WO2021080008A1 - 1価ccap生成物の製造方法 - Google Patents

1価ccap生成物の製造方法 Download PDF

Info

Publication number
WO2021080008A1
WO2021080008A1 PCT/JP2020/039978 JP2020039978W WO2021080008A1 WO 2021080008 A1 WO2021080008 A1 WO 2021080008A1 JP 2020039978 W JP2020039978 W JP 2020039978W WO 2021080008 A1 WO2021080008 A1 WO 2021080008A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecule
igbp
binding
carrier
bound
Prior art date
Application number
PCT/JP2020/039978
Other languages
English (en)
French (fr)
Inventor
祐二 伊東
高橋 信明
了輔 中野
さやか 前田
Original Assignee
国立大学法人 鹿児島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 鹿児島大学 filed Critical 国立大学法人 鹿児島大学
Priority to US17/770,978 priority Critical patent/US20220363716A1/en
Priority to AU2020372137A priority patent/AU2020372137A1/en
Priority to CN202080073735.0A priority patent/CN114585638A/zh
Priority to JP2021553577A priority patent/JPWO2021080008A1/ja
Priority to KR1020227015750A priority patent/KR20220087468A/ko
Priority to EP20879885.0A priority patent/EP4049676A4/en
Priority to CA3155284A priority patent/CA3155284A1/en
Publication of WO2021080008A1 publication Critical patent/WO2021080008A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/10Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/001Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof by chemical synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/305Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F)
    • C07K14/31Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F) from Staphylococcus (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • C07K16/065Purification, fragmentation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1267Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria
    • C07K16/1292Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria from Actinomyces; from Streptomyces (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/35Valency
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/524CH2 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/526CH3 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Definitions

  • the present invention relates to a method for site-specific modification of a specific region of Fc.
  • Patent Document 1 As a method for site-specific modification of IgG, the present inventors have hitherto used peptide (IgBP) reagents (Patent Document 1 and Non-Patent Document 1) that specifically bind to the Fc region of IgG and Z33 derived from protein A.
  • IgBP peptide reagent
  • Patent Document 2 A method using a peptide reagent (CCAP method) (Patent Document 2) has been developed.
  • the CCAP method provides site-specificity in which a peptide is bound to a specific site in the Fc region, it has the advantage of not inhibiting the binding between the antigen-binding region of the antibody and the antigen.
  • the present inventors have proceeded with the development to apply the Fc-modified antibody produced by specifically binding a peptide to the Fc region using the developed CCAP method as a pharmaceutical and a diagnostic agent. As a result, it was found that an antibody in which a specific site of Fc was modified by the CCAP method causes a problem that the half-life in blood is shorter than that of an unmodified antibody.
  • the Fc region has symmetry, and where there are usually two IgG-affinity peptide (IgBP) binding sites, when IgBP binds to both of the two binding sites, the half-life in blood is reduced.
  • IgBP IgG-affinity peptide
  • the present inventors have studied many experimental conditions in order to solve this problem, but only by improving the reaction conditions of the CCAP method, only one of the two binding sites is selectively modified. It was difficult to do. Therefore, we attempted purification and production using a carrier that binds to the Fc region. Specifically, the present inventors used a protein A-binding column known to bind to the Fc region, and IgBP was bound to only one site from the IgBP-binding Fc molecule produced by the CCAP method. Attempts were made to purify Fc molecules (one unmodified Fc molecule) (monovalent Fc molecule). However, it was not possible to efficiently perform separation according to the IgBP binding value to the Fc region.
  • the present inventors attempted to purify the monovalent Fc molecule by preparing an IgBP-immobilized column and adsorbing the IgBP-binding Fc molecule produced by the CCAP method.
  • the monovalent Fc molecule was efficiently adsorbed on the column, and the Fc molecule (divalent Fc molecule) to which IgBP was bound at two places could not be bound to the column and was eluted.
  • the present inventors have found a method capable of efficiently obtaining only monovalent Fc molecules.
  • a peptide reagent for CCAP was added to the column to try to perform the CCAP method in the column.
  • the method of the present invention can provide a high content of Fc molecule in which only one of the two binding sites of Fc is selectively modified, the Fc molecule having a long half-life in blood can be provided. Can be provided.
  • a part of the solution obtained by reacting an anti-AVM (Avelmectin) antibody (human IgG4) with the CCAP reagent Azide-PEG4-EEGPDCAYH (succinimidyl glutalyl Lys) GELVWCTFH-NH 2 (Azide-EEIgBP).
  • a part of the solution obtained by reacting an anti-AVM (Avelmectin) antibody (human IgG4) with the CCAP reagent Azide-PEG4-EEGPDCAYH (succinimidyl glutalyl Lys) GELVWCTFH-NH 2 (Azide-EEIgBP).
  • the upper part of the graph shows the result of the unreacted anti-AVM antibody, and the lower part shows the result of the anti-AVM
  • the arrows at the bottom indicate the peaks of the eluted unmodified antibody, monovalent antibody, and divalent antibody.
  • the vertical axis represents the absorbance at 280 nm, and the horizontal axis represents the elution time.
  • Control antibody (AVM), peptide monovalent addition antibody (AVM-pep1), peptide bivalent addition antibody (AVM-pep2) were applied to ICR mice at 5 mg / kg i. v.
  • the results of analyzing the serum antibody concentration after 1 hour, 4 hours, 24 hours, 48 hours, 72 hours, and 168 hours after administration (3 animals in each group) are shown.
  • the vertical axis is the antibody concentration ( ⁇ g / mL), and the horizontal axis is the elapsed time (hours) after administration.
  • AVM-administered individuals are indicated by square markers, AVM-pep1 -administered individuals are indicated by round markers, and AVM-pep2-administered individuals are indicated by triangular markers.
  • the first elution was performed at pH 3.5 (upper), pH 3.0 (middle), and pH 2.5 (lower), and the second acidity was performed at pH 2.5.
  • the chromatogram at the time of elution is shown.
  • the vertical axis represents the absorbance at 280 nm
  • the horizontal axis represents the elapsed time.
  • the operation performed on the column during the elapsed time is shown at the bottom of the graph.
  • FIG 3 shows an enlarged chromatogram of the elapsed time portion of the “first elution”.
  • the graph shows the results of the first elution of pH 3.5, pH 3.0, and pH 2.5 in order from the top.
  • the chromatogram when the human IgG1 antibody was injected into the Z33-immobilized column and then eluted at pH 2.5 and pH 3.5 is shown.
  • the gray line in the graph shows the result of pH 2.5, and the black line shows the result of pH 3.5.
  • the vertical axis represents the absorbance at 280 nm, and the horizontal axis represents the elapsed time.
  • FIG. 5 is a graph showing purification of a monovalent antibody from a reaction product of Trastuzumab and CCAP reagent by controlling the elution pH using an IgBP column.
  • the vertical axis represents the absorbance at 280 nm, and the horizontal axis represents the elapsed time.
  • (A) Shows the difference in elution pattern depending on the elution pH of the first stage. The results are shown in the order from top to bottom, with the elution pH of the first stage being 4.0, 3.9, 3.8, 3.7, and 3.6.
  • (B) It is a graph which shows the analysis result by the cation exchange chromatography of the column elution fraction by the difference in the concentration of the CCAP reagent in the automated CCAP reaction.
  • the results of using CCAP reagents 10 ⁇ M, 20 ⁇ M, 30 ⁇ M, and 40 ⁇ M in order from top to bottom are shown.
  • the vertical axis represents the absorbance at 280 nm, and the horizontal axis represents the elapsed time.
  • the numerical values in the graph indicate the binding valences of IgBP of the obtained antibody and their ratios.
  • (A) It is a schematic diagram of the method for producing the IgBP-bound Fc molecule of the present invention on a carrier when an antibody is used as the Fc molecule.
  • the Fc molecule is brought into contact with the carrier to which the carrier-binding IgBP is bound, and the carrier and the Fc molecule are bound via the carrier-binding IgBP.
  • IgBP for Fc molecular binding is brought into contact there and bound to the Fc chain to which IgBP is not bound.
  • the bond between the carrier-binding IgBP and the Fc molecule is cleaved, and the Fc molecule to which one antibody-binding IgBP is bound to one molecule is recovered.
  • B In the upper part (A), it is a schematic diagram of the method for producing an IgBP-bound Fc molecule using a CCAP reagent.
  • FIG. 6 is a schematic diagram of a method for producing a monovalent functional group-bound Fc molecule using a reagent in which an antibody-binding IgBP and a cross-linking agent are linked via a cleavable linker. After binding IgBP for Fc molecule binding to the Fc molecule, the cross-linking agent and the Fc molecule are covalently bonded.
  • the Fc molecule can be obtained without containing IgBP by cleaving at the linker portion to dissociate the Fc molecule-binding IgBP from the Fc molecule.
  • a monovalent functional group can be introduced.
  • (D) is a schematic diagram of a method for producing an Fc molecule to which a monovalent functional group or a functional molecule is bound. In the method (C) of FIG. 10, a step of binding a compound containing a functional group or a functional molecule to the Fc molecule after cleavage at the linker moiety is further included.
  • the functional group or functional molecule represented by "F” is bound to the Fc molecule and then recovered from the carrier, but after the recovery from the carrier, the functional group or functional molecule is converted into the Fc molecule. It may be combined.
  • the linker is cleaved and the IgBP for antibody binding is dissociated, whereby the monovalent functional group-bonded Fc molecule or function to which IgBP is not bound is performed.
  • a sex molecule-bound Fc molecule can be obtained.
  • the present invention attempts to introduce IgBP (Fc) into an Fc chain by binding IgBP (IgBP for carrier binding) on a carrier to the binding site of one Fc of the two Fc chains constituting the Fc molecule. It was found that an antibody having two bindings of IgBP) and an antibody having one or zero bindings can be efficiently separated, and for Fc molecular binding to an Fc chain bound to a carrier binding IgBP. It is based on the finding that by binding IgBP, only one molecule of IgBP can be bound to the Fc molecule. That is, the present invention provides a method for producing an Fc molecule to which only one molecule of IgBP is bound by using a carrier to which the carrier-binding IgBP is bound.
  • IgG Fc region and "Fc region” are synonymous, and typically mean a C-terminal fragment obtained as an IgG proteolytic enzyme papain-treated product.
  • the Fc region generally consists of two symmetrical Fc chains, but the two Fc chains forming the Fc region do not have to be exactly the same.
  • the Fc chain means a monomer of a dimer that forms a C-terminal fragment obtained as a papain-treated product of IgG proteolytic enzyme.
  • the Fc region of IgG herein does not have to be the full length of the Fc region of wild-type IgG, but retains its ability to bind to IgG-affinitive peptides that specifically bind to the Fc region of the IgG used. As long as it is a shortened form, a variant thereof, or a fusion with another substance.
  • a cross-linking agent-binding IgG-affinitive peptide and an IgG Fc region are bound by using affinity, and then a covalent bond between the IgG-affinity peptide and the IgG Fc region is performed by a cross-linking agent. May include forming (CCAP method).
  • the binding force to the IgG-friendly peptide that specifically binds to the Fc region of IgG used is the ability of the IgG-friendly peptide and the Fc region of IgG to bind by affinity, and the IgG-friendly peptide. It means both the ability to co-bind with the Fc region of IgG.
  • the Fc region of IgG in the present specification is a part of amino acids (1 to 10, 1 to 5, 1 to 3) excluding the position where the IgG-affinitive peptide used in the Fc region of wild IgG is bound. Amino acids at sites other than the amino acids (usually Lys) that are sites that do not affect the affinity and are involved in covalent binding (usually Lys) are replaced, added or inserted, or if necessary. , May be deleted.
  • a molecule having an Fc region of IgG and "Fc molecule” are synonymous with each other and mean a peptide, protein, or other complex containing an Fc region of IgG, which is wild or artificial.
  • the Fc region of IgG represented by Fc fusion protein and other substances (active ingredient, drug, protein, low molecular weight compound, medium molecular weight compound, high molecular weight compound, matrix, lipid, liposome, nano It also includes a molecule consisting only of particles, a vehicle for DDS, a fusion with a nucleic acid and / or peptide), and an Fc region.
  • the Fc molecule when the Fc molecule is an Fc fusion protein, the proteins or peptides to be fused with Fc include receptors, cytokines, interleukins, blood coagulation factor VIII, CTLA4, human lactoferrin, TNF receptors, or LFA-3. Alternatively, a part thereof (preferably a target binding portion) and the like can be mentioned.
  • Fc molecular composition means a composition containing a plurality of Fc molecules.
  • IgG refers to mammals such as primates such as humans and chimpanzees, experimental animals such as rats, mice, and rabbits, domestic animals such as pigs, cows, horses, sheep, and goats, and dogs. And IgG of pet animals such as cats, preferably human IgG (IgG1, IgG2, IgG3 or IgG4).
  • the IgG in the present specification is preferably human IgG1, IgG2, or IgG4, or rabbit IgG, and particularly preferably human IgG1, IgG2, or IgG4.
  • IgG-affinitive peptide that specifically binds to the Fc region of IgG and "IgBP” are synonymous and mean a peptide that specifically binds to the Fc region of IgG.
  • IgBP preferably, it binds to a site selected from Lys248, Lys246, Lys338, Lys288, Lys290, Lys360, Lys414, and Lys439 according to Eu numbering in Fc and / or a proximity region thereof, preferably Lys248 and / or a proximity region thereof.
  • a peptide that binds to the binding region of protein A a peptide that binds to the binding region of protein A.
  • IgBP may be a partial peptide of protein A having Fc-binding ability or a mutant thereof.
  • Specific examples of such peptides are WO2008 / 054030, WO2013 / 027796, WO2016 / 186206, WO2018 / 230257, and KYOHEI Muguruma et al., ACS Omega (2019); 4 (11): 14390-14397. .. They are described in, and they can be appropriately prepared according to the methods described in their respective documents.
  • the method described in the present specification utilizes a carrier to which IgBP (IgBP for carrier binding) is bound, and two bindings in which the Fc molecule has the same or different IgBP (IgBP for Fc molecule binding) as the IgBP. It efficiently binds to only one of the sites.
  • IgBP to be bound to a carrier is referred to as "IgBP for carrier binding”.
  • IgBP intended to be bound to an Fc molecule is referred to as "Fc molecule binding IgBP".
  • IgBP-binding carrier an Fc molecule to which IgBP for Fc molecule binding is bound
  • IgBP-binding Fc molecule an Fc molecule to which IgBP for Fc molecule binding is bound
  • IgBP for carrier binding include the following peptides (i) or (ii) that specifically bind to the Fc region of IgG.
  • X m (m is an integer) represents an amino acid.
  • X m n indicates that n amino acids X m are bound, and “X m ” in which n is not described indicates that one amino acid X m is present.
  • n is 2 or more, the plurality of X m may be independently the same or different amino acids.
  • n is "pq" it means that p to q amino acids X m are present.
  • (I) [In formula (I), (Linker) represents a linker, where 1-3 X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , and 1-3 X 8 , Each shows the same or different amino acid residues independently of each other, Each X 1 , X 2 , X 3 and each X 8 independently represent any amino acid residue other than C that is the same or different.
  • X 4 is H, R, S, or T
  • X 5 is K, C, D, E, R, V, F, L, 2-aminosuberic acid, Dpr, Orn, AcOrn, AcDab, Dab, Nle, Nva, Tle, Ala (t-Bu), and Cha.
  • One amino acid residue selected from X 6 is E, N, R, or D
  • X 7 is I or V.
  • the Linker (GSGGS) 1-3 , (SGSGGS) 1-3 , (GGGGS) 1-3 , or (PEG) 2-10 (preferably (PEG) 4 )? Or does not exist.
  • a Linker (as defined above) may be inserted between the carboxyl terminus and the amino group. When the Linker is present at the C-terminal, the Linker on the N-terminal side does not have to be present.
  • the N-terminal amino group may be acetylated (in this case, the Lys residue is introduced at an appropriate position near the N-terminal in the Linker on the N-terminal side).
  • X 1 1-3 is (S, G, F, or none)-(D, G, A, S, P, Hcy, or none)-(S, D, T, N, E, or none) It is an amino acid sequence represented by R).
  • X 1 1-3 are D, GPD, R, GPR, SPD, GDD, GPS, SDD, RGN, G-Hcy-D, RGP, or GPD.
  • X 1 1-3 is D or GPD.
  • X 2 is A, S, or T.
  • X 2 is A or T.
  • X 2 is A.
  • X 3 is Y or W.
  • X 3 is Y.
  • X 4 is H.
  • X 5 is A, R, K, C, D, E, L, 2-aminosuberic acid, Dpr, R, F, 2-aminosuberic acid, Dpr, AcOrn, AcDab, Dab, Nle, Nva. , Ala (t-Bu), and Cha.
  • X 5 is K, R, AcOrn.
  • X 5 is one amino acid residue selected from V, Dab, F, R, L, Nva, Nle, Ala (t-Bu), and Cha.
  • X 5 is one amino acid residue selected from F, R, L, Nva, Nle, Ala (t-Bu), and Cha.
  • X 5 is one amino acid residue selected from L, Ala (t-Bu), and Cha.
  • X 6 is E or N.
  • X 6 is E.
  • X 7 is V.
  • X 8 1-3 is (S, T, or D)-(H, G, Y, T, N, D, F, Hcy, or none)-(Y, F, H, M, or none)-(Y, F, H, M, or none) None).
  • X 8 1-3 is T, TFH, S, SFH, THH, TFY, TYH, or T-Hcy-H.
  • X 8 1-3 is T or TFH.
  • the peptide represented by the formula (I) may be any one or a combination of two or more of the above conditions, and may be, for example, a peptide satisfying the conditions described below: [ 8] and [9]; [8] and [17]; [9] and [17]; [8] and [9] and [17]; or any one of these and [10] to [14]. Is a combination of. More specifically, the following peptides can be mentioned (where X 5 is the same as above; it may have an NH 2- (Linker) -group at the N-terminus and -NH at the C-terminus.
  • (Linker2) represents a linker
  • Preferred examples of the peptide having the amino acid sequence represented by the formula (II) include the following peptides.
  • X 9 is selected from the group consisting of GF, F, and K.
  • X 10 is Q.
  • X 11 and X 12 are independently selected from the group consisting of R, H, and E, respectively.
  • X 11 and X 12 are R.
  • a peptide having the following structure can be used as the IgBP for carrier binding.
  • the carrier-binding IgBP has at least one amino group (-NH 2 ) for covalent bonding with the carrier.
  • Such an amino group is preferably an N-terminal amino group, but as long as it can be bonded to a carrier, a lysine residue, cysteine, near the N-terminal or C-terminal (for example, located in a linker). It may be a side chain amino group of a residue, an aspartic acid residue, a glutamic acid residue, 2-aminosveric acid, Dpr, or an arginine residue.
  • IgBP for Fc molecular binding include the following peptides (iii) or (iv) that specifically bind to the Fc region of IgG.
  • Z represents a functional group
  • [(Linker3)-(X 1 1-3 ) -C- (X 2 )-(X 3 )-(X 4 )-(X 5 )- G- (X 6 ) -L- (X 7 ) -WC- (X 8 1-3 )] is attached to any part of the structure, and (Linker3) represents a linker, and 1 to 3 X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , and 1-3 X 8s , respectively, independently of each other, show the same or different amino acid residues.
  • Each X 1 , X 2 , X 3 and each X 8 independently represent any amino acid residue other than C that is the same or different.
  • X 4 is H, R, S, or T
  • X 5 is K, C, D, E, R, V, F, L, 2-aminosuberic acid, Dpr, Orn, AcOrn, AcDab, Dab, Nle, Nva, Tle, Ala (t-Bu), and Cha.
  • One amino acid residue selected from X 6 is E, N, R, or D
  • X 7 is I or V.
  • the peptide represented by the formula (I') may have a functional group at the C-terminal instead of having a functional group at the N-terminal.
  • the peptide represented by the formula (I') may be a peptide represented by the following formula (I ′′). [(X 1 1-3 ) -C- (X 2 )-(X 3 )-(X 4 )-(X 5 ) -G- (X 6 ) -L- (X 7 ) -WC- ( X 8 1-3 )-(Linker3)]-Z ...
  • Z represents a functional group, [(X 1 1-3 ) -C- (X 2 )-(X 3 )-(X 4 )-(X 5 ) -G- ( It binds to any part of the structure represented by X 6 ) -L- (X 7 ) -WC- (X 8 1-3 )-(Linker 3)], and (Linker 3) represents a linker, 1-3.
  • X 1, X 2, X 3 , X 4, X 5, X 6, X 7 and 1-3 X 8, are each, independently of one another, the same or different amino acid residues, Each X 1 , X 2 , X 3 and each X 8 independently represent any amino acid residue other than C that is the same or different.
  • X 4 is H, R, S, or T
  • X 5 is K, C, D, E, R, V, F, L, 2-aminosuberic acid, Dpr, Orn, AcOrn, AcDab, Dab, Nle, Nva, Tle, Ala (t-Bu), and Cha.
  • One amino acid residue selected from X 6 is E, N, R, or D
  • X 7 is I or V.
  • Linker3 is RRRGS, EEGGS or (PEG) 1-8 (preferably (PEG) 4 ) or is absent.
  • Examples of the peptide having the amino acid sequence represented by the formula (I') and the formula (I'') include Z- (Linker3)-(X 1 1-3 ) -C- (X 2 )-(X 3 ). -(X 4 )-(X 5 ) -G- (X 6 ) -L- (X 7 ) -WC- (X 8 1-3 ) or (X 1 1-3 ) -C- (X 2) )-(X 3 )-(X 4 )-(X 5 ) -G- (X 6 ) -L- (X 7 ) -WC- (X 8 1-3 )-(Linker 3) -Z You may.
  • the preferred amino acid sequence is the same as the preferred amino acid sequence in the peptide represented by the above formula (I).
  • the following peptides can be mentioned as IgBP for Fc molecular binding.
  • (Linker2) represents a linker
  • Linker2 is SGSGSK, SRRCR, SRRK (Z) R, SRRCRRCRC, SRRK (Z) RRK (Z) RRK (Z), or (PEG) 1-8- Lys (preferably (PEG). ) 4- Lys) or does not exist.
  • the Cys residue (C) contained in the linker may be bound to another functional molecule via a maleimide group, if necessary.
  • Preferred examples of the peptide having the amino acid sequence represented by the formula (II') include the following peptides.
  • [B] X 9 is selected from the group consisting of GF, F, and Acetyl-K.
  • [C] X 10 is Q.
  • [D] X 11 and X 12 are independently selected from the group consisting of R, H, and E, respectively.
  • [E] X 11 is R.
  • [F] X 12 is R or K (Z) (preferably Z is an azide).
  • peptide having the amino acid sequence represented by the formula (II') include the peptides described in 60) to 66) above (however, the lysine residue contained therein is necessary. Functional groups may be attached accordingly).
  • the following peptides can be mentioned as IgBP for Fc molecular binding: FNMQQQCRFYEALHDPNLNEEQRNARIRSIRDD-NH 2 FNMQQQRRRFYEALHDPNLNEEQRNARIRSIRDDC-NH 2 FNMQQQRRRFYEALHDPNLNEEQRNARIRSIRDDP-SRRK (Z) R-NH 2 FNMQQQRRRFYEALHDPNLNEEQRNARIRSIRDDP-SRRCR-NH 2 FNMQQQCRFYEALHDPNLNEEQRNARICSIRDDP-SRRCRRCRRC-NH 2 FNMQQQK (Z) RFYEALHDPNLNEEQRNARIK (Z) SIRDDP-SRRK (Z) RRK
  • the term "functional group” means a group capable of reacting and binding to a peptide, protein, nucleic acid, or small molecule drug under mild conditions.
  • Functional groups include maleimide, thiol or protected thiol, alcohol, acrylicate, acrylamide, amine or protected amine, carboxylic acid or protected carboxylic acid, azide, alkin containing cycloalkyne, 1,3-diene containing cyclopentadiene and furan, Alpha-halocarbonyl, N-hydroxysuccinimidyl, N-hydroxysulfosuccinimidyl, nitrophenyl ester, carbonate, dibenzocyclooctine (DBCO), tetrazine, methyltetrazine (MTZ), transcyclooctene (TCO) Can be mentioned.
  • DBCO dibenzocyclooctine
  • tetrazine methyltetrazine
  • TCO transcyclooctene
  • the Fc molecular binding IgBP described herein may have an azide group as a functional group attached to the N-terminal or C-terminal (preferably the N-terminal) via a linker, if necessary.
  • the peptide has an azide group at the end of a peptide in which 1 to 3 (preferably 2) glutamic acids are further attached to the N-terminal and / or C-terminal of IgBP.
  • IgBP having an azide group can link the other functional molecule to IgBP by click-reacting with another functional molecule having Dibenzylcyclooctyne (DBCO), alkyne, and TCO.
  • DBCO Dibenzylcyclooctyne
  • the binding of IgBP for Fc molecular binding to another functional substance can also be carried out by a method known to those skilled in the art, for example, a reaction between a maleimide group and a sulfhydryl group.
  • the IgBP for Fc molecular binding described in the present specification may be bound to other functional molecules.
  • such other molecules can be attached via the functional group (for example, to the amino terminal), or an amino acid (for example, a lysine residue) in IgBP for Fc molecule binding can form a functional group. If so, it can be attached to the functional group (eg, the azide group that the lysine residue has as a substituent), or the Cys residue (preferably Linker, eg, Linker) in the IgBP for Fc molecule binding. It can also be attached to Linker2 or (Cys residue in Linker3) via a maleimide group.
  • Fc molecular binding IgBP include, but are not limited to, labeling substances or medical agents, including, but not limited to, peptides, proteins, nucleic acids, or small molecule drugs. Any molecule to which the antigen specificity and other properties of the Fc molecule can be applied can be attached as another molecule. Examples of such substances include anticancer agents, small molecule drugs, radioactive labels, fluorescent labels, nucleic acid drugs, gene therapy drugs, peptide drugs, antibodies such as IgA or VHH, and the like.
  • Labeling materials include, but are not limited to, fluorescent dyes, chemically luminescent dyes, radioactive isotopes (eg, chelate complexes of radioactive iodine or radioisotope metal ions, eg, chelate complexes of DOTA or desferrioxamine), and biotin and GFP.
  • fluorescent proteins such as (green fluorescent protein), luminescent proteins, and enzymes such as peroxidase
  • fluorescein derivatives such as fluorescein and FITC
  • rhodamine derivatives such as rhodamine and tetramethylrhodamine, and Texas red and the like. Fluorescein.
  • the drug is not limited, but for example, an antiseptic such as oristatin such as oristatin E, maytancin, emtansine, doxorubicin, bleomycin, or a derivative thereof is used.
  • Drugs ; and targets of drugs that bind to receptors on the blood-brain barrier and enable the transfer to the central nervous system, or drugs that bind to cancer cells and enable the transfer of antibodies into the cells. Agents can be mentioned.
  • IgBP for Fc molecular binding can enhance the therapeutic effect of a disease by forming a complex with IgG used as a pharmaceutical antibody, for example.
  • IgBP for Fc molecular binding has at least one amino group (-NH 2 ) for covalent binding with an antibody.
  • an amino group may be an amino group at the amino terminal, or may be a lysine residue, a cysteine residue, an aspartic acid residue, a glutamate residue, 2-aminosveric acid, a diaminopropionic acid, or an arginine residue. It may be a side chain amino group.
  • lysine residue In such Fc molecule binding IgBP, lysine residue, cysteine residue, aspartic acid residue, glutamate residue, 2-aminosveric acid, diaminopropionic acid, arginine residue (preferably lysine residue) or 1
  • the amino group of the amino acid at the position may optionally be modified with a cross-linking agent for covalent bonding with the antibody.
  • IgBP thus modified with a cross-linking agent is sometimes referred to as "CCAP reagent”.
  • the IgBP for Fc molecular binding is preferably a CCAP reagent.
  • the "crosslinking agent” is a chemical substance for covalently linking IgBP and an Fc molecule.
  • the cross-linking agent can be appropriately selected by those skilled in the art, and desired amino acids (for example, lysine residue, cysteine residue, aspartic acid residue, glutamate residue, 2-aminosveric acid, diaminopropionic acid) can be selected as appropriate.
  • desired amino acids for example, lysine residue, cysteine residue, aspartic acid residue, glutamate residue, 2-aminosveric acid, diaminopropionic acid
  • Arginine residue, etc. can be a compound having at least two sites that can bind to it.
  • Examples of such a cross-linking agent include DSG (discusin imidazole glutarate), DSS (discusin imidazole svelate), DMA (dimethyl dihydrochloride of adipimide acid), DMP (dimethyl dihydrochloride of pimmelimide acid), and DMS (Suberimide acid dimethyl dihydrochloride), DTBP (3,3'-dithiobispropionimide acid dimethyl dihydrochloride), and DSP (dithiobis (succinimidylpropionic acid)), preferably DSG, DSS. , Or DSP.
  • DSG diiscusin imidazole glutarate
  • DSS discussedin imidazole svelate
  • DMA dimethyl dihydrochloride of adipimide acid
  • DMP dimethyl dihydrochloride of pimmelimide acid
  • DMS Suberimide acid dimethyl dihydrochloride
  • DTBP 3,3'-dithiobispropion
  • a cross-linking agent containing a succinimidyl group such as DSS or DSG reacts with the side chain of the lysine residue and the primary amine present at the N-terminal of the polypeptide.
  • DSS or DSG a succinimidyl group
  • Cross-linking between IgBP and IgG modified with a cross-linking agent can be performed, for example, by using the amino acid residues of X 5 , X 9 , X 11 , X 12 , and X 14 of IgBP and Lys 248 or Lys 246 of the Fc region of IgG. Preferably, it can be site-specifically generated between Lys248.
  • the cysteine closest to the C-terminal and the cysteine closest to the N-terminal may form a cyclic peptide by being linked via a disulfide bond or a linker.
  • R are optionally substituted alkyl groups, eg, optionally substituted C1-C6 alkyl, methyl group, ethyl group, propyl group, butyl group, pentyl group, or hexyl group).
  • substituents when substituted include a hydroxy group, a (mono or poly) ethylene oxide group, a carboxyl group, an alkoxy group, an acyl group, an alkyl group, an amide group, an ester group, and a halogen group (F, Cl, Br). , Or I), or a combination thereof).
  • the linker is superior to ordinary disulfide bonds in stability, for example, resistance to alkali resistance or reduction reaction, preferably alkali resistance.
  • K (Z) means a functional group-bonded lysine residue, preferably K (Z) is K (Azide).
  • the amino group of the N-terminal amino acid may be acetylated.
  • the carboxyl group of the amino acid at the C-terminal may be amidated (the amino group is bonded).
  • the IgBP of the present specification may be modified with PEG at its terminal or between the azide group and the peptide moiety, if necessary.
  • the degree of polymerization of PEG when PEG-modified can be 2 to 10, 3 to 8, 4 to 7.
  • Fc molecule has a partial peptide chain (Fc chain) of two symmetrical heavy chain constant regions in the Fc region of the contained IgG, there are two sites to which the IgBP for Fc molecular binding binds. To do. Therefore, 0 to 2 IgBPs for Fc molecule binding can be bound to one Fc molecule.
  • An Fc molecule in which one IgBP is bound to one Fc molecule means an Fc molecule in which IgBP is bound to only one of the two symmetrical heavy chain constant region-derived partial peptides in the Fc molecule described above. ..
  • the fact that one Fc molecule is not bound to IgBP for Fc molecule binding is “zero valence”, and the fact that one Fc molecule is bound to one Fc molecule binding IgBP is “monovalent”.
  • Two Fc molecule-binding IgBPs bound to one Fc molecule is called "divalent”.
  • 1 molecule of Fc molecule means a molecule containing two Fc regions which are a pair which can form 1 molecule of IgG.
  • A is an alanine residue
  • R is an arginine residue
  • N is an asparagine residue
  • D is an aspartic acid residue
  • C is a cysteine residue.
  • Q is a glutamine residue
  • E is a glutamic acid residue
  • G is a glycine residue
  • H is a histidine residue
  • I is an isoleucine residue
  • L is a leucine residue.
  • K is a lysine residue
  • M is a methionine residue
  • F is a phenylalanine residue
  • P is a proline residue
  • S is a serine residue
  • T is a threonine residue
  • W is a threonine residue.
  • Hcy is homocysteine
  • Dpr is diaminopropionic acid
  • Orn is an ornithine residue
  • ⁇ Ala is a ⁇ -alanine residue
  • Dab is a 2,4-diaminobutyric acid residue
  • Nle is norleucine. It is a residue
  • Nva is a norvaline residue
  • Tle is a tert-leucine residue
  • Ala (t-Bu) is a tert-butylalanine residue
  • Cha is a cyclohexylalanine residue.
  • the amino group in the residue having an amino group in the side chain may be acetylated, if necessary.
  • Acetylated forms of natural and artificial amino acids are sometimes described herein with the Ac prefix in the amino acid designations described above, except in particular cases where such interpretation is inconsistent. It is understood that it may include an acetylated form even if it is not described as Ac.
  • K (Azide) represents an azide-bound lysine residue. (Method by purification)
  • the present invention is a method of increasing the proportion of monovalent in an Fc molecular composition reacted with (Fc molecular binding) IgBP.
  • the Fc molecule (binding) reacted with the Fc molecule binding IgBP was brought into contact with a carrier to which the same or different carrier binding IgBP as the Fc molecule binding IgBP was bound, and the Fc molecule binding IgBP was bound. Binding the Fc molecule to the carrier, The present invention relates to a method comprising removing the Fc molecule that has not bound to the carrier and recovering the Fc molecule that has bound to the carrier.
  • the "Fc molecular composition reacted with IgBP for Fc molecular binding" used in the purification method is in accordance with the methods described in International Patent Publications WO2008 / 054030, WO2013 / 027796, WO2016 / 186206, and WO2018 / 230257. It can be obtained by mixing IgBP for Fc molecule binding and Fc molecule.
  • the method may include reacting the Fc molecule binding IgBP with the Fc molecule to obtain the Fc molecular composition reacted with the Fc molecule binding IgBP before the first step.
  • Fc molecule reacted with IgBP for Fc molecule binding means an Fc molecule covalently bonded to IgBP for Fc molecule binding via the above-mentioned cross-linking agent.
  • the conditions of the mixing step are not particularly limited as long as the cross-linking reaction occurs between the Fc molecular binding IgBP and the Fc molecule.
  • the Fc molecular binding IgBP and the Fc molecule can be reacted by mixing them in a suitable buffer at room temperature (for example, about 15 ° C. to 30 ° C.).
  • the mixing step may be carried out by adding an appropriate amount of a catalyst that promotes the crosslinking reaction, if necessary.
  • the mixing ratio of IgBP for Fc molecule binding and Fc molecule in the mixing step is not particularly limited, but for example, the molar ratio of IgBP: Fc molecule is 1: 1 to 20: 1, preferably 2: 1. It can be 1 to 20: 1 or 5: 1 to 10: 1.
  • the mixing time (reaction time) in the mixing step is not limited as long as a cross-linking reaction occurs between the Fc molecule binding IgBP and the Fc molecule, but is, for example, 1 minute to 5 hours, preferably 10 minutes to 2 minutes. It can be hours or 15 minutes to 1 hour.
  • the Fc molecular composition reacted with IgBP for Fc molecular binding may be further purified, if necessary. Purification can be performed by methods known in the art, such as gel filtration chromatography, ion exchange column chromatography, affinity chromatography, reverse phase column chromatography, chromatography such as HPLC, and the like.
  • the present invention includes "a carrier to which IgBP for carrier binding is bound".
  • the carrier to which the carrier-binding IgBP is bound can be produced, for example, by reacting the carrier having a functional group reactive with an amino group with the carrier-binding IgBP.
  • the shape of the carrier include gels (for example, gels for columns), particles, beads, nanoparticles, fine particles, macrobeads, membranes, microplates, and arrays, and the materials thereof include magnetic substances and latexs. , Agarose, glass, cellulose, sepharose, nitrocellulose, polystyrene and other high molecular weight materials.
  • the carrier is a column gel.
  • HiTrap NHS-activated HP GE Healthcare
  • the reaction is carried out under the condition that the two are sufficiently bound, and can be carried out, for example, by contacting them in a buffer solution at room temperature for 1 to 5 hours (preferably 2.5 to 3.5 hours).
  • the contact between the Fc molecule reacted with the Fc molecule binding IgBP and the carrier to which the carrier binding IgBP is bound is performed under conditions under which both can be sufficiently contacted.
  • the carrier is a column
  • the Fc molecule reacted with the Fc molecule-binding IgBP is injected into the carrier-binding IgBP-immobilized column.
  • the Fc molecule that has not been bound to the carrier can be removed by a conventional method, for example, by washing the carrier to which the Fc molecule is bound with a buffer solution (pH about 7.0). Can be done.
  • a buffer solution pH about 7.0
  • the Fc molecule bound to the carrier can be recovered at pH 2.5 or higher, but it is desirable that the acidity is weak in order to prevent denaturation of the Fc molecule, preferably pH 3.6 or higher, and further, monovalent.
  • pH 3.7 or higher and pH 3.8 or higher are preferable, and pH 3.8, pH 3.9, pH 4.0, pH 4.1, pH 4.2, pH 4.3 or them.
  • It can be a value between any two points of, for example, pH 3.6 to pH 4.3, pH 3.6 to pH 4.2, pH 3.6 to pH 4.1, pH 3.6 to pH 4.0, pH 3 It can be .7 to pH 4.2, pH 3.7 to pH 4.1, pH 3.7 to pH 4.0, pH 3.8 to pH 4.0, or pH 3.8 to pH 3.9.
  • the present invention is a method for preparing a monovalent Fc molecule using IgBP for Fc molecule binding and IgBP for carrier binding. Fc molecule is reacted with a carrier to which IgBP for carrier binding is bound to obtain an Fc molecule binding carrier.
  • the Fc molecule in the obtained Fc molecule binding carrier and the Fc molecule binding IgBP are reacted on the carrier to form (Fc molecule binding IgBP)-(Fc molecule)-(carrier binding IgBP)-(carrier).
  • the Fc molecule binding IgBP and the carrier binding IgBP may be the same or different, according to a method.
  • This method may include a step of covalently binding an antibody and an Fc molecular binding IgBP with a cross-linking agent by using a CCAP reagent as the Fc molecular binding IgBP. Further, the method may include a step of binding the Fc molecular binding IgBP to another functional molecule. These steps may be performed on the carrier before recovering the Fc molecular binding IgBP and Fc molecule conjugate from the carrier, or on the Fc molecule binding IgBP and Fc molecule conjugate recovered from the carrier. You may.
  • the carrier to which IgBP for carrier binding is bound can be produced according to the method described in the above-mentioned purification method.
  • the reaction between the Fc molecule and the carrier to which the carrier-binding IgBP is bound is a method of contacting the Fc molecule reacted with the Fc molecule-binding IgBP described in the above-mentioned purification method and the carrier to which the carrier-binding IgBP is bound. It can be done according to.
  • the reaction between the carrier-bound Fc molecule and the Fc molecule-binding IgBP can be carried out by bringing them into contact with each other.
  • the reaction temperature can be 4 ° C. to room temperature, and the reaction pH can be 4.5 to 6.0.
  • the reaction time is preferably 3 hours or more, more preferably 6 hours or more, and 12 hours or more.
  • the concentration of IgBP for Fc molecule binding to be used can be 10 to 60 ⁇ M or 20 to 40 ⁇ M.
  • the Fc molecule binding IgBP is bound to a cross-linking agent, and the reaction between the Fc molecule and the Fc molecule binding IgBP includes a cross-linking reaction.
  • Recovery of the Fc molecule-binding IgBP and Fc molecule conjugate from the carrier can be performed in the same manner as the recovery of the Fc molecule bound to the carrier described in the above-mentioned purification method.
  • the ratio of the monovalent Fc molecule to the total Fc molecule (100%) in the recovered Fc molecular composition was 53% or more, 55% or more, 56% or more, 59% or more, 80% or more, 85%. As mentioned above, it can be 86% or more or 89% or more.
  • the ratio of the obtained monovalent Fc molecule to the total Fc molecule (100%) used in the method for preparing the monovalent Fc molecule was 39% or more (or 40% or more, 50% or more, 55%). Or more, or 74% or more).
  • the carrier is a column
  • this method can be automated using a high performance liquid chromatograph. For automation, a 10-60 ⁇ M Fc molecular binding IgBP solution can be run at 0.03-1 mL / min or 0.05-1 mL / min for 10 minutes.
  • Method of preparing a functional group-bound Fc molecule also includes a method of producing an Fc molecule into which a monovalent functional group or one other functional molecule has been introduced. Such functional groups and other functional molecules can also be introduced via binding groups such as functional groups, Cys residues, Lys residues, or amino groups on IgBP, and IgBP and Fc molecules.
  • a binding group such as a Cys residue or Lys residue of the Fc molecule with a compound having a functional group or a functional molecule.
  • a monovalent Fc molecule-binding IgBP may be attached to the Fc molecule by the method described above, and then a necessary functional group or other functional molecule may be attached, or such a functional group may be attached.
  • IgBP for Fc molecule binding into which a functional group or other functional molecule is introduced is bound to the Fc molecule. You may.
  • IgBP for Fc molecular binding can be removed after introducing a functional group or other functional molecule into the Fc molecule by covalently binding it using IgBP for Fc molecular binding (Kei Yamada et al.). , (2019) Angew. Chem .; 131: 5648-5563). That is, after binding IgBP for Fc molecule binding to an Fc molecule, a binding group such as Cys residue or Lys residue of the Fc molecule is covalently bonded to a compound having a functional group or a functional molecule to bind the Fc molecule.
  • the IgBP for Fc molecule binding may be cleaved and removed from the Fc molecule.
  • this step may be performed on a carrier-bonded product of IgBP for carrier binding and Fc molecule. Therefore, the Fc molecule into which a monovalent functional group or one other functional molecule has been introduced according to the present invention does not have to contain IgBP for Fc molecular binding.
  • the present invention is an Fc molecule in which a functional group is bound to only one of two Fc chains existing in one Fc molecule, and IgBP is not bound to the Fc molecule (functional group-bound Fc molecule).
  • Fc molecule is reacted with a carrier to which an IgG-affinitive peptide for carrier binding (IgBP for carrier binding) is bound to obtain an Fc molecule-binding carrier.
  • IgBP IgG-affinitive peptide for carrier binding
  • An IgG-affinitive peptide for Fc molecule binding in which a cross-linking agent is bound to the Fc molecule in the obtained Fc molecule-binding carrier via a cleavable linker (Cleverable cross-linking agent).
  • Crosslinking agent Binding IgBP: CCB-IgBP) is reacted to obtain a conjugate of CCB-IgBP and an Fc molecule; (iii) The cross-linking agent is reacted with the Fc molecule to covalently bind; iv) Cleavage the linker to cleave the bond between the cross-linking agent and the Fc molecule-binding IgBP; (v) dissociate the Fc molecule-binding IgBP from the Fc molecule and via the carrier-binding IgBP.
  • the IgBP and the carrier-binding IgBP may be the same or different; where a functional group-containing group may be present between the cleaving linker and the cross-linking agent; where the functional group-binding Fc
  • the functional group contained in the molecule is a functional group existing between the cleaving linker and the cross-linking agent (see FIG. 11E), or a group generated by the cleavage of the linker (FIG. 10). (C)), relating to the method.
  • the present invention is an Fc molecule in which a functional molecule is bound to only one of two Fc chains existing in one Fc molecule, and IgBP is not bound to the Fc molecule (functional molecular bound Fc molecule).
  • Fc molecule is reacted with a carrier to which an IgG-affinitive peptide for carrier binding (IgBP for carrier binding) is bound to obtain an Fc molecule-binding carrier.
  • Crosslinking agent Binding IgBP: CCB-IgBP) is reacted to obtain a conjugate of CCB-IgBP and an Fc molecule; (iii) The cross-linking agent is reacted with the Fc molecule to covalently bond; iv) Cleavage the linker to cleave the bond between the cross-linking agent and the Fc molecule-binding IgBP; (v) dissociate the Fc molecule-binding IgBP from the Fc molecule and via the carrier-binding IgBP.
  • a functional group-containing group may be present between the possible linker and the cross-linking agent; where the functional group contained in the functional group-bonded Fc molecule is between the cleavable linker and the cross-linking agent.
  • the present invention has many Fc molecules that are functional molecule-bound Fc molecules in which a functional molecule is bound to only one of two Fc chains existing in one Fc molecule and to which IgBP is not bound.
  • a method for preparing an Fc molecular composition containing Fc molecule (i) Fc molecule is reacted with a carrier to which an IgG-affinitive peptide for carrier binding (IgBP for carrier binding) is bound to obtain an Fc molecular binding carrier; ( ii) IgG-affinitive peptide for Fc molecule binding (Closlinking agent) in which a cross-linking agent is bound to the Fc molecule in the obtained Fc molecule-binding carrier via a cleavable linker.
  • Bound IgBP CCB-IgBP
  • Reacting the cross-linking agent with the Fc molecule to covalently bond (iv). Cleavage the linker to cleave the bond between the cross-linking agent and the Fc molecule-binding IgBP; (v) dissociate the Fc molecule-binding IgBP from the Fc molecule into the carrier via the carrier-binding IgBP.
  • the IgBP and the carrier-binding IgBP may be the same or different; where the functional molecule is attached between the cleaving linker and the cross-linking agent (see FIG. 11E).
  • the "functional group-bonded Fc molecule” means an Fc molecule to which IgBP is not bound and a functional group is bound.
  • the functional group may be attached to the Fc molecule via a linker, cross-linking agent, and / or other structure.
  • the “functional molecular binding Fc molecule” means an Fc molecule to which IgBP is not bound and a functional group is bound.
  • the functional molecule may be attached to the Fc molecule via a linker, cross-linking agent, and / or other structure.
  • CB-IgBP binds in the order of (crosslinking agent)-(cleavable linker)-(IgBP) as long as the structure is such that the cross-linking agent and IgBP are cleaved by the decomposition of the cleavable linker. If so, it may contain other substances, for example, (crosslinking agent)-(substance or structure desired to be introduced into the Fc molecule)-(cleavable linker)-(IgBP).
  • a typical example of a substance or structure to be introduced into an Fc molecule is a functional molecule or a group containing a functional group.
  • the "cleavable linker” is decomposed by acidic conditions, basic conditions, reduction, oxidation, enzyme treatment, light irradiation or ⁇ -desorption and cross-linked with an IgG-affinitive peptide for Fc molecule binding. It is a linker having a linking group in which the bond with the agent is cleaved, and examples thereof include a disulfide bond, an acetal bond, an ester bond, and an amide bond.
  • An example of such a cleaving linker is described in WO2018 / 199337 as a cleaving moiety.
  • the invention in another aspect, relates to a composition comprising an IgBP-binding Fc molecule obtained by the purification method or preparation method. That is, the present invention is characterized in that the ratio of the Fc molecule to which only one IgBP is bound to all Fc molecules is higher than the ratio of the IgBP-bound Fc molecule synthesized by the conventional CCAP method.
  • the conventional CCAP method is a CCAP method for binding IgBP and an Fc molecule in vitro, and this term is used for the purpose of distinguishing it from a method using an IgBP-binding carrier as in the present invention. .. More specifically, the conventional CCAP method includes the methods described in International Patent Publications WO2008 / 054030, WO2013 / 027796, and WO2016 / 186206.
  • the ratio of Fc molecules to which only one IgBP is bound is 52% or more, 53% or more, 55% or more, 56% or more when the total Fc molecules are 100%. 59% or more, 63% or more, 70% or more, 80% or more, 85% or more, 86% or more, 89% or more, 90% or more, 95% or more, or 98% or more.
  • the composition of the present invention can be a medical or diagnostic composition, if necessary.
  • IgBP is preferably modified with, for example, the above-mentioned agent, and when it is contained in the diagnostic composition, for example.
  • IgBP is preferably modified with, for example, the above-mentioned labeling substance.
  • the target disease of the medical or diagnostic composition can be appropriately set by selecting the Fc molecule or binding agent to be used, for example, a disease or disorder that can be targeted by an antibody, preferably cancer. Included are inflammatory diseases, infectious diseases, and neurodegenerative diseases.
  • compositions can be used as injections and include dosage forms such as intravenous injections, subcutaneous injections, intradermal injections, intramuscular injections, and drip injections.
  • Such injections can be prepared according to known methods, for example, by dissolving, suspending or emulsifying IgBP-binding Fc molecules in sterile aqueous or oily solutions commonly used in injections.
  • the prepared injection solution is usually filled in a suitable ampoule, vial or syringe.
  • a lyophilized preparation can be prepared and dissolved in water for injection, physiological saline or the like at the time of use to prepare an injection solution.
  • oral administration of proteins such as antibodies is difficult because they are decomposed by the digestive tract, but oral administration may be possible due to the ingenuity of antibody fragments and modified antibody fragments and dosage forms.
  • preparation for oral administration include capsules, tablets, syrups, granules and the like.
  • the medical or diagnostic composition is prepared in a dosage form of a dosage unit suitable for the dose of the active ingredient.
  • dosage unit dosage forms include injections (ampoules, vials, prefilled syringes), which usually contain 5 to 500 mg, 5 to 100 mg, and 10 to 250 mg of IgBP-binding Fc molecules per dosage unit dosage form. You may be.
  • Administration of the medical or diagnostic composition may be local or systemic.
  • the administration method is not particularly limited, and is administered parenterally or orally as described above.
  • Parenteral routes of administration include subcutaneous, intraperitoneal, blood (intravenous or intraarterial) or cerebrospinal fluid injections or infusions, preferably intrablood.
  • the medical or diagnostic composition may be administered transiently, or may be administered continuously or intermittently. For example, administration can be continued for 1 minute to 2 weeks.
  • the administration of the medical or diagnostic composition is not particularly limited as long as the dose and administration time can obtain the desired therapeutic or preventive effect, and can be appropriately determined depending on the symptoms, gender, age, and the like.
  • a single dose of the active ingredient usually about 0.01 to 20 mg / kg body weight, preferably about 0.1 to 10 mg / kg body weight, more preferably about 0.1 to 5 mg / kg body weight is used for the above-mentioned diseases. It is convenient to administer by intravenous injection about 1 to 10 times a month, preferably about 1 to 5 times a month before and / or after the onset of clinical symptoms. In the case of other parenteral administration and oral administration, an equivalent amount can be administered.
  • Example 1 Blood half-life of antibody conjugate by CCAP method (1) Preparation of antibody conjugate by CCAP method 8 ⁇ M anti-AVM (Avelmectin) antibody (human IgG4) dissolved in 20 mM acetate buffer (pH 4.5) To 5 ml, 154 ⁇ L of CCAP reagent Azide-PEG4-EEGPDCAYH (succinimidyl glutalyl Lys) GELVWCTFH (SEQ ID NO: 69) -NH 2 (Azide-EEIgBP, 534 ⁇ M) dissolved in DMSO was added (final concentration 16 ⁇ M). I let you.
  • Azide-PEG4-EEGPDCAYH succinimidyl glutalyl Lys
  • GELVWCTFH SEQ ID NO: 69
  • Control antibody (AVM), peptide monovalent addition antibody (AVM-pep1), peptide bivalent addition antibody (AVM-pep2) were applied to ICR mice at 5 mg / kg i. v.
  • the serum antibody concentration was analyzed after 1 hour, 4 hours, 24 hours, 48 hours, 72 hours, and 168 hours.
  • FIG. 2 shows the results of analyzing the serum antibody concentration 1 hour, 4 hours, 24 hours, 48 hours, 72 hours, and 168 hours after the antibody administration.
  • Table 1 analyzes the pharmacokinetic parameters from the changes in serum antibody concentration in this experiment.
  • Example 2 Preparation of antibody-binding column
  • IgBP-immobilized column IgG-binding peptide IgBP (WO2013 / 027796) with a GS linker added to the N-terminal: NH 2- GSGGS-DCAYHRGELVWCT-CONH 2 (MW: 1895) .06) (SEQ ID NO: 70) was solid-phase synthesized using the F-moc method, deprotected, and purified by reverse-phase HPLC. 14 mg of the lyophilized peptide was dissolved in 0.25 mL of 50 mM Tris buffer (pH 8.6) and left at room temperature for 1 hour.
  • TFA was added to the final 1% to make it acidic. This solution was applied to a reverse phase column (Sep-Pak C18), washed with 0.1% TFA, eluted with 60% acetonitrile containing 0.1% TFA, the organic solvent was removed, and then lyophilized.
  • the first elution was performed for 2.5 minutes using an eluate of 0.1 M glycine hydrochloric acid. Further, the second elution was carried out with 0.1 M glycine hydrochloric acid having a pH of 2.5, and finally the elution was carried out with a 20 mM phosphate buffer (pH 7.0) (FIGS. 3 and 4).
  • FIG. 4 shows an enlarged view at the time of the first elution.
  • the elution time tended to increase as the pH was lowered from 3.5 to 3.0 and 2.5, but the peak area of the eluted antibody was almost the same between each pH, and pH 2. Since nothing was eluted even at the time of the second elution at No. 5, it was found that the antibody could be sufficiently eluted at pH 3.5 in this column.
  • DBC Dynamic binding capacity
  • the bound IgG was eluted with 0.1 M glycine hydrochloric acid (pH 3.5) at a flow rate of 2.0 mL / min, and the eluted protein was dissolved.
  • Elution conditions of Z33-immobilized column and evaluation of DBC The elution conditions of the antibody of the prepared Z33-immobilized column were examined.
  • DBC Dynamic binding capacity
  • Example 3 Purification of monovalent antibody using IgBP-immobilized column (1) Removal of divalent antibody using IgBP-immobilized column 10 mg (67 nmol) of Trastuzumab was added to 3.3 ml of 20 mM phosphate buffer (pH 7).
  • the remaining reaction product was injected into a Z33-immobilized column, washed with 20 mM phosphate buffer (pH 7.0), and eluted with 0.1 M glycine hydrochloride buffer (pH 3.5).
  • the results of analysis by hydrophobic chromatography of the fraction passed through the column and the fraction eluted with the pH 3.5 solution at this time are shown in FIGS. 7B and 7C.
  • the divalent antibody in the reaction product of IgG and CCAP reagent passes through the IgBP column, and the antibody adsorbed on the column is eluted with an acidic solution, thereby efficiently and 1 with the unmodified product.
  • Trastuzumab and CCAP reagent (IgBP-N 3- RRRSS-SG) were reacted at a molar ratio of 1: 1 at room temperature for 2 hours, and then the reaction product was equilibrated with 0.1 M acetate buffer (pH 5.5). Apply to IgBP column, wash with the same buffer, and then with 0.1 M acetate buffer (pH 4.0, pH 3.9, pH 3.8, pH 3.7) or 0.1 M glycine hydrochloride buffer (pH 3.6). After elution in the first step, elution in the second step was performed with 0.1 M glycine hydrochloride buffer (pH 3.5).
  • FIG. 8A in the first stage elution, elution peaks were obtained under all conditions of pH 3.6-4.0, and in the second stage elution, elution was performed at the first stage pH 3.6. No peak was seen only when FIG. 8B shows the results of ion exchange chromatography of each fraction at the time of first-stage elution at pH 3.8.
  • the pass-through fraction is a divalent antibody
  • the first-stage elution fraction is a monovalent antibody.
  • divalent antibodies were eluted as the main components, and it was found that these components could be separated cleanly by the IgBP column.
  • Table 2 summarizes the content of 0,1 and 2 valent antibodies in each fraction under each condition.
  • the monovalent antibody can be purified with a high purity of 95% or more in each of the first-stage elution pH 4.0-3.7 conditions, although there are some differences in purity.
  • the first stage elution of pH 3.6 it was found that in the first stage elution of pH 3.6, the 0-valent antibody and the 1-valent antibody were eluted at the same time and could not be separated.
  • Example 4 Preparation of monovalent antibody by CCAP reaction on IgBP-immobilized column, Protein A or Protein G column
  • the pH at the time of elution was controlled by using the IgBP column to increase the pH by 95% or more. It was found that the monovalent antibody can be purified with purity. However, since it is difficult to suppress the production of divalent antibody associated with the reaction in solution, the yield of monovalent antibody as a whole can be recovered only at a maximum yield of more than 50% of the antibody used in the reaction. Absent.
  • Trastuzumab 1 mg was diluted with 10 mL (pH 5.5) of 0.1 M acetate buffer and injected into an IgBP column equilibrated with the buffer. Then, a CCAP reagent solution diluted to 20 or 60 ⁇ M with a buffer solution immediately before was poured on a 1 ml column. Incubate the column at room temperature or 4 ° C. for 3 or 12 hours, wash the column with 5 ml of 0.1 M acetate buffer pH 5.5, and then add 5 mL of 0.1 M glycine hydrochloride buffer (pH 3.5). Eluted.
  • the concentration of CCAP reagent was tripled to 60 ⁇ M (Condition 3), but the proportion of monovalent antibody in the elution fraction was 89% (the remaining 11% was 0-valent antibody). It became the highest. In this case, the divalent antibody in the pass-through fraction increased to 56%, and the ratio of the monovalent antibody in the whole was only 39%.
  • the reaction time was shortened from 12 hours to 3 hours in order to reduce the proportion of divalent antibody in the washing fraction, the proportion of the divalent antibody eluted in the pass-through fraction was 7 as intended.
  • the proportion of monovalent antibody in the elution fraction was 59% (the remaining 41% was 0-valent antibody), which was lower than conditions 2 (86%) and 3 (89%). Also, for the same purpose, even when the reaction temperature was changed from room temperature to 4 ° C. with the reaction time of 12 hours (Condition 4), the proportion of divalent antibody in the pass-through fraction decreased to 2% as intended. It was shown that 55% (the ratio in the elution fraction was also 56%) could be achieved as the ratio of monovalent antibody in the whole.
  • Table 3 shows the results of performing the same reaction on the columns using protein A and protein G columns as commercially available columns having the same functions as IgBP.
  • the binding site of protein A and protein G to the antibody is the boundary region between CH2 and CH3 of Fc, which is almost the same as that of IgBP, and it is considered that the production of divalent antibody by the CCAP reagent can be suppressed by the same mechanism.
  • the characteristic of the reaction using these columns is that the divalent antibody found in the IgBP column is not found in the pass-through fraction (Condition 5-9). This is probably because Protein A and Protein G, unlike IgBP, do not have one binding site on the antibody for these ligands (eg, Protein A and G also have binding sites in the Fab region).
  • the elution fraction from the protein A or G column at pH 3.5 contained not only 0-valent and monovalent antibodies but also divalent antibodies (Conditions 5-9 in Table 2). ).
  • the reason why the IgBP column is used for purification is to remove the divalent antibody from the elution recovered product. Therefore, for the preparation of the monovalent antibody by the CCAP reaction on the column, the protein A or G column is used. It turned out to be unsuitable.
  • the components contained in the elution fraction were analyzed by the same method as in Example 4 (Fig. 9B). Very little monovalent antibody production was detected with the 10 ⁇ M reagent, but with the addition of the 20-40 ⁇ M CCAP reagent, the monovalent antibody (the rest were 0-valent antibodies) at a rate of 52-59% in the elution fraction. ) was confirmed to be generated. Furthermore, although the reagent concentration was increased to 60 ⁇ M, the production rate of monovalent antibody did not increase to 57.8%. On the other hand, in these experiments, the contact time between the reaction reagent and the antibody was as short as 10 minutes as compared with the experiments in Tables 1 and 2.
  • the injection rate of the CCAP reagent was set to a flow rate of 0.05 mL / min, and the contact time was doubled, but the production rate of monovalent antibody was 53.9%, which did not increase either (in any case). No data is shown). In fact, under these conditions, the production rate of divalent antibody was 2% or less of the total recovered antibody, so it was considered that it would not lead to a large loss of yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Analytical Chemistry (AREA)
  • Oncology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mycology (AREA)
  • Biomedical Technology (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は血中半減期が長いCCAP法によりFc修飾抗体等を提供することを目的とする。より具体的には,本発明者らが見出した知見に基づき,1か所のみにIgBPを結合させた抗体等を提供することを目的とする。 本発明は,抗体のFc領域に結合するカラムを利用したFc修飾抗体等の精製及び製造により目的の抗体等を提供するものである。具体的には,CCAP法で製造したIgBP結合抗体を,IgBP固相化カラムの担体に吸着させること,あるいは,抗体の片方のFcのみがIgBP結合カラムと結合している状態を作った上で,CCAP用ペプチド試薬をカラムに添加して,カラム内でCCAP法の反応を行うことにより,Fcの2か所の結合サイトのうち,1か所のみが選択的に修飾された抗体を提供する。

Description

1価CCAP生成物の製造方法 関連出願の相互参照
 本国際出願は、2019年10月24日に日本国特許庁に出願された日本国特許出願第2019-193830号に基づく優先権を主張するものであり、日本国特許出願第2019-193830号の全内容を本国際出願に参照により援用する。
 本発明は,Fcの特定の領域を部位特異的に修飾する方法に関する。
 本発明者らは,IgGを部位特異的に修飾する方法として,これまでIgGのFc領域に特異的に結合するペプチド(IgBP)試薬(特許文献1及び非特許文献1)やプロテインA由来のZ33ペプチド試薬を用いた方法(CCAP法)(特許文献2)を開発してきた。
国際公開WO2016/186206号 国際公開WO2018/230257号
Kishimoto,S.ら. Bioconjug. Chem. 30, 698-702 (2019).
 CCAP法はFc領域の特定の部位にペプチドを結合させるという部位特異性をもたらすことから,抗体の抗原結合領域と抗原との結合を阻害しないという優位性を有する。本発明者らは,開発したCCAP法を用いてFc領域に特異的にペプチドを結合させることにより製造したFc修飾抗体を医薬及び診断薬として応用すべく開発を進めた。その結果,CCAP法によりFcの特定の部位が修飾された抗体は,非修飾抗体と比較して血中半減期が短くなるという問題を生じることを見出した。この原因について検討を重ねた結果,Fc領域は対称性を持ち,通常2つのIgG親和性ペプチド(IgBP)結合サイトがあるところ,2か所の両方の結合サイトにIgBPが結合すると血中半減期が減少する一方,このような2か所の結合サイトのうち,1か所のみにIgBPを結合させた場合には,このような血中半減期の問題が解消することを見出した。よって,本発明は,Fc領域の2か所の結合サイトのうち,1か所のみが選択的に修飾された抗体を提供することを目的とする。
 本発明者らは,この問題を解決すべく数多くの実験条件について検討を重ねたが,CCAP法の反応条件の改良のみでは,2か所の結合サイトのうち1か所のみを選択的に修飾することは困難であった。そこで,Fc領域に結合する担体を利用した精製及び製造を試みた。具体的には,本発明者らは,Fc領域に結合することが知られているプロテインA結合カラムを用いて,CCAP法で製造したIgBP結合Fc分子から,1か所のみにIgBPが結合したFc分子(片方が未修飾のFc分子)(1価Fc分子)の精製を試みた。しかし,Fc領域へのIgBP結合価に応じた分離を効率よく行うことはできなかった。次いで,本発明者らは,IgBP固相化カラムを作成しCCAP法で製造したIgBP結合Fc分子を吸着させることにより,1価Fc分子の精製を試みた。この結果,1価Fc分子は効率よくカラムに吸着され,2か所にIgBPが結合したFc分子(2価Fc分子)はカラムに結合できず溶出された。これにより,本発明者らは1価Fc分子のみを効率よく取得できる方法を見出した。更に,片方のFcのみがIgBP結合カラムと結合している状態を作った上で,CCAP用ペプチド試薬をカラムに添加して,カラム内でCCAP法が行えるかを試みた。その結果,本方法により,担体との結合に関与していない結合サイトのみをペプチド修飾することが可能であることを見出した。これらの結果から,本発明者らは,Fcの2か所の結合サイトのうち,1か所のみが選択的に修飾されたFc分子を効率よく提供することに成功し,本発明を完成させた。
 本発明の方法は,Fcの2か所の結合サイトのうち,1か所のみが選択的に修飾されたFc分子を高含有量で提供することができることから,血中半減期の長いFc分子を提供することができる。
抗AVM(アベルメクチン)抗体(ヒトIgG4)にCCAP試薬Azide-PEG4-EEGPDCAYH(succinimidyl glutaryl Lys)GELVWCTFH-NH(Azide-EEIgBP)を反応させて得られた溶液の一部(抗体3μg)を,陰イオン交換カラムShodex QA825(Shodex)にインジェクトして,0-1MまでのNaClのグラジエント溶出を行った結果を示すグラフである。グラフの上段は未反応の抗AVM抗体の結果を示し,下段はAzide-EEIgBPと反応させた抗AVM抗体の結果を示す。下段の各矢印は溶出された未修飾抗体,1価抗体,2価抗体のピークを示す。縦軸は280nmにおける吸光度,横軸は溶出時間を表す。 コントロール抗体(AVM),ペプチド一価付加抗体(AVM-pep1),ペプチド二価付加抗体(AVM-pep2)をICRマウスに5mg/kgでi.v.投与(各群3匹)して,1時間後,4時間後,24時間後,48時間後,72時間後,168時間後の血清中抗体濃度を解析した結果を示す。縦軸は抗体濃度(μg/mL),横軸は投与後の経過時間(時間)である。AVM投与個体は四角マーカー,AVM-pep1投与個体は丸マーカー,AVM-pep2投与個体は三角マーカーで示す。 IgBP固定化カラムに,ヒトIgG1をインジェクト後,pH3.5(上段),pH3.0(中段),及びpH2.5(下段)で1回目の溶出を行い,pH2.5で2回目の酸性溶出を行った際のクロマトグラムを示す。縦軸は280nmにおける吸光度,横軸は経過時間を表す。グラフ最下部に当該経過時間においてカラムに対して行った操作を示す。 図3において「溶出1回目」の経過時間部分の拡大クロマトグラムを示す。グラフは上から順に,1回目の溶出がpH3.5,pH3.0,及びpH2.5の結果を示す。 Z33固定化カラムに,ヒトIgG1抗体をインジェクト後,pH2.5とpH3.5で溶出を行った際のクロマトグラムを示す。グラフの灰色線はpH2.5の結果を示し,黒線はpH3.5の結果を示す。縦軸は280nmにおける吸光度,横軸は経過時間を表す。 IgBPカラムにより分画されたIgGとCCAP試薬(IgBP-PEG7-N3-DBCO-MTZ-SG)の反応物の疎水クロマトグラフィによる解析結果を表すグラフである。(A)IgG(20μM)とCCAP試薬(60μM)の30分後の反応物。(B)反応物のIgBPカラムからの素通り画分。(C)IgBPカラムへの吸着画分(酸性溶出画分)。縦軸は280nmにおける吸光度,横軸は経過時間を表す。 Z33カラムにより分画されたIgGとCCAP試薬(Z33-R7C-Mal-PEG4MTZ-SG)の反応物の疎水クロマトグラフィによる解析結果を表すグラフである。(A)IgG(20μM)とCCAP試薬(60μM)の30分後の反応物。(B)反応物のZ33カラムからの素通り画分。(C)Z33カラムへの吸着画分。縦軸は280nmにおける吸光度,横軸は経過時間を表す。 IgBPカラムを用いた溶出pHの制御による,TrastuzumabとCCAP試薬の反応物から1価抗体の精製を示すグラフである。縦軸は280nmにおける吸光度,横軸は経過時間を表す。(A)第1段階目の溶出pHによる溶出パターンの違いを表す。上から下の順で,第1段階目の溶出pHを4.0,3.9,3.8,3.7,及び3.6とした結果を示す。(B)pH3.8による第1段階溶出での素通り画分(上段),第1段階目溶出(pH3.8)(中段),第2段階目溶出(pH3.5)(下段)分画中の0価(未修飾),1価,2価抗体の含有を,陽イオン交換クロマトグラフィで分析した結果を示すグラフである。 高速液体クロマトグラフ(NGC,BioRad)に接続したIgBPカラム上での自動化CCAP反応の結果を表すグラフである。(A)自動化CCAP反応による抗体の修飾の自動化プロセスのフローを示す。(B)自動化CCAP反応において,CCAP試薬の濃度の違いによるカラム溶出分画の陽イオン交換クロマトグラフィによる解析結果を表すグラフである。上から下に向けて順に,CCAP試薬10μM,20μM,30μM,及び40μMを使用した結果を示す。縦軸は280nmにおける吸光度,横軸は経過時間を表す。グラフ中の数値は,得られた抗体のIgBPの結合価数とその割合を示す。 (A)Fc分子として抗体を用いた場合の本発明のIgBP結合Fc分子を担体上で製造する方法の模式図である。まず,担体結合用IgBPの結合した担体にFc分子を接触させて,担体結合IgBPを介して担体とFc分子を結合させる。そこに,Fc分子結合用IgBPを接触させてIgBPが結合していない方のFc鎖に結合させる。最後に,担体結合用IgBPとFc分子との結合を切断して,1分子に1個の抗体結合用IgBPが結合したFc分子を回収する。(B)上段の(A)において,CCAP試薬を用いてIgBP結合Fc分子を製造する方法の模式図である。(A)の工程に対して,更にFc分子結合用IgBPをFc分子に結合させた後,架橋剤をFc分子と共有結合させる工程が追加で含まれる。(C)抗体結合用IgBPと架橋剤が開裂可能なリンカーを介して連結している試薬を用いた1価の官能基結合Fc分子の製造方法の模式図である。Fc分子結合用IgBPをFc分子に結合させた後,架橋剤とFc分子を共有結合させる。架橋剤と抗体結合用IgBPが開裂可能なリンカーを介して連結しているため,リンカー部分で切断して,Fc分子結合用IgBPをFc分子から解離させることにより,IgBPを含むことなくFc分子に1価の官能基を導入することができる。 (D)1価の官能基又は機能性分子が結合したFc分子の製造方法の模式図である。図10の方法(C)において,リンカー部分で切断後に官能基を含む化合物や機能性分子をFc分子に結合させる工程をさらに含む。なお,本模式図では,「F」で表される官能基又は機能性分子をFc分子に結合させてから担体から回収しているが,担体から回収後に官能基又は機能性分子をFc分子に結合させてもよい。(E)Fc分子結合用IgBPと,開裂可能なリンカーを介して官能基を含む基又は機能性分子が結合し,当該官能基を含む基又は機能性分子が更に架橋剤と結合している試薬を用いた,1価の官能基又は機能性分子が結合したFc分子の製造方法の模式図である。(C)と同様に,架橋剤をFc分子と共有結合させた後,リンカーの開裂及び抗体結合用IgBPの解離を行うことにより,IgBPが結合していない1価の官能基結合Fc分子又は機能性分子結合Fc分子を得ることができる。
 本発明は,Fc分子を構成する2本のFc鎖のうち1本のFcの結合サイトに担体上のIgBP(担体結合用IgBP)を結合させることにより,Fc鎖に導入しようとするIgBP(Fc分子結合用IgBP)が2個結合した抗体と1個又は0個結合した抗体とを効率よく分離可能であることを見出したこと,及び,担体結合用IgBPと結合したFc鎖へFc分子結合用IgBPを結合させることにより,1分子のIgBPのみをFc分子に結合可能であることを見出したことに基づく。すなわち,本発明は,担体結合用IgBPが結合した担体を利用することによる,1分子のIgBPのみが結合したFc分子の製造方法を提供するものである。
 本明細書において,「IgGのFc領域」及び「Fc領域」とは同義であり,典型的には,IgGのタンパク分解酵素パパイン処理物として得られるC末端側の断片を意味する。Fc領域は一般的には2本の対称Fc鎖からなるが,Fc領域を形成する2本のFc鎖は厳密に同一である必要はない。Fc鎖とは,IgGのタンパク分解酵素パパイン処理物として得られるC末端側の断片を形成するダイマーの単量体を意味する。本明細書のIgGのFc領域は,野生型のIgGのFc領域の全長である必要はなく,用いられるIgGのFc領域に特異的に結合するIgG親和性ペプチドへの結合力を保持しているかぎり,その短縮形や変異体又は他の物質との融合物であってもよい。本明細書に記載の方法は,架橋剤結合IgG親和性ペプチドとIgGのFc領域とを親和性を利用して結合させた後,架橋剤によりIgG親和性ペプチドとIgGのFc領域との共有結合を形成すること(CCAP法)を含んでいてもよい。よって,用いられるIgGのFc領域に特異的に結合するIgG親和性ペプチドへの結合力とは,IgG親和性ペプチドとIgGのFc領域とが親和性により結合する能力,及び,IgG親和性ペプチドとIgGのFc領域とが共有結合される能力の両方を意味する。例えば,本明細書におけるIgGのFc領域は,野生型IgGのFc領域中の用いられるIgG親和性ペプチドが結合する位置を除くアミノ酸の一部(1~10個,1~5個,1~3個)のアミノ酸であって,前記親和性に影響しない部位であり,かつ,必要に応じて共有結合に関与するアミノ酸(通常はLys)以外の部位のアミノ酸が置換され,付加又は挿入され,あるいは,欠失していてもよい。
 本明細書において,「IgGのFc領域を有する分子」及び「Fc分子」とは同義であり,IgGのFc領域を含む,ペプチド,タンパク質,又はその他の複合体を意味し,野生型又は人工のIgGやその変異体の他,Fc融合タンパク質に代表されるIgGのFc領域と他の物質(活性成分,薬剤,タンパク質,低分子化合物,中分子化合物,高分子化合物,マトリックス,脂質,リポソーム,ナノ粒子,DDS用ビークル,核酸及び/又はペプチド)との融合体,及びFc領域のみからなる分子をも含む。例えば,Fc分子がFc融合タンパク質である場合,Fcと融合させるタンパク質又はペプチドとしては,受容体,サイトカイン,インターロイキン,血液凝固第VIII因子,CTLA4,ヒトラクトフェリン,TNF受容体,若しくはLFA-3,あるいはその一部(好ましくは標的結合部分)などが挙げられる。本明細書において,「Fc分子組成物」とは,複数のFc分子を含有する組成物を意味する。
 本明細書中において「IgG」は,哺乳動物,例えばヒト及びチンパンジーなどの霊長類,ラット,マウス,及びウサギ等の実験動物,ブタ,ウシ,ウマ,ヒツジ,及びヤギ等の家畜動物,並びにイヌ及びネコ等の愛玩動物のIgGであってよく,好ましくはヒトのIgG(IgG1,IgG2,IgG3又はIgG4)である。本明細書におけるIgGとして好ましくは,ヒトIgG1,IgG2,若しくはIgG4,又はウサギIgGであり,特に好ましくはヒトIgG1,IgG2,又はIgG4である。
 本明細書において,「IgGのFc領域に特異的に結合するIgG親和性ペプチド」及び「IgBP」とは同義であり,IgGのFc領域に特異的に結合するペプチドを意味する。IgBPとして,好ましくは,FcにおけるEu numberingに従うLys248,Lys246,Lys338,Lys288,Lys290,Lys360,Lys414,及びLys439から選択される部位及び/又はその近接領域,好ましくはLys248及び/又はその近接領域に結合するか,あるいは,プロテインAの結合領域に結合するペプチドである。例えば,IgBPは,Fc結合能を有するプロテインAの部分ペプチド又はその変異体であってもよい。このようなペプチドの具体的な例が国際特許公開公報WO2008/054030,WO2013/027796,WO2016/186206,WO2018/230257号,及びKyohei Mugurumaら,ACS Omega(2019);4(11):14390-14397.に記載されており,それらはそれぞれの文献に記載の方法に従って適宜調製することができる。
 本明細書に記載の方法は,IgBP(担体結合用IgBP)を結合させた担体を利用して,前記IgBPと同一又は異なるIgBP(Fc分子結合用IgBP)をFc分子が有する2か所の結合サイトのうち1か所にのみに効率的に結合させるものである。以下,本明細書において,担体に結合させるIgBPを「担体結合用IgBP」という。また,Fc分子に結合させることを目的とするIgBPを「Fc分子結合用IgBP」という。また,担体結合用IgBPが結合した担体を「IgBP結合担体」といい,Fc分子結合用IgBPが結合したFc分子を「IgBP結合Fc分子」という。
 担体結合用IgBPとして,具体的には,IgGのFc領域に特異的に結合する,以下の(i)又は(ii)のペプチドを挙げることができる。なお,本明細書において,X(mは整数)はアミノ酸を表す。「X 」は,n個のアミノ酸Xが結合していることを表し,nが記載されていない「X」はアミノ酸Xが1個存在することを表す。ここで,nが2以上の場合,複数のXはそれぞれ独立して同一又は異なるアミノ酸であってよい。また,nが「p-q」である場合,アミノ酸Xがp~q個存在することを表す。(i)下記式(I)で表されるペプチド:
NH-(Linker)-(X 1-3)-C-(X)-(X)-(X)-(X)-G-(X)-L-(X)-W-C-(X 1-3)・・・(I)
[式(I)において,(Linker)はリンカーを表し,1~3個のX,X,X,X,X,X,X,及び1~3個のXは,それぞれ互いに独立して,同一又は異なるアミノ酸残基を示し,
 各X,X,X及び各Xは,互いに独立して,同一又は異なる,C以外の任意のアミノ酸残基を示し,
 Xは,H,R,S,又はTであり,
 XはK,C,D,E,R,V,F,L,2-アミノスベリン酸,Dpr,Orn,AcOrn,AcDab,Dab,Nle,Nva,Tle,Ala(t-Bu),及びChaから選択される1個のアミノ酸残基であり,
 Xは,E,N,R,又はDであり,
 Xは,I又はVである。
 式(I)において,Linkerは,(GSGGS)1-3,(SGSGS)1-3,(GGGGS)1-3,若しくは(PEG)2-10(好ましくは,(PEG))であるか,又は存在しない。また,担体との結合のため,式(I)のC末端のカルボキシル末端(-COOH)に、アミノ基が結合して(-C(=O)NH)基となっていてもよく、任意で該カルボキシル末端とアミノ基との間にLinker(上述と同じく定義される)が挿入されていてもよい。C末端にLinkerが存在する場合、N末端側のLinkerは存在しなくてもよい。すなわち、(X 1-3)-C-(X)-(X)-(X)-(X)-G-(X)-L-(X)-W-C-(X 1-3)-(Linker)-NHとなっていてもよい。また,式(I)において,N末端のアミノ基はアセチル化されていてもよい(この場合,N末端側のLinker中のN末端近傍の適切な位置にLys残基が導入される)。
 前記式(I)で表されるペプチドとして,好ましくは,以下のペプチドが挙げられる。[1]X 1-3が,(S,G,F,又はなし)-(D,G,A,S,P,Hcy,又はなし)-(S,D,T,N,E,又はR)で表されるアミノ酸配列である。
[2]X 1-3が,D,GPD,R,GPR,SPD,GDD,GPS,SDD,RGN,G-Hcy-D,RGP,又はGPDである。
[3]X 1-3が,D又はGPDである。
[4]Xが,A,S,又はTである。
[5]Xが,A又はTである。
[6]Xが,Aである。
[7]Xが,Y又はWである。
[8]Xが,Yである。
[9]Xが,Hである。
[10]Xが,A,R,K,C,D,E,L,2-アミノスベリン酸,Dpr,R,F,2-アミノスベリン酸,Dpr,AcOrn,AcDab,Dab,Nle,Nva,Ala(t-Bu),及びChaから選択される1個のアミノ酸残基である。
[11]Xが,K,R,AcOrn,である。
[12]Xが,V,Dab,F,R,L,Nva,Nle,Ala(t-Bu),及びChaから選択される1個のアミノ酸残基である。
[13]Xが,F,R,L,Nva,Nle,Ala(t-Bu),及びChaから選択される1個のアミノ酸残基である。
[14]Xが,L,Ala(t-Bu),及びChaから選択される1個のアミノ酸残基である。
[15]Xが,E又はNである。
[16]Xが,Eである。
[17]Xが,Vである。
[18]X 1-3が,(S,T,又はD)-(H,G,Y,T,N,D,F,Hcy,又はなし)-(Y,F,H,M,又はなし)である。
[19]X 1-3が,T,TFH,S,SFH,THH,TFY,TYH,又はT-Hcy-Hである。
[20]X 1-3が,T又はTFHである。
 前記式(I)で表されるペプチドとしては,以上の条件の任意の1つ又は2以上の組み合わせであってもよく,例えば,以下に記載された条件を満たすペプチドであってもよい:[8]と[9];[8]と[17];[9]と[17];[8]と[9]と[17];あるいはこれらと[10]~[14]のいずれか1つとの組み合わせである。
より具体的には,以下のペプチドを挙げることができる(以下においてXは上述と同じであり;N末端にNH-(Linker)-基を有していてもよく,C末端に-NH基又はNH-(Linker)-基を有していてもよい):
1)DCAYHXGELVWCT(配列番号1)
2)GPDCAYHXGELVWCTFH(配列番号2)
3)RCAYHXGELVWCS(配列番号3)
4)GPRCAYHXGELVWCSFH(配列番号4)
5)SPDCAYHXGELVWCTFH(配列番号5)
6)GDDCAYHXGELVWCTFH(配列番号6)
7)GPSCAYHXGELVWCTFH(配列番号7)
8)GPDCAYHXGELVWCSFH(配列番号8)
9)GPDCAYHXGELVWCTHH(配列番号9)
10)GPDCAYHXGELVWCTFY(配列番号10)
11)SPDCAYHXGELVWCTFY(配列番号11)
12)SDDCAYHXGELVWCTFY(配列番号12)
13)RGNCAYHXGQLVWCTYH(配列番号13)
14)G-Hcy-DCAYHXGELVWCT-Hcy-H(配列番号14)
15)RRGPDCAYHXGELVWCTFH(配列番号15)
16)DCTYHXGNLVWCT(配列番号16)
17)DCAYHXGNLVWCT(配列番号17)
18)DCTYHXGELVWCT(配列番号18)
19)DCAWHXGELVWCT(配列番号19)
20)DCTYTXGNLVWCT(配列番号20),
21)DCAYTXGNLVWCT(配列番号21),
22)DCSYTXGNLVWCT(配列番号22),
23)DCTWTXGNLVWCT(配列番号23),
24)DCTYHXGNLVWCT(配列番号24),
25)DCTYRXGNLVWCT(配列番号25),
26)DCTYSXGNLVWCT(配列番号26),
27)DCTYTXGNLVWCT(配列番号27),
28)DCTYTXGELVWCT(配列番号28),
29)DCTYTXGRLVWCT(配列番号29),
30)DCTYTXGDLVWCT(配列番号30),
31)DCTYTXGNLIWCT(配列番号31),
32)DCAYHRGELVWCT(配列番号32)
33)GPDCAYHRGELVWCTFH(配列番号33)
34)RCAYHRGELVWCS(配列番号34)
35)GPRCAYHRGELVWCSFH(配列番号35)
36)SPDCAYHRGELVWCTFH(配列番号36)
37)GDDCAYHRGELVWCTFH(配列番号37)
38)GPSCAYHRGELVWCTFH(配列番号38)
39)GPDCAYHRGELVWCSFH(配列番号39)
40)GPDCAYHRGELVWCTHH(配列番号40)
41)GPDCAYHRGELVWCTFY(配列番号41)
42)SPDCAYHRGELVWCTFY(配列番号42)
43)SDDCAYHRGELVWCTFY(配列番号43)
44)DCTYHRGNLVWCT(配列番号44)
45)DCAYHRGNLVWCT(配列番号45)
46)DCTYHRGELVWCT(配列番号46)
47)DCAWHRGELVWCT(配列番号47)
48)DCTYTNGNLVWCT(配列番号48)
49)DCAYTNGNLVWCT(配列番号49)
50)DCSYTNGNLVWCT(配列番号50)
51)DCTWTNGNLVWCT(配列番号51)
52)DCTYHNGNLVWCT(配列番号52)
53)DCTYRNGNLVWCT(配列番号53)
54)DCTYSNGNLVWCT(配列番号54)
55)DCTYTRGNLVWCT(配列番号55)
56)DCTYTNGELVWCT(配列番号56)
57)DCTYTNGRLVWCT(配列番号57)
58)DCTYTNGDLVWCT(配列番号58)
59)DCTYTNGNLIWCT(配列番号59)
 一例として,以下の構造を有するペプチドを担体結合用IgBPとして用いることができる。
GSGGS-GPDCAYHRGELVWCTFH-NH
(PEG)-GPDCAYHRGELVWCTFH-NH
GSGGS-DCAYHRGELVWCT-NH
(PEG)-DCAYHRGELVWCT-NH
(ii)下記式(II)で表されるペプチド,又は(II)のアミノ酸配列において,X~X13以外の位置で1若しくは数個のアミノ酸が付加,欠失,及び/又は置換されたアミノ酸配列を含むペプチド:
1-2NMQX10QRRFYEALHDPNLNEEQRNAX11IX12SIRDDX13-(Linker2)-CONH(配列番号60)・・・(II)
[式(II)において,(Linker2)はリンカーを表し,
 X 1-2は,GF,AF,VF,LF,IF,MF,PF,FF,WF,KF,Orn-F,CF,DF,EF,betaアラニン-F,2-アミノスベリン酸-F,Dpr-F,NH-(PEG)-CO(ここで,n=1-50)-F,F,K,Orn,C,D,E,2-アミノスベリン酸,Dpr,及びAcetyl-Kからなる群から選択され,
 X10は,C又はQであり,
 X11及びX12は,それぞれ独立に,R,H,D,E,S,T,N,Q,Y,及びCからなる群から選択され,
 X13は,C又はPであるか,存在しない]。
 式(II)において,Linker2は,(GSGGS)1-3,(SGSGS)1-3,(GGGGS)1-3,若しくは(PEG)2-10-Lys(好ましくは,(PEG)-Lys)であるか,又は存在しない。また,式(II)のN末端アミノ酸の末端(-NH)はアセチル化されて(CH-C(=O)-NH-)基となっていてもよい。また、Linker2はアミノ末端に結合していてもよく(この場合,N末端側のLinker中のN末端近傍の適切な位置にLys残基が導入される)、この場合、C末端のLinker2は存在しても存在しなくてもよい。
 前記式(II)で表されるアミノ酸配列を有するペプチドとして,好ましくは,以下のペプチドが挙げられる。
[21]Xが,GF,AF,βAlaF,NH-(PEG)-CO(n=2~10)-F,F,K,Orn,C,及びDprからなる群から選択される。
[22]Xが,GF,F,及びKからなる群から選択される。
[23]X10が,Qである。
[24]X11及びX12が,それぞれ独立して,R,H,及びEからなる群から選択される。
[25]X11及びX12がRである。
 前記式(II)で表されるアミノ酸配列を有するペプチドとして,より具体的には,以下のペプチドを挙げることができる:
60)FNMQCQRRFYEALHDPNLNEEQRNARIRSIRDDC(配列番号62),
61)GFNMQCQRRFYEALHDPNLNEEQRNARIRSIRDDC(配列番号63),
62)KNMQCQRRFYEALHDPNLNEEQRNARIRSIRDDC(配列番号64),
63)GFNMQCQKRFYEALHDPNLNEEQRNARIRSIRDDC(配列番号65),
64)KNMQCQKRFYEALHDPNLNEEQRNARIRSIRDDC(配列番号66),
65)FNMQQQRRFYEALHDPNLNEEQRNARIRSIRDD(配列番号67),又は
66)GKNMQCQRRFYEALHDPNLNEEQRNARIRSIRDDC(配列番号68)。
 例えば,以下の構造を有するペプチドを担体結合用IgBPとして用いることができる。
Acetyl-FNMQQQRRFYEALHDPNLNEEQRNARIRSIRDDP-SGSGSK-NH
Acetyl-FNMQCQRRFYEALHDPNLNEEQRNARIRSIRDDC-SGSGSK-NH
Acetyl-FNMQQQRRFYEALHDPNLNEEQRNARIRSIRDDP-(PEG)-Lys-NH
Acetyl-FNMQCQRRFYEALHDPNLNEEQRNARIRSIRDDC-(PEG)-Lys-NH
 担体結合用IgBPは,担体との共有結合のため,少なくとも一つのアミノ基(-NH)を有する。このようなアミノ基は,好ましくはN末端のアミノ基であるが,担体との結合が可能である限り,N末端又はC末端近部の(例えば、リンカー中に位置する)リシン残基,システイン残基,アスパラギン酸残基,グルタミン酸残基,2-アミノスベリン酸,Dpr,アルギニン残基の側鎖アミノ基であってもよい。
 Fc分子結合用IgBPとして,具体的には,IgGのFc領域に特異的に結合する,以下の(iii)又は(iv)のペプチドを挙げることができる。
(iii)下記式(I’)で表されるペプチド:
Z-[(Linker3)-(X 1-3)-C-(X)-(X)-(X)-(X)-G-(X)-L-(X)-W-C-(X 1-3)]・・・(I’)
[式(I’)において,Zは官能基を表し,[(Linker3)-(X 1-3)-C-(X)-(X)-(X)-(X)-G-(X)-L-(X)-W-C-(X 1-3)]であらわされる構造の任意の部分に結合し、(Linker3)はリンカーを表し,1~3個のX,X,X,X,X,X,X,及び1~3個のXは,それぞれ互いに独立して,同一又は異なるアミノ酸残基を示し,
 各X,X,X及び各Xは,互いに独立して,同一又は異なる,C以外の任意のアミノ酸残基を示し,
 Xは,H,R,S,又はTであり,
 XはK,C,D,E,R,V,F,L,2-アミノスベリン酸,Dpr,Orn,AcOrn,AcDab,Dab,Nle,Nva,Tle,Ala(t-Bu),及びChaから選択される1個のアミノ酸残基であり,
 Xは,E,N,R,又はDであり,
 Xは,I又はVである。]
 前記式(I’)で表されるペプチドは,N末端に官能基を有する代わりに,C末端に官能基を有していてもよい。すなわち,前記式(I’)で表されるペプチドは,以下の式(I’’)で表されるペプチドであってもよい。
[(X 1-3)-C-(X)-(X)-(X)-(X)-G-(X)-L-(X)-W-C-(X 1-3)-(Linker3)]-Z・・・(I’’)
[式(I’’)において,Zは官能基を表し,[(X 1-3)-C-(X)-(X)-(X)-(X)-G-(X)-L-(X)-W-C-(X 1-3)-(Linker3)]であらわされる構造の任意の部分に結合し、(Linker3)はリンカーを表し,1~3個のX,X,X,X,X,X,X,及び1~3個のXは,それぞれ互いに独立して,同一又は異なるアミノ酸残基を示し,
 各X,X,X及び各Xは,互いに独立して,同一又は異なる,C以外の任意のアミノ酸残基を示し,
 Xは,H,R,S,又はTであり,
 XはK,C,D,E,R,V,F,L,2-アミノスベリン酸,Dpr,Orn,AcOrn,AcDab,Dab,Nle,Nva,Tle,Ala(t-Bu),及びChaから選択される1個のアミノ酸残基であり,
 Xは,E,N,R,又はDであり,
 Xは,I又はVである。]
 式(I’)及び式(I’’)において,Linker3は,RRRGS,EEGGS若しくは(PEG)1-8(好ましくは,(PEG))であるか,又は存在しない。また,式(I’)のC末端アミノ酸の末端(-COOH)にアミノ基が結合して(-C(=O)NH)基となっていてもよい。また,式(I’’)のN末端アミノ酸の末端(-NH)にアセチル基が結合して(CH-C(=O)-NH-)基となっていてもよい。
 前記式(I’)及び式(I’’)で表されるアミノ酸配列を有するペプチドとしては,Z-(Linker3)-(X 1-3)-C-(X)-(X)-(X)-(X)-G-(X)-L-(X)-W-C-(X 1-3)又は(X 1-3)-C-(X)-(X)-(X)-(X)-G-(X)-L-(X)-W-C-(X 1-3)-(Linker3)-Zであってもよい。好ましいアミノ酸配列は,上記式(I)で表されるペプチドにおいて好ましいアミノ酸配列と同様である。
 一例として,Fc分子結合用IgBPとしては,以下のペプチドを挙げることができる。
Acetyl-K(Z)-RRRGS-GPDCAYHKGELVWCTFH-NH
Acetyl-K(Z)-EEGGS-GPDCAYHKGELVWCTFH-NH
Acetyl-K(Z)-(PEG)-GPDCAYHKGELVWCTFH-NHマレイミド-RRRGS-GPDCAYHKGELVWCTFH-NH
マレイミド-EEGGS-GPDCAYHKGELVWCTFH-NH
マレイミド-(PEG)-GPDCAYHKGELVWCTFH-NH
DBCO-RRRGS-GPDCAYHKGELVWCTFH-NH
DBCO-EEGGS-GPDCAYHKGELVWCTFH-NH
DBCO-(PEG)-GPDCAYHKGELVWCTFH-NH
テトラジン-RRRGS-GPDCAYHKGELVWCTFH-NH
テトラジン-EEGGS-GPDCAYHKGELVWCTFH-NH
テトラジン-(PEG)-GPDCAYHKGELVWCTFH-NH
TCO-RRRGS-GPDCAYHKGELVWCTFH-NH
TCO-EEGGS-GPDCAYHKGELVWCTFH-NH
TCO-(PEG)-GPDCAYHKGELVWCTFH-NH
Acetyl-K(Z)RRRGS-DCAYHKGELVWCT-NH
Acetyl-K(Z)EEGGS-DCAYHKGELVWCT-NH
Acetyl-K(Z)-(PEG)-DCAYHKGELVWCT-NH
マレイミド-RRRGS-DCAYHKGELVWCT-NH
マレイミド-EEGGS-DCAYHKGELVWCT-NH
マレイミド-(PEG)-DCAYHKGELVWCT-NH
DBCO-RRRGS-DCAYHKGELVWCT-NH
DBCO-EEGGS-DCAYHKGELVWCT-NH
DBCO-(PEG)-DCAYHKGELVWCT-NH
テトラジン-RRRGS-DCAYHKGELVWCT-NH
テトラジン-EEGGS-DCAYHKGELVWCT-NH
テトラジン-(PEG)-DCAYHKGELVWCT-NH
TCO-RRRGS-DCAYHKGELVWCT-NH
TCO-EEGGS-DCAYHKGELVWCT-NH
TCO-(PEG)-DCAYHKGELVWCT-NH
(iv)下記式(II’)で表されるアミノ酸配列を含むペプチド,又は(II’)のアミノ酸配列において,X~X14以外の位置で1若しくは数個のアミノ酸が付加,欠失,及び/又は置換されたアミノ酸配列を含むペプチド:
1-2NMQX10QX14RFYEALHDPNLNEEQRNAX11IX12SIRDDX13-(Linker2)-NH(配列番号61)・・・(II’)
[式(II’)において,(Linker2)はリンカーを表し,
 X 1-2は,GF,AF,VF,LF,IF,MF,PF,FF,WF,KF,Orn-F,CF,DF,EF,betaアラニン-F,2-アミノスベリン酸-F,Dpr-F,NH-(PEG)-CO(ここで,n=1-50)-F,F,K,Orn,C,D,E,2-アミノスベリン酸,Dpr,及びAcetyl-Kからなる群から選択され,
 X10は,C又はQであり,
 X11及びX12は,それぞれ独立に,R,H,D,E,S,T,N,Q,Y,C,及びK(Z)からなる群から選択され,
 X13は,C又はPであるか,または存在せず,
 X14は,R,C,K,又はK(Z)であり,
 Zは官能基である]。
 式(II’)において,Linker2は,SGSGSK,SRRCR,SRRK(Z)R,SRRCRRCRRC,SRRK(Z)RRK(Z)RRK(Z),若しくは(PEG)1-8-Lys(好ましくは,(PEG)-Lys)であるか,又は存在しない。また,式(II’)のN末端アミノ酸の末端(-NH)はアセチル化されて(CH-C(=O)-NH-)基となっていてもよい。また,リンカーに含まれるCys残基(C)は,必要に応じて,マレイミド基を介して他の機能性分子が結合していてもよい。
 前記式(II’)で表されるアミノ酸配列を有するペプチドとして,好ましくは,以下のペプチドが挙げられる。
[a]Xが,GF,AF,βAlaF,NH-(PEG)-CO(n=1~50)-F,F,K,Orn,C,Dpr,及びAcetyl-Kからなる群から選択される。[b]Xが,GF,F,及びAcetyl-Kからなる群から選択される。
[c]X10が,Qである。
[d]X11及びX12が,それぞれ独立して,R,H,及びEからなる群から選択される。
[e]X11が,Rである。
[f]X12が,R又はK(Z)である(好ましくは,Zがアジドである)。
 前記式(II’)で表されるアミノ酸配列を有するペプチドとして,より具体的には,上述の60)~66)に記載のペプチドを挙げることができる(ただし,含まれるリシン残基は必要に応じて官能基が結合していてもよい)。また,具体的には,Fc分子結合用IgBPとして,以下のペプチドを挙げることができる:
FNMQQQCRFYEALHDPNLNEEQRNARIRSIRDD-NH
FNMQQQRRFYEALHDPNLNEEQRNARIRSIRDDC-NH
FNMQQQRRFYEALHDPNLNEEQRNARIRSIRDDP-SRRK(Z)R-NH
FNMQQQRRFYEALHDPNLNEEQRNARIRSIRDDP-SRRCR-NH
FNMQQQCRFYEALHDPNLNEEQRNARICSIRDDP-SRRCRRCRRC-NH
FNMQQQK(Z)RFYEALHDPNLNEEQRNARIK(Z)SIRDDP-SRRK(Z)RRK(Z)RRK(Z)-NH
Acetyl-KNMQQQCRFYEALHDPNLNEEQRNARIRSIRDD-NH
Acetyl-KNMQQQRRFYEALHDPNLNEEQRNARIRSIRDDC-NH
Acetyl-KNMQQQRRFYEALHDPNLNEEQRNARIRSIRDDP-SRRK(Z)R-NH
Acetyl-KNMQQQRRFYEALHDPNLNEEQRNARIRSIRDDP-SRRCR-NH
Acetyl-KNMQQQCRFYEALHDPNLNEEQRNARICSIRDDP-SRRCRRCRRC-NH
Acetyl-KNMQQQK(Z)RFYEALHDPNLNEEQRNARIK(Z)SIRDDP-SRRK(Z)RRK(Z)RRK(Z)-NH
GFNMQQQCRFYEALHDPNLNEEQRNARIRSIRDD-NH
GFNMQQQRRFYEALHDPNLNEEQRNARIRSIRDDC-NH
GFNMQQQRRFYEALHDPNLNEEQRNARIRSIRDDP-SRRK(Z)R-NH
GFNMQQQRRFYEALHDPNLNEEQRNARIRSIRDDP-SRRCR-NH
GFNMQQQCRFYEALHDPNLNEEQRNARICSIRDDP-SRRCRRCRRC-NH
GFNMQQQK(Z)RFYEALHDPNLNEEQRNARIK(Z)SIRDDP-SRRK(Z)RRK(Z)RRK(Z)-NH
FNMQCQZRFYEALHDPNLNEEQRNARIRSIRDDC-NH
Acetyl-KNMQCQZRFYEALHDPNLNEEQRNARIRSIRDDC-NH
GFNMQCQK(Z)RFYEALHDPNLNEEQRNARIRSIRDDC-SRRK(Z)R-NH
FNMQCQK(Z)RFYEALHDPNLNEEQRNARIRSIRDDC-NH
Acetyl-KNMQCQK(Z)RFYEALHDPNLNEEQRNARIRSIRDDC-SRRK(Z)R-NH
GFNMQCQK(Z)RFYEALHDPNLNEEQRNARIRSIRDDC-SRRK(Z)RRK(Z)RRK(Z)-NH
Acetyl-KNMQCQK(Z)RFYEALHDPNLNEEQRNARIRSIRDDC-SRRK(Z)RRK(Z)RRK(Z)-NH
GFNMQCQK(Z)RFYEALHDPNLNEEQRNARIRSIRDDC-SRRK(Z)RRK(Z)RRK(Z)-NH
 好ましくは,Fc分子結合用IgBPは,Fc分子と結合させることを意図する他の機能性分子を結合させるための「官能基(Z)」がリシン残基、N末端のアミノ基、またはリンカーに結合しているか,又は他の基やリンカーを介して他の部分,例えば,C末端に結合している。本明細書における「官能基」とは,穏やかな条件下で,ペプチド,タンパク質,核酸,又は低分子医薬と反応して結合することができる基を意味する。官能基としては,マレイミド,チオールもしくは保護チオール,アルコール,アクリラート,アクリルアミド,アミンもしくは保護アミン,カルボン酸もしくは保護カルボン酸,アジド,シクロアルキンを含むアルキン,シクロペンタジエン及びフランを含む1,3-ジエン,アルファ-ハロカルボニル,N-ヒドロキシスクシンイミジル,N-ヒドロキシスルホスクシンイミジル,ニトロフェニルエステル,カルボナート,ジベンゾシクロオクチン(DBCO),テトラジン,メチルテトラジン(MTZ),トランスシクロオクテン(TCO)が挙げられる。
 例えば,本明細書のFc分子結合用IgBPは,N末端又はC末端(好ましくは,N末端)に,必要に応じてリンカーを介して、官能基としてアジド基が結合していてもよい。
好ましくは,IgBPのN末端及び/又はC末端に更にグルタミン酸が1~3個(好ましくは,2個)結合したペプチドの末端にアジド基を有する。アジド基を有するIgBPは,Dibenzylcyclooctyne(DBCO),アルキン,TCOを有する他の機能性分子とクリック反応することによって,当該他の機能性分子をIgBPに連結することができる。また,Fc分子結合用IgBPと他の機能性物質の結合は,その他の当業者に公知の方法,例えばマレイミド基とスルフヒドリル基の反応等により行うこともできる。
 本明細書のFc分子結合用IgBPは,他の機能性分子が結合していてもよい。例えば,このような他の分子は,前記官能基を介して(例えば、アミノ末端などに)結合させることもできるし,Fc分子結合用IgBP中のアミノ酸(例えば、リシン残基)が官能基を有する場合には,当該官能基(例えば,リシン残基が置換基として有するアジド基)に結合させることもできるし,あるいは,Fc分子結合用IgBP中のCys残基(好ましくは,Linker、例えば、Linker2又はLinker3中のCys残基)にマレイミド基を介して結合させることもできる。
 Fc分子結合用IgBPに結合させることができる他の機能性分子としては,ペプチド,タンパク質,核酸,又は低分子医薬を含む,標識物質又は医療用薬剤が含まれるが,これに限られない。Fc分子の抗原特異性やその他の特性を適用可能なあらゆる分子を他の分子として結合させることができる。このような物質としては,抗癌剤,低分子医薬品,放射性標識,蛍光標識,核酸医薬,遺伝子治療薬,ペプチド医薬,IgA又はVHH等の抗体などが挙げられる。
 標識物質により標識されている場合,Fc分子結合用IgBPがFc分子と複合体を形成することで,該標識物質を介してFc分子の検出又は定量を行うことが可能となる。標識物質は,限定されないが,例えば蛍光色素,化学発光色素,放射性同位元素(例えば,放射性ヨウ素又は放射性同位体金属イオンのキレート錯体,例えばDOTA又はデスフェリオキサミンのキレート錯体),並びにビオチン及びGFP(緑色蛍光タンパク質)等の蛍光タンパク質,発光タンパク質,並びにペルオキシダーゼ等の酵素を含み,好ましい標識物質の例は,フルオレセイン及びFITC等のフルオレセイン誘導体,ローダミン及びテトラメチルローダミン等のローダミン誘導体,並びにテキサスレッド等の蛍光色素である。
 Fc分子結合用IgBPを他の薬剤によって修飾する場合,薬剤として,限定するものではないが,例えば,オーリスタチンE等のオーリスタチン,メイタンシン,エムタンシン,ドキソルビシン,ブレオマイシン,又はこれらの誘導体等の抗がん剤;並びに,血液脳関門上のレセプターに結合して中枢神経への移行を可能とする薬剤,又はがん細胞等に結合して抗体の細胞内への移行を可能にする薬剤等の標的化剤が挙げられる。薬剤を連結している場合,Fc分子結合用IgBPは,例えば医薬抗体として用いられるIgGと複合体を形成することで,疾患の治療効果を高めることができる。
 Fc分子結合用IgBPは,抗体との共有結合のため,少なくとも一つのアミノ基(-NH)を有する。このようなアミノ基は,アミノ末端のアミノ基であってもよいし,リシン残基,システイン残基,アスパラギン酸残基,グルタミン酸残基,2-アミノスベリン酸,ジアミノプロピオン酸,アルギニン残基の側鎖アミノ基であってもよい。
 このようなFc分子結合用IgBPにおける,リシン残基,システイン残基,アスパラギン酸残基,グルタミン酸残基,2-アミノスベリン酸,ジアミノプロピオン酸,アルギニン残基(好ましくは,リシン残基)又は1位のアミノ酸のアミノ基は,任意で抗体と共有結合するための架橋剤で修飾されていてもよい。本明細書において,このように架橋剤で修飾されたIgBPを「CCAP試薬」ということがある。Fc分子結合用IgBPとして,好ましくはCCAP試薬である。本明細書において「架橋剤」とは,IgBPと,Fc分子とを,共有結合により連結させるための化学物質である。架橋剤は,当業者であれば適宜選択することが可能であり,所望のアミノ酸(例えば,リシン残基,システイン残基,アスパラギン酸残基,グルタミン酸残基,2-アミノスベリン酸,ジアミノプロピオン酸,アルギニン残基等)と結合可能な部位を少なくとも2箇所有する化合物とすることができる。このような架橋剤としては,DSG(ジスクシンイミジルグルタレート),DSS(ジスクシンイミジルスベレート),DMA(アジプイミド酸ジメチル二塩酸塩),DMP(ピメルイミド酸ジメチル二塩酸塩),DMS(スベルイミド酸ジメチル二塩酸塩),DTBP(3,3’-ジチオビスプロピオンイミド酸ジメチル二塩酸塩),及びDSP(ジチオビス(スクシンイミジルプロピオン酸))を挙げることができ,好ましくはDSG,DSS,又はDSPである。例えば,DSS又はDSG等のスクシンイミジル基を含む架橋剤は,リシン残基の側鎖及びポリペプチドのN末端に存在する一級アミンと反応するため,IgBPのN末端をブロッキングした上でDSS又はDSGと反応させることにより,IgBPのリシン残基の側鎖のみをDSS又はDSGで特異的に修飾することができる。このようなアミノ酸残基と架橋剤の組み合わせは,当業者であれば適宜選択することができる。架橋剤で修飾されているIgBPとIgGとの間の架橋は,例えば,IgBPの上記X,X,X11,X12,X14のアミノ酸残基とIgGのFc領域のLys248又はLys246,好ましくはLys248の間で部位特異的に生じさせることができる。
 好ましくは,前記式(I),(I’),(I’’),(II),及び(II’)で表されるペプチドにおいて,C末端に最も近いシステイン及びN末端に最も近いシステインの2個のシステイン残基同士は,ジスルフィド結合又はリンカーを介して連結されることにより環状ペプチドを形成していてもよい。このようなリンカーとして利用可能な2価の基としては,例えば,-CH-C(=O)-CH-基,-CH-C(=O)-基,-CH-C(=N-R)-CH-基,-CH-O-CH-基,-C(=O)-基,及び-C(=N-R)-基を挙げることができる(ここで,Rは,置換されていてもよいアルキル基,例えば,置換されていてもよいC1~C6アルキル,メチル基,エチル基,プロピル基,ブチル基,ペンチル基,又はヘキシル基)であり,ここで置換されている場合の置換基としては,例えば,ヒドロキシ基,(モノ若しくはポリ)エチレンオキシド基,カルボキシル基,アルコキシ基,アシル基,アルキル基,アミド基,エステル基,ハロゲン基(F,Cl,Br,又はI),又はこれらの組み合わせであってよい)。当該リンカーは,通常のジスルフィド結合よりも,安定性,例えばアルカリ耐性又は還元反応等耐性,好ましくはアルカリ耐性に優れる。また,このように結合される2つのシステイン残基としては,式(I),(I’),(I’’)における,XとXの間に位置するシステイン残基とWとXとの間のシステイン残基,及び,式(II),及び(II’)におけるX10とX13が共にシステイン残基である場合には,これらのシステイン残基を挙げることができる。
 本明細書において,K(Z)は,官能基結合リシン残基を意味する,好ましくは,K(Z)はK(Azide)である。
 また,本明細書のIgBPは,N末端のアミノ酸のアミノ基がアセチル化されていてもよい。また,本明細書のIgBPは,C末端のアミノ酸のカルボキシル基がアミド化され(アミノ基が結合して)いてもよい。また,更に,本明細書のIgBPは,必要に応じて,その末端,又は前記アジド基とペプチド部分の間がPEGで修飾されていてもよい。PEG修飾されている場合のPEGの重合度は,2~10,3~8,4~7とすることができる。
 Fc分子は,含有するIgGのFc領域において,2本で対となる対称な重鎖定常領域の部分ペプチド鎖(Fc鎖)を有するため,Fc分子結合用IgBPが結合する部位が2か所存在する。このため,Fc分子結合用IgBPは,Fc分子1分子に0~2個結合することができる。Fc分子1分子に1個のIgBPが結合したFc分子とは,上述のFc分子中の2本の対称な重鎖定常領域由来部分ペプチドのうち,片方にのみIgBPが結合したFc分子を意味する。本明細書において,Fc分子1分子にFc分子結合用IgBP結合していないことを「0価」,Fc分子1分子に1個のFc分子結合用IgBPが結合していることを「1価」,Fc分子1分子に2個のFc分子結合用IgBPが結合していることを「2価」という。なお,本明細書において,Fc分子1分子の語は,IgG1分子を構成可能なペアとなった2本のFc領域を含む分子を意味する。
 本明細書に記載されたアミノ酸配列において,Aはアラニン残基であり,Rはアルギニン残基であり,Nはアスパラギン残基であり,Dはアスパラギン酸残基であり,Cはシステイン残基であり,Qはグルタミン残基であり,Eはグルタミン酸残基であり,Gはグリシン残基であり,Hはヒスチジン残基であり,Iはイソロイシン残基であり,Lはロイシン残基であり,Kはリシン残基であり,Mはメチオニン残基であり,Fはフェニルアラニン残基であり,Pはプロリン残基であり,Sはセリン残基であり,Tはトレオニン残基であり,Wはトリプトファン残基であり,Yはチロシン残基であり,Vはバリン残基である。また,Hcyはホモシステインであり,Dprはジアミノプロピオン酸であり,Ornはオルニチン残基であり,βAlaはβアラニン残基であり,Dabは2,4-ジアミノ酪酸残基であり,Nleはノルロイシン残基であり,Nvaはノルバリン残基であり,Tleはtert-ロイシン残基であり,Ala(t-Bu)はtert-ブチルアラニン残基であり,かつ,Chaはシクロヘキシルアラニン残基である。また,側鎖にアミノ基を有する残基(リシン残基,オルニチン残基,2,4-ジアミノ酪酸残基)中のアミノ基は,必要に応じてアセチル化されていてもよい。本明細書において天然及び人工アミノ酸のアセチル化形態は,上述のアミノ酸標記にAcの接頭語を伴って記載されることもあるが,特にそのように解することが不整合である場合を除き,Acと記載されていなくてもアセチル化形態を含みうると解される。K(Azide)はアジド結合リシン残基を表す。
(精製による方法)
 一態様において,本発明は,(Fc分子結合)IgBPと反応させたFc分子組成物における,1価の割合を高める方法であって,
 Fc分子結合用IgBPと(結合)反応させたFc分子と,前記Fc分子結合用IgBPと同一又は異なる担体結合用IgBPが結合した担体とを接触させて,前記Fc分子結合用IgBPを結合させたFc分子を担体に結合させること,
 該担体に結合しなかった前記Fc分子を除去すること,及び
 該担体に結合した前記Fc分子を回収することを含む方法に関する。
 前記精製方法において用いる,「Fc分子結合用IgBPと反応させたFc分子組成物」は,国際特許公開公報WO2008/054030,WO2013/027796,WO2016/186206,及びWO2018/230257に記載の方法に準じてFc分子結合用IgBPとFc分子とを混合することにより得ることができる。なお,前記方法において,最初のステップの前に,Fc分子結合用IgBPとFc分子を反応させて,Fc分子結合用IgBPと反応させたFc分子組成物を得ることを含んでいてもよい。好ましくは,「Fc分子結合用IgBPと反応させたFc分子」は,上述の架橋剤を介してFc分子結合用IgBPと共有結合させたFc分子を意味する。Fc分子結合用IgBPが架橋剤で修飾されている場合,該混合工程の条件は,Fc分子結合用IgBPとFc分子との間で架橋反応が生じる条件で行うものであれば特に限定されないが,例えば,Fc分子結合用IgBPとFc分子とを,適当なバッファー中において,室温(例えば約15℃~30℃)で混合することにより反応させることができる。該混合工程は,必要に応じて架橋反応を促進する触媒を適量加えて行ってもよい。該混合工程におけるFc分子結合用IgBPとFc分子との混合比率は,特に限定されるものではないが,例としてIgBP:Fc分子のモル比率は,1:1~20:1,好ましくは2:1~20:1又は5:1~10:1とすることができる。該混合工程における混合時間(反応時間)は,Fc分子結合用IgBPとFc分子との間で架橋反応が生じる限り限定するものではないが,例えば,1分~5時間,好ましくは10分~2時間又は15分~1時間とすることができる。Fc分子結合用IgBPと反応させたFc分子組成物は,更に,必要に応じて,精製されていてもよい。精製は,本分野で公知の方法,例えば,ゲルろ過クロマトグラフィ,イオン交換カラムクロマトグラフィー,アフィニティークロマトグラフィー,逆相カラムクロマトグラフィー,及びHPLC等のクロマトグラフィ等により行うことができる。
 本発明は,「担体結合用IgBPが結合した担体」を含む。担体結合用IgBPが結合した担体は,例えば,アミノ基と反応性の官能基を有する担体に,担体結合用IgBPを反応させて製造することができる。担体の形状としては,ゲル(例えば,カラム用ゲル),粒子,ビーズ,ナノ粒子,微粒子,マクロビーズ,膜,マイクロプレート,及びアレイなどの形状が挙げられ,その材質としては,磁性物質,ラテックス,アガロース,ガラス,セルロース,セファロース,ニトロセルロース,ポリスチレン,その他の高分子材料が挙げられる。好ましくは,該担体はカラム用ゲルである。担体としては,例えば,HiTrap NHS-activated HP(GE Healthcare)などを用いることができる。反応は,両者が十分に結合する条件で行われ,例えば,緩衝液中,室温で1~5時間(好ましくは,2.5~3.5時間)接触させることにより行うことができる。
 Fc分子結合用IgBPと反応させたFc分子と,担体結合用IgBPが結合した担体との接触は,両者が十分の接触可能な条件で行われる。例えば,担体がカラムの場合,Fc分子結合用IgBPと反応させたFc分子を担体結合用IgBP固定化カラムにインジェクトすることにより行われる。
 担体に結合しなかった前記Fc分子を除去することは,常法により行うことができ,例えば,緩衝液(pH約7.0)にてFc分子を結合させた担体を洗浄することにより行うことができる。
 担体に結合したFc分子の回収は,pH2.5以上で行うことができるが,Fc分子の変性を防ぐため酸性度が弱いことが望ましく,好ましくはpH3.6以上であり,更に,1価の修飾Fc分子を高割合で溶出させるためには,pH3.7以上,pH3.8以上が好ましく,pH3.8,pH3.9,pH4.0,pH4.1,pH4.2,pH4.3又はそれらの任意の2点の間の値とすることができ,例えば,pH3.6~pH4.3,pH3.6~pH4.2,pH3.6~pH4.1,pH3.6~pH4.0,pH3.7~pH4.2,pH3.7~pH4.1,pH3.7~pH4.0,pH3.8~pH4.0又はpH3.8~pH3.9とすることができる。
 回収されたFc分子組成物における,1価のFc分子の,全Fc分子(100%)に対する割合としては,55%以上,63%以上,70%以上,80%以上,90%以上,95%以上又は98%以上とすることができる。
(担体上でIgBPを結合させる方法)
 別の態様において,本発明は,Fc分子結合用IgBP及び担体結合用IgBPを用いて,1価のFc分子を調製する方法であって,
 Fc分子を,担体結合用IgBPが結合した担体と反応させてFc分子結合担体を得ること,
 得られたFc分子結合担体中のFc分子とFc分子結合用IgBPとを担体上で反応させて,(Fc分子結合用IgBP)-(Fc分子)-(担体結合用IgBP)-(担体)の結合物を得ること,及び
 該担体からFc分子結合用IgBPとFc分子の結合物を回収することを含み,
 ここで,前記Fc分子結合用IgBPと担体結合用IgBPは同一又は異なっていてもよい,方法に関する。
 本方法は,Fc分子結合用IgBPとしてCCAP試薬を使用することにより,抗体とFc分子結合用IgBPとを架橋剤により共有結合させる工程を含んでいてもよい。更に,本方法は,Fc分子結合用IgBPと他の機能性分子とを結合する工程を含んでいてもよい。これらの工程は,担体からFc分子結合用IgBPとFc分子の結合物を回収する前に担体上で行ってもよいし,担体から回収されたFc分子結合用IgBPとFc分子の結合物について行ってもよい。
 担体結合用IgBPが結合した担体は,上述の精製方法に記載された方法に準じて製造することができる。
 Fc分子と,担体結合用IgBPが結合した担体との反応は,上述の精製方法に記載されたFc分子結合用IgBPと反応させたFc分子と,担体結合用IgBPが結合した担体との接触方法に準じて行うことができる。
 担体結合Fc分子とFc分子結合用IgBPとの反応は,両者を接触させることにより行うことができる。反応温度は,4℃~室温とすることができ,反応pHは,4.5~6.0とすることができる。反応時間は,3時間以上が好ましく,より好ましくは,6時間以上,12時間以上である。担体がカラムである場合,用いるFc分子結合用IgBPの濃度としては,10~60μM,又は20~40μMとすることができる。IgBP好ましくは,Fc分子結合用IgBPは架橋剤と結合しており,Fc分子とFc分子結合用IgBPとの反応は架橋反応を含む。
 担体からのFc分子結合用IgBPとFc分子の結合物の回収は,上述の精製方法に記載された担体に結合したFc分子の回収と同様に行うことができる。
 回収されたFc分子組成物における,1価のFc分子の,全Fc分子(100%)に対する割合としては,53%以上,55%以上,56%以上,59%以上,80%以上,85%以上,86%以上又は89%以上とすることができる。
 1価のFc分子を調製する方法に使用した全Fc分子(100%)に対する,得られた1価のFc分子の割合としては,39%以上(又は,40%以上,50%以上,55%以上,又は74%以上)とすることができる。
 担体がカラムである場合,本法は高速液体クロマトグラフを用いて,自動化することができる。自動化する場合には,10~60μMのFc分子結合用IgBP溶液を0.03~1mL/分,又は0.05~1mL/分で10分間流して行うことができる。
(官能基結合Fc分子を調製する方法)
 一態様において,本発明は,1価の官能基や1個の他の機能性分子が導入されたFc分子の製造方法も包含する。このような官能基や他の機能性分子は,IgBP上の官能基,Cys残基,Lys残基,又はアミノ基などの結合性の基を介して導入することもできるし,IgBPとFc分子を結合させた後にFc分子のCys残基やLys残基などの結合性の基と官能基を有する化合物や機能性分子とを共有結合させることにより導入することもできる。手順としては,上述の方法によりFc分子に1価のFc分子結合用IgBPを結合させた後,必要な官能基や他の機能性分子を結合させてもよいし,あるいは,そのような官能基や他の機能性分子を結合させたFc分子結合用IgBPを用いて上述の方法を実施することにより,官能基や他の機能性分子が導入されたFc分子結合用IgBPをFc分子に結合させてもよい。
 また,Fc分子結合用IgBPを用いてFc分子に官能基又は他の機能性分子を共有結合させて導入した後,Fc分子結合用IgBPを除去可能であることが知られている(Kei Yamadaら,(2019)Angew.Chem.;131:5648-5653)。すなわち,Fc分子結合用IgBPをFc分子に結合した後,Fc分子のCys残基やLys残基などの結合性の基と官能基を有する化合物や機能性分子とを共有結合させ,Fc分子結合用IgBPをFc分子から解離させてから,Fc分子結合用IgBPがFc分子から切断除去されていてもよい。また,この工程は,担体上で担体結合用IgBPとFc分子の結合物に対して行われてもよい。よって,本発明の,1価の官能基や1個の他の機能性分子が導入されたFc分子は,Fc分子結合用IgBPを含んでいなくてもよい。
 すなわち,本発明は,Fc分子1分子中に存在する2本のFc鎖のうち1本にのみ官能基が結合したFc分子であってIgBPが結合していないFc分子(官能基結合Fc分子)を多く含むFc分子組成物を調製する方法であって, (i)Fc分子を,担体結合用IgG親和性ペプチド(担体結合用IgBP)が結合した担体と反応させてFc分子結合担体を得ること;(ii)得られたFc分子結合担体中のFc分子に,開裂可能なリンカー(Cleavable Linker)を介して架橋剤が結合したFc分子結合用IgG親和性ペプチド(開裂可能(Cleavable)架橋剤(Crosslinking agent)結合IgBP:CCB-IgBP)を反応させて,CCB-IgBPとFc分子との結合物を得ること;(iii)前記架橋剤と前記Fc分子とを反応させて共有結合させること;(iv)前記リンカーを開裂させて,架橋剤とFc分子結合用IgBPとの間の結合を切断すること;(v)Fc分子結合用IgBPをFc分子から解離させて,担体結合用IgBPを介して担体に結合した官能基結合Fc分子と,遊離のFc分子結合用IgBPを得ること;及び,(vi)前記担体から官能基結合Fc分子を回収することを含み;ここで,前記Fc分子結合用IgBPと担体結合用IgBPは同一又は異なっていてもよく;ここで,前記開裂可能なリンカーと架橋剤との間に官能基を含む基が存在していてもよく;ここで,官能基結合Fc分子中に含まれる官能基は,前記開裂可能なリンカーと架橋剤との間に存在する官能基(図11(E)参照)であるか,又はリンカーが開裂することにより生じた基(図10(C)参照)である,方法に関する。
(機能性分子結合Fc分子を調製する方法)
 本発明は,Fc分子1分子中に存在する2本のFc鎖のうち1本にのみ機能性分子が結合したFc分子であってIgBPが結合していないFc分子(機能性分子結合Fc分子)を多く含むFc分子組成物を調製する方法であって,(i)Fc分子を,担体結合用IgG親和性ペプチド(担体結合用IgBP)が結合した担体と反応させてFc分子結合担体を得ること;(ii)得られたFc分子結合担体中のFc分子に,開裂可能なリンカー(Cleavable Linker)を介して架橋剤が結合したFc分子結合用IgG親和性ペプチド(開裂可能(Cleavable)架橋剤(Crosslinking agent)結合IgBP:CCB-IgBP)を反応させて,CCB-IgBPとFc分子との結合物を得ること;(iii)前記架橋剤と前記Fc分子とを反応させて共有結合させること;(iv)前記リンカーを開裂させて,架橋剤とFc分子結合用IgBPとの間の結合を切断すること;(v)Fc分子結合用IgBPをFc分子から解離させて,担体結合用IgBPを介して担体に結合した官能基結合Fc分子と,遊離のFc分子結合用IgBPを得ること;(vi)官能基結合Fc分子の官能基に機能性分子を結合させて機能性分子結合Fc分子を得ること;及び,(vii)前記担体から機能性分子結合Fc分子を回収することを含み;ここで,前記Fc分子結合用IgBPと担体結合用IgBPは同一又は異なっていてもよく;ここで,前記開裂可能なリンカーと架橋剤との間に官能基を含む基が存在していてもよく;ここで,官能基結合Fc分子中に含まれる官能基は,前記開裂可能なリンカーと架橋剤との間に存在する官能基(図11(E)参照)であるか,又はリンカーが開裂することにより生じた基(図10(C)参照)である,方法に関する。なお,本方法において,(vi)の機能性分子の結合する工程と(vii)の担体からFc分子を回収する工程はどちらを先に行ってもよい。
 また,本発明は,Fc分子1分子中に存在する2本のFc鎖のうち1本にのみ機能性分子が結合した機能性分子結合Fc分子であってIgBPが結合していないFc分子を多く含むFc分子組成物を調製する方法であって, (i)Fc分子を,担体結合用IgG親和性ペプチド(担体結合用IgBP)が結合した担体と反応させてFc分子結合担体を得ること;(ii)得られたFc分子結合担体中のFc分子に,開裂可能なリンカー(Cleavable Linker)を介して架橋剤が結合したFc分子結合用IgG親和性ペプチド(開裂可能(Cleavable)架橋剤(Crosslinking agent)結合IgBP:CCB-IgBP)を反応させて,CCB-IgBPとFc分子との結合物を得ること;(iii)前記架橋剤と前記Fc分子とを反応させて共有結合させること;(iv)前記リンカーを開裂させて,架橋剤とFc分子結合用IgBPとの間の結合を切断すること;(v)Fc分子結合用IgBPをFc分子から解離させて,担体結合用IgBPを介して担体に結合した機能性分子結合Fc分子と,遊離のFc分子結合用IgBPを得ること;及び,(vi)前記担体から機能性分子結合Fc分子を回収することを含み;ここで,前記Fc分子結合用IgBPと担体結合用IgBPは同一又は異なっていてもよく;ここで,前記開裂可能なリンカーと架橋剤との間に機能性分子が結合している,方法に関する(図11(E)参照)。
 「官能基結合Fc分子」とは,IgBPが結合しておらず,かつ官能基が結合しているFc分子を意味する。官能基は,リンカー,架橋剤,及び/又は他の構造を介してFc分子に結合していてもよい。「機能性分子結合Fc分子」とは,IgBPが結合しておらず,かつ官能基が結合しているFc分子を意味する。機能性分子は,リンカー,架橋剤,及び/又は他の構造を介してFc分子に結合していてもよい。「CCB-IgBP」は,開裂可能なリンカーの分解により,架橋剤とIgBPが切断される構造である限り,すなわち,(架橋剤)-(開裂可能なリンカー)-(IgBP)の順で結合していれば,他の物質を含んでいてもよく,例えば,(架橋剤)-(Fc分子に導入したい物質又は構造)-(開裂可能なリンカー)-(IgBP)であってもよい。ここで,Fc分子に導入したい物質又は構造の代表例は機能性分子又は官能基を含む基である。
 本願において,「開裂可能なリンカー(Cleavable Linker)」とは,酸性条件,塩基性条件,還元,酸化,酵素処理,光照射やβ脱離により分解してFc分子結合用IgG親和性ペプチドと架橋剤との間の結合が切断される結合基を有するリンカーであり,例えば,ジスルフィド結合,アセタール結合,エステル結合,及びアミド結合を挙げることができる。また,このような開裂可能なリンカーの一例は,切断性部分としてWO2018/199337に記載されている。
(組成物)
 別の態様において,本発明は,前記精製方法又は調製方法により得られたIgBP結合Fc分子を含む組成物に関する。すなわち,本発明は,IgBPが1個のみ結合したFc分子の全Fc分子に対する割合が,従来のCCAP法により合成されたIgBP結合Fc分子における同割合よりも高いことを特徴とする,Fc分子組成物に関する。ここで,従来のCCAP法とは,試験管内でIgBPとFc分子とを結合させるCCAP法であり,この語は,本発明のようなIgBP結合担体を用いた方法と区別する目的で使用される。より具体的には,従来のCCAP法とは,国際特許公開公報WO2008/054030,WO2013/027796,及びWO2016/186206に記載された方法を含む。
 好ましくは,本発明の組成物は,IgBPが1個のみ結合したFc分子の,全Fc分子を100%としたときの割合が,52%以上,53%以上,55%以上,56%以上,59%以上,63%以上,70%以上,80%以上,85%以上,86%以上,89%以上,90%以上,95%以上,又は98%以上である。
 本発明の組成物は,必要に応じて,医療用又は診断用組成物とすることができる。本発明の組成物が医療用組成物(治療用及び/又は予防用組成物)である場合,IgBPは,例えば上記の薬剤により修飾されていることが好ましく,診断用組成物に含まれる場合,IgBPは,例えば上記の標識物質により修飾されていることが好ましい。医療用又は診断用組成物の対象疾患は,使用するFc分子や結合薬剤を選択することにより,適宜設定することができ,例えば,抗体により標的化可能な疾患又は障害,好ましくは,がん,炎症性疾患,感染症,及び神経変性疾患が挙げられる。 
 例えば,医療用又は診断用組成物は,注射剤として利用することができ,静脈注射剤,皮下注射剤,皮内注射剤,筋肉注射剤,点滴注射剤などの剤形を包含する。このような注射剤は,公知の方法に従って,例えば,IgBP結合Fc分子を通常注射剤に用いられる無菌の水性もしくは油性液に溶解,懸濁または乳化することによって調製することができる。調製された注射液は,通常,適当なアンプル,バイアル,シリンジに充填される。また,IgBP結合Fc分子に適当な賦形剤を添加することにより,凍結乾燥製剤を調製し,用時,注射用水,生理食塩水などで溶解して注射液とすることもできる。なお,一般的に抗体などのタンパク質の経口投与は消化器により分解されるため困難とされるが,抗体断片や修飾した抗体断片と剤形の創意工夫により,経口投与の可能性もある。経口投与の製剤としては,例えば,カプセル剤,錠剤,シロップ剤,顆粒剤等を挙げることができる。
 医療用又は診断用組成物は,活性成分の投与量に適合するような投薬単位の剤形に調製されることが好適である。このような投薬単位の剤形としては,注射剤(アンプル,バイアル,プレフィルドシリンジ)が例示され,投薬単位剤形当たり通常5~500mg,5~100mg,10~250mgのIgBP結合Fc分子を含有していても良い。
 医療用又は診断用組成物の投与は,局所的であってもよく,全身的であってもよい。投与方法には特に制限はなく,上述のとおり非経口的又は経口的に投与される。非経口的投与経路としては,皮下,腹腔内,血中(静脈内,若しくは動脈内)又は脊髄液への注射又は点滴等が挙げられ,好ましくは血中への投与である。医療用又は診断用組成物は,一時的に投与してもよいし,持続的又は断続的に投与してもよい。例えば,投与は,1分間~2週間の持続投与することもできる。
 医療用又は診断用組成物の投与は,所望の治療効果又は予防効果が得られる投与量及び投与時期であれば特に限定は無く,症状,性別,年齢等により適宜決定することができる。例えば,有効成分の1回量として,通常0.01~20mg/kg体重程度,好ましくは0.1~10mg/kg体重程度,さらに好ましくは0.1~5mg/kg体重程度を,上記疾患の臨床症状が生ずる前及び/又は後に,1月1~10回程度,好ましくは1月1~5回程度,静脈注射により投与するのが好都合である。他の非経口投与および経口投与の場合もこれに準ずる量を投与することができる。
 以下に実施例を用いて本発明をより詳細に説明するが,これは本発明の範囲を限定するものではない。なお,本願明細書全体を通じて引用する文献は,参照によりその全体が本願明細書に組み込まれる。
(材料)
 プロテインAカラム,プロテインGカラム,ならびにペプチド固定化用カラムは,HiTrap Protein A HP Columns,HiTrap Protein G HP,HiTrap NHS-activated HP(1ml,GE Healthcare)カラムを用いた。
(実施例1)CCAP法による抗体コンジュゲートの血中半減期
(1)CCAP法による抗体コンジュゲートの作製
 20mM 酢酸緩衝液(pH4.5)に溶解した8μM 抗AVM(アベルメクチン)抗体(ヒトIgG4)5mlに,DMSO中に溶解したCCAP試薬Azide-PEG4-EEGPDCAYH(succinimidyl glutaryl Lys)GELVWCTFH(配列番号69)-NH(Azide-EEIgBP,534μM)を154μL加え(最終濃度16μM),室温で1時間反応させた。この溶液の一部(抗体3μg)を,Nexera-i(Shimazu)に接続した陰イオン交換カラムShodex QA825(Shodex)にインジェクトし,10mM Tris緩衝液(pH8.0)中にて,0から1MまでのNaClのグラジエント溶出を行った結果を図1に示す。得られた1価抗体ならびに2価抗体を分取し,PBSにて透析後,血中半減期測定のためのサンプルに用いた。
(2)血中半減期の測定
 抗アベルメクチン(AVM)抗体のAzide-EEIgBPペプチド試薬による修飾1価抗体,2価抗体の血中半減期の測定を,マウスを用いて行った。コントロール抗体(AVM),ペプチド一価付加抗体(AVM-pep1),ペプチド二価付加抗体(AVM-pep2)をICRマウスに5mg/kgでi.v.投与(各群3匹)して,1時間後,4時間後,24時間後,48時間後,72時間後,168時間後の血清中抗体濃度を解析した。
(3)結果
 図2は,抗体投与から1時間後,4時間後,24時間後,48時間後,72時間後,及び168時間後の血清中抗体濃度を解析した結果を示す。表1は,この実験の血清中抗体濃度の変化から,薬物動態パラメーターを解析したものである。表1に示したように,1価抗体の半減期(T1/2β=264h)は,未修飾抗体(T1/2β=268h)とほぼ同等であるのに比べ,2価抗体は,未修飾抗体に比べ,半減期が約半分(T1/2β=139h)となることが分かった。つまり,1価修飾では,血中半減期に大きな影響を与えないが,2価修飾では,修飾抗体の血中半減期が大きく減弱することが分かった。
Figure JPOXMLDOC01-appb-T000001
 
 CCAP法により作成したコンジュゲート抗体を医薬品として使用する場合,未修飾体と同様の血中半減期を有する1価修飾体を使用することは,薬剤の生物活性を保持するうえでも,重要である。しかし,CCAP法でコンジュゲートを作製した場合,図1にも示したように,必ず1価抗体に加え,2価抗体の生成が付随する。そこで,生成反応の段階で2価抗体の生成を抑えつつ,1価抗体の生成効率を上げるか,もしくは2価抗体を効率的に除き高純度での1価の精製手法が必要であることが明らかとなった。
(実施例2)抗体結合カラムの作製
(1)IgBP固定化カラムの作製
 N末端にGSリンカーを付加したIgG結合ペプチドIgBP(WO2013/027796):NH-GSGGS-DCAYHRGELVWCT-CONH(MW:1895.06)(配列番号70)をF-moc法を用いて固相合成し,脱保護後,逆相HPLCで精製した。凍結乾燥後のペプチド14mgを,50mM Tris緩衝液(pH8.6)0.25mLに溶解し,室温で1時間放置した。LC-MS(Acquity UPLCが接続したSQ detector,Waters)によってSS結合形成を確認した後,TFAを最終1%となるように加え酸性にした。この溶液を逆相カラム(Sep-Pak C18)にアプライし,0.1% TFAで洗浄後,0.1% TFAを含む60% アセトニトリルで溶出し,有機溶媒を除いた後,凍結乾燥した。
 DMSOに溶解した7.5mMペプチド溶液0.720mLを,2.88mLの0.2M NaHCO(pH=8.3)で希釈したのち,5mLの1mM HClで洗浄済みのHiTrap NHS-activated HP(1ml,GE Healthcare)カラム(3本)に,1ml(ペプチド量:1.5μmol)ずつゆっくりと注入し,注入後は室温で3時間放置した。0.2M NaHCO(pH=8.3)5mLで洗浄した後,6mLの0.5M NaClを含む0.5M モノエタノールアミン-HCl(pH7.5)によるブロッキング(10分間)と,6mLの0.5M NaClを含む0.1M 酢酸ナトリウム-HCl緩衝液(pH4.0)よる洗浄を交互に3回繰り返した。最後に,5mLの20mM リン酸バッファー(pH7.0)でカラム内を置換し,4℃にて保管した。このようにして作製された3本のカラムへのペプチドの固定化量は,投与ペプチドに対する割合から,72.7%(1090.5nmol),77.4%(1161nmol)及び73.1%(1096.5nmol)と評価された。
(2)Z33固定化カラムの作製
 カラム固定化のためのリンカー部をC末に導入したIgG結合ペプチドZ33(Braisted,A.C.ら,Proc.Natl.Acad.Sci.U.S.A.93:5688-92(1996)):Acetyl-FNMQQQRRFYEALHDPNLNEEQRNARIRSIRDDPSGSGSK-NH)(配列番号71)をF-moc法を用いて固相合成し,脱保護後,逆相HPLCで精製した。凍結乾燥後のペプチド23.8mgを,330μLのDMSOに溶解し15mMの溶液を調製した。このペプチド溶液250μLに同量のDMSOを加え,2.0mLの0.2M NaHCO(pH=8.3)で希釈したのち,5mLの1mM HClで洗浄済みのHiTrap NHS-activated HP(1ml,GE Healthcare)カラム(2本)に,1ml(ペプチド量:1.5μmol)ずつロードし,室温で3時間放置した。0.2M NaHCO(pH=8.3)5mLで洗浄した後,6mLの0.5M NaClを含む0.5M モノエタノールアミン-HCl(pH7.5)によるブロッキング(10分間)と,6mLの0.5M NaClを含む0.1M 酢酸ナトリウム-HCl緩衝液(pH4.0)よる洗浄を交互に3回繰り返した。最後に,5mLの20mM リン酸バッファーpH7.0でカラム内を置換し,4℃にて保管した。このようにして作製された2本のカラムへのペプチドの固定化量は,投与ペプチドに対する割合で,60.8%(912nmol),40.5%(608nmol)と評価された。
(3)IgBP固定化カラムの溶出条件並びにDBC(Dynamic binding capacity)の評価
 IgBPを固定化した1mlのカラム(IgBP固定化量:995nmol)をNGCTMクロマトグラフィーシステム(BioRad)に接続し,20mM リン酸緩衝液(pH7.0)を2mL/分で5分間流すことにより平衡化した。20mM リン酸緩衝液(pH7.0)50mLに溶解したヒトIgG1抗体1mgをインジェクトし,リン酸緩衝液(pH7.0)で3分間洗浄後,pH3.5,3.0と2.5の0.1M グリシン塩酸の溶出液を用いて2.5分間,1回目の溶出を行った。さらに,pH2.5の0.1M グリシン塩酸にて,2回目の溶出を行い,最後に20mM リン酸緩衝液(pH7.0)にて初期化した(図3及び図4)。
 図4に,1回目の溶出時の拡大図を示す。pH3.5から3.0と2.5へpHを低下させるに従い,溶出時間が早くなる傾向が見られたが,溶出された抗体のピーク面積も各pH間でほとんど差がなく,またpH2.5での2回目に溶出時においても何も溶出されなかったことから,本カラムでの抗体の溶出は,pH3.5で十分に行えることが分かった。
 次に,同じカラムを用い,DBC(Dynamic binding capacity)の評価を行った。NGCTMクロマトグラフィーシステム(BioRad)に接続したカラムに,20mM リン酸緩衝液(pH7.0)を1.0mL/分で10分間流すことにより平衡化し,同緩衝液に0.98mg/mlになるように溶解したヒト血清由来IgG(SIGMA,#14506,Lot#SLBR0560V)溶液を,1mL/分で30mL注入した。カラムからの漏出の中点からDBCを求めたところ,47mgであることが分かった。また,緩衝液にて,1mL/分で6分間洗浄後,0.1Mグリシン塩酸(pH3.5)を用いて,流速2.0mL/分にて結合したIgGを溶出させ,溶出後のタンパク質のA280の吸光度から,カラムに結合した抗体量を算出したところ,42mgであった(すべてのIgG抗体量は,1mg/mL=Abs280:1.38として計算)。
(4)Z33固定化カラムの溶出条件並びにDBC(Dynamic binding capacity)の評価
 作製したZ33固定化カラムの抗体の溶出条件の検討を行った。Z33を固定化した1mlのカラム(IgBP固定化量:912nmol)をNGCTMクロマトグラフィーシステム(BioRad)に接続し,20mM リン酸緩衝液(pH7.0)を1mL/minで10分間流すことにより平衡化した。20mM リン酸緩衝液(pH7.0)10mLに溶解したヒトIgG1抗体1mgをインジェクトし,リン酸緩衝液(pH7.0)で6分間洗浄後,流速2mL/分で,pH2.5とpH3.5の0.1 Mグリシン塩酸の溶出液を用いて溶出した(図5)。いずれのpHによる溶出の場合においても,良好な溶出挙動が見られ,本カラムからの溶出は,pH3.5で十分に行えることが分かった。
 次に,同じカラムを用い,DBC(Dynamic binding capacity)の評価を行った。NGCTMクロマトグラフィーシステム(BioRad)に接続したカラムに,20mM リン酸緩衝液(pH7.0)を1.0mL/分で10分間流すことにより平衡化し,同緩衝液に0.67mg/mlになるように溶解したヒト血清由来IgG(SIGMA,#14506,Lot#SLBR0560V)溶液を,1mL/分で50mL注入した。カラムからの漏出の中点からDBCを求めたところ,26mgであることが分かった。また,緩衝液にて,2mL/分で3分間洗浄後,0.1M グリシン塩酸(pH3.5)を用いて,流速2.0mL/分にて結合したIgGを溶出させ,溶出後のタンパク質のA280の吸光度から,カラムに結合した抗体量を算出したところ,19mgであった(すべてのIgG抗体量は,1mg/mL=Abs280:1.38として計算)。
(5)カラム上でのCCAP修飾体のイオン交換カラムによる解析
 アフィニティカラムから洗浄分画もしくは溶出分画として回収された抗体の解析は,各溶液0.05mLを,Nexera-i(Shimazu)に接続した陽イオン交換カラムShodex SP825 (Shodex)にインジェクトし,10mM 酢酸緩衝液(pH=5.5)中,0から0.3MまでのNaClグラジエント溶出にて行った。
(実施例3)IgBP固定化カラムを使った1価抗体の精製
(1)IgBP固定化カラムを使った2価抗体の除去
 10mg(67nmol)のTrastuzumabを3.3mlの20mM リン酸緩衝液(pH7.0)に溶解し,DMSOに溶解した70mMのCCAP試薬(MTZ-DBCO-N-(PEG)-RRDCAYHKGELVWCT(配列番号72)-NH)2.9μL(202nmol)を加えて一晩,室温にて反応させた。一部(約3μg)を取り出し,疎水クロマト用カラムTSKgel Butyl-NPR(4.6mm I.D.×10cm,Tosoh)を接続したSimadzu LC2040(Shimazu)にインジェクトし,流速0.5ml/分にて,A液(1.5M 硫酸アンモニウムを含む25mM リン酸緩衝液pH7.0)から,B液(20%イソプロパノールを含む25mM リン酸緩衝液pH7.0)までの20分のグラジエントにて溶出した(図6A)。残りの反応物を,IgBP固定化カラムにインジェクトし,20mM リン酸緩衝液(pH7.0)にて洗浄後,0.1M グリシン塩酸緩衝液(pH3.5)にて溶出した。この際のカラムから素通りした分画と酸性溶液にて溶出した分画の疎水クロマトグラフィによる分析結果を図6BとCに示す。IgBPカラムでは,IgGとCCAP試薬の反応物中にあった2価の抗体がIgBPカラムから素通りすることで除去され,未修飾体と1価抗体のみを精製できる(図6C)ことが分かった。
(9)Z33固定化カラムを使ったCCAP法による反応物からの2価抗体の除去
 上記(8)と同じ方法で調製したサンプルの一部(約3μg)を,疎水クロマト用カラムで分析した(図7A)。残りの反応物を,Z33固定化カラムにインジェクトし,20mM リン酸緩衝液(pH7.0)にて洗浄後,0.1M グリシン塩酸緩衝液(pH3.5)にて溶出した。この際のカラムから素通りした分画とpH3.5溶液にて溶出した分画の疎水クロマトグラフィによる分析結果を図7BとCに示す。Z33カラムでも,IgBPカラムと同様に,IgGとCCAP試薬の反応物中の2価抗体がIgBPカラムから素通りし,カラムに吸着した抗体を酸性溶液で溶出することにより,効率よく未修飾体と1価抗体を精製できることが分かった。
(10)溶出時のpHの制御による1価抗体の精製
 上述のように,IgBPでは,2価抗体と,1価抗体と未修飾抗体の混合物の分離はできたが,1価抗体と未修飾抗体の分離は達成できていない。そこで,1価抗体と未修飾抗体の分離を,溶出時のpHを制御することで行うことを試みた。すなわち,TrastuzumabとCCAP試薬(IgBP-N-RRRSS-SG)をモル比,1:1で室温,2時間反応後,反応物を,0.1M酢酸緩衝液(pH5.5)で平衡化したIgBPカラムにアプライし,同緩衝液で洗浄後,0.1M酢酸緩衝液(pH4.0,pH3.9,pH3.8、pH3.7)あるいは0.1Mグリシン塩酸緩衝液(pH3.6)で1段階目溶出した後,0.1Mグリシン塩酸緩衝液(pH3.5)で2段階目の溶出を行った。
 図8Aに示したように,第1段階目溶出では,pH3.6-4.0のすべての条件で,溶出ピークが得られ,第2段階目溶出では,第1段階目pH3.6で溶出した場合のみ,ピークが見られなかった。図8Bには,pH3.8での第1段階目溶出時の各分画のイオン交換クロマトグラフィの結果を示すが,素通り分画には2価抗体,第1段階目溶出分画は1価抗体,第2段階目溶出分画は2価抗体がそれぞれ主要な成分として溶出されており,IgBPカラムによって,これらの成分がきれいに分離できることが分かった。表2に,各条件下での各分画中の0,1,2価抗体の含有量をまとめた。第1段階目溶出pH4.0-3.7の条件間では,純度に若干の違いはあるものの,いずれも95%以上の高純度での1価抗体の精製ができることが分かった。一方,pH3.6の第1段階目溶出では,0価抗体と1価抗体の溶出が同時に起こり分離できていないことが分かった。
Figure JPOXMLDOC01-appb-T000002
 
(実施例4)IgBP固定化カラム,ProteinAもしくはProteinGカラム上でのCCAP反応による1価抗体の調製
 前項までに,IgBPカラムを用いて,溶出時のpHを制御することで,95%以上の高純度での1価抗体の精製が可能であることが分かった。しかし,反応に伴う2価抗体の生成が溶液中では抑えることが困難なため,全体から見た1価抗体の収量としては,反応に供した抗体の最大50%強の収量でしか回収できていない。そのため,本項では,抗体を一旦,IgBPカラムもしくはProteinAもしくはProteinGに吸着させた状態で,CCAP試薬と反応させることで,2価抗体の生成を抑えながら,1価抗体を優先的に合成する手法を検討した。
 1mgのTrastuzumabを0.1M酢酸緩衝液10mL(pH5.5)で希釈し,同緩衝液で平衡化したIgBPカラムにインジェクトした。その後,20もしくは60μMに緩衝液で直前に希釈したCCAP試薬溶液を1mlカラムに流した。そのカラムを,室温もしくは4℃にて,3時間もしくは12時間インキュベートし,5mlの0.1M 酢酸緩衝液pH5.5でカラムを洗浄後,0.1Mグリシン塩酸緩衝液(pH3.5)5mLにて溶出した。各条件下での反応物から回収した素通り分画,ならびに溶出分画を,実施例2で使用した陽イオン交換カラムクロマトグラフィーにより分析し,各分画での0,1,2価抗体の含有割合(%)を計算した。結果を表3に示す(洗浄液中から回収されたものは,2価抗体のみであったので,2価抗体の含有割合のみを示す)。
 表3の1-4の条件のうち,IgBPカラム上に固定化されたIgGを,CCAP試薬濃度20μMで,室温にて,12時間反応させた場合(条件2),溶出分画に含まれる1価抗体の生成率は,全体(素通り分画+溶出分画)の74%となり,比較した条件間で,1価抗体の割合が最も高かった。この場合,2価抗体は溶出分画に含まれないものの,洗浄分画に14%の2価抗体が見られた。1価抗体の生成率を上げるため,CCAP試薬の濃度を3倍の60μMとしたが(条件3),溶出分画中の1価抗体の割合は89%(残り11%は0価抗体)と最も高くなった。なお,この場合,素通り分画中の2価抗体が56%へと増加し,全体中の1価抗体割合は39%にとどまった。一方,洗浄分画での2価抗体の割合を減らすため,反応時間を12時間から3時間へと短縮したところ,素通り分画に溶出される2価抗体の全体中の割合は目的通りに7%と少なくなったが,溶出分画での1価抗体の割合は59%(残り41%は0価抗体)と,条件2(86%)や3(89%)に比べ低下した。また,同じ目的で,反応時間12時間のままで,反応温度を室温から4℃に変更した場合(条件4)でも,素通り分画での2価抗体の割合は目的通りに2%と減少し,全体中での1価抗体の割合として55%(溶出分画中の割合も56%)が達成できることが示された。
 比較例として,IgBPと同様な機能を持つ市販のカラムとして,プロテインAとプロテインGカラムを使用して,カラム上での同様の反応を行った結果を表3に示した。プロテインAとプロテインGの抗体への結合サイトは,IgBPとほぼ同じ,FcのCH2とCH3間の境界領域であり,CCAP試薬による2価抗体の生成を同様な機構で抑制できると考えられる。これらのカラムを使った反応の特徴は,素通り分画において,IgBPカラムで見られた2価抗体が見られないことである(条件5-9)。これは,おそらく,プロテインAやプロテインGは,IgBPと異なり,これらのリガンドの抗体上の結合サイトが1か所ではなく(たとえばプロテインAやGは,Fab領域にも結合サイトを持っている),そのため,CCAP反応により2価抗体がカラム中でできたとしても,カラムに結合し続けることができるためと考えられた。これを支持するように,プロテインAやGカラムからpH3.5での溶出分画には,0価,1価抗体のみならず,2価抗体が含まれていた(表2の条件5-9)。精製にIgBPカラムを利用している理由は,溶出回収物から2価抗体を除去することが目的であるため,カラム上でのCCAP反応による1価抗体の調製には,プロテインAやGカラムは不適であることが分かった。
Figure JPOXMLDOC01-appb-T000003
 
(実施例5)高速液体クロマトグラフに接続したIgBPカラム上での自動化CCAP反応
 CCAP反応によるコンジュゲートの作製の再現性を上げるためには,この反応の自動化が一つの解決策である。そこで,図9Aのスキームに示したフローに従って,CCAP反応による各修飾抗体の収率を,高速液体クロマトグラフ(NGC,BioRad)に接続したIgBPカラムを用いて検討した。自動化CCAP反応は,NGC(BioRad)クロマトグラフを用い,以下のステップで行った。
1)Inject mAb:1mgの抗体を0.1M酢酸緩衝液(pH5.5)20mLに溶解し,1mL/分にてS1Port1からインジェクトした(20分間)。
2)Wash:0.1M 酢酸緩衝液(pH5.5)を1mL/分にて10分間流し,カラムを洗浄した(10分間)。
3)Reagent:0.1M 酢酸緩衝液(pH5.5)に希釈したCCAP試薬(10,20,30,40μM IgBP NRRR-SG)1mLを0.1mL/分でインジェクトした(10分間)。
4)Wash:0.1M 酢酸緩衝液(pH5.5)を1mL/分にて10分間流し,カラムを洗浄した。
5)Elute:0.1M グリシン塩酸緩衝液(pH3.5)を1mL/分にて10分間流し,カラムから結合物を溶出した。
6)Regenerate:0.1M 酢酸緩衝液(pH5.5)を1mL/分にて12分間流し,カラムを再生した。
 溶出分画は,実施例4と同じ方法にて,含まれる成分を分析した(図9B)。10μMの試薬では,1価抗体の生成がごくわずかしか検出できなかったが,20-40μMのCCAP試薬の添加では,溶出分画中52-59%の割合で1価抗体(残りは0価抗体)の生成が確認された。さらに,試薬濃度を60μMまで上げたが,1価抗体の生成率は,57.8%と上昇しなかった。一方,これらの実験では,表1や2の実験に比べ,反応試薬と抗体のコンタクト時間が10分間と短い。そこで,CCAP試薬の注入速度を,流速0.05mL/分として,コンタクト時間を2倍に延ばしたが,1価抗体の生成率は,53.9%とこちらも増加は見られなかった(いずれもデータは示していない)。実際にこれらの条件下では,2価抗体の生成率は回収した抗体全体の2%以下であることから,大きな収量のロスにはつながらないと考えられた。
 以上の結果から,IgBPカラムを用いた自動化CCAP反応により,52-59%の割合で1価抗体を得られることが示された。

Claims (24)

  1.  Fc分子結合用IgBPと反応させたFc分子における,Fc分子1分子当たり1個のFc分子結合用IgBPが結合したFc分子の割合を高める方法であって,
     Fc分子結合用IgBPと反応させたFc分子と,前記Fc分子結合用IgBPと同一又は異なる担体結合用IgBPが結合した担体とを接触させて,前記Fc分子結合用IgBPと反応させたFc分子を担体に結合させること,
     該担体に結合しなかった前記Fc分子を除去すること,及び
     該担体に結合した前記Fc分子を回収することを含む方法。
  2.  Fc分子がIgG又はFc融合タンパク質である,請求項1に記載の方法。
  3.  担体結合用IgBPが,以下の(i)又は(ii)のペプチドである,請求項1又は請求項2に記載の方法:
    (i)下記式(I)で表されるペプチド:
    NH-(Linker)-(X 1-3)-C-(X)-(X)-(X)-(X)-G-(X)-L-(X)-W-C-(X 1-3)・・・(I)
    [式(I)において,(Linker)はリンカーを表し,1~3個のX,X,X,X,X,X,X,及び1~3個のXは,それぞれ互いに独立して,同一又は異なるアミノ酸残基を示し,
     各X,X,X及び各Xは,互いに独立して,同一又は異なる,C以外の任意のアミノ酸残基を示し,
     Xは,H,R,S,又はDであり,
     XはK,C,D,E,R,V,F,L,2-アミノスベリン酸,Dpr,Orn,AcOrn,AcDab,Dab,Nle,Nva,Tle,Ala(t-Bu),及びChaから選択される1個のアミノ酸残基であり,
     Xは,E,N,R,又はDであり,
     Xは,I又はVである];
    (ii)下記式(II)で表されるペプチド,又は(II)のアミノ酸配列において,X~X13以外の位置で1若しくは数個のアミノ酸が付加,欠失,及び/又は置換されたアミノ酸配列を含むペプチド:
    1-2NMQX10QRRFYEALHDPNLNEEQRNAX11IX12SIRDDX13-(Linker2)-CONH(配列番号60)・・・(II)
    [式(II)において,(Linker2)はリンカーを表し,X 1-2は,GF,AF,VF,LF,IF,MF,PF,FF,WF,KF,Orn-F,CF,DF,EF,βAla-F,2-アミノスベリン酸-F,Dpr-F,及びNH-(PEG)-CO(n=1~50)-F,F,K,Orn,C,D,E,2-アミノスベリン酸残基,及びDprからなる群から選択され,
    10は,C又はQであり,
     X11及びX12は,それぞれ独立に,R,H,D,E,S,T,N,Q,Y,及びCからなる群から選択され,
     X13は,C又はPである]。
  4.  Fc分子結合用IgBPが,以下の(iii)又は(iv)のペプチドである,請求項1又は請求項2に記載の方法:
    (iii)下記式(I’)又は(I’’)で表されるペプチド:
    Z-[(Linker3)-(X 1-3)-C-(X)-(X)-(X)-(X)-G-(X)-L-(X)-W-C-(X 1-3)]・・・(I’)
    [(X 1-3)-C-(X)-(X)-(X)-(X)-G-(X)-L-(X)-W-C-(X 1-3)-(Linker3)]-Z・・・(I’’)
    [式(I’)及び式(I’’)において,
     Zは官能基を表し,
     (Linker3)はリンカーを表し,
     1~3個のX,X,X,X,X,X,X,及び1~3個のXは,それぞれ互いに独立して,同一又は異なるアミノ酸残基を示し,
     各X,X,X及び各Xは,互いに独立して,同一又は異なる,C以外の任意のアミノ酸残基を示し,
     Xは,H,R,S,又はDであり,
     XはK,C,D,E,R,V,F,L,2-アミノスベリン酸,Dpr,Orn,AcOrn,AcDab,Dab,Nle,Nva,Tle,Ala(t-Bu),及びChaから選択される1個のアミノ酸残基であり,
     Xは,E,N,R,又はDであり,
     Xは,I又はVである]
    (iv)下記式(II’)で表されるアミノ酸配列を含むペプチド,又は(II’)のアミノ酸配列において,X~X14以外の位置で1若しくは数個のアミノ酸が付加,欠失,及び/又は置換されたアミノ酸配列を含むペプチド:
    1-2NMQX10QX14RFYEALHDPNLNEEQRNAX11IX12SIRDDX13-(Linker2)-NH(配列番号61)・・・(II’)
    [式(II’)において,(Linker2)はリンカーを表し,X 1-2は,GF,AF,VF,LF,IF,MF,PF,FF,WF,KF,Orn-F,CF,DF,EF,βAla-F,2-アミノスベリン酸-F,Dpr-F,及びNH-(PEG)-CO(n=1~50)-F,F,K,Orn,C,D,E,2-アミノスベリン酸残基,Dpr,及びAcetyl-Kからなる群から選択され,
     X10は,C又はQであり,
     X11及びX12は,それぞれ独立に,R,H,D,E,S,T,N,Q,Y,C,及びK(Z)からなる群から選択され,
     X13は,C又はPであるか,または存在せず,
     X14は,R,C,K(Z)であり,
     Zは官能基である]。
  5.  担体が,カラムである,請求項1~請求項4のいずれか1項に記載の方法。
  6.  Fc分子組成物における,Fc分子1分子に1個のIgBPが結合したFc分子の全Fc分子に対する割合が55%以上であることを特徴とする,請求項1~請求項5のいずれか1項に記載の方法。
  7.  Fc領域を有する分子(Fc分子)1分子に,Fc分子結合用IgG親和性ペプチド(Fc分子結合用IgBP)が1個のみ結合したIgBP結合Fc分子を多く含むFc分子組成物を調製する方法であって, 
     Fc分子を,担体結合用IgG親和性ペプチド(担体結合用IgBP)が結合した担体と反応させてFc分子結合担体を得ること,
     得られたFc分子結合担体中のFc分子とFc分子結合用IgBPとを反応させて,Fc分子結合用IgBPとFc分子との結合物を得ること,及び
     担体結合用IgBPとFc分子との結合を切断して,前記担体からFc分子結合用IgBPとFc分子の結合物を回収することを含み,
     ここで,前記Fc分子結合用IgBPと担体結合用IgBPは同一又は異なっていてもよい,方法。
  8.  担体結合用IgBPが,以下の(i)又は(ii)のペプチドである,請求項7に記載の方法:
    (i)下記式(I)で表されるペプチド:
    NH-(Linker)-(X 1-3)-C-(X)-(X)-(X)-(X)-G-(X)-L-(X)-W-C-(X 1-3)・・・(I)
    [式(I)において,(Linker)はリンカーを表し,1~3個のX,X,X,X,X,X,X,及び1~3個のXは,それぞれ互いに独立して,同一又は異なるアミノ酸残基を示し,
     各X,X,X及び各Xは,互いに独立して,同一又は異なる,C以外の任意のアミノ酸残基を示し,
     Xは,H,R,S,又はDであり,
     XはK,C,D,E,R,V,F,L,2-アミノスベリン酸,Dpr,Orn,AcOrn,AcDab,Dab,Nle,Nva,Tle,Ala(t-Bu),及びChaから選択される1個のアミノ酸残基であり,
     Xは,E,N,R,又はDであり,
     Xは,I又はVである];
    (ii)下記式(II)で表されるペプチド,又は(II)のアミノ酸配列において,X~X13以外の位置で1若しくは数個のアミノ酸が付加,欠失,及び/又は置換されたアミノ酸配列を含むペプチド:
    1-2NMQX10QRRFYEALHDPNLNEEQRNAX11IX12SIRDDX13-(Linker2)-CONH(配列番号60)・・・(II)
    [式(II)において,(Linker2)はリンカーを表し,X 1-2は,GF,AF,VF,LF,IF,MF,PF,FF,WF,KF,Orn-F,CF,DF,EF,βAla-F,2-アミノスベリン酸-F,Dpr-F,及びNH-(PEG)-CO(n=1~50)-F,F,K,Orn,C,D,E,2-アミノスベリン酸残基,及びDprからなる群から選択され,
    10は,C又はQであり,
     X11及びX12は,それぞれ独立に,R,H,D,E,S,T,N,Q,Y,及びCからなる群から選択され,
     X13は,C又はPである]。
  9.  Fc分子結合用IgBPが,以下の(iii)又は(iv)のペプチドである,請求項7又は請求項8に記載の方法:
    (iii)下記式(I’)又は(I’’)で表されるペプチド:
    Z-[(Linker3)-(X 1-3)-C-(X)-(X)-(X)-(X)-G-(X)-L-(X)-W-C-(X 1-3)]・・・(I’)
    [(X 1-3)-C-(X)-(X)-(X)-(X)-G-(X)-L-(X)-W-C-(X 1-3)-(Linker3)]-Z・・・(I’’)
    [式(I’)及び式(I’’)において,
     Zは官能基を表し,
     (Linker3)はリンカーを表し,
     1~3個のX,X,X,X,X,X,X,及び1~3個のXは,それぞれ互いに独立して,同一又は異なるアミノ酸残基を示し,
     各X,X,X及び各Xは,互いに独立して,同一又は異なる,C以外の任意のアミノ酸残基を示し,
     Xは,H,R,S,又はDであり,
     XはK,C,D,E,R,V,F,L,2-アミノスベリン酸,Dpr,Orn,AcOrn,AcDab,Dab,Nle,Nva,Tle,Ala(t-Bu),及びChaから選択される1個のアミノ酸残基であり,
     Xは,E,N,R,又はDであり,
     Xは,I又はVである]
    (iv)下記式(II’)で表されるアミノ酸配列を含むペプチド,又は(II’)のアミノ酸配列において,X~X14以外の位置で1若しくは数個のアミノ酸が付加,欠失,及び/又は置換されたアミノ酸配列を含むペプチド:
    1-2NMQX10QX14RFYEALHDPNLNEEQRNAX11IX12SIRDDX13-(Linker2)-NH(配列番号61)・・・(II’)
    [式(II’)において,(Linker2)はリンカーを表し,X 1-2は,GF,AF,VF,LF,IF,MF,PF,FF,WF,KF,Orn-F,CF,DF,EF,βAla-F,2-アミノスベリン酸-F,Dpr-F,及びNH-(PEG)-CO(n=1~50)-F,F,K,Orn,C,D,E,2-アミノスベリン酸残基,Dpr,及びAcetyl-Kからなる群から選択され,
     X10は,C又はQであり,
     X11及びX12は,それぞれ独立に,R,H,D,E,S,T,N,Q,Y,C,及びK(Z)からなる群から選択され,
     X13は,C又はPであるか,または存在せず,
     X14は,R,C,K(Z)であり,
     Zは官能基である]。
  10.  担体が,カラムである,請求項7~請求項9のいずれか1項に記載の方法。
  11.  Fc分子を,担体結合用IgBPが結合した担体と反応させてFc分子結合担体を得ることが,担体結合用IgBPが結合したカラムにFc分子をインジェクトすることにより行われ,かつ,担体に結合したFc分子とFc分子結合用IgBPとを反応させて,Fc分子結合用IgBPとFc分子との結合物を得ることが,Fc分子が結合したカラムにFc分子結合用IgBPをインジェクトすることにより行われる,請求項10に記載の方法。
  12.  インジェクトしたFc分子の総量に対する,得られたFc分子1分子に1個のIgBPが結合したFc分子の割合が55%以上であることを特徴とする,請求項11に記載の方法。
  13.  得られたFc分子結合用IgBPとFc分子との結合物における,Fc分子1分子に1個のIgBPが結合したFc分子の全Fc分子に対する割合が55%以上であることを特徴とする,請求項7~請求項12のいずれか1項に記載の方法。
  14.  Fc分子1分子中に存在する2本のFc鎖のうち1本にのみ官能基が結合したFc分子であってIgBPが結合していないFc分子(官能基結合Fc分子)を多く含むFc分子組成物を調製する方法であって,
     (i)Fc分子を,担体結合用IgG親和性ペプチド(担体結合用IgBP)が結合した担体と反応させてFc分子結合担体を得ること;
     (ii)得られたFc分子結合担体中のFc分子に,開裂可能なリンカーを介して架橋剤が結合したFc分子結合用IgG親和性ペプチド(CCB-IgBP)を反応させて,CCB-IgBPとFc分子との結合物を得ること;
     (iii)前記架橋剤と前記Fc分子とを反応させて共有結合させること;
     (iv)前記リンカーを開裂させて,架橋剤とFc分子結合用IgBPとの間の結合を切断すること;
     (v)Fc分子結合用IgBPをFc分子から解離させて,担体に結合した官能基結合Fc分子と,遊離のFc分子結合用IgBPを得ること;及び,
     (vi)前記担体から官能基結合Fc分子を回収することを含み;
     ここで,前記Fc分子結合用IgBPと担体結合用IgBPは同一又は異なっていてもよく;
     ここで,前記開裂可能なリンカーと架橋剤との間に官能基を含む基が存在していてもよく;
     ここで,官能基結合Fc分子中に含まれる官能基は,前記開裂可能なリンカーと架橋剤との間に存在する官能基であるか,又はリンカーが開裂することにより生じた基である方法。
  15.  Fc分子1分子中に存在する2本のFc鎖のうち1本にのみ機能性分子が結合したFc分子であってIgBPが結合していないFc分子(機能性分子結合Fc分子)を多く含むFc分子組成物を調製する方法であって,
     (i)Fc分子を,担体結合用IgG親和性ペプチド(担体結合用IgBP)が結合した担体と反応させてFc分子結合担体を得ること;
     (ii)得られたFc分子結合担体中のFc分子に,開裂可能なリンカーを介して架橋剤が結合したFc分子結合用IgG親和性ペプチド(CCB-IgBP)を反応させて,CCB-IgBPとFc分子との結合物を得ること;
     (iii)前記架橋剤と前記Fc分子とを反応させて共有結合させること;
     (iv)前記リンカーを開裂させて,架橋剤とFc分子結合用IgBPとの間の結合を切断すること;
     (v)Fc分子結合用IgBPをFc分子から解離させて,担体に結合した官能基結合Fc分子と,遊離のFc分子結合用IgBPを得ること;
     (vi)官能基結合Fc分子の官能基に機能性分子を結合させて機能性分子結合Fc分子を得ること;及び,
     (vii)前記担体から機能性分子結合Fc分子を回収することを含み;
     ここで,前記Fc分子結合用IgBPと担体結合用IgBPは同一又は異なっていてもよく;
     ここで,前記開裂可能なリンカーと架橋剤との間に官能基を含む基が存在していてもよく;
     ここで,官能基結合Fc分子中に含まれる官能基は,前記開裂可能なリンカーと架橋剤との間に存在する官能基であるか,又はリンカーが開裂することにより生じた基である方法。
  16.  Fc分子1分子中に存在する2本のFc鎖のうち1本にのみ機能性分子が結合した機能性分子結合Fc分子であってIgBPが結合していないFc分子を多く含むFc分子組成物を調製する方法であって,
     (i)Fc分子を,担体結合用IgG親和性ペプチド(担体結合用IgBP)が結合した担体と反応させてFc分子結合担体を得ること;
     (ii)得られたFc分子結合担体中のFc分子に,開裂可能なリンカーを介して架橋剤が結合したFc分子結合用IgG親和性ペプチド(CCB-IgBP)を反応させて,CCB-IgBPとFc分子との結合物を得ること;
     (iii)前記架橋剤と前記Fc分子とを反応させて共有結合させること;
     (iv)前記リンカーを開裂させて,架橋剤とFc分子結合用IgBPとの間の結合を切断すること;
     (v)Fc分子結合用IgBPをFc分子から解離させて,担体結合用IgBPを介して担体に結合した機能性分子結合Fc分子と,遊離のFc分子結合用IgBPを得ること;及び,
     (vi)前記担体から機能性分子結合Fc分子を回収することを含み;
     ここで,前記Fc分子結合用IgBPと担体結合用IgBPは同一又は異なっていてもよく;
     ここで,前記開裂可能なリンカーと架橋剤との間に機能性分子が結合している方法。
  17.  担体が,カラムである,請求項14~請求項16のいずれか1項に記載の方法。
  18.  前記リンカーを開裂させて,架橋剤とFc分子結合用IgG親和性ペプチド(Fc分子結合用IgBP)との間の結合を切断した後であって,担体結合用IgBPとFc分子との結合を切断して,前記担体から官能基結合Fc分子を回収する前に,前記官能基に他の機能性分子を結合させることをさらに含む,請求項14~請求項17のいずれか1項に記載の方法。
  19.  以下の(a)~(c)のいずれか一つの割合が,試験管内でCCAP法により合成された当該割合よりも高いことを特徴とする,Fc分子組成物:
    (a)IgGのFc領域に特異的に結合するIgG親和性ペプチド(IgBP)が1個のみ結合したIgGのFc領域を有する分子(Fc分子)の全Fc分子に対する割合;
    (b)Fc領域を有する分子(Fc分子)1分子に存在する2本のFc鎖のうち,1本にのみ官能基が結合した官能基結合Fc分子の全Fc分子に対する割合;あるいは,
    (c)Fc領域を有する分子(Fc分子)1分子に存在する2本のFc鎖のうち,1本にのみ他の機能性分子が結合した官能基結合Fc分子の全Fc分子に対する割合。
  20.  以下の(a)~(c)のいずれか一つの割合が,55%以上であることを特徴とする,Fc分子組成物:
    (a)IgGのFc領域に特異的に結合するIgG親和性ペプチド(IgBP)が1個のみ結合した,IgGのFc領域を有する分子(Fc分子)の全Fc分子に対する割合;
    (b)Fc領域を有する分子(Fc分子)1分子に存在する2本のFc鎖のうち,1本にのみ官能基が結合した官能基結合Fc分子の全Fc分子に対する割合;あるいは,
    (c)Fc領域を有する分子(Fc分子)1分子に存在する2本のFc鎖のうち,1本にのみ他の機能性分子が結合した官能基結合Fc分子の全Fc分子に対する割合。
  21.  Fc分子がIgG又はFc融合タンパク質である,請求項19又は請求項20に記載の組成物。
  22.  前記IgBPが,同一又は異なって,IgGのFc領域に特異的に結合する,以下の(iii)又は(iv)のペプチドである,請求項19~請求項21のいずれか1項に記載の組成物:
    (iii)下記式(I’)又は(I’’)で表されるペプチド:
    Z-[(Linker3)-(X 1-3)-C-(X)-(X)-(X)-(X)-G-(X)-L-(X)-W-C-(X 1-3)]・・・(I’)
    [(X 1-3)-C-(X)-(X)-(X)-(X)-G-(X)-L-(X)-W-C-(X 1-3)-(Linker3)]-Z・・・(I’’)
    [式(I’)及び式(I’’)において,
     Zは官能基を表し,
     (Linker3)はリンカーを表し,
     1~3個のX,X,X,X,X,X,X,及び1~3個のXは,それぞれ互いに独立して,同一又は異なるアミノ酸残基を示し,
     各X,X,X及び各Xは,互いに独立して,同一又は異なる,C以外の任意のアミノ酸残基を示し,
     Xは,H,R,S,又はDであり,
     XはK,C,D,E,R,V,F,L,2-アミノスベリン酸,Dpr,Orn,AcOrn,AcDab,Dab,Nle,Nva,Tle,Ala(t-Bu),及びChaから選択される1個のアミノ酸残基であり,
     Xは,E,N,R,又はDであり,
     Xは,I又はVである];
    (iv)下記式(II’)で表されるアミノ酸配列を含むペプチド,又は(II’)のアミノ酸配列において,X~X14以外の位置で1若しくは数個のアミノ酸が付加,欠失,及び/又は置換されたアミノ酸配列を含むペプチド:
    1-2NMQX10QX14RFYEALHDPNLNEEQRNAX11IX12SIRDDX13-(Linker2)-NH(配列番号61)・・・(II’)
    [式(II’)において,(Linker2)はリンカーを表し,X 1-2は,GF,AF,VF,LF,IF,MF,PF,FF,WF,KF,Orn-F,CF,DF,EF,βAla-F,2-アミノスベリン酸-F,Dpr-F,及びNH-(PEG)-CO(n=1~50)-F,F,K,Orn,C,D,E,2-アミノスベリン酸残基,Dpr,及びAcetyl-Kからなる群から選択され,
     X10は,C又はQであり,
     X11及びX12は,それぞれ独立に,R,H,D,E,S,T,N,Q,Y,C,及びK(Z)からなる群から選択され,
     X13は,C又はPであるか,または存在せず,
     X14は,R,C,K(Z)であり,
     Zは官能基である]。
  23.  医療用又は診断用組成物である,請求項19~請求項22のいずれか1項に記載の組成物。
  24.  以下の(i)又は(ii)のペプチドが結合した担体:
    (i)下記式(I)で表されるペプチド:
    NH-(Linker)-(X 1-3)-C-(X)-(X)-(X)-(X)-G-(X)-L-(X)-W-C-(X 1-3)・・・(I)
    [式(I)において,(Linker)はリンカーを表し,1~3個のX,X,X,X,X,X,X,及び1~3個のXは,それぞれ互いに独立して,同一又は異なるアミノ酸残基を示し,
     各X,X,X及び各Xは,互いに独立して,同一又は異なる,C以外の任意のアミノ酸残基を示し,
     Xは,H,R,S,又はDであり,
     XはK,C,D,E,R,V,F,L,2-アミノスベリン酸,Dpr,Orn,AcOrn,AcDab,Dab,Nle,Nva,Tle,Ala(t-Bu),及びChaから選択される1個のアミノ酸残基であり,
     Xは,E,N,R,又はDであり,
     Xは,I又はVである];
    (ii)下記式(II)で表されるペプチド,又は(II)のアミノ酸配列において,X~X13以外の位置で1若しくは数個のアミノ酸が付加,欠失,及び/又は置換されたアミノ酸配列を含むペプチド:
    1-2NMQX10QRRFYEALHDPNLNEEQRNAX11IX12SIRDDX13-(Linker2)-CONH(配列番号60)・・・(II)
    [式(II)において,(Linker2)はリンカーを表し,X 1-2は,GF,AF,VF,LF,IF,MF,PF,FF,WF,KF,Orn-F,CF,DF,EF,βAla-F,2-アミノスベリン酸-F,Dpr-F,及びNH-(PEG)-CO(n=1~50)-F,F,K,Orn,C,D,E,2-アミノスベリン酸残基,及びDprからなる群から選択され,
    10は,C又はQであり,
     X11及びX12は,それぞれ独立に,R,H,D,E,S,T,N,Q,Y,及びCからなる群から選択され,
     X13は,C又はPである]。
PCT/JP2020/039978 2019-10-24 2020-10-23 1価ccap生成物の製造方法 WO2021080008A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US17/770,978 US20220363716A1 (en) 2019-10-24 2020-10-23 Method for producing monovalent ccap product
AU2020372137A AU2020372137A1 (en) 2019-10-24 2020-10-23 Method for producing monovalent CCAP product
CN202080073735.0A CN114585638A (zh) 2019-10-24 2020-10-23 1价ccap生成物的制造方法
JP2021553577A JPWO2021080008A1 (ja) 2019-10-24 2020-10-23
KR1020227015750A KR20220087468A (ko) 2019-10-24 2020-10-23 1가 ccap 생성물의 제조 방법
EP20879885.0A EP4049676A4 (en) 2019-10-24 2020-10-23 METHOD OF PRODUCING MONOVALENT CCAP PRODUCT
CA3155284A CA3155284A1 (en) 2019-10-24 2020-10-23 Method for producing monovalent ccap product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019193830 2019-10-24
JP2019-193830 2019-10-24

Publications (1)

Publication Number Publication Date
WO2021080008A1 true WO2021080008A1 (ja) 2021-04-29

Family

ID=75620130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039978 WO2021080008A1 (ja) 2019-10-24 2020-10-23 1価ccap生成物の製造方法

Country Status (9)

Country Link
US (1) US20220363716A1 (ja)
EP (1) EP4049676A4 (ja)
JP (1) JPWO2021080008A1 (ja)
KR (1) KR20220087468A (ja)
CN (1) CN114585638A (ja)
AU (1) AU2020372137A1 (ja)
CA (1) CA3155284A1 (ja)
TW (1) TW202123970A (ja)
WO (1) WO2021080008A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080481A1 (ja) 2020-10-16 2022-04-21 日本メジフィジックス株式会社 抗her2抗体の放射性複合体、及び、放射性医薬
WO2022211051A1 (ja) 2021-03-31 2022-10-06 日本メジフィジックス株式会社 抗egfr抗体の放射性複合体、及び、放射性医薬
WO2022224980A1 (ja) 2021-04-20 2022-10-27 日本メジフィジックス株式会社 抗cd20抗体の放射性複合体、及び、放射性医薬
WO2023033022A1 (ja) 2021-08-31 2023-03-09 日本メジフィジックス株式会社 脱グリコシル化抗体の放射性複合体、及び、放射性医薬
WO2023038082A1 (ja) * 2021-09-08 2023-03-16 国立大学法人 鹿児島大学 化合物、化合物の塩、抗体修飾試薬、修飾抗体の製造方法及び修飾抗体
WO2023157822A1 (ja) 2022-02-15 2023-08-24 日本メジフィジックス株式会社 抗vegf抗体の放射性複合体、及び、放射性医薬
WO2023234416A1 (ja) * 2022-06-02 2023-12-07 味の素株式会社 親和性物質、化合物、抗体およびそれらの塩

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008054030A1 (en) 2006-11-02 2008-05-08 Kagoshima University IgG-BINDING PEPTIDE
WO2013027796A1 (ja) 2011-08-24 2013-02-28 大塚化学株式会社 IgG結合性ペプチド及びそれによるIgGの検出および精製方法
WO2016186206A1 (ja) 2015-05-20 2016-11-24 国立大学法人鹿児島大学 IgG結合ペプチドによる抗体の特異的修飾
WO2018092867A1 (ja) * 2016-11-18 2018-05-24 国立大学法人鹿児島大学 IgG結合ペプチドを含む固相担体及びIgGの分離方法
WO2018199337A1 (ja) 2017-04-28 2018-11-01 味の素株式会社 可溶性タンパク質に対する親和性物質、切断性部分および反応性基を有する化合物またはその塩
WO2018230257A1 (ja) 2017-06-16 2018-12-20 国立大学法人鹿児島大学 IgG結合ペプチド、及び該ペプチドによる抗体の特異的修飾

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160036045A (ko) * 2013-07-15 2016-04-01 노쓰 캐롤라이나 스테이트 유니버시티 프로테아제 저항성 펩타이드 리간드

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008054030A1 (en) 2006-11-02 2008-05-08 Kagoshima University IgG-BINDING PEPTIDE
WO2013027796A1 (ja) 2011-08-24 2013-02-28 大塚化学株式会社 IgG結合性ペプチド及びそれによるIgGの検出および精製方法
WO2016186206A1 (ja) 2015-05-20 2016-11-24 国立大学法人鹿児島大学 IgG結合ペプチドによる抗体の特異的修飾
WO2018092867A1 (ja) * 2016-11-18 2018-05-24 国立大学法人鹿児島大学 IgG結合ペプチドを含む固相担体及びIgGの分離方法
WO2018199337A1 (ja) 2017-04-28 2018-11-01 味の素株式会社 可溶性タンパク質に対する親和性物質、切断性部分および反応性基を有する化合物またはその塩
WO2018230257A1 (ja) 2017-06-16 2018-12-20 国立大学法人鹿児島大学 IgG結合ペプチド、及び該ペプチドによる抗体の特異的修飾

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BRAISTED, A.C., PROC. NATL. ACAD. SCI. U.S.A., vol. 93, 1996, pages 5688 - 92
KEI YAMADA, ANGEW. CHEM., vol. 131, 2019, pages 5648 - 5653
KISHIMOTO, S. ET AL., BIOCONJUG. CHEM., vol. 30, 2019, pages 698 - 702
KYOHEIMUGURUMA, ACS OMEGA, vol. 4, no. 11, 2019, pages 14390 - 14397
MUGURUMA KYOHEI, FUJITA KONOMI, FUKUDA AKANE, KISHIMOTO SATOSHI, SAKAMOTO SOICHIRO, ARIMA RISAKO, ITO MAYU, KAWASAKI MAYU, NAKANO : "Kinetics-Based Structural Requirements of HU 111an Immunoglobulin G Binding Peptides", ACS OMEGA, vol. 4, 28 August 2019 (2019-08-28), pages 14390 - 14397, XP055820637 *
MUGURUMA KYOHEI, ITO MAYU, FUKUDA AKANE, KISHIMOTO SATOSHI, TAGUCHI AKIHIRO, TAKAYAMA KENTARO, TANIGUCHI ATSUHIKO, ITO YUJI, HAYAS: "Synthesis and structure- activity relationship studies of lgG-binding peptides focused on the C-terlllinal histidine residue", MEDCHEMCOMM, vol. 10, 1 August 2019 (2019-08-01), pages 1789 - 1795, XP055820635 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080481A1 (ja) 2020-10-16 2022-04-21 日本メジフィジックス株式会社 抗her2抗体の放射性複合体、及び、放射性医薬
WO2022211051A1 (ja) 2021-03-31 2022-10-06 日本メジフィジックス株式会社 抗egfr抗体の放射性複合体、及び、放射性医薬
WO2022224980A1 (ja) 2021-04-20 2022-10-27 日本メジフィジックス株式会社 抗cd20抗体の放射性複合体、及び、放射性医薬
WO2023033022A1 (ja) 2021-08-31 2023-03-09 日本メジフィジックス株式会社 脱グリコシル化抗体の放射性複合体、及び、放射性医薬
WO2023038082A1 (ja) * 2021-09-08 2023-03-16 国立大学法人 鹿児島大学 化合物、化合物の塩、抗体修飾試薬、修飾抗体の製造方法及び修飾抗体
WO2023157822A1 (ja) 2022-02-15 2023-08-24 日本メジフィジックス株式会社 抗vegf抗体の放射性複合体、及び、放射性医薬
WO2023234416A1 (ja) * 2022-06-02 2023-12-07 味の素株式会社 親和性物質、化合物、抗体およびそれらの塩

Also Published As

Publication number Publication date
CA3155284A1 (en) 2021-04-29
US20220363716A1 (en) 2022-11-17
EP4049676A1 (en) 2022-08-31
TW202123970A (zh) 2021-07-01
AU2020372137A1 (en) 2022-06-02
CN114585638A (zh) 2022-06-03
KR20220087468A (ko) 2022-06-24
JPWO2021080008A1 (ja) 2021-04-29
EP4049676A4 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
WO2021080008A1 (ja) 1価ccap生成物の製造方法
JP7291395B2 (ja) IgG結合ペプチド、及び該ペプチドによる抗体の特異的修飾
JP7387440B2 (ja) Mt1-mmpに結合するためのペプチドリガンド
JPWO2020090979A1 (ja) 抗体に対する親和性物質、切断性部分および反応性基を有する化合物またはその塩
EP0602290B1 (en) Antibody-conjugated Hepatitis B surface antigen and use thereof
JP2016053047A (ja) ポリペプチド
JP2012511033A (ja) 多価化合物の可逆阻害用マスキングリガンド
US20150252081A1 (en) Methods and compositions for controlling assembly of viral proteins
CN112585156A (zh) 用于结合psma的肽配体
KR20200143366A (ko) 수식 항체 및 방사성 금속 표지 항체
EP2917244A1 (en) Aprotinin-derived polypeptide-antibody conjugates
CN112585157A (zh) 用于结合整联蛋白αvβ3的肽配体
CN112585155A (zh) 用于结合il-17的肽配体
US20240059755A1 (en) Nanolipoprotein-polypeptide conjugates and compositions, systems, and methods using same
WO2022097500A1 (ja) ペプチド架橋剤及び当該架橋剤で架橋された架橋ペプチド
CN113164613B (zh) 二聚的肽-磷脂缀合物的优化方法
WO2023171809A1 (ja) Fc含有分子修飾試薬の製造方法
WO2022211051A1 (ja) 抗egfr抗体の放射性複合体、及び、放射性医薬
CN116710138A (zh) 肽交联剂以及通过该交联剂交联的交联肽
KR20240052833A (ko) 화합물, 화합물의 염, 항체 수식 시약, 수식 항체의 제조 방법 및 수식 항체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879885

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553577

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3155284

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227015750

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020372137

Country of ref document: AU

Date of ref document: 20201023

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020879885

Country of ref document: EP

Effective date: 20220524