有機基板と搬送用の支持体とをより充分に固定することができる。厚さが350μm以下であれば、仮固定材の厚さのバラツキが生じにくく、また、充分な乾燥により仮固定材中の残留溶剤量を低減することが容易となり、仮固定材の硬化物を加熱したときの発泡を更に少なくできる。
[基板搬送用サポートテープ]
 本実施形態の基板搬送用サポートテープは、有機基板を搬送するための支持フィルムと、該支持フィルム上に設けられた、有機基板と支持フィルムとを仮固定するための仮固定材層とを備える。
 仮固定材層は、熱可塑性樹脂、熱硬化性樹脂、及び、無機フィラーを含有し、且つ、130℃で30分間及び170℃で2時間加熱された後の弾性率が25℃において350~550MPaであってよい。このような仮固定材層は、上述した本実施形態の仮固定用樹脂組成物から形成することができる。
 図1は、基板搬送用サポートテープの一実施形態を示す図であり、図1の(A)は上面図であり、図1の(B)は図1の(A)のI-I線に沿った模式断面図である。これらの図に示す基板搬送用サポートテープ10は、支持フィルム1と、本実施形態の仮固定用樹脂組成物からなる仮固定材層2Aと、保護フィルム3とをこの順に備える。
 支持フィルム1としては、有機基板を搬送できるものであれば特に制限はなく、例えば、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリアミドフィルム、及びポリイミドフィルムが挙げられる。これらの中でも、柔軟性及び強靭性に優れるという観点から、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリプロピレンフィルム、ポリアミドフィルム及びポリイミドフィルムが好ましく、更に耐熱性及び強度の観点から、ポリイミドフィルムがより好ましい。
 支持フィルム1の厚さは、目的とする強度及び柔軟性により適宜設定することができ、3~350μmであることが好ましい。厚さが3μm以上であれば充分なフィルム強度が得られる傾向にあり、厚さが350μm以下であれば充分な柔軟性が得られる傾向にある。このような観点から、支持フィルム1の厚さは、5~200μmであることがより好ましく、7~150μmであることが更に好ましい。
 保護フィルム3としては、特に制限はなく、例えば、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリエチレンフィルム、及びポリプロピレンフィルムが挙げられる。保護フィルム3は、柔軟性及び強靭性の観点から、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム及びポリプロピレンフィルムが好ましい。また、仮固定材層との剥離性向上の観点から、シリコーン系化合物、フッ素系化合物等により離型処理が施されたフィルムを保護フィルム3として用いることが好ましい。
 保護フィルム3の厚さは、目的とする強度及び柔軟性により適宜設定することができ、例えば、10~350μmであることが好ましい。厚さが10μm以上であれば充分なフィルム強度が得られる傾向にあり、厚さが350μm以下であれば充分な柔軟性が得られる傾向にある。このような観点から、保護フィルム3の厚さは、15~200μmであることがより好ましく、20~150μmであることが更に好ましい。
 仮固定材層2Aは、上述の本実施形態の仮固定用樹脂組成物を構成する各成分を有機溶媒中で混合及び混練してワニスを調製し、作製したワニスを支持フィルム1上に塗布して乾燥する方法により形成することができる。
 有機溶剤は特に限定されず、製膜時の揮発性等を沸点から考慮して決めることができる。具体的には、製膜時にフィルムの硬化を進みにくくする観点から、メタノール、エタノール、2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、メチルエチルケトン、アセトン、メチルイソブチルケトン、トルエン、キシレン等の比較的低沸点の溶剤が好ましい。また、製膜性を向上させる等の目的では、例えば、ジメチルアセトアミド、ジメチルホルムアミド、N-メチルピロリドン、シクロヘキサノンの比較的高沸点の溶剤を使用することが好ましい。これらの溶剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。ワニスにおける固形分濃度は、10~80質量%であることが好ましい。
 混合及び混練は、通常の攪拌機、らいかい機、三本ロール、ボールミル等の分散機を用い、これらを適宜組み合わせて行うことができる。乾燥は、使用した有機溶剤が充分に揮散する条件であれば特に制限はなく、通常60℃~200℃で、0.1~90分間加熱して行うことができる。
 支持フィルム1上に仮固定材層2Aを形成した後、仮固定材層2A上に保護フィルム3を貼り合わせることによって基板搬送用サポートテープ10を得ることができる。
 基板搬送用サポートテープ10は、例えばロール状に巻き取ることによって容易に保存することができる。また、ロール状の基板搬送用サポートテープ10を好適なサイズに切り出した状態で保存することもできる。
 図2は、基板搬送用サポートテープの別の一実施形態を示す図であり、図2の(A)は上面図であり、図2の(B)は図2の(A)のII-II線に沿った模式断面図である。これらの図に示す基板搬送用サポートテープ20は、支持フィルム1aと、第一樹脂層2a及び第二樹脂層2bからなる仮固定材層2Bと、支持フィルム1bとをこの順に備える。
 第一樹脂層2a及び第二樹脂層2bは同一の組成物で構成されていてもよいし、互いに異なる組成物で構成されていてもよい。第一樹脂層2a及び第二樹脂層2bが異なる組成物で構成されている場合、例えば、第二樹脂層2bが有機基板と接する側とすると、支持フィルム1aを搬送用の支持フィルムとすることができる。この場合、第二樹脂層2bを本実施形態の仮固定用樹脂組成物で構成することにより、有機基板と搬送用の支持フィルムとを充分固定すること及び有機基板から搬送用の支持フィルムを容易に剥離することの両立が可能となる。第一樹脂層2aは、搬送用の支持フィルムである支持フィルム1aに対する優れた接着性を有するものとなるように設計することができる。
 仮固定材層2Bは、上述の成分を有機溶媒中で混合及び混練してワニスを調製し、これを支持フィルム1a上に塗布して乾燥して作製した積層体と、これと同じ又は別途調製したワニスを支持フィルム1b上に塗布して乾燥して作製した積層体とを貼り合わせことにより形成することができる。第一樹脂層2a及び第二樹脂層2bを同じワニスで形成する場合、比較的厚い仮固定材層を形成しても、有機溶媒の残存量を十分に低減しやすいという利点がある。第一樹脂層2a及び第二樹脂層2bは一体化して単層構造となっていてもよいし、二つの層の間に界面が存在して二層構造を維持していてもよい。
[電子機器装置の製造方法]
 本実施形態に係る仮固定用樹脂組成物を用いた電子機器装置の製造方法は、大きく分けて以下の5工程を備えることができる。
(a)有機基板に仮固定材を介して支持体を貼り合わせて積層体を得る第1工程。
(b)積層体の仮固定材を加熱する第2工程。
(c)第2工程を経た積層体の有機基板上に半導体チップを搭載する第3工程。
(d)有機基板上に搭載された半導体チップを封止材で封止する第4工程。
(e)第4工程を経た積層体の有機基板から支持体及び仮固定材を剥離する第5工程。
 図3、図4及び図5は電子機器装置の製造方法の一実施形態を説明するための模式断面図である。なお、図3、図4及び図5においては、仮固定材(仮固定材層)が図1の(B)に示す基板搬送用サポートテープ10の仮固定材層2Aである場合を図示したが、仮固定材の構成はこれに限定されない。
<(a)第1工程>
 第1工程では、有機基板30に、仮固定材層2Aを介して支持フィルム1を貼り合わせて積層体15を得ている(図3の(a))。
 有機基板30としては、例えば、厚さ10~1000μmの基板を用いることができる。半導体素子又は電子機器装置の薄型化の観点から、有機基板30の厚さは200μm以下であってもよく、100μm以下であってもよい。パッケージの強度維持及び反り低減の観点から、有機基板30の厚さは30μm以上であってもよく、50μm以上であってもよい。
 有機基板30は、コアレス基板であってもよい。コアレス基板の材質としては、例えば、エポキシ樹脂組成物等のビルドアップ材が挙げられる。有機基板30は、表面にアクリレート系樹脂を含む組成物を有していてもよい。
 図3の(a)に示すように、基板搬送用サポートテープ10を用いて積層体15を得る場合、ロールラミネーターを使用して有機基板30と、仮固定材層2Aを介して支持フィルム1とをラミネートすることができる。基板搬送用サポートテープ10が保護フィルム3を備える場合、保護フィルム3はラミネート前に剥がしていてもよく、保護フィルム3を剥がしながら仮固定材層2A及び支持フィルム1をラミネートしてもよい。
 ロールラミネーターとして、例えば、大成ラミネーター社製ロールラミネーターVA400III(商品名)が挙げられる。この装置を使用する場合、圧力0.1MPa~1.0MPa、温度40℃~150℃、速度0.1~1.0m/分で、有機基板30と支持フィルム1とを仮固定材層2Aを介して貼り合わせることができる。
 本実施形態においては、テープ状である基板搬送用サポートテープ10を連続して供給することができる。この場合、テープ状の支持フィルム1によって補強された有機基板30を連続的に搬送することができ、歩留まりの向上、製造時間の短縮などを図ることができる。
 ロールラミネーターに代えて真空ラミネーターを用いることもできる。
 真空ラミネーターとして、例えば、株式会社エヌ・ピー・シー製真空ラミネーターLM-50×50-S(商品名)及びニチゴー・モートン株式会社製真空ラミネーターV130(商品名)が挙げられる。ラミネート条件として、気圧1hPa以下、圧着温度40℃~150℃(好ましくは60℃~120℃)、ラミネート圧力0.01~0.5MPa(好ましくは0.1~0.5MPa)、保持時間1秒~600秒(好ましくは30秒~300秒)で、有機基板30と支持フィルム1とを仮固定材層2Aを介して貼り合わせることができる。
<(b)第2工程>
 第2工程では、積層体15の仮固定材層2Aを加熱する。この工程により、硬化した仮固定材層2Cによって有機基板30と支持フィルム1とが充分に固定され(図3の(b))、有機基板30のハンドリング性が向上する。
 加熱は、例えば、防爆乾燥機を使用して行うことができる。加熱条件は、100~200℃で10~300分(より好ましくは20~210分)の硬化が好ましい。温度が100℃以上であれば仮固定材が充分に硬化して後段の工程で問題が起きにくく、200℃以下であれば仮固定材の硬化中にアウトガスが発生しにくく、仮固定材の剥離を更に抑制できる。また、加熱時間が10分以上であれば後段の工程で問題が起きにくく、300分以下であれば作業効率が悪化しにくい。図3の(b)における仮固定材層2Cは仮固定材層2Aの硬化体を示す。
<(c)第3工程>
 第3工程では、第2工程を経た積層体の有機基板上に半導体チップを搭載する。例えば、フリップチップボンダーを用いて有機基板30上に半導体チップ40を実装することができる(図3の(c))。実装する装置としては、例えば、東レエンジニアリング株式会社製FC3000L(商品名)等が挙げられ、実装条件は所望の有機基板及び半導体チップに応じて任意に選ぶことができる。
 第3工程においては、リフロー工程を行うことで、有機基板上に半導体チップを実装してもよい。リフロー工程は、半導体チップを搭載した積層体を、はんだが溶融する温度で加熱することで行うことができる。加熱温度は、はんだの種類に応じて調整されるが、例えば、190~280℃であり、好ましくは220~270℃である。本実施形態の仮固定用樹脂組成物を用いることで、上記温度でリフロー工程を行った場合であっても、仮固定材層2Aを介して貼り合わせられた有機基板30と支持フィルム1とがリフロー工程中に剥離することを抑制することができると共に、リフロー工程後に室温において、有機基板30への仮固定材層2Aの残存を抑制しながら有機基板30から支持フィルム1を容易に剥離することができる。
<(d)第4工程>
 第4工程では、図4の(d)に示すように、有機基板30上に搭載された半導体チップ40を封止材50で封止する。封止する装置としては、例えば、TOWA株式会社製FFT1030G(商品名)等が挙げられ、封止条件は所望の有機基板、半導体チップ、及び封止材に応じて任意に選ぶことができる。また、封止後の封止材の硬化条件は封止材種により任意に選ぶことができる。
<(e)第5工程>
 第5工程では、図4の(e)に示すように、第4工程を経た積層体の有機基板30から支持フィルム1及び仮固定材層2Cを剥離する。剥離方法としては、有機基板上に半導体チップが搭載され封止された半導体チップ実装基板又は支持フィルムの一方を水平に固定しておき、他方を水平方向から一定の角度を付けて持ち上げる方法、及び、半導体チップ実装基板の封止面に保護フィルムを貼り、半導体チップ実装基板と保護フィルムとをピール方式で支持フィルムから剥離する方法等が挙げられる。
 これらの剥離方法は、通常、室温で実施されるが、40~100℃程度の温度下で実施してもよい。
 本実施形態においては、半導体チップ実装基板に、仮固定材が一部残存した場合、これを除去するための洗浄工程を設けることができる。仮固定材の除去は、例えば、半導体チップ実装基板を洗浄することにより行うことができる。
 洗浄液は、一部残存した仮固定材を除去できるような洗浄液であれば、特に制限はない。このような洗浄液としては、例えば、仮固定用樹脂組成物の希釈に用いることができる上記有機溶剤が挙げられる。これらの有機溶剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 また、残存した仮固定材が除去しにくい場合は、有機溶剤に塩基類、酸類を添加してもよい。塩基類の例としては、エタノールアミン、ジエタノールアミン、トリエタノールアミン、トリエチルアミン、アンモニア等のアミン類;テトラメチルアンモニウムヒドロキシド等のアンモニウム塩類が使用可能である。酸類は、酢酸、シュウ酸、ベンゼンスルホン酸、ドデシルベンゼンスルホン酸等の有機酸が使用可能である。添加量は、洗浄液中濃度で0.01~10質量%が好ましい。また、洗浄液には、残存物の除去性を向上させるため既存の界面活性剤を添加してもよい。
 洗浄方法に特に制限はなく、例えば、上記洗浄液を用いてパドルでの洗浄を行う方法、スプレー噴霧での洗浄方法、洗浄液槽に浸漬する方法が挙げられる。温度は10~80℃、好ましくは15~65℃が好適であり、最終的に水洗又はアルコール洗浄を行い、乾燥処理させて、半導体チップ実装基板が得られる。
 なお、上述したように、本実施形態に係る仮固定用樹脂組成物によれば、有機基板からの剥離を良好に行うことができ、有機基板への仮固定材の残存を抑制できるため、洗浄工程を省略することが可能となる。
 本実施形態においては、半導体チップが実装、封止された半導体チップ実装基板55は、更にダイシングによって半導体素子60に個片化される(図5の(f)及び(g))。
 図5の(h)は、上記工程を経て製造された電子機器装置100を模式的に示す断面図である。電子機器装置100は、配線基板70上に複数の半導体素子60がはんだボール65を介して配置されている。
 以上、本開示の実施形態について説明したが、本開示は必ずしも上述した実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更を行ってもよい。
 以下、実施例及び比較例によって、本開示をさらに具体的に説明するが、本開示は以下の実施例に限定されるものではない。
[アクリルゴムK-1の合成]
 撹拌機、温度計、窒素置換装置(窒素流入管)及び水分受容器付きの還流冷却器を備えた500ccのセパラブルフラスコ内に、脱イオン水200g、アクリル酸ブチル70g、メタクリル酸メチル10g、2-ヒドロキシエチルメタクリレート10g、グリシジルメタクリレート10g、1.8%ポリビニルアルコール水溶液1.94g、ラウリルパーオキサイド0.2g、及びn-オクチルメルカプタン0.06gを配合した。続いて、60分間にわたってNガスをフラスコに吹き込んで系内の空気を除去した後、系内温度を65℃に昇温して5時間重合を行った。更に、系内温度を90℃に昇温して2時間攪拌を続け重合を完結させた。重合反応により得られた透明のビーズをろ過により分離し、脱イオン水で洗浄した後、真空乾燥機で50℃6時間乾燥させ、アクリルゴムK-1を得た。
 アクリルゴムK-1の重量平均分子量をGPCで測定したところ、重量平均分子量はポリスチレン換算で40万であった。また、アクリルゴムK-1のTgは-28℃であった。
(実施例1~4、比較例1~3)
[基板搬送用サポートテープの作製]
 表1に示す質量部の組成で、仮固定材層を形成するためのワニスをそれぞれ調製した。調製したワニスを、支持フィルムとしてのポリイミドフィルム(東レ・デュポン株式会社製、商品名:100EN、厚さ25μm)上に塗布し、90℃で5分間、120℃で5分間加熱乾燥することによって、厚さ60μmの仮固定材層を形成した。その後、仮固定材層上に保護フィルムを貼り合わせ、支持フィルム、仮固定材層及び保護フィルムの構成を有する基板搬送用サポートテープを得た。
Figure JPOXMLDOC01-appb-T000002
 表1に記載の各成分の詳細は以下のとおりである。
(熱可塑性樹脂)
アクリルゴムK-1:上記で合成したアクリルゴム(GPCによる重量平均分子量40万、グリシジルメタクリレート10質量%、Tg-28℃)
(熱硬化性樹脂)
EXA-830CRP:ビスフェノールF型エポキシ樹脂(DIC株式会社製、商品名)
YDCN-700-10:クレゾールノボラック型多官能エポキシ樹脂(新日鉄住金化学株式会社製、商品名)
(硬化剤)
HE100-30:フェノールアラルキル樹脂(エア・ウォーター株式会社製、商品名)
(無機フィラー)
YA050C-HHG:ビニルシラン表面処理シリカフィラー(アドマッテクス株式会社製、商品名、平均粒子径50nm)
SC2050-HLG:エポキシシラン表面処理シリカフィラー(アドマッテクス株式会社製、商品名、平均粒子径500nm)
Y10SV-AH1:ビニルシラン表面処理シリカフィラー(アドマッテクス株式会社製、商品名、平均粒子径10nm)
YA050C-MJC:エポキシシラン表面処理シリカフィラー(アドマッテクス株式会社製、商品名、平均粒子径50nm)
SC2050-HNK:フェニルアミノシラン表面処理シリカフィラー(アドマッテクス株式会社製、商品名、平均粒子径500nm)
(硬化促進剤)
2PZ-CN:イミダゾール系硬化促進剤(四国化成工業株式会社製、商品名)
 作製した実施例及び比較例の基板搬送用サポートテープについて、加熱後の弾性率、加熱後の90°剥離強度、リフロー時の剥離の有無、及び、リフロー後の剥離性を、以下に示す方法で評価した。評価結果を表2に示す。
[加熱後の弾性率の測定]
 弾性率は、以下の手順で測定した。まず、厚さ60μmの仮固定材層を、80℃で4枚ラミネートすることにより、厚さ240μmのフィルムを作製した。これを、130℃のオーブンで30分、さらに170℃で2時間加熱した後、厚さ方向に4mm幅、長さ33mmに切り出した。切り出したフィルムを動的粘弾性装置(商品名:Rheogel-E4000、(株)UMB製)にセットし、引張り荷重をかけて、周波数10Hz、昇温速度5℃/分で測定し、25℃での測定値を記録した。
[加熱後の90°剥離強度の測定]
 有機基板と仮固定材層との間、及び、支持フィルムと仮固定材層との間の90°剥離強度を下記の方法により評価した。ソルダーレジストAUS308(太陽インキ(株)製、商品名:PSR-4000 AUS308)の表面を有する厚さ1000μmの有機基板(材質:ガラスエポキシ基板)をロールラミネーター(大成ラミネーター株式会社製、VA-400III)のステージ上に置き、仮固定材層が有機基板側に貼り付くように、100℃の温度、0.4MPaの圧力、0.15m/minで、保護フィルムを剥離した基板搬送用サポートテープをラミネートした。得られたサンプルを130℃で30分間加熱し、続いて170℃で2時間加熱した後、10mm幅に切り出し、測定用フィルムとした。測定用フィルムを、剥離角度が90°となるように設定した剥離試験機で300mm/分の速度で剥離試験を実施し、そのときの剥離強度を90°剥離強度とした。剥離強度は、有機基板から仮固定材層を剥離させたときの強度(有機基板/仮固定材層90°剥離強度)、及び、仮固定材層から支持フィルムを剥離させたときの強度(支持フィルム/仮固定材層90°剥離強度)をそれぞれ測定した。
[リフロー時の剥離の有無の評価]
 90°剥離強度の測定に用いたものと同じサンプルを用意した。このサンプルを、温度30℃、湿度55%RHの条件で72時間放置(吸湿処理)した後、260℃に加熱したホットプレート上に、支持フィルムがホットプレートと接するようにして2分間置き、有機基板と支持フィルムとの間(すなわち、有機基板/仮固定材層間、及び/又は、支持フィルム/仮固定材層間)で剥離(発泡)が生じるかどうかを目視にて確認した。そして、以下の評価基準に基づき、リフロー時の剥離状態を評価した。
A:有機基板/仮固定材層間、及び、支持フィルム/仮固定材層間の両方で剥離(発泡)なし。
B:有機基板/仮固定材層間、及び、支持フィルム/仮固定材層間の少なくとも一方で僅かに剥離(発泡)あり。剥離(発泡)部分の面積が全面積の2%以下。
C:有機基板/仮固定材層間、及び、支持フィルム/仮固定材層間の少なくとも一方で剥離(発泡)あり。剥離(発泡)部分の面積が全面積の2%超。
[リフロー後の剥離性の評価]
 90°剥離強度の測定に用いたものと同じサンプルを用意した。このサンプルを、260℃に加熱したホットプレート上に、有機基板がホットプレートと接するようにして2分間置いた。サンプルを室温(25℃)まで冷却した後、有機基板から支持フィルムを剥離し、仮固定材層が有機基板に張り付いて残存するかどうかを目視にて確認した。そして、以下の評価基準に基づき、リフロー後の剥離性を評価した。
A:有機基板に仮固定材層の残存がなかった。
B:有機基板に仮固定材層の一部が残存した。
C:支持フィルム及び仮固定材層間で剥離が生じ、有機基板に仮固定材層の大部分が残存した。
Figure JPOXMLDOC01-appb-T000003
 表2に示した結果から明らかなように、熱可塑性樹脂、熱硬化性樹脂及び無機フィラーを含有し、且つ、130℃で30分間及び170℃で2時間加熱された後の弾性率が25℃において350~550MPaである仮固定材層を備えた実施例の基板搬送用サポートテープによれば、リフロー時の支持フィルム及び有機基板間の剥離を抑制することができ、且つ、リフロー後の有機基板からの仮固定材層の優れた剥離性を得ることができることが確認された。
 1,1a,1b…支持フィルム、2A、2B、2C…仮固定材層、2a…第一樹脂層、2b…第二樹脂層、3…保護フィルム、10,20…サポートテープ、15…積層体、30…有機基板、40…半導体チップ、50…封止材、55…半導体チップ実装基板、60…半導体素子、65…はんだボール、70…配線基板、100…電子機器装置。

Claims (19)

  1.  有機基板に基板搬送用の支持体を仮固定するための仮固定用樹脂組成物であって、
     熱可塑性樹脂、熱硬化性樹脂、及び、無機フィラーを含有し、
     フィルム状にしたときに、130℃で30分間及び170℃で2時間加熱された後の弾性率が25℃において350~550MPaである、仮固定用樹脂組成物。
  2.  硬化促進剤を更に含有する、請求項1に記載の仮固定用樹脂組成物。
  3.  シリコーン化合物を更に含有する、請求項1又は2に記載の仮固定用樹脂組成物。
  4.  フィルム状にしたときに、130℃で30分間及び170℃で2時間加熱された後の、ソルダーレジストAUS308の表面を有する基板との間の25℃における90°剥離強度が30~150N/mである、請求項1~3のいずれか一項に記載の仮固定用樹脂組成物。
  5.  フィルム状にしたときに、130℃で30分間及び170℃で2時間加熱された後の、ポリイミドフィルムとの間の25℃における90°剥離強度が80~400N/mである、請求項1~4のいずれか一項に記載の仮固定用樹脂組成物。
  6.  前記無機フィラーが、表面に有機基を有するものである、請求項1~5のいずれか一項に記載の仮固定用樹脂組成物。
  7.  前記有機基がビニル基又はエポキシ基を含む、請求項6に記載の仮固定用樹脂組成物。
  8.  前記無機フィラーの含有量が、前記熱可塑性樹脂100質量部に対して20~100質量部である、請求項1~7のいずれか一項に記載の仮固定用樹脂組成物。
  9.  有機基板を搬送するための支持フィルムと、該支持フィルム上に設けられた、前記有機基板と前記支持フィルムとを仮固定するための仮固定材層と、備え、
     前記仮固定材層が、請求項1~8のいずれか一項に記載の仮固定用樹脂組成物を用いて形成されたものである、基板搬送用サポートテープ。
  10.  前記支持フィルムが、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリプロピレンフィルム、ポリアミドフィルム又はポリイミドフィルムである、請求項9に記載の基板搬送用サポートテープ。
  11.  130℃で30分間及び170℃で2時間加熱された後の、前記支持フィルムと前記仮固定材層との間の25℃における90°剥離強度が80~400N/mである、請求項9又は10に記載の基板搬送用サポートテープ。
  12.  有機基板に仮固定材を介して支持体を貼り合わせて積層体を得る第1工程と、
     前記積層体の前記仮固定材を加熱する第2工程と、
     前記第2工程を経た前記積層体の前記有機基板上に半導体チップを搭載する第3工程と、
     前記有機基板上に搭載された前記半導体チップを封止材で封止する第4工程と、
     前記第4工程を経た前記積層体の前記有機基板から前記支持体及び前記仮固定材を剥離する第5工程と、
    を備え、
     前記仮固定材は、請求項1~8のいずれか一項に記載の仮固定用樹脂組成物を用いて形成されたものである、電子機器装置の製造方法。
  13.  前記有機基板の厚さが200μm以下である、請求項12に記載の電子機器装置の製造方法。
  14.  前記有機基板がコアレス基板である、請求項12又は13に記載の電子機器装置の製造方法。
  15.  前記支持体が、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリプロピレンフィルム、ポリアミドフィルム又はポリイミドフィルムである、請求項12~14のいずれか一項に記載の電子機器装置の製造方法。
  16.  前記第1工程において、前記支持体は、テープ状であり、連続して供給される、請求項12~15のいずれか一項に記載の電子機器装置の製造方法。
  17.  前記第1工程において、前記支持体としての支持フィルムと、該支持フィルム上に設けられた前記仮固定材からなる仮固定材層とを備えるサポートテープを用いて前記積層体を得る、請求項12~16のいずれか一項に記載の電子機器装置の製造方法。
  18.  前記第2工程を経た前記積層体において、前記有機基板と前記仮固定材との間の25℃における90°剥離強度が30~150N/mである、請求項12~17のいずれか一項に記載の電子機器装置の製造方法。
  19.  前記第2工程を経た前記積層体において、前記支持体と前記仮固定材との間の25℃における90°剥離強度が80~400N/mである、請求項12~18のいずれか一項に記載の電子機器装置の製造方法。
PCT/JP2019/042884 2019-10-31 2019-10-31 仮固定用樹脂組成物、基板搬送用サポートテープ及び電子機器装置の製造方法 WO2021084708A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/771,017 US20220363954A1 (en) 2019-10-31 2019-10-31 Resin composition for provisional fixation, support tape for substrate conveyance and method for producing electronic device
CN201980101702.XA CN114600229A (zh) 2019-10-31 2019-10-31 临时固定用树脂组合物、基板搬送用支承带及电子设备装置的制造方法
JP2021554002A JP7392730B2 (ja) 2019-10-31 2019-10-31 仮固定用樹脂組成物、基板搬送用サポートテープ及び電子機器装置の製造方法
KR1020227006420A KR102662018B1 (ko) 2019-10-31 2019-10-31 가고정용 수지 조성물, 기판 반송용 서포트 테이프 및 전자 기기 장치의 제조 방법
PCT/JP2019/042884 WO2021084708A1 (ja) 2019-10-31 2019-10-31 仮固定用樹脂組成物、基板搬送用サポートテープ及び電子機器装置の製造方法
TW109136831A TW202118844A (zh) 2019-10-31 2020-10-23 暫時固定用樹脂組成物、基板搬送用支撐膠帶及電子機器裝置的製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/042884 WO2021084708A1 (ja) 2019-10-31 2019-10-31 仮固定用樹脂組成物、基板搬送用サポートテープ及び電子機器装置の製造方法

Publications (1)

Publication Number Publication Date
WO2021084708A1 true WO2021084708A1 (ja) 2021-05-06

Family

ID=75715021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042884 WO2021084708A1 (ja) 2019-10-31 2019-10-31 仮固定用樹脂組成物、基板搬送用サポートテープ及び電子機器装置の製造方法

Country Status (6)

Country Link
US (1) US20220363954A1 (ja)
JP (1) JP7392730B2 (ja)
KR (1) KR102662018B1 (ja)
CN (1) CN114600229A (ja)
TW (1) TW202118844A (ja)
WO (1) WO2021084708A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049253A (ja) * 2007-08-22 2009-03-05 Sumitomo Bakelite Co Ltd 接着フィルム
JP2011151125A (ja) * 2010-01-20 2011-08-04 Shin-Etsu Chemical Co Ltd ダイシング・ダイアタッチフィルム、半導体装置、及びダイシング・ダイアタッチ方法
JP2013194103A (ja) * 2012-03-16 2013-09-30 Lintec Corp 接着剤組成物、接着シートおよび半導体装置の製造方法
JP2016216572A (ja) * 2015-05-18 2016-12-22 日立化成株式会社 有機基板用サポート部材
JP2019114599A (ja) * 2017-12-21 2019-07-11 日立化成株式会社 仮固定用樹脂フィルム、仮固定用樹脂フィルムシート、及び半導体装置の製造方法
JP2019151696A (ja) * 2018-03-01 2019-09-12 日立化成株式会社 仮固定用の樹脂組成物、樹脂フィルム及び樹脂フィルムシート

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936667B1 (ja) 1969-12-19 1974-10-02
WO2017191815A1 (ja) * 2016-05-02 2017-11-09 日立化成株式会社 仮固定用樹脂フィルム
JP6960276B2 (ja) * 2017-08-31 2021-11-05 リンテック株式会社 樹脂シート、半導体装置、および樹脂シートの使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049253A (ja) * 2007-08-22 2009-03-05 Sumitomo Bakelite Co Ltd 接着フィルム
JP2011151125A (ja) * 2010-01-20 2011-08-04 Shin-Etsu Chemical Co Ltd ダイシング・ダイアタッチフィルム、半導体装置、及びダイシング・ダイアタッチ方法
JP2013194103A (ja) * 2012-03-16 2013-09-30 Lintec Corp 接着剤組成物、接着シートおよび半導体装置の製造方法
JP2016216572A (ja) * 2015-05-18 2016-12-22 日立化成株式会社 有機基板用サポート部材
JP2019114599A (ja) * 2017-12-21 2019-07-11 日立化成株式会社 仮固定用樹脂フィルム、仮固定用樹脂フィルムシート、及び半導体装置の製造方法
JP2019151696A (ja) * 2018-03-01 2019-09-12 日立化成株式会社 仮固定用の樹脂組成物、樹脂フィルム及び樹脂フィルムシート

Also Published As

Publication number Publication date
KR102662018B1 (ko) 2024-04-30
KR20220081328A (ko) 2022-06-15
JPWO2021084708A1 (ja) 2021-05-06
US20220363954A1 (en) 2022-11-17
CN114600229A (zh) 2022-06-07
TW202118844A (zh) 2021-05-16
JP7392730B2 (ja) 2023-12-06

Similar Documents

Publication Publication Date Title
JP6958674B2 (ja) 電子部品の加工方法
WO2021085539A1 (ja) 基板搬送用サポートテープ及び電子機器装置の製造方法
JP2019151696A (ja) 仮固定用の樹脂組成物、樹脂フィルム及び樹脂フィルムシート
JP2018203973A (ja) 半導体加工用テープ
JP2017203139A (ja) 電子部品支持部材
JP7392730B2 (ja) 仮固定用樹脂組成物、基板搬送用サポートテープ及び電子機器装置の製造方法
JP7392731B2 (ja) 仮固定用樹脂組成物、基板搬送用サポートテープ及び電子機器装置の製造方法
JP2017204612A (ja) 電子部品支持部材
JP6958089B2 (ja) 仮固定用樹脂フィルム、仮固定用樹脂フィルムシート及びそれらの製造方法
JP7342886B2 (ja) 仮固定用樹脂組成物、仮固定用樹脂フィルム及び仮固定用シート並びに半導体装置の製造方法
WO2023132158A1 (ja) 仮固定材形成用樹脂組成物、仮固定材、基板搬送用サポートテープ及び電子機器装置の製造方法
JP7272400B2 (ja) 接着剤組成物及び接着フィルム、並びに接続体の製造方法
JP7035347B2 (ja) 半導体加工用テープ
JP7031141B2 (ja) 半導体加工用テープ
CN118251473A (zh) 热固性黏合剂组合物、层叠膜、连接体及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554002

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950858

Country of ref document: EP

Kind code of ref document: A1