WO2021082946A1 - 一种智能四驱控制方法、系统及车辆 - Google Patents

一种智能四驱控制方法、系统及车辆 Download PDF

Info

Publication number
WO2021082946A1
WO2021082946A1 PCT/CN2020/121387 CN2020121387W WO2021082946A1 WO 2021082946 A1 WO2021082946 A1 WO 2021082946A1 CN 2020121387 W CN2020121387 W CN 2020121387W WO 2021082946 A1 WO2021082946 A1 WO 2021082946A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
vehicle
output torque
friction plate
torque
Prior art date
Application number
PCT/CN2020/121387
Other languages
English (en)
French (fr)
Inventor
邓飞
李红超
钮威龙
尹云
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to EP20882199.1A priority Critical patent/EP4015325A4/en
Publication of WO2021082946A1 publication Critical patent/WO2021082946A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/119Conjoint control of vehicle sub-units of different type or different function including control of all-wheel-driveline means, e.g. transfer gears or clutches for dividing torque between front and rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/184Preventing damage resulting from overload or excessive wear of the driveline
    • B60W30/186Preventing damage resulting from overload or excessive wear of the driveline excessive wear or burn out of friction elements, e.g. clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/30ESP control system
    • B60T2270/302ESP control system for all-wheel drive vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0008Feedback, closed loop systems or details of feedback error signal
    • B60W2050/0011Proportional Integral Differential [PID] controller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0291Clutch temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/26Wheel slip
    • B60W2520/263Slip values between front and rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/029Clutch temperature

Definitions

  • the present invention relates to the field of vehicle technology, in particular to an intelligent four-wheel drive control method, system and vehicle.
  • the four-wheel drive system of the vehicle can distribute the engine power of the vehicle to the required wheels according to the road and vehicle conditions, maximize the four-wheel adhesion, and improve the passability, handling and acceleration of the vehicle.
  • the intelligent four-wheel drive system is a system that can automatically adjust the four-wheel drive mode to meet the four-wheel drive performance while taking into account an excellent driving experience.
  • the existing temperature monitoring methods are mainly: the method of direct measurement by the temperature sensor, by directly monitoring the temperature of the oil where the friction plate is located, to infer and obtain the temperature of the friction plate.
  • the present invention aims to provide an intelligent four-wheel drive control method, system and vehicle to solve the problems of lagging temperature monitoring of the friction plate, poor reliability, and inability to correct the output torque.
  • An intelligent four-wheel drive control method includes:
  • vehicle condition information includes the wheel speed of the front wheels and the wheel speed of the rear wheels of the vehicle;
  • the friction clutch is controlled to output the actual output torque.
  • the step of calculating the temperature of the friction lining of the vehicle according to the front wheel speed, the rear wheel speed and the output torque calculation value includes:
  • the temperature of the friction lining of the vehicle is calculated according to the speed difference between the front and rear axles and the output torque calculation value.
  • the step of calculating the temperature of the friction lining of the vehicle based on the speed difference between the front and rear axles and the calculated value of the output torque includes:
  • the temperature of the friction plate is calculated according to the heat generated by the friction plate and the heat loss of the friction plate.
  • the vehicle condition information further includes: vehicle speed and ambient temperature; after the step of calculating the temperature of the friction lining according to the heat generation of the friction lining and the heat loss of the friction lining, it further includes:
  • an overheat protection signal is sent to the vehicle.
  • step of correcting the calculated value of the output torque according to the temperature of the friction plate to obtain the actual output torque includes:
  • the actual output torque is obtained.
  • the intelligent four-wheel drive control method of the present invention has the following advantages:
  • the intelligent four-wheel drive control method provided by the embodiment of the present invention can calculate the output torque calculation value of the vehicle through the obtained vehicle condition information, and then combine the front wheel speed, the rear wheel speed and the output torque calculation value to calculate the vehicle output torque. Finally, the calculated value of the output torque is corrected according to the temperature of the friction plate to obtain the actual output torque, and the friction clutch of the vehicle is controlled to output the actual output torque.
  • the friction plate The temperature is obtained directly according to the real-time vehicle condition information, with higher accuracy.
  • the calculated value of the output torque is corrected by the temperature of the friction plate, which improves the control accuracy of the output torque, thereby improving the controllability and ability of the whole vehicle. , Which reduces the probability of ablation damage to the friction plate.
  • Another object of the present invention is to provide an intelligent four-wheel drive control system to solve the problems of lagging temperature monitoring of the friction plate, poor reliability, and inability to correct the output torque.
  • An intelligent four-wheel drive control system includes: an acquisition module, a torque calculation module, a temperature calculation module, and a torque control module; wherein,
  • the acquisition module is respectively connected to the torque calculation module and the temperature calculation module, and the torque calculation module is respectively connected to the temperature calculation module and the torque control module;
  • the acquisition module is configured to acquire vehicle condition information of the vehicle, where the vehicle condition information includes the wheel speed of the front wheels and the wheel speed of the rear wheels of the vehicle;
  • the torque calculation module is configured to calculate an output torque calculation value according to the vehicle condition information
  • the temperature calculation module is configured to calculate the friction plate temperature of the vehicle according to the front wheel speed, the rear wheel speed, and the output torque calculation value;
  • the torque calculation module is further configured to correct the calculated value of the output torque according to the temperature of the friction plate to obtain the actual output torque;
  • the torque control module is used to control the friction clutch to output the actual output torque.
  • the temperature calculation module is configured to calculate the temperature of the friction lining of the vehicle according to the front wheel speed, the rear wheel speed and the output torque calculation value, which specifically includes:
  • the temperature calculation module is configured to calculate the front and rear axle speed difference according to the front wheel speed and the rear wheel speed, and calculate the friction plate of the vehicle according to the front and rear axle speed difference and the output torque calculation value Heat
  • the temperature calculation module is further configured to obtain the historical temperature of the oil where the friction plate is located, calculate the heat loss of the friction plate according to the historical temperature, and calculate the heat loss of the friction plate according to the heat generation of the friction plate and the heat loss of the friction plate, Calculate the temperature of the friction plate.
  • vehicle condition information further includes: vehicle speed and ambient temperature
  • system further includes: an overheating protection module; wherein,
  • the overheat protection module is connected to the temperature calculation module
  • the temperature calculation module is further configured to calculate the current oil temperature of the oil where the friction plate is located according to the heat loss of the friction plate, the vehicle speed and the ambient temperature;
  • the overheat protection module is configured to send an overheat protection signal to the vehicle when the temperature of the friction plate meets a first preset condition, and/or the current temperature of the oil meets a second preset condition.
  • the torque calculation module is further configured to correct the calculated value of the output torque according to the temperature of the friction plate to obtain the actual output torque, which specifically includes:
  • the torque calculation module is further configured to calculate a temperature correction coefficient according to the temperature of the friction plate, obtain a temperature compensated output torque according to the calculated value of the output torque and the temperature correction coefficient, and calculate according to the speed difference between the front and rear axles
  • the drag torque obtains the actual output torque according to the drag torque and the temperature-compensated output torque.
  • the intelligent four-wheel drive control system has the same advantages as the above-mentioned intelligent four-wheel drive control method over the prior art, and will not be repeated here.
  • Another object of the present invention is to provide a vehicle to solve the problems of lagging temperature monitoring of the friction lining, poor reliability, and unable to correct the output torque.
  • a vehicle includes: the above-mentioned intelligent four-wheel drive control system.
  • the vehicle has the same advantages as the above-mentioned intelligent four-wheel drive control system over the prior art, which will not be repeated here.
  • Fig. 1 is a flow chart of the steps of an intelligent four-wheel drive control method according to an embodiment of the present invention
  • FIG. 2 is a flow chart of the steps of another intelligent four-wheel drive control method according to an embodiment of the present invention.
  • Fig. 3 is a structural block diagram of an intelligent four-wheel drive control system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the control process of an intelligent four-wheel drive control system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a calculation model of the friction plate temperature in the temperature calculation module according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a calculation model of a torque calculation module according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a calculation model of the current temperature of the oil in the temperature calculation module according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a calculation model of an overheat protection module according to an embodiment of the present invention.
  • Fig. 9 schematically shows a block diagram of a computing processing device for executing the method according to the present invention.
  • Fig. 10 schematically shows a storage unit for holding or carrying program codes for implementing the method according to the present invention.
  • 301-acquisition module 3011-car condition information, 302-torque calculation module, 3021-output torque calculation value, 3022-drag torque, 3023-temperature-compensated output torque, 3024-actual output torque, 303-temperature calculation module, 3031-front and rear Axle speed difference, 3032-friction plate heat, 3033-friction plate heat loss, 3034-friction plate temperature, 3035-oil absorption temperature, 3036-oil heat loss, 3037-oil current temperature, 304-torque control module , 305-Overheating protection module.
  • FIG. 1 there is shown a flow chart of the steps of an intelligent four-wheel drive control method according to an embodiment of the present invention.
  • the intelligent four-wheel drive control method provided by the embodiment of the present invention is mainly applied to vehicles, and may specifically include:
  • Step 101 Obtain vehicle condition information of the vehicle, where the vehicle condition information includes the wheel speed of the front wheels and the wheel speed of the rear wheels of the vehicle.
  • the intelligent four-wheel drive control method provided by the embodiment of the present invention is mainly used in the intelligent four-wheel drive system of a vehicle.
  • the intelligent four-wheel drive system includes an electronic control unit and an electronic torque manager.
  • the electronic torque manager has a set of friction clutches and electric
  • the torque control manager can control the torque transmitted by the friction clutch in real time according to the electronic control signal sent by the electronic control unit.
  • the electronic control unit includes multiple modules. Each module automatically controls the four-wheel drive system according to different road conditions and vehicle conditions. It can not only ensure the vehicle's passability, maneuverability, and acceleration, but also eliminate steering, braking, vibration and other phenomena. Excellent driving experience and four-wheel drive performance.
  • the vehicle condition information includes real-time vehicle condition information and basic vehicle information.
  • the real-time vehicle condition information may include: vehicle speed, wheel speed, steering wheel angle signal, gear position signal, engine torque, ambient temperature, shutdown Time and other basic information of the vehicle may include: gear ratios, rolling radius, wheelbase, and turning angle ratios of each gear of the transmission.
  • Step 102 Calculate the output torque calculation value according to the vehicle condition information.
  • the calculated value of the output torque of the friction clutch is calculated according to the obtained vehicle condition information, for example, wheel speed, engine torque, gear position signal, and rotation angle signal.
  • Step 103 Calculate the friction plate temperature of the vehicle according to the wheel speed of the front wheels, the wheel speed of the rear wheels, and the calculated value of the output torque.
  • the speed difference between the front and rear axles determines the pressing force and misalignment of the friction plate in the friction clutch, and the heating of the friction plate It is mainly caused by friction.
  • the temperature of the friction lining is mainly caused by the friction lining oil stirring and heating.
  • Step 104 Correct the calculated value of the output torque according to the temperature of the friction lining to obtain the actual output torque.
  • the friction coefficient of the friction lining is affected by the temperature of the friction lining. Different temperatures correspond to different friction coefficients.
  • the friction coefficient affects the accuracy of the output torque.
  • the embodiment of the present invention uses the temperature of the friction lining to affect the output torque. The calculated value is corrected, and the actual output torque can be adjusted according to the temperature of the friction lining to avoid excessive torque output when the temperature of the friction lining is high, which improves the control accuracy of the actual output torque and reduces the occurrence of the friction lining.
  • the probability of ablation improves the handling and escape ability of the vehicle.
  • Step 105 Control the friction clutch of the vehicle to output the actual output torque.
  • the torque control module in the electronic control unit will obtain the current required by the friction clutch according to the calculated actual output torque, and control the friction clutch to output the corresponding actual output through the corresponding current. Torque, while meeting the actual needs of the vehicle, reduces the probability of ablation damage to the friction plate.
  • the intelligent four-wheel drive control method includes at least the following advantages:
  • the intelligent four-wheel drive control method can calculate the output torque calculation value of the vehicle through the obtained vehicle condition information, and then combine the front wheel speed, the rear wheel speed and the output torque calculation value to calculate the vehicle Finally, the calculated value of the output torque is corrected according to the temperature of the friction plate to obtain the actual output torque, and the friction clutch of the vehicle is controlled to output the actual output torque.
  • the friction The temperature of the disc is directly obtained according to the real-time vehicle condition information, which has higher accuracy.
  • the calculated value of the output torque is corrected by the temperature of the friction disc, which improves the control accuracy of the output torque, thereby improving the handling and relief of the whole vehicle Ability to reduce the probability of ablation damage to the friction plate.
  • FIG. 2 there is shown a step flow chart of another intelligent four-wheel drive control method according to an embodiment of the present invention.
  • Another intelligent four-wheel drive control method provided by an embodiment of the present invention is applied to a vehicle, and may specifically include:
  • Step 201 Obtain vehicle condition information of the vehicle, where the vehicle condition information includes the wheel speed of the front wheels and the wheel speed of the rear wheels of the vehicle.
  • step 101 in the first embodiment refers to step 101 in the first embodiment.
  • Step 202 Calculate the output torque calculation value according to the vehicle condition information.
  • step 102 refers to step 102 in the first embodiment.
  • Step 203 Calculate the front and rear axle speed difference according to the front wheel speed and the rear wheel speed.
  • the front and rear axle speed difference is the difference between the average speed of the front wheels and the rear wheels.
  • the front and rear axle speed difference is not only the main factor for the heating of the friction plate, but also the main parameter for calculating the drag torque.
  • the drag torque is also a part of the actual output torque.
  • the embodiment of the present invention Through the introduction of the front and rear axle speed difference and the drag torque, the main purpose is to improve the calculation accuracy of the friction plate temperature and improve the accuracy of the actual output torque.
  • Step 204 Calculate the calorific value of the friction plate of the vehicle according to the speed difference between the front and rear axles and the calculated output torque.
  • the calculated value of the front and rear axle speed difference and the output torque are mainly used to calculate the sliding friction work on the friction plate.
  • the sliding friction work is the main source of the temperature rise of the friction plate.
  • the friction plate heat can be calculated by the sliding friction work.
  • Step 205 Obtain the historical temperature of the oil where the friction plate is located.
  • the heat loss of the friction lining needs to be considered.
  • the heat of the friction lining is mainly dissipated through the oil where the friction lining is located.
  • Step 206 Calculate the heat loss of the friction plate according to the historical temperature.
  • the real-time temperature of the oil needs to be obtained based on the heat loss of the friction lining.
  • the historical temperature of the oil is mainly used.
  • Step 207 Calculate the temperature of the friction plate according to the heat generated by the friction plate and the heat loss of the friction plate.
  • the change value of the friction plate temperature can be calculated by subtracting the heat loss of the friction plate from the heat generated by the friction plate, and then the change value is integrated to calculate the temperature of the friction plate.
  • the method for calculating the temperature of the friction lining takes into account the influence of the speed difference between the front and rear axles on the temperature of the friction lining, and improves the accuracy of the calculation of the temperature of the friction lining. , Real-time performance is better, and lightweight features are more prominent.
  • Step 208 Calculate the current oil temperature of the oil where the friction plate is located according to the heat loss of the friction plate, the vehicle speed and the ambient temperature.
  • the current temperature of the oil where the friction plate is located can be calculated more accurately by combining the vehicle speed and the ambient temperature.
  • the main heat source of the oil is friction.
  • the heat loss of the fin is friction.
  • the vehicle speed and the ambient temperature will have a certain impact on the heat loss of the oil.
  • the method for calculating the current oil temperature of the oil provided by the embodiment of the present invention meets the premise of the accuracy of the calculation of the current oil temperature. The calculation is simple and the cost is low.
  • Step 209 When the temperature of the friction plate meets a first preset condition, and/or the current temperature of the oil meets a second preset condition, send an overheating protection signal to the vehicle.
  • the vehicle when the temperature of the friction plate is too high, or the current temperature of the oil is too high, that is, when the temperature of the friction plate meets the first preset condition, and/or, when the current temperature of the oil meets the second preset condition, The vehicle is protected from overheating.
  • the temperature of the friction lining is too high or the current temperature of the oil is too high, the driver is reminded to slow down and reduce the probability of ablation damage to the friction lining.
  • the first preset condition is that the temperature of the friction plate is> 190°C
  • the second preset condition is that the current temperature of the oil is> 130°C.
  • an overheating protection signal will be issued to the vehicle to remind the driver that the four-wheel drive system is overheated and please slow down.
  • the sending of the overheat protection signal is released.
  • the overheating protection signal can also be an overheating warning signal in addition to displaying text information on the vehicle instrument screen.
  • the method further includes:
  • Step 210 Calculate a temperature correction coefficient according to the temperature of the friction plate.
  • the temperature correction coefficient calculated by the temperature of the friction lining can improve the accuracy of the output torque calculation.
  • the temperature correction coefficient can be calibrated according to the actual conditions of the vehicle. , In order to improve the accuracy of the temperature correction coefficient.
  • Step 211 Obtain a temperature-compensated output torque according to the calculated value of the output torque and the temperature correction coefficient.
  • the calculated value of the output torque is multiplied by the temperature correction coefficient to obtain the temperature-compensated output torque.
  • the temperature-compensated output torque is relative to the calculated value of the output torque, taking into account the influence of the friction plate temperature on the actual output torque, which improves the actual output torque.
  • the calculation accuracy of the vehicle can prevent the torque output from the vehicle from being too large or unable to meet the actual needs of the vehicle.
  • Step 212 Calculate the drag torque according to the speed difference between the front and rear axles.
  • the actual output torque also includes the drag torque caused by the front and rear axle speed difference. Taking the drag torque into the actual output torque can further improve the calculation accuracy of the actual output torque and improve the control accuracy of the vehicle.
  • Step 213 Obtain the actual output torque according to the drag torque and the temperature-compensated output torque.
  • the actual output torque with higher accuracy can be obtained by summing the drag torque and the temperature compensated output torque. Improve the vehicle's control accuracy of output torque.
  • Step 214 Control the friction clutch of the vehicle to output the actual output torque.
  • the intelligent four-wheel drive control method includes at least the following advantages:
  • the intelligent four-wheel drive control method calculates the friction lining temperature and the drag torque through the speed difference between the front and rear axles, and then obtains the temperature-compensated output torque according to the friction lining temperature, and then compensates the output torque according to the drag torque and the temperature to obtain The actual output torque.
  • the actual output torque is based on the calculated value of the output torque, and the temperature compensation of the friction plate is carried out, and finally combined with the drag torque, which improves the control accuracy of the actual output torque, and provides the controllability and relief of the vehicle. ability.
  • the probability of ablation damage to the friction plate is reduced, and the service life of the friction clutch is increased.
  • FIG. 3 a structural block diagram of an intelligent four-wheel drive control system according to an embodiment of the present invention is shown.
  • the intelligent four-wheel drive control system provided by the embodiment of the present invention is mainly used for vehicles.
  • the intelligent four-wheel drive control system includes: an acquisition module 301, a torque calculation module 302, a temperature calculation module 303, and a torque control module 304; Among them, the acquisition module 301 is connected to the torque calculation module 302 and the temperature calculation module 303 respectively, and the torque calculation module 302 is connected to the temperature calculation module 303 and the torque control module 304 respectively.
  • FIG. 4 a schematic diagram of the control process of an intelligent four-wheel drive control system according to an embodiment of the present invention is shown.
  • the acquisition module 301 is used to acquire vehicle condition information 3011 of the vehicle.
  • the vehicle condition information 3011 includes the front wheel speed and the rear wheel speed of the vehicle. In practical applications, the vehicle condition information 3011 also includes: Vehicle speed, steering wheel angle signal, gear position signal, engine torque, ambient temperature, downtime, gear ratio of each gear of the transmission, rolling radius, wheelbase and angle ratio, etc.
  • the torque calculation module 302 is used to calculate the output torque calculation value 3021 according to the vehicle condition information 3011. Specifically, the torque calculation module 302 may calculate the output torque calculation value according to the wheel speed, engine torque, gear signal and rotation angle signal of the vehicle, etc. 3021.
  • the temperature calculation module 303 is configured to calculate the friction plate temperature 3034 of the vehicle according to the front wheel speed, the rear wheel speed and the output torque calculation value 3021.
  • the temperature calculation module 303 is used to calculate the front and rear axle speed difference 3031 according to the front wheel speed and the rear wheel speed, and then calculate the heat generation value 3032 of the friction plate of the vehicle according to the front and rear axle speed difference 3031 and the output torque calculation value 3021,
  • the heat generated by the friction lining 3032 is not only related to the calculated value 3021 of the output torque, but also related to the friction heating of the friction lining caused by the front and rear axle speed difference 3031.
  • the embodiment of the present invention takes the front and rear axle speed difference 3031 into consideration. In the calculation of the calorific value 3032, the accuracy of the calculation of the friction plate temperature 3034 is improved.
  • the temperature calculation module 303 is also used to obtain the historical temperature of the oil where the friction plate is located, according to According to the historical temperature, the friction plate heat loss 3033 is calculated, and the friction plate temperature 3034 is calculated according to the heat generation amount 3032 of the friction plate and the heat loss 3033 of the friction plate.
  • FIG. 5 shows a schematic diagram of the calculation model of the friction plate temperature in the temperature calculation module according to the embodiment of the present invention
  • the input signals are the front and rear axle speed difference 3031 and the output torque calculation value 3021
  • the front and rear axle speed difference 3031 obtains the correction coefficient through function calculation, for example, the correction coefficient is selected through the 1-D lookup table function in Matlab, and the correction coefficient is multiplied by the output torque calculation value 3021 to obtain the friction plate actually acting on the friction plate Input the torque, and then take the product of the friction lining input torque and the front and rear axle speed difference 3031 to obtain the corresponding sliding friction work.
  • the sliding friction work is the main source of the friction lining heat 3032, and the friction lining heat loss is subtracted from the sliding friction work. 3033, the change value of the friction plate temperature 3034 can be obtained, and the friction plate temperature 3034 can be obtained after the change value is integrated.
  • the torque calculation module 302 is further configured to correct the output torque calculation value 3021 according to the friction plate temperature 3034 to obtain the actual output torque 3024.
  • the torque calculation module 302 is also used to calculate a temperature correction coefficient according to the friction plate temperature 3034, obtain a temperature compensation output torque 3023 according to the output torque calculation value 3021 and the temperature correction coefficient, and according to the front and rear axle speed difference 3031 Calculate the drag torque 3022, and obtain the actual output torque 3024 according to the drag torque 3022 and the temperature-compensated output torque 3023.
  • FIG. 6 shows a schematic diagram of the calculation model of the torque calculation module according to the embodiment of the present invention
  • the torque calculation module 302 includes the correction of the friction plate temperature 3034 to the output torque calculation value 3021
  • the front and rear axle speed difference 3031 calculates the drag torque 3022 in two parts.
  • the input signal includes: friction plate temperature 3034 and front and rear axle speed difference 3031
  • friction plate temperature 3034 obtains the temperature correction coefficient through function calculation, for example, the temperature correction coefficient is selected through the 1-D lookup table function in Matlab, where the temperature correction The coefficient can be calibrated according to the actual condition of the vehicle to improve the accuracy of the temperature correction coefficient.
  • the calculated output torque 3021 is multiplied by the temperature correction coefficient to obtain the temperature-compensated output torque 3023.
  • the temperature-compensated output torque 3023 and the drag torque 3022 are summed to obtain the actual output torque 3024.
  • the front and rear axle speed difference 3031 required by the torque calculation module 302 can directly call the front and rear axle speed difference 3031 calculated by the temperature calculation module 303, or it can be recalculated based on the front wheel speed and the rear wheel speed.
  • the embodiment does not specifically limit this.
  • PID Proportion, Integral, Differential
  • the torque control module 304 is used to control the friction clutch to output the actual output torque 3024 to meet the actual demand of the vehicle. Specifically, the torque control module 304 can obtain the friction clutch demand according to the calculated actual output torque 3024. Through the corresponding current control friction clutch to output the corresponding actual output torque 3024, while meeting the actual demand of the vehicle, it reduces the probability of ablation damage to the friction plate.
  • the temperature calculation module 303 is also used to calculate the current oil temperature of the oil where the friction plate is located according to the heat loss 3033 of the friction plate, the vehicle speed and the ambient temperature 3037 ;
  • the friction lining heat loss 3033 is used to calculate the oil absorption temperature 3035, and the vehicle body and ambient temperature are used to calculate the oil heat loss 3036.
  • the oil absorption temperature 3035 is subtracted from the oil heat loss 3036 to obtain the current oil temperature 3037.
  • FIG. 7 shows a schematic diagram of a calculation model of the current temperature of the oil in the temperature calculation module according to an embodiment of the present invention
  • the input signal in the temperature calculation module 303 is: oil absorption temperature 3035 and vehicle condition information 3011, where the vehicle condition information 3011 specifically includes: vehicle speed and ambient temperature.
  • the temperature calculation module 303 pre-stores the corresponding relationship between vehicle speed and ambient temperature and oil heat loss 3036.
  • Matlab -D lookup table function takes the value of the oil heat loss 3036 corresponding to the current vehicle speed and ambient temperature, then calculates the difference between the oil absorption temperature 3035 and the oil heat loss 3036, and divides the difference by the specific heat capacity of the oil , The temperature change value of the oil can be obtained, and then the temperature change value of the oil is integrated to obtain the current temperature of the oil 3037.
  • the intelligent four-wheel drive control system further includes: an overheating protection module 305, the overheating protection module 305 is connected to the temperature calculation module 303, the overheating protection module 305 is used to, when the friction plate temperature 3034 meets the first preset condition , And/or, when the current oil temperature 3037 satisfies the second preset condition, send an overheat protection signal to the vehicle.
  • the first preset condition and the second preset condition are collectively referred to as preset conditions.
  • FIG. 8 shows a schematic diagram of the calculation model of the overheating protection module according to the embodiment of the present invention
  • the input signals of the overheating protection module 305 are the friction plate temperature 3034 and the current oil temperature 3037 , Compare the friction plate temperature 3034 with the first preset condition, and compare the current oil temperature 3037 with the second preset condition.
  • an overheat protection signal is sent to the vehicle.
  • the vehicle’s intelligent four-wheel drive system enters the overheating protection mode and sends the overheating signal to the vehicle.
  • the vehicle instrument receives and displays the thermal protection signal, or the vehicle indicator light will give a thermal protection alarm to remind the driver to slow down.
  • the intelligent four-wheel drive system automatically releases the overheating protection mode.
  • the overheat protection module provided by the embodiment of the present invention improves the automatic protection capability of the intelligent four-wheel drive system when overloaded, and prolongs the service life of the friction clutch.
  • the acquisition module 301, the torque calculation module 302, the temperature calculation module 303, the torque control module 304, and the overheat protection module 305 are all integrated in the electronic control unit of the intelligent four-wheel drive system. Through the parallel operation of multiple modules, Improve the speed of calculation and save the time cost of calculation.
  • the intelligent four-wheel drive control system includes at least the following advantages:
  • the intelligent four-wheel drive control system provided by the embodiment of the present invention can calculate the output torque calculation value of the vehicle through the obtained vehicle condition information, and then calculate the front and rear axle speed difference in combination with the front wheel speed and the rear wheel speed, and then pass The calculated value of the speed difference between the front and rear axles and the output torque is used to calculate the friction plate temperature of the vehicle. Finally, the calculated value of the output torque is corrected according to the friction plate temperature to obtain the actual output torque and control the friction clutch of the vehicle to output the actual output torque.
  • the temperature of the friction lining is directly obtained based on real-time vehicle condition information, which has higher accuracy.
  • the calculated value of the output torque is corrected by the temperature of the friction lining, which improves the control of the output torque. Accuracy, which in turn improves the handling and escape ability of the vehicle, and reduces the probability of ablation damage to the friction plate.
  • the description is relatively simple, and for related parts, please refer to the part of the description of the method embodiment.
  • the embodiment of the present invention also provides a vehicle, including the intelligent four-wheel drive control system described in the above embodiment, wherein the specific structure and basic principles of the intelligent four-wheel drive control system have been described in detail in the foregoing embodiments. The embodiments are not repeated here.
  • the temperature of the friction lining can be directly obtained according to the real-time vehicle condition information, and the calculated value of the output torque is corrected by the temperature of the friction lining, which improves the output torque.
  • the control precision improves the handling and escape ability of the whole vehicle, and reduces the probability of ablation damage to the friction plate.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement without creative work.
  • the various component embodiments of the present invention may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some or all of the components in the computing processing device according to the embodiments of the present invention.
  • DSP digital signal processor
  • the present invention can also be implemented as a device or device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present invention may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.
  • FIG. 9 shows a computing processing device that can implement the method according to the present invention.
  • the computing processing device traditionally includes a processor 1010 and a computer program product in the form of a memory 1020 or a computer readable medium.
  • the memory 1020 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for executing the program code 1031 of any method step in the above method.
  • the storage space 1030 for program codes may include various program codes 1031 respectively used to implement various steps in the above method. These program codes can be read from or written into one or more computer program products.
  • Such computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards, or floppy disks.
  • Such a computer program product is usually a portable or fixed storage unit as described with reference to FIG. 10.
  • the storage unit may have storage segments, storage spaces, etc., arranged similarly to the memory 1020 in the computing processing device of FIG. 9.
  • the program code can be compressed in an appropriate form, for example.
  • the storage unit includes computer-readable code 1031', that is, code that can be read by a processor such as 1010, which, when run by a computing processing device, causes the computing processing device to execute the method described above. The various steps.
  • any reference signs placed between parentheses should not be constructed as a limitation to the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” preceding an element does not exclude the presence of multiple such elements.
  • the invention can be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In the unit claims that list several devices, several of these devices may be embodied in the same hardware item.
  • the use of the words first, second, and third, etc. do not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

一种智能四驱控制方法、系统及车辆,智能四驱控制方法通过获取的车辆的车况信息,可以计算出车辆的输出扭矩计算值,再结合前轮轮速、后轮轮速和输出扭矩计算值,计算车辆的摩擦片温度,最后,再根据摩擦片温度对输出扭矩计算值进行修正,得到实际输出扭矩,并控制车辆的摩擦离合器输出实际输出扭矩。在智能四驱控制方法中,摩擦片的温度是根据实时的车况信息直接获得的,精确度更高,同时,通过摩擦片温度对输出扭矩计算值进行修正,提高了输出扭矩的控制精度,进而提高了整车的操控性和脱困能力,减少了摩擦片发生烧蚀损坏的概率。

Description

一种智能四驱控制方法、系统及车辆
本申请要求在2019年10月31日提交中国专利局、申请号为201911053493.4、发明名称为“一种智能四驱控制方法、系统及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及车辆技术领域,特别涉及一种智能四驱控制方法、系统及车辆。
背景技术
车辆四驱系统可以将车辆的发动机动力,根据路况和车况分配给需要的车轮,最大化地发挥四轮附着力,提升车辆的通过性、操控性和加速性。其中,智能四驱系统是一种可以自动对四驱模式进行调整的系统,在满足四驱性能的同时,兼顾优良的驾驶体验。
现有的智能四驱控制系统中,通常需要对摩擦片离合器的温度进行监控,以防止摩擦片烧蚀烧结,或者四驱系统早期失效的问题发生。现有的温度监控方式主要为:温度传感器直接测量的方式,通过直接监测摩擦片所在油液的温度,来推测并获得摩擦片的温度。
然而,上述的温度监控方式中,由于所监测的摩擦片的温度是由油液的温度推测的,存在着监控滞后、可靠性差的问题,由于摩擦片温度的可靠性差,现有也缺少一种以摩擦片温度为基础对输出扭矩进行修正的方法。
发明内容
有鉴于此,本发明旨在提出一种智能四驱控制方法、系统及车辆,以解决摩擦片温度监控滞后、可靠性差,无法对输出扭矩进行修正的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种智能四驱控制方法,所述方法包括:
获取车辆的车况信息,所述车况信息包括所述车辆的前轮轮速和后轮轮速;
根据所述车况信息计算输出扭矩计算值;
根据所述前轮轮速、所述后轮轮速和所述输出扭矩计算值,计算所述车辆的摩擦片温度;
根据所述摩擦片温度对所述输出扭矩计算值进行修正,得到实际输出扭矩;
控制摩擦离合器输出所述实际输出扭矩。
进一步的,所述根据所述前轮轮速、所述后轮轮速和所述输出扭矩计算值,计算所述车辆的摩擦片温度的步骤,包括:
根据所述前轮轮速和所述后轮轮速计算前后轴速差;
根据所述前后轴速差和所述输出扭矩计算值,计算所述车辆的摩擦片温度。
进一步的,所述根据所述前后轴速差和所述输出扭矩计算值,计算所述车辆的摩擦片温度的步骤,包括:
根据所述前后轴速差和所述输出扭矩计算值,计算所述车辆的摩擦片发热量;
获取所述摩擦片所在油液的历史温度;
根据所述历史温度,计算所述摩擦片热散失;
根据所述摩擦片发热量和所述摩擦片热散失,计算所述摩擦片温度。
进一步的,所述车况信息还包括:车速和环境温度;所述根据所述摩擦片发热量和所述摩擦片热散失,计算所述摩擦片温度的步骤之后,还包括:
根据所述摩擦片热散失、所述车速和所述环境温度,计算所述摩擦片所在油液的油液当前温度;
在所述摩擦片温度满足第一预设条件,和/或,所述油液当前温度满足第二预设条件时,向所述车辆发送过热保护信号。
进一步的,所述根据所述摩擦片温度对所述输出扭矩计算值进行修正,获得实际输出扭矩的步骤,包括:
根据所述摩擦片温度,计算温度修正系数;
根据所述输出扭矩计算值和所述温度修正系数,获得温度补偿输出扭矩;
根据所述前后轴速差,计算拖曳扭矩;
根据所述拖曳扭矩和所述温度补偿输出扭矩,获得所述实际输出扭矩。
相对于现有技术,本发明所述的智能四驱控制方法具有以下优势:
本发明实施例提供的智能四驱控制方法,通过获取的车辆的车况信息, 可以计算出车辆的输出扭矩计算值,再结合前轮轮速、后轮轮速和输出扭矩计算值,计算车辆的摩擦片温度,最后,再根据摩擦片温度对输出扭矩计算值进行修正,得到实际输出扭矩,并控制车辆的摩擦离合器输出实际输出扭矩,本发明实施例提供的智能四驱控制方法中,摩擦片的温度是根据实时的车况信息直接获得的,精确度更高,同时,通过摩擦片温度对输出扭矩计算值进行修正,提高了输出扭矩的控制精度,进而提高了整车的操控性和脱困能力,减少了摩擦片发生烧蚀损坏的概率。
本发明的另一目的在于提出一种智能四驱控制系统,以解决摩擦片温度监控滞后、可靠性差,无法对输出扭矩进行修正的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种智能四驱控制系统,所述系统包括:获取模块、扭矩计算模块、温度计算模块和扭矩控制模块;其中,
所述获取模块分别与所述扭矩计算模块和所述温度计算模块连接,所述扭矩计算模块分别与所述温度计算模块和所述扭矩控制模块连接;
所述获取模块用于,获取车辆的车况信息,所述车况信息包括所述车辆的前轮轮速和后轮轮速;
所述扭矩计算模块用于,根据所述车况信息计算输出扭矩计算值;
所述温度计算模块用于,根据所述前轮轮速、所述后轮轮速和所述输出扭矩计算值,计算所述车辆的摩擦片温度;
所述扭矩计算模块还用于,根据所述摩擦片温度对所述输出扭矩计算值进行修正,得到实际输出扭矩;
所述扭矩控制模块用于,控制摩擦离合器输出所述实际输出扭矩。
进一步的,所述温度计算模块用于,根据所述前轮轮速、所述后轮轮速和所述输出扭矩计算值,计算所述车辆的摩擦片温度,具体包括:
所述温度计算模块用于,根据所述前轮轮速和所述后轮轮速计算前后轴速差,根据所述前后轴速差和所述输出扭矩计算值,计算所述车辆的摩擦片发热量;
所述温度计算模块还用于,获取所述摩擦片所在油液的历史温度,根据所述历史温度,计算所述摩擦片热散失,根据所述摩擦片发热量和所述摩擦片热散失,计算所述摩擦片温度。
进一步的,所述车况信息还包括:车速和环境温度,所述系统还包括: 过热保护模块;其中,
所述过热保护模块与所述温度计算模块连接;
所述温度计算模块还用于,根据所述摩擦片热散失、所述车速和所述环境温度,计算所述摩擦片所在油液的油液当前温度;
所述过热保护模块用于,在所述摩擦片温度满足第一预设条件,和/或,所述油液当前温度满足第二预设条件时,向所述车辆发送过热保护信号。
进一步的,所述扭矩计算模块还用于,根据所述摩擦片温度对所述输出扭矩计算值进行修正,得到实际输出扭矩,具体包括:
所述扭矩计算模块还用于,根据所述摩擦片温度,计算温度修正系数,根据所述输出扭矩计算值和所述温度修正系数,获得温度补偿输出扭矩,根据所述前后轴速差,计算拖曳扭矩,根据所述拖曳扭矩和所述温度补偿输出扭矩,获得所述实际输出扭矩。
所述智能四驱控制系统与上述智能四驱控制方法相对于现有技术所具有的优势相同,在此不再赘述。
本发明的另一目的在于提出一种车辆,以解决摩擦片温度监控滞后、可靠性差,无法对输出扭矩进行修正的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种车辆,包括:上述的智能四驱控制系统。
所述车辆与上述智能四驱控制系统相对于现有技术所具有的优势相同,在此不再赘述。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例所述的一种智能四驱控制方法的步骤流程图;
图2为本发明实施例所述的另一种智能四驱控制方法的步骤流程图;
图3为本发明实施例所述的一种智能四驱控制系统的结构框图;
图4为本发明实施例所述的一种智能四驱控制系统的控制过程示意图;
图5为本发明实施例所述的温度计算模块中摩擦片温度的计算模型示意图;
图6为本发明实施例所述的扭矩计算模块的计算模型示意图;
图7为本发明实施例所述的温度计算模块中油液当前温度的计算模型示意图;
图8为本发明实施例所述的过热保护模块的计算模型示意图;
图9示意性地示出了用于执行根据本发明的方法的计算处理设备的框图;以及
图10示意性地示出了用于保持或者携带实现根据本发明的方法的程序代码的存储单元。
附图标记说明:
301-获取模块,3011-车况信息,302-扭矩计算模块,3021-输出扭矩计算值,3022-拖曳扭矩,3023-温度补偿输出扭矩,3024-实际输出扭矩,303-温度计算模块,3031-前后轴速差,3032-摩擦片发热量,3033-摩擦片热散失,3034-摩擦片温度,3035-油液吸收温度,3036-油液热散失,3037-油液当前温度,304-扭矩控制模块,305-过热保护模块。
具体实施例
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本发明。
实施例一
参照图1,示出了本发明实施例所述的一种智能四驱控制方法的步骤流程图。
本发明实施例提供的一种智能四驱控制方法,主要应用于车辆,具体可以包括:
步骤101:获取车辆的车况信息,所述车况信息包括所述车辆的前轮轮速和后轮轮速。
本发明实施例提供的智能四驱控制方法,主要应用在车辆的智能四驱系统中,智能四驱系统包括电子控制单元和电控扭矩管理器,电控扭矩管理器中有一组摩擦离合器,电控扭矩管理器可以根据电子控制单元发出的电控信号实时控制摩擦离合器传递的扭矩大小。电子控制单元包括多个模块,每个模块会根据不同路况和车况信息自动控制四驱系统,既可以保障车辆的通过性、操控性、加速性,又可以消除转向制动、振动等现象,兼顾优良的驾驶体验与四驱性能。
具体地,本发明实施例中,车况信息包括车辆实时状况信息和车辆基本信息,其中,车辆实时状况信息可以包括:车速、轮速、方向盘转角信号、档位信号、发动机扭矩、环境温度、停机时间等,车辆基本信息可以包括:变速器各档位速比、滚动半径、轴距和转角比例等。
步骤102:根据所述车况信息计算输出扭矩计算值。
本发明实施例中,在步骤101的基础上,根据获取的车况信息,例如,轮速、发动机扭矩、档位信号和转角信号等,计算摩擦离合器的输出扭矩计算值。
本发明实施例还包括:
步骤103:根据所述前轮轮速、所述后轮轮速和所述输出扭矩计算值,计算所述车辆的摩擦片温度。
本发明实施例中,由于前轮轮速和后轮轮速主要决定了车辆的前后轴速差,前后轴速差决定了摩擦离合器中的摩擦片的压紧力和错动,摩擦片的发热主要是由摩擦产生的,当前后轴速差为0时,摩擦片的温度主要是由摩擦片搅油发热产生的。通过将输出扭矩计算值和前轮轮速、后轮轮速相结合,可以更全面地计算摩擦片的温度,提高摩擦片温度计算的精度。
步骤104:根据所述摩擦片温度对所述输出扭矩计算值进行修正,得到 实际输出扭矩。
在实际应用中,摩擦片的摩擦系数是受到摩擦片的温度影响的,不同的温度对应不同的摩擦系数,而摩擦系数影响的是输出扭矩的精度,本发明实施例通过摩擦片温度对输出扭矩计算值进行修正,可以根据摩擦片温度的高低来调整实际输出扭矩的大小,避免在摩擦片温度较高时,输出过高的扭矩,提高了实际输出扭矩的控制精度,减小了摩擦片发生烧蚀的概率,提高了车辆的操控性和脱困能力。
步骤105:控制所述车辆的摩擦离合器输出所述实际输出扭矩。
本发明实施例中,在步骤104的基础上,电子控制单元中的扭矩控制模块,会根据计算出的实际输出扭矩,得到摩擦离合器需要的电流,通过相应的电流控制摩擦离合器输出相应的实际输出扭矩,在满足车辆实际需求的同时,减少了摩擦片发生烧蚀损坏的概率。
综上,本发明实施例所述的智能四驱控制方法至少包括以下优点:
本发明实施例所述的智能四驱控制方法,通过获取的车辆的车况信息,可以计算出车辆的输出扭矩计算值,再结合前轮轮速、后轮轮速和输出扭矩计算值,计算车辆的摩擦片温度,最后,再根据摩擦片温度对输出扭矩计算值进行修正,得到实际输出扭矩,并控制车辆的摩擦离合器输出实际输出扭矩,本发明实施例提供的智能四驱控制方法中,摩擦片的温度是根据实时的车况信息直接获得的,精确度更高,同时,通过摩擦片温度对输出扭矩计算值进行修正,提高了输出扭矩的控制精度,进而提高了整车的操控性和脱困能力,减少了摩擦片发生烧蚀损坏的概率。
实施例二
参照图2,示出了本发明实施例所述的另一种智能四驱控制方法的步骤流程图。
本发明实施例提供的另一种智能四驱控制方法,应用于车辆,具体可以包括:
步骤201:获取车辆的车况信息,所述车况信息包括所述车辆的前轮轮速和后轮轮速。
具体的实现过程可参照实施例一中的步骤101。
步骤202:根据所述车况信息计算输出扭矩计算值。
具体的实现过程可参照实施例一中的步骤102。
步骤203:根据所述前轮轮速和所述后轮轮速计算前后轴速差。
前后轴速差是前轮和后轮平均速度的差值,前后轴速差不仅是摩擦片发热的主要因素,也是计算拖曳扭矩的主要参数,拖曳扭矩也是实际输出扭矩的一部分,本发明实施例通过引入前后轴速差和拖曳扭矩,主要是为了提高摩擦片温度的计算精度,提高实际输出扭矩的精度。
步骤204:根据所述前后轴速差和所述输出扭矩计算值,计算所述车辆的摩擦片发热量。
本发明实施例中,前后轴速差和输出扭矩计算值主要用于计算摩擦片上的滑磨功,滑磨功是摩擦片温升的主要来源,通过滑磨功可以计算出摩擦片发热量。
步骤205:获取所述摩擦片所在油液的历史温度。
本发明实施例中,通过步骤204计算出摩擦片发发热量后,还需要考虑摩擦片热散失,在实际应用中,摩擦片的热量主要是通过摩擦片所在油液发生散失的。
步骤206:根据所述历史温度,计算所述摩擦片热散失。
本发明实施例中,油液的实时温度需要根据摩擦片热散失来获得,在计算摩擦片热散失的时候,主要用到的是油液的历史温度。
步骤207:根据所述摩擦片发热量和所述摩擦片热散失,计算所述摩擦片温度。
本发明实施例中,通过摩擦片发热量减去摩擦片热散失可以计算出摩擦片温度的变化值,再对变化值进行积分处理,即可计算出摩擦片温度。
本发明实施例提供的摩擦片温度的计算方法,考虑了前后轴速差对摩擦片温度的影响,提高了摩擦片温度计算的精度,相比于通过温度传感器间接计算摩擦片温度,成本更低,实时性更好,轻量化特点更突出。
步骤208:根据所述摩擦片热散失、所述车速和所述环境温度,计算所述摩擦片所在油液的油液当前温度。
本发明实施例中,在获得摩擦片热散失的基础上,可以结合车辆的车速和环境温度,较为精确地计算出摩擦片所在油液的油液当前温度,其中,油液的主要热源是摩擦片热散失,另外,车速和环境温度会对油液的 热散失产生一定的影响,本发明实施例提供的油液的油液当前温度的计算方法,在满足油液当前温度计算的精度的前提下,计算简便,成本低。
步骤209:在所述摩擦片温度满足第一预设条件,和/或,所述油液当前温度满足第二预设条件时,向所述车辆发送过热保护信号。
本发明实施例中,当摩擦片温度过高,或者油液当前温度过高时,即摩擦片温度满足第一预设条件,和/或,油液当前温度满足第二预设条件时,可以对车辆进行过热保护,在摩擦片温度过高,或者油液当前温度过高时,提醒驾驶员减速行驶,减少摩擦片发生烧蚀损坏的概率。
可选的,第一预设条件是摩擦片温度>190℃,第二预设条件是油液当前温度>130℃。无论是摩擦片温度满足第一预设条件,或者是油液当前温度满足第二预设条件时,均会对车辆发生过热保护信号,提醒驾驶员四驱系统过热,请减速慢行。待摩擦片温度不满足第一预设条件,且油液当前温度不满足第二预设条件时,解除过热保护信号的发送。
在实际应用中,过热保护信号除过在车辆仪表屏幕上显示文字信息外,还可以是过热报警提示信号。
本发明实施例中,在步骤207所计算的摩擦片温度的基础上,还包括:
步骤210:根据所述摩擦片温度,计算温度修正系数。
在实际应用中,摩擦片的摩擦系数与摩擦片温度之间存在对应关系,通过摩擦片温度计算温度修正系数,可以提高输出扭矩计算的精度,其中,温度修正系数可以根据车辆的实际车况进行标定,以提高温度修正系数的精度。
步骤211:根据所述输出扭矩计算值和所述温度修正系数,获得温度补偿输出扭矩。
在实际应用中,输出扭矩计算值乘以温度修正系数,可以得到温度补偿输出扭矩,温度补偿输出扭矩相对于输出扭矩计算值,考虑了摩擦片温度对实际输出扭矩的影响,提高了实际输出扭矩的计算精度,避免车辆输出的扭矩过大,或者无法满足车辆的实际需求。
步骤212:根据所述前后轴速差,计算拖曳扭矩。
在实际应用中,实际输出扭矩还包括由前后轴速差引起的拖曳扭矩,将拖曳扭矩考虑到实际输出扭矩中,可以进一步提高实际输出扭矩的计算 精度,提高车辆的控制精度。
步骤213:根据所述拖曳扭矩和所述温度补偿输出扭矩,获得所述实际输出扭矩。
在上述步骤的基础上,通过拖曳扭矩和温度补偿输出扭矩求和,可以获得精度较高的实际输出扭矩。提高了车辆对输出扭矩的控制精度。
步骤214:控制所述车辆的摩擦离合器输出所述实际输出扭矩。
综上,本发明实施例所述的智能四驱控制方法至少包括以下优点:
本发明实施例所述的智能四驱控制方法,通过前后轴速差,计算出摩擦片温度和拖曳扭矩,再根据摩擦片温度获得温度补偿输出扭矩,再根据拖曳扭矩和温度补偿输出扭矩,获得实际输出扭矩,该实际输出扭矩是在输出扭矩计算值的基础上,进行了摩擦片的温度补偿,并最终结合了拖曳扭矩,提高了实际输出扭矩的控制精度,提供了车辆的操控性和脱困能力。同时,通过向车辆发送过热保护信号,减少了摩擦片发生烧蚀损坏的概率,增加了摩擦离合器的使用寿命。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明实施例并不受所描述的动作顺序的限制,因为依据本发明实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本发明实施例所必须的。
实施例三
参照图3,示出了本发明实施例所述的一种智能四驱控制系统的结构框图。如图3所示,本发明实施例提供的智能四驱控制系统主要用于车辆,所述智能四驱控制系统包括:获取模块301、扭矩计算模块302、温度计算模块303和扭矩控制模块304;其中,获取模块301分别与扭矩计算模块302和温度计算模块303连接,扭矩计算模块302分别与温度计算模块303和扭矩控制模块304连接。
参照图4,示出了本发明实施例所述的一种智能四驱控制系统的控制过程示意图。如图4所示,获取模块301用于,获取车辆的车况信息3011,所述车况信息3011包括所述车辆的前轮轮速和后轮轮速,在实际应用中,车 况信息3011还包括:车速、方向盘转角信号、档位信号、发动机扭矩、环境温度、停机时间、变速器各档位速比、滚动半径、轴距和转角比例等。
扭矩计算模块302用于,根据所述车况信息3011计算输出扭矩计算值3021,具体地,扭矩计算模块302可以根据车辆的轮速、发动机扭矩、档位信号和转角信号等,计算输出扭矩计算值3021。
温度计算模块303用于,根据所述前轮轮速、所述后轮轮速和所述输出扭矩计算值3021,计算所述车辆的摩擦片温度3034。
具体地,温度计算模块303用于,根据前轮轮速和后轮轮速计算前后轴速差3031,再根据前后轴速差3031和输出扭矩计算值3021,计算车辆的摩擦片发热量3032,在实际应用中,摩擦片发热量3032不仅与输出扭矩计算值3021有关,而且与前后轴速差3031引起的摩擦片的摩擦发热有关,本发明实施例通过将前后轴速差3031考虑到摩擦片发热量3032的计算中,提高了摩擦片温度3034计算的精度。
本发明实施例中,在获得摩擦片发热量3032的基础上,还需要计算摩擦片热散失3033,具体地,温度计算模块303还用于,获取所述摩擦片所在油液的历史温度,根据所述历史温度,计算摩擦片热散失3033,根据摩擦片发热量3032和摩擦片热散失3033,计算摩擦片温度3034。
在实际应用中,参照图5示出了本发明实施例所述的温度计算模块中摩擦片温度的计算模型示意图;如图5所示,输入信号为前后轴速差3031和输出扭矩计算值3021,前后轴速差3031通过函数计算获得修正系数,例如,通过Matlab中的1-D lookup table函数选取修正系数,将该修正系数乘以输出扭矩计算值3021,获得实际作用在摩擦片上的摩擦片输入扭矩,再将摩擦片输入扭矩与前后轴速差3031求积,即可得到相应的滑磨功,滑磨功是摩擦片发热量3032的主要来源,将滑磨功减去摩擦片热散失3033,可得到摩擦片温度3034的变化值,对该变化值进行积分后获得摩擦片温度3034。
在获得摩擦片温度3034后,本发明实施例中,扭矩计算模块302还用于,根据摩擦片温度3034对输出扭矩计算值3021进行修正,得到实际输出扭矩3024。
具体地,扭矩计算模块302还用于,根据摩擦片温度3034,计算温度 修正系数,根据所述输出扭矩计算值3021和所述温度修正系数,获得温度补偿输出扭矩3023,根据前后轴速差3031,计算拖曳扭矩3022,根据拖曳扭矩3022和温度补偿输出扭矩3023,获得所述实际输出扭矩3024。
在实际应用中,参照图6示出了本发明实施例所述的扭矩计算模块的计算模型示意图;如图6所示,扭矩计算模块302包括摩擦片温度3034对输出扭矩计算值3021的修正,和前后轴速差3031对拖曳扭矩3022的计算两部分。其中,输入信号包括:摩擦片温度3034和前后轴速差3031,摩擦片温度3034通过函数计算获得温度修正系数,例如,通过Matlab中的1-D lookup table函数选取温度修正系数,其中,温度修正系数可以根据车辆的实际状况进行标定,以提高温度修正系数的准确性。输出扭矩计算值3021乘以温度修正系数可以得到温度补偿输出扭矩3023,将温度补偿输出扭矩3023与拖曳扭矩3022求和,得到实际输出扭矩3024。
在实际应用中,扭矩计算模块302需要的前后轴速差3031可以直接调用温度计算模块303计算得到的前后轴速差3031,也可以根据前轮轮速和后轮轮速重新计算得到,本发明实施例对此不做具体限制。
本发明实施例中,将实际输出扭矩3024和输出扭矩计算值3021之间建立PID(比例(Proportion)、积分(Integral)、微分(Differential))反馈,来调整输入信号的大小,以提高智能四驱控制系统输出扭矩的精度,提高车辆的操控性、脱困能力及NVH(噪声、振动与声振粗糙度(Noise、Vibration、Harshness))性能。
本发明实施例中,扭矩控制模块304用于,控制摩擦离合器输出实际输出扭矩3024,以满足车辆的实际需求,具体地,扭矩控制模块304可以根据计算出的实际输出扭矩3024,得到摩擦离合器需要的电流,通过相应的电流控制摩擦离合器输出相应的实际输出扭矩3024,在满足车辆实际需求的同时,减少了摩擦片发生烧蚀损坏的概率。
本发明实施例中,在获得摩擦片温度3034的基础上,温度计算模块303还用于,根据摩擦片热散失3033、车速和环境温度,计算所述摩擦片所在油液的油液当前温度3037;
具体地,摩擦片热散失3033用于计算油液吸收温度3035,车身和环境温度用于计算油液热散失3036,油液吸收温度3035减去油液热散失3036 就得到油液当前温度3037。
在实际应用中,参照图7示出了本发明实施例所述的温度计算模块中油液当前温度的计算模型示意图;如图7所示,温度计算模块303中的输入信号为:油液吸收温度3035和车况信息3011,其中,车况信息3011具体包括:车速和环境温度,其中,温度计算模块303中预存有车速和环境温度与油液热散失3036的对应关系,例如,可以通过Matlab中的2-D lookup table函数对当前车速和环境温度下对应的油液热散失3036进行取值,再将油液吸收温度3035与油液热散失3036求差值,并将差值除以油液的比热容,可以得到油液的温度变化值,再对油液的温度变化值进行积分,获得油液当前温度3037。
本发明实施例中,所述智能四驱控制系统还包括:过热保护模块305,过热保护模块305与温度计算模块303连接,过热保护模块305用于,在摩擦片温度3034满足第一预设条件,和/或,油液当前温度3037满足第二预设条件时,向所述车辆发送过热保护信号。图4中将第一预设条件和第二预设条件统称为预设条件。
具体地,第一预设条件和第二预设条件的具体情况已在实施例二中进行了详细描述,本实施例在此不再赘述。
在实际应用中,参照图8示出了本发明实施例所述的过热保护模块的计算模型示意图;如图8所示,过热保护模块305的输入信号是摩擦片温度3034和油液当前温度3037,分别将摩擦片温度3034与第一预设条件进行比较,将油液当前温度3037与第二预设条件进行比较,在摩擦片温度3034满足第一预设条件,和/或,油液当前温度3037满足第二预设条件时,向所述车辆发送过热保护信号。车辆的智能四驱系统进入过热保护模式,并将过热信号发送至车辆,车辆仪表接收并显示热保护信号,或者,车辆指示灯进行热保护报警,以提示驾驶员减速慢行。待摩擦片温度3034不满足第一预设条件,和油液当前温度3037不满足第二预设条件时,智能四驱系统自动解除过热保护模式。
本发明实施例提供的过热保护模块,提高了智能四驱系统过载时的自动保护能力,延长了摩擦离合器的使用寿命。
在实际应用中,获取模块301、扭矩计算模块302、温度计算模块 303、扭矩控制模块304和过热保护模块305均集成在智能四驱系统的电子控制单元中,通过多个模块的并行运行,可以提高计算的速度,节约计算的时间成本。
综上,本发明实施例所述的智能四驱控制系统至少包括以下优点:
本发明实施例提供的智能四驱控制系统,通过获取的车辆的车况信息,可以计算出车辆的输出扭矩计算值,再结合前轮轮速和后轮轮速计算出前后轴速差,再通过前后轴速差和输出扭矩计算值,计算车辆的摩擦片温度,最后,再根据摩擦片温度对输出扭矩计算值进行修正,得到实际输出扭矩,并控制车辆的摩擦离合器输出实际输出扭矩,本发明实施例提供的智能四驱控制系统中,摩擦片的温度是根据实时的车况信息直接获得的,精确度更高,同时,通过摩擦片温度对输出扭矩计算值进行修正,提高了输出扭矩的控制精度,进而提高了整车的操控性和脱困能力,减少了摩擦片发生烧蚀损坏的概率。
对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本发明实施例还提供了一种车辆,包括上述实施例所述的智能四驱控制系统,其中,智能四驱控制系统的具体结构和基本原理已经在前述实施例中进行了详细的描述,本实施例在此不再赘述。
本发明实施例提供的车辆,通过设置上述的智能四驱控制系统,可以根据实时的车况信息直接获得摩擦片的温度,并且,通过摩擦片温度对输出扭矩计算值进行修正,提高了输出扭矩的控制精度,进而提高了整车的操控性和脱困能力,减少了摩擦片发生烧蚀损坏的概率。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现 本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图9示出了可以实现根据本发明的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图10所述的便携式或者固定存储单元。该存储单元可以具有与图9的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本发明的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解, 本发明的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (12)

  1. 一种智能四驱控制方法,其特征在于,所述方法包括:
    获取车辆的车况信息,所述车况信息包括所述车辆的前轮轮速和后轮轮速;
    根据所述车况信息计算输出扭矩计算值;
    根据所述前轮轮速、所述后轮轮速和所述输出扭矩计算值,计算所述车辆的摩擦片温度;
    根据所述摩擦片温度对所述输出扭矩计算值进行修正,得到实际输出扭矩;
    控制摩擦离合器输出所述实际输出扭矩。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述前轮轮速、所述后轮轮速和所述输出扭矩计算值,计算所述车辆的摩擦片温度的步骤,包括:
    根据所述前轮轮速和所述后轮轮速计算前后轴速差;
    根据所述前后轴速差和所述输出扭矩计算值,计算所述车辆的摩擦片温度。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述前后轴速差和所述输出扭矩计算值,计算所述车辆的摩擦片温度的步骤,包括:
    根据所述前后轴速差和所述输出扭矩计算值,计算所述车辆的摩擦片发热量;
    获取所述摩擦片所在油液的历史温度;
    根据所述历史温度,计算摩擦片热散失;
    根据所述摩擦片发热量和所述摩擦片热散失,计算所述摩擦片温度。
  4. 根据权利要求3所述的方法,其特征在于,所述车况信息还包括:车速和环境温度;所述根据所述摩擦片发热量和所述摩擦片热散失,计算所述摩擦片温度的步骤之后,还包括:
    根据所述摩擦片热散失、所述车速和所述环境温度,计算所述摩 擦片所在油液的油液当前温度;
    在所述摩擦片温度满足第一预设条件,和/或,所述油液当前温度满足第二预设条件时,向所述车辆发送过热保护信号。
  5. 根据权利要求2所述的方法,其特征在于,所述根据所述摩擦片温度对所述输出扭矩计算值进行修正,得到实际输出扭矩的步骤,包括:
    根据所述摩擦片温度,计算温度修正系数;
    根据所述输出扭矩计算值和所述温度修正系数,获得温度补偿输出扭矩;
    根据所述前后轴速差,计算拖曳扭矩;
    根据所述拖曳扭矩和所述温度补偿输出扭矩,获得所述实际输出扭矩。
  6. 一种智能四驱控制系统,其特征在于,所述系统包括:获取模块、扭矩计算模块、温度计算模块和扭矩控制模块;其中,
    所述获取模块分别与所述扭矩计算模块和所述温度计算模块连接,所述扭矩计算模块分别与所述温度计算模块和所述扭矩控制模块连接;
    所述获取模块用于,获取车辆的车况信息,所述车况信息包括所述车辆的前轮轮速和后轮轮速;
    所述扭矩计算模块用于,根据所述车况信息计算输出扭矩计算值;
    所述温度计算模块用于,根据所述前轮轮速、所述后轮轮速和所述输出扭矩计算值,计算所述车辆的摩擦片温度;
    所述扭矩计算模块还用于,根据所述摩擦片温度对所述输出扭矩计算值进行修正,得到实际输出扭矩;
    所述扭矩控制模块用于,控制摩擦离合器输出所述实际输出扭矩。
  7. 根据权利要求6所述的系统,其特征在于,所述温度计算模块用于,根据所述前轮轮速、所述后轮轮速和所述输出扭矩计算值,计算所述车辆的摩擦片温度,具体包括:
    所述温度计算模块用于,根据所述前轮轮速和所述后轮轮速计算 前后轴速差,根据所述前后轴速差和所述输出扭矩计算值,计算所述车辆的摩擦片发热量;
    所述温度计算模块还用于,获取所述摩擦片所在油液的历史温度,根据所述历史温度,计算摩擦片热散失,根据所述摩擦片发热量和所述摩擦片热散失,计算所述摩擦片温度。
  8. 根据权利要求7所述的系统,其特征在于,所述车况信息还包括:车速和环境温度,所述系统还包括:过热保护模块;其中,
    所述过热保护模块与所述温度计算模块连接;
    所述温度计算模块还用于,根据所述摩擦片热散失、所述车速和所述环境温度,计算所述摩擦片所在油液的油液当前温度;
    所述过热保护模块用于,在所述摩擦片温度满足第一预设条件,和/或,所述油液当前温度满足第二预设条件时,向所述车辆发送过热保护信号。
  9. 根据权利要求7所述的系统,其特征在于,所述扭矩计算模块还用于,根据所述摩擦片温度对所述输出扭矩计算值进行修正,得到实际输出扭矩,具体包括:
    所述扭矩计算模块还用于,根据所述摩擦片温度,计算温度修正系数,根据所述输出扭矩计算值和所述温度修正系数,获得温度补偿输出扭矩,根据所述前后轴速差,计算拖曳扭矩,根据所述拖曳扭矩和所述温度补偿输出扭矩,获得所述实际输出扭矩。
  10. 一种车辆,其特征在于,包括如权利要求6-9任一项所述的智能四驱控制系统。
  11. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-5中的任一个所述的智能四驱控制方法。
  12. 一种计算机可读介质,其中存储了如权利要求11所述的计算机程序。
PCT/CN2020/121387 2019-10-31 2020-10-16 一种智能四驱控制方法、系统及车辆 WO2021082946A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20882199.1A EP4015325A4 (en) 2019-10-31 2020-10-16 INTELLIGENT FOUR-WHEEL DRIVE CONTROL METHOD AND SYSTEM, AND VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911053493.4 2019-10-31
CN201911053493.4A CN111791869B (zh) 2019-10-31 2019-10-31 一种智能四驱控制方法、系统及车辆

Publications (1)

Publication Number Publication Date
WO2021082946A1 true WO2021082946A1 (zh) 2021-05-06

Family

ID=72805448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121387 WO2021082946A1 (zh) 2019-10-31 2020-10-16 一种智能四驱控制方法、系统及车辆

Country Status (3)

Country Link
EP (1) EP4015325A4 (zh)
CN (1) CN111791869B (zh)
WO (1) WO2021082946A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113983092A (zh) * 2021-10-18 2022-01-28 吉林大学 一种摩擦片工作状态可视化监测方法、系统
CN114941666A (zh) * 2022-04-02 2022-08-26 潍柴动力股份有限公司 离合器控制方法、装置、电子设备和存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114379361B (zh) * 2020-10-21 2023-12-15 长城汽车股份有限公司 分动器的控制方法、装置及车辆
CN114688241B (zh) * 2020-12-28 2023-07-18 长城汽车股份有限公司 控制方法、装置及车辆
CN114738398B (zh) * 2022-05-10 2024-04-16 潍柴动力股份有限公司 一种混合动力汽车离合器自学习方法、装置和设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157439A (ja) * 1984-12-28 1986-07-17 Nissan Motor Co Ltd 4輪駆動車の駆動力配分制御装置
US5839084A (en) * 1994-09-21 1998-11-17 Nissan Motor Co., Ltd. Driving-torque control system for four-wheel-drive vehicle
CN102537134A (zh) * 2012-01-16 2012-07-04 天津同步动力科技有限公司 一种离合器控制方法
CN102933415A (zh) * 2010-04-12 2013-02-13 雷诺股份公司 管理在车辆的前和后轮副之间分配驱动扭矩的设备的方法
CN104295632A (zh) * 2013-07-18 2015-01-21 株式会社捷太格特 驱动力传递控制装置
CN106062426A (zh) * 2014-02-27 2016-10-26 日产自动车株式会社 4轮驱动车的离合器控制装置
CN109455088A (zh) * 2017-09-06 2019-03-12 株式会社捷太格特 驱动力传递控制装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6769526B2 (en) * 2000-09-19 2004-08-03 Nissan Motor Co., Ltd. Apparatus for estimating clutch temperature
CN100538103C (zh) * 2004-11-03 2009-09-09 博格华纳公司 动力输出离合器控制系统
JP4551291B2 (ja) * 2005-08-02 2010-09-22 株式会社ジェイテクト 駆動力配分装置
DE102008026554B4 (de) * 2008-06-03 2022-12-15 Magna powertrain gmbh & co kg Verfahren zum Steuern einer Kupplungseinheit, sowie Drehmomentübertragungsanordnung
FR2933913B1 (fr) * 2008-07-16 2011-01-14 Renault Sas Dispositif de commande adaptative a l'evolution de la caracteristique d'un embrayage en fonction de la temperature applique a un vehicule equipe d'un systeme 4x4 pilote.
JP4956587B2 (ja) * 2009-08-05 2012-06-20 本田技研工業株式会社 自動変速機の制御装置
JP5276733B1 (ja) * 2012-03-29 2013-08-28 株式会社小松製作所 作業車両及びそのインチング制御装置
JP6314448B2 (ja) * 2013-11-29 2018-04-25 アイシン精機株式会社 作動油温度推定装置
WO2015131892A2 (de) * 2014-03-03 2015-09-11 Schaeffler Technologies AG & Co. KG Bestimmung einer kupplungstemperatur
CN105276029B (zh) * 2014-06-25 2018-01-30 上海汽车集团股份有限公司 湿式离合器表面温度的确定方法及装置
CN105799706B (zh) * 2016-03-18 2019-02-12 北京汽车集团有限公司 一种安全驾驶方法、装置及汽车
CN108146422B (zh) * 2016-12-02 2020-04-28 上海汽车集团股份有限公司 离合器的控制方法、装置及汽车
KR102383232B1 (ko) * 2016-12-15 2022-04-05 현대자동차 주식회사 하이브리드 차량의 엔진 클러치 전달토크 보정 방법 및 그 보정 장치
DE102017200981B3 (de) * 2017-01-23 2018-05-30 Audi Ag Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung
CN107084798A (zh) * 2017-06-22 2017-08-22 安徽江淮汽车集团股份有限公司 一种湿式离合器摩擦片的温度测量装置
CN109404437B (zh) * 2018-01-31 2020-10-23 长城汽车股份有限公司 离合器物理滑磨系数修正方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157439A (ja) * 1984-12-28 1986-07-17 Nissan Motor Co Ltd 4輪駆動車の駆動力配分制御装置
US5839084A (en) * 1994-09-21 1998-11-17 Nissan Motor Co., Ltd. Driving-torque control system for four-wheel-drive vehicle
CN102933415A (zh) * 2010-04-12 2013-02-13 雷诺股份公司 管理在车辆的前和后轮副之间分配驱动扭矩的设备的方法
CN102537134A (zh) * 2012-01-16 2012-07-04 天津同步动力科技有限公司 一种离合器控制方法
CN104295632A (zh) * 2013-07-18 2015-01-21 株式会社捷太格特 驱动力传递控制装置
CN106062426A (zh) * 2014-02-27 2016-10-26 日产自动车株式会社 4轮驱动车的离合器控制装置
CN109455088A (zh) * 2017-09-06 2019-03-12 株式会社捷太格特 驱动力传递控制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4015325A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113983092A (zh) * 2021-10-18 2022-01-28 吉林大学 一种摩擦片工作状态可视化监测方法、系统
CN113983092B (zh) * 2021-10-18 2024-04-19 吉林大学 一种摩擦片工作状态可视化监测方法、系统
CN114941666A (zh) * 2022-04-02 2022-08-26 潍柴动力股份有限公司 离合器控制方法、装置、电子设备和存储介质

Also Published As

Publication number Publication date
CN111791869B (zh) 2021-10-08
EP4015325A4 (en) 2022-11-02
CN111791869A (zh) 2020-10-20
EP4015325A1 (en) 2022-06-22

Similar Documents

Publication Publication Date Title
WO2021082946A1 (zh) 一种智能四驱控制方法、系统及车辆
JP4551291B2 (ja) 駆動力配分装置
CN1140427C (zh) 估计离合器温度的设备
US8135517B2 (en) Torque control method of a road vehicle
US8311717B2 (en) Drive line operation method
CN114110043B (zh) 主油压自适应控制方法、装置、设备及存储介质
WO2023169314A1 (zh) 四驱混动车辆控制方法、装置、车辆及存储介质
JP6201180B2 (ja) 電動ブレーキ装置
JP2009133426A (ja) 駆動力配分装置、駆動力配分装置の制御装置、制御方法およびその方法をコンピュータで実現されるプログラムならびにそのプログラムを記録した記録媒体
CN114576284B (zh) 离合器起步控制方法、装置、电子设备、介质及拖拉机
WO2023131274A1 (zh) 前驱车辆扭矩控制方法、装置和车辆
US20040059493A1 (en) Slip control device of four-wheel-drive vehicle
US20230202453A1 (en) Vehicle and control method thereof, control apparatus, vehicle-mounted device and medium
EP4276326A1 (en) Clutch control method, control apparatus, storage medium, and program product
US10227074B2 (en) Method for controlling sense of shift difference and 4-wheel drive vehicle applying the same
US7624832B2 (en) Front and rear drive power distribution control device for vehicle
WO2023193735A1 (zh) 一种发动机水温的控制方法、装置、设备及介质
JP2015102097A (ja) 内燃機関を制御する方法
CN115289383B (zh) 一种基于扭矩控制的车辆后桥油温控制方法、装置和车辆
CN115095652B (zh) 一种优化dct车型低变速器油温起步舒适性的ems控制方法
CN206506618U (zh) 一种降低激光电视噪音的装置
CN115263947A (zh) 一种离合器控制方法、装置、电子设备及存储介质
JP5012400B2 (ja) 駆動力伝達装置
WO2022222725A1 (zh) 分动器过热保护方法、装置及终端设备
CN110490994A (zh) 一种离合器温度计算功能的算法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020882199

Country of ref document: EP

Effective date: 20220318

NENP Non-entry into the national phase

Ref country code: DE