WO2021079566A1 - 複合キャパシタ - Google Patents

複合キャパシタ Download PDF

Info

Publication number
WO2021079566A1
WO2021079566A1 PCT/JP2020/026831 JP2020026831W WO2021079566A1 WO 2021079566 A1 WO2021079566 A1 WO 2021079566A1 JP 2020026831 W JP2020026831 W JP 2020026831W WO 2021079566 A1 WO2021079566 A1 WO 2021079566A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
electrode layer
capacitors
support electrode
composite
Prior art date
Application number
PCT/JP2020/026831
Other languages
English (en)
French (fr)
Inventor
真己 永田
清水 康弘
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2021554072A priority Critical patent/JPWO2021079566A1/ja
Priority to CN202080073908.9A priority patent/CN114600209A/zh
Publication of WO2021079566A1 publication Critical patent/WO2021079566A1/ja
Priority to US17/659,521 priority patent/US11869719B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • H01G4/385Single unit multiple capacitors, e.g. dual capacitor in one coil

Definitions

  • the present invention relates to a composite capacitor.
  • Patent Document 1 discloses a capacitor having a conductive columnar portion having a nano-sized outer diameter.
  • the carbon nanotubes are oriented so as to extend upward from the catalyst pad in a substantially vertical direction.
  • the dielectric layer is deposited on the catalyst pad.
  • the dielectric layer also covers the outside of each of the carbon nanotubes.
  • a blanket layer of conductive material deposited on the insulating substrate fills the empty space between adjacent carbon nanotubes and covers the nanotubes, the insulating substrate, and the catalyst pad.
  • the present invention has been made in view of the above problems, and provides a composite capacitor capable of increasing the area capacitance density when viewed from the stacking direction of the capacitor and increasing the capacitance. With the goal.
  • the composite capacitor based on the present invention includes a plurality of capacitors and an insulating portion.
  • a plurality of capacitors are stacked on each other.
  • the insulating portion covers the peripheral side surfaces of the plurality of capacitors with the stacking direction of the plurality of capacitors as the axial direction of the central axis.
  • Each of the plurality of capacitors includes a support electrode layer, a plurality of conductive columnar portions, a dielectric layer, and a counter electrode layer.
  • Each of the plurality of conductive columnar portions extends from the support electrode layer along the stacking direction on one side in the stacking direction with respect to the support electrode layer.
  • Each of the plurality of conductive columnar portions has a nano-sized outer diameter.
  • the dielectric layer covers the support electrode layer and the plurality of conductive columnar portions on one side of the support electrode layer.
  • the counter electrode layer covers the dielectric layer and faces the support electrode layer and the plurality of conductive columnar portions via the dielectric layer.
  • the plurality of capacitors include a first capacitor and a second capacitor. The second capacitor is located on one side of the first capacitor. The second capacitor is connected in parallel with the first capacitor.
  • FIG. 5 is a cross-sectional view showing a state in which a plurality of conductive columnar portions are formed on a substrate in the method for manufacturing a composite capacitor according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a state in which a plurality of conductive columnar portions are transferred from a substrate to a collective support electrode layer in the method for manufacturing a composite capacitor according to Embodiment 1 of the present invention.
  • FIG. 5 is a cross-sectional view showing a state in which a plurality of conductive columnar portions are transferred from a substrate to a collective support electrode layer in the method for manufacturing a composite capacitor according to Embodiment 1 of the present invention.
  • FIG. 5 is a cross-sectional view showing a state in which a collective support electrode layer and a plurality of conductive columnar portions are coated with a dielectric layer in the method for manufacturing a composite capacitor according to the first embodiment of the present invention. It is sectional drawing which shows the state which coated the counter electrode layer on the dielectric layer in the manufacturing method of the composite capacitor which concerns on Embodiment 1 of this invention.
  • FIG. 5 is a cross-sectional view showing a flattened state of the counter electrode layer in the method for manufacturing a composite capacitor according to the first embodiment of the present invention. It is sectional drawing which shows the state which divided the counter electrode layer in the manufacturing method of the composite capacitor which concerns on Embodiment 1 of this invention.
  • FIG. 1 is a cross-sectional view showing a composite capacitor according to the first embodiment of the present invention.
  • the composite capacitor 1 according to the first embodiment of the present invention includes a plurality of capacitors 10 and an insulating portion 20.
  • the plurality of capacitors 10 are stacked on each other.
  • the insulating portion 20 covers the peripheral side surfaces 11 of the plurality of capacitors 10 with the stacking direction of the plurality of capacitors 10 as the axial direction of the central axis.
  • each of the plurality of capacitors 10 includes a support electrode layer 100, a plurality of conductive columnar portions 110, a dielectric layer 120, and a counter electrode layer 130.
  • the support electrode layer 100 may be in the form of a flat plate, a foil, or a thin film.
  • the support electrode layer 100 can be easily handled when the composite capacitor 1 is manufactured, and the design of the composite capacitor 1 becomes easy.
  • the support electrode layer 100 is foil-shaped, the support electrode layer 100 can be easily handled when the composite capacitor 1 is manufactured. If the support electrode layer 100 is in the form of a thin film, the height of the composite capacitor 1 can be reduced.
  • the outer shape and area of the support electrode layer 100 when the support electrode layer 100 is viewed from the stacking direction of the plurality of capacitors 10 can be appropriately designed in consideration of the capacitance of the capacitors 10.
  • the support electrode layer 100 When the support electrode layer 100 is viewed from the stacking direction, the support electrode layer 100 has a rectangular shape, a rectangular shape with curved corners, or an elliptical outer shape.
  • the support electrode layer 100 may have holes formed when viewed from the stacking direction.
  • the material constituting the support electrode layer 100 is not particularly limited.
  • the support electrode layer 100 is made of a metal such as copper.
  • the conductive path can be easily formed by bringing the other conductive member and the support electrode layer 100 into contact with each other. Further, when the support electrode layer 100 is made of metal, the resistance value of the support electrode layer 100 can be made relatively low and the heat resistance can be improved.
  • the support electrode layer 100 may have wiring for connecting to other conductive members such as a plurality of conductive columnar portions 110 to form a conductive path.
  • the portion of the support electrode layer 100 other than the wiring may be made of an insulating material.
  • the portion of the support electrode layer 100 other than the wiring may be made of ceramic.
  • the portion of the support electrode layer 100 other than the wiring is made of ceramic, the mechanical properties of the support electrode layer 100 are improved.
  • Each of the plurality of conductive columnar portions 110 is supported by the support electrode layer 100.
  • Each of the plurality of conductive columnar portions 110 extends from the support electrode layer 100 along the stacking direction on one side in the stacking direction with respect to the support electrode layer 100.
  • each of the plurality of conductive columnar portions 110 is provided so as to extend from the surface of the support electrode layer 100, but is provided so as to extend from the inside to the outside of the support electrode layer 100. May be.
  • each of the plurality of conductive columnar portions 110 is composed of a member different from the member constituting the support electrode layer 100, but each of the plurality of conductive columnar portions 110 is a support electrode layer. It may be composed of an integral member together with 100.
  • Each of the plurality of conductive columnar portions 110 has a nano-sized outer diameter.
  • the nano size means, for example, 0.1 nm or more and 1000 nm or less.
  • Each of the plurality of conductive columnar portions 110 may have a tubular shape or a bottomed tubular shape.
  • the material constituting the plurality of conductive columnar portions 110 is not particularly limited.
  • the plurality of conductive columnar portions 110 are made of a conductive material or a semiconductor material, but in the plurality of conductive columnar portions 110, a member made of a semiconductor material or an insulating material is thinly coated with metal. It may be composed of a columnar object formed by the above.
  • Each of the plurality of conductive columnar portions 110 includes, for example, carbon nanofibers, other nanofibers composed of ZnO or the like, nanorods or nanowires composed of ZnO, GaN, hematite or the like.
  • the plurality of conductive columnar portions 110 are specifically composed of carbon nanotubes, and more specifically, each of the plurality of conductive columnar portions 110 is composed of, for example, 100 to 200 carbon nanotubes. Consists of.
  • the chirality of carbon nanotubes is not particularly limited.
  • the carbon nanotube may be a semiconductor type or a metal type, and the carbon nanotube may contain both a semiconductor type and a metal type. From the viewpoint of electrical resistance, carbon nanotubes preferably have a higher proportion of metal type than semiconductor type.
  • the number of layers constituting the carbon nanotubes is not particularly limited.
  • the carbon nanotube may be SWCNT (Single Wall Carbon Nanotube) composed of one layer or MWCNT (Multiwall Carbon Nanotube) composed of two or more layers.
  • the length of each of the plurality of conductive columnar portions 110 is not particularly limited.
  • the length of each of the plurality of conductive columnar portions 110 is preferably long from the viewpoint of the capacitance density per area in the plane direction orthogonal to the extending direction of the plurality of conductive columnar portions 110.
  • the length of each of the plurality of conductive columnar portions 110 is, for example, several ⁇ m or more, 20 ⁇ m or more, 50 ⁇ m or more, 100 ⁇ m or more, 500 ⁇ m or more, 750 ⁇ m or more, 1000 ⁇ m or more, or 2000 ⁇ m or more.
  • the lengths of the plurality of conductive columnar portions 110 may be different from each other, but the tips of the plurality of conductive columnar portions 110 are aligned on a virtual plane substantially perpendicular to the stacking direction. Is preferable. Thereby, the capacitance of the capacitor 10 can be easily controlled.
  • the dielectric layer 120 covers the support electrode layer 100 and the plurality of conductive columnar portions 110 on one side of the support electrode layer 100.
  • the dielectric layer 120 further covers the entire surface of the support electrode layer 100 on the conductive columnar portion 110 side, except for the portion provided with the plurality of conductive columnar portions 110.
  • An additional conductor layer may be provided between the dielectric layer 120 and the plurality of conductive columnar portions 110. Thereby, the parasitic resistance of the capacitor 10 can be further reduced.
  • the material constituting the dielectric layer 120 is not particularly limited, and examples thereof include silicon dioxide, aluminum oxide, silicon nitride, tantalum oxide, hafnium oxide, barium titanate, lead zirconate titanate, and combinations thereof. ..
  • the counter electrode layer 130 covers the dielectric layer 120 and faces the support electrode layer 100 and the plurality of conductive columnar portions 110 via the dielectric layer 120.
  • the surface of the counter electrode layer 130 opposite to the support electrode layer 100 side is planar.
  • the material constituting the counter electrode layer 130 is not particularly limited, and examples thereof include metals such as silver, gold, copper, platinum, and aluminum, or alloys containing these.
  • the plurality of capacitors 10 include a first capacitor 10A, a second capacitor 10B, and a third capacitor 10C.
  • the second capacitor 10B is located on one side of the stacking direction of the plurality of capacitors 10 which is the extending side of the plurality of conductive columnar portions 110 with respect to the first capacitor 10A.
  • the counter electrode layer 130 of the first capacitor 10A which is one of the plurality of capacitors 10 is the other capacitor located closest to the one side of the counter electrode layer 130 of the first capacitor 10A. It is electrically directly connected to the support electrode layer 100 of the second capacitor 10B, which is 10.
  • the counter electrode layer 130 of the first capacitor 10A and the support electrode layer 100 of the second capacitor 10B are bonded to each other only via the conductive adhesive 30.
  • the third capacitor 10C is located on one side of the stacking direction of the plurality of capacitors 10 which is the extending side of the plurality of conductive columnar portions 110 with respect to the second capacitor 10B.
  • the counter electrode layer 130 of the second capacitor 10B which is one of the plurality of capacitors 10 is the other capacitor located closest to the one side of the counter electrode layer 130 of the second capacitor 10B. It is electrically directly connected to the support electrode layer 100 of the third capacitor 10C, which is 10.
  • the counter electrode layer 130 of the second capacitor 10B and the support electrode layer 100 of the third capacitor 10C are bonded to each other only via the conductive adhesive 30.
  • the support electrode layer 100 of the first capacitor 10A which is one of the plurality of capacitors 10, and the dielectric layer 120 covering the support electrode layer 100 extend so as to cut out the end portion of the insulating portion 20.
  • the insulating portion 20 is pulled out to the side opposite to the capacitor 10 side.
  • the support electrode layer 100 of the second capacitor 10B which is one of the plurality of capacitors 10, and the dielectric layer 120 covering the support electrode layer 100 penetrate the insulating portion 20 and are on the capacitor 10 side of the insulating portion 20. It is pulled out to the opposite side.
  • the direction in which the support electrode layer 100 and the dielectric layer 120 of the second capacitor 10B are pulled out is different from the direction in which the support electrode layer 100 and the dielectric layer 120 of the first capacitor 10A are pulled out.
  • the support electrode layer 100 of the third capacitor 10C which is one of the plurality of capacitors 10, and the dielectric layer 120 covering the support electrode layer 100 penetrate the insulating portion 20 and are on the capacitor 10 side of the insulating portion 20. It is pulled out to the opposite side.
  • the direction in which the support electrode layer 100 and the dielectric layer 120 of the third capacitor 10C are pulled out is substantially the same as the direction in which the support electrode layer 100 and the dielectric layer 120 of the first capacitor 10A are pulled out.
  • the composite capacitor 1 according to the present embodiment further includes a top electrode layer 40.
  • the upper surface electrode layer 40 has the same structure as the support electrode layer 100.
  • the top electrode layer 40 is electrically directly connected to the counter electrode layer 130 of the third capacitor 10C, which is the capacitor 10 located on one side of the plurality of capacitors 10 most in the stacking direction.
  • the upper surface electrode layer 40 is located on the side opposite to the support electrode layer 100 side of the counter electrode layer 130 of the third capacitor 10C.
  • the counter electrode layer 130 and the top electrode layer 40 of the third capacitor 10C are bonded to each other only via the conductive adhesive 30.
  • the upper surface electrode layer 40 extends so as to cut out the end portion of the insulating portion 20, and is pulled out to the side opposite to the capacitor 10 side of the insulating portion 20.
  • the direction in which the upper surface electrode layer 40 is pulled out is substantially the same as the direction in which the support electrode layer 100 and the dielectric layer 120 of the second capacitor 10B are pulled out.
  • FIG. 2 is a cross-sectional view showing a composite capacitor according to a modified example of the first embodiment of the present invention. As shown in FIG. 2, the composite capacitor 1a according to the modified example of the first embodiment of the present invention does not have a top electrode layer. In the composite capacitor 1a according to this modification, the counter electrode layer 130 of the third capacitor 10C is exposed to the outside.
  • FIG. 3 is a cross-sectional view showing a composite capacitor according to a comparative example. As shown in FIG. 3, in the composite capacitor 9 according to the comparative example, the support electrode layer 100, the dielectric layer 120, and the upper surface electrode layer 40 are not drawn out to the side opposite to the capacitor 10 side of the insulating portion 20. , It is different from the composite capacitor 1 according to the first embodiment of the present invention.
  • a circuit is configured from the one terminal to the other terminal. Will be done.
  • a plurality of capacitors 10 are connected in series with each other. That is, in the composite capacitor 9 according to the comparative example, the first capacitor 10A, the second capacitor 10B, and the third capacitor 10C are not connected in parallel with each other.
  • the support electrode layer 100 of the first capacitor 10A and the support electrode layer 100 of the third capacitor 10C are electrically connected to each other. Therefore, it can be used as one of the terminals. Further, by electrically connecting the support electrode layer 100 and the upper surface electrode layer 40 of the second capacitor 10B to each other, it can be used as the other terminal.
  • the second capacitor 10B is connected in parallel with the first capacitor 10A.
  • the third capacitor 10C is connected in parallel with both the first capacitor 10A and the second capacitor 10B.
  • the three capacitors 10 can be configured in 3 parallel ⁇ 1 series.
  • the method for manufacturing the composite capacitor 1 is not particularly limited, but the method for manufacturing the composite capacitor 1 according to the first embodiment of the present invention includes a step of forming a conductive columnar portion on the substrate and transferring the conductive columnar portion to the collective support electrode layer.
  • Each includes a step of dividing, a step of providing an insulating portion, and a laminating step.
  • FIG. 4 is a cross-sectional view showing a state in which a plurality of conductive columnar portions are formed on a substrate in the method for manufacturing a composite capacitor according to the first embodiment of the present invention.
  • a plurality of conductive columnar portions 110 are formed on the substrate 200.
  • the catalyst particles are arranged on the substrate 200, and the conductive columnar portion 110 is grown from the catalyst particles.
  • the plurality of conductive columnar portions 110 have an end portion 115 on the side opposite to the substrate 200 side.
  • the catalyst particles are made of, for example, Fe, Ni or Co, or an alloy containing these when the conductive columnar portion 110 is a carbon nanotube, and for example, Pt or Au or an alloy containing these when the conductive columnar portion 110 contains ZnO. And so on.
  • Examples of the method for arranging the catalyst particles include a combination of a CVD (Chemical Vapor Deposition) method, a sputtering or PVD (Physical Vapor Deposition) method, and a lithography or etching. The positions of the catalyst particles are appropriately selected by patterning.
  • the growth method of the plurality of conductive columnar portions 110 is not particularly limited.
  • the plurality of conductive columnar portions 110 can be grown by using a CVD method, a plasma-enhanced CVD method, or the like.
  • the gas used in the CVD method or the plasma-enhanced CVD method include carbon monoxide, methane, ethylene, acetylene, or a mixture thereof with hydrogen or ammonia.
  • Each of the plurality of conductive columnar portions 110 grows from the surface of the catalyst particles. Each of the plurality of conductive columnar portions 110 grows so that the end portion 115 is separated from the substrate 200.
  • each of the plurality of conductive columnar portions 110 can be desired by appropriately selecting temperature conditions, gas conditions, and the like.
  • Each of the plurality of conductive columnar portions 110 can be grown to have a length and outer diameter within the range. However, the specific lengths of the plurality of conductive columnar portions 110 differ from each other due to variations in gas concentration, gas flow rate, and temperature on the surface of the substrate 200.
  • Examples of the material constituting the substrate 200 include silicon oxide, silicon, gallium arsenide, aluminum, and SUS.
  • FIG. 5 is a cross-sectional view showing a state in which a plurality of conductive columnar portions are transferred from the substrate to the collective support electrode layer in the method for manufacturing a composite capacitor according to the first embodiment of the present invention.
  • a plurality of conductive columnar portions 110 formed on the substrate 200 are joined to the collective support electrode layer 100X at the end portion 115.
  • the substrate 200 is peeled off from the plurality of conductive columnar portions 110. In this way, the plurality of conductive columnar portions 110 are transferred from the substrate 200 to the collective support electrode layer 100X.
  • the collective support electrode layer 100X is an aggregate of the support electrode layers 100 included in each of the plurality of capacitors 10. Specifically, the collective support electrode layer 100X is a state in which a plurality of support electrode layers 100 are connected to each other in the in-plane direction.
  • the plurality of conductive columnar portions 110 when the plurality of conductive columnar portions 110 are transferred from the substrate 200 to the collective support electrode layer 100X, the plurality of conductive columnar portions 110 may be transferred so as to be chemically or mechanically inserted into the collective support electrode layer 100X. As a result, the lengths of the portions of the plurality of conductive columnar portions 110 extending outward from the support electrode layer 100 can be made uniform with each other.
  • each of the plurality of conductive columnar portions 110 is composed of an integral member together with the support electrode layer 100, the surface of one flat electrode layer is subjected to chemical etching or the like instead of the above-mentioned method.
  • a plurality of conductive columnar portions 110 and the collective support electrode layer 100X may be formed by processing them into a concavo-convex shape.
  • FIG. 6 is a cross-sectional view showing a state in which a collective support electrode layer and a plurality of conductive columnar portions are coated with a dielectric layer in the method for manufacturing a composite capacitor according to the first embodiment of the present invention.
  • the dielectric layer 120 is covered over the entire surface of the collective support electrode layer 100X provided with the plurality of conductive columnar portions 110.
  • the coating method of the dielectric layer 120 is not particularly limited, and examples thereof include a plating method, an ALD (Atomic Layer Deposition) method, a CVD method, a MOCVD (Metalorganic Chemical Vapor Deposition) method, a supercritical fluid deposition method, and sputtering.
  • FIG. 7 is a cross-sectional view showing a state in which a counter electrode layer is coated on a dielectric layer in the method for manufacturing a composite capacitor according to the first embodiment of the present invention.
  • the dielectric layer 120 is coated with the counter electrode layer 130.
  • the coating method of the counter electrode layer 130 is not particularly limited, and examples thereof include a plating method, an ALD method, a CVD method, a MOCVD method, a supercritical fluid deposition method, and sputtering.
  • FIG. 8 is a cross-sectional view showing a flattened state of the counter electrode layer in the method for manufacturing a composite capacitor according to the first embodiment of the present invention.
  • a portion of the counter electrode layer 130 located on the side opposite to the collective support electrode layer 100X side of the plurality of conductive columnar portions 110 is flattened by CMP (Chemical Mechanical Polishing).
  • FIG. 9 is a cross-sectional view showing a state in which the counter electrode layer is divided in the method for manufacturing a composite capacitor according to the first embodiment of the present invention.
  • the plurality of conductive columnar portions 110 are divided into a plurality of groups, and the counter electrode layer 130 is provided so that the counter electrode layers 130 corresponding to the plurality of conductive columnar portions 110 are separated from each other for each group. Divide into multiple parts.
  • the dielectric layer 120 is exposed between the plurality of counter electrode layers 130.
  • the counter electrode layer 130 is divided by photomasking and etching treatment.
  • FIG. 10 is a cross-sectional view showing a state in which the collective support electrode layer and the dielectric layer are separated in the method for manufacturing a composite capacitor according to the first embodiment of the present invention.
  • the collective support electrode layer 100X and the dielectric layer 120 are divided by dicing.
  • a plurality of capacitors 10 are formed so as to correspond to each of the plurality of support electrode layers 100 formed by dividing the collective support electrode layer 100X.
  • the above division is performed so that the support electrode layer 100 and the dielectric layer 120 extend in one direction in the capacitor 10.
  • FIG. 11 is a cross-sectional view showing a state in which an insulating portion is provided in each of a plurality of capacitors in the method for manufacturing a composite capacitor according to the first embodiment of the present invention.
  • an insulating portion 20 is provided on the peripheral side surface 11 of each of the plurality of capacitors 10.
  • the method of providing the insulating portion 20 is not particularly limited. Examples of the method for providing the insulating portion 20 include a method of applying a paste-like base material containing an insulating material and then firing, a plating method, an ALD method, a CVD method, a MOCVD method, a supercritical fluid deposition method, and sputtering. Be done.
  • the plurality of capacitors 10 provided with the insulating portion 20 and the upper surface electrode layer 40 are laminated with each other via the conductive adhesive 30.
  • a composite capacitor is manufactured.
  • the capacitors 10 may be laminated with each other before the insulating portion 20 is provided in each of the plurality of capacitors 10, and the insulating portion 20 may be provided in the plurality of capacitors 10 laminated with each other.
  • the composite capacitor 1a according to the modified example of the first embodiment of the present invention is manufactured.
  • the composite capacitor 1 includes a plurality of capacitors 10 and an insulating portion 20.
  • the plurality of capacitors 10 are stacked on each other.
  • the insulating portion 20 covers the peripheral side surfaces 11 of the plurality of capacitors 10 with the stacking direction of the plurality of capacitors 10 as the axial direction of the central axis.
  • Each of the plurality of capacitors 10 includes a support electrode layer 100, a plurality of conductive columnar portions 110, a dielectric layer 120, and a counter electrode layer 130.
  • Each of the plurality of conductive columnar portions 110 extends from the support electrode layer 100 along the stacking direction on one side in the stacking direction with respect to the support electrode layer 100.
  • Each of the plurality of conductive columnar portions 110 has a nano-sized outer diameter.
  • the dielectric layer 120 covers the support electrode layer 100 and the plurality of conductive columnar portions 110 on one side of the support electrode layer 100.
  • the counter electrode layer 130 covers the dielectric layer 120 and faces the support electrode layer 100 and the plurality of conductive columnar portions 110 via the dielectric layer 120.
  • the plurality of capacitors 10 include a first capacitor 10A and a second capacitor 10B.
  • the second capacitor 10B is located on one side of the first capacitor 10A.
  • the second capacitor 10B is connected in parallel with the first capacitor 10A.
  • the area capacitance density of the composite capacitor 1 when viewed from the stacking direction of the capacitors 10 can be increased, and the capacitance can be increased.
  • At least one support electrode layer 100 of the plurality of capacitors 10 penetrates the insulating portion 20 and is pulled out to the side opposite to the capacitor 10 side of the insulating portion 20.
  • the drawn support electrode layer 100 can be used as the terminal of the composite capacitor 1.
  • At least one counter electrode layer 130 of the plurality of capacitors 10 is electrically connected to the support electrode layer 100 of the other capacitor 10 located closest to the one side of the counter electrode layer 130. Is connected.
  • the electrode layers of the plurality of capacitors 10 can be electrically connected to each other inside the insulating portion 20.
  • the support electrode layer 100 of the other capacitor 10 penetrates the insulating portion 20 and is pulled out to the side opposite to the capacitor 10 side of the insulating portion 20.
  • the counter electrode layer 130 of the capacitor 10 is used as a terminal of the composite capacitor 1 via the support electrode layer 100 of the other capacitor 10 drawn out. Can be done.
  • the plurality of conductive columnar portions 110 are made of carbon nanotubes.
  • the mechanical properties of the plurality of conductive columnar portions 110 can be improved, so that it is possible to suppress the change in the structure of the capacitors 10 when the plurality of capacitors 10 are laminated, and by extension, the capacitance of the composite capacitor 1 The decrease can be suppressed.
  • the composite capacitor according to the second embodiment of the present invention is different from the composite capacitor 1 according to the first embodiment of the present invention mainly in that a plurality of capacitors are connected in series. Therefore, the description of the same configuration as that of the first embodiment of the present invention will not be repeated.
  • FIG. 12 is a cross-sectional view showing a composite capacitor according to the second embodiment of the present invention.
  • the plurality of capacitors 10 include the first capacitor 10A, the second capacitor 10B, the fourth capacitor 10D, and the fifth capacitor 10E. Includes.
  • the fourth capacitor 10D is located on one side of the stacking direction of the plurality of capacitors 10 which is the extension side of the plurality of conductive columnar portions 110 with respect to the first capacitor 10A.
  • the counter electrode layer 130 of the first capacitor 10A which is one of the plurality of capacitors 10 is the other capacitor located closest to the one side of the counter electrode layer 130 of the first capacitor 10A. It is electrically directly connected to the support electrode layer 100 of the fourth capacitor 10D, which is 10.
  • the counter electrode layer 130 of the first capacitor 10A and the support electrode layer 100 of the fourth capacitor 10D are bonded to each other only via the conductive adhesive 30.
  • the second capacitor 10B is located on one side of the stacking direction of the plurality of capacitors 10 which is the extending side of the plurality of conductive columnar portions 110 with respect to the fourth capacitor 10D.
  • the counter electrode layer 130 of the fourth capacitor 10D which is one of the plurality of capacitors 10 is the other capacitor located closest to the opposite electrode layer 130 of the fourth capacitor 10D. It is electrically directly connected to the support electrode layer 100 of the second capacitor 10B, which is 10.
  • the counter electrode layer 130 of the fourth capacitor 10D and the support electrode layer 100 of the second capacitor 10B are bonded to each other only via the conductive adhesive 30.
  • the counter electrode layer 130 of the first capacitor 10A and the support electrode layer 100 of the second capacitor 10B are electrically and indirectly connected to each other via the fourth capacitor 10D.
  • the fifth capacitor 10E is located on one side of the stacking direction of the plurality of capacitors 10 which is the extending side of the plurality of conductive columnar portions 110 with respect to the second capacitor 10B.
  • the counter electrode layer 130 of the second capacitor 10B which is one of the plurality of capacitors 10 is the other capacitor located closest to the one side of the counter electrode layer 130 of the second capacitor 10B. It is electrically directly connected to the support electrode layer 100 of the fifth capacitor 10E, which is 10.
  • the counter electrode layer 130 of the second capacitor 10B and the support electrode layer 100 of the fifth capacitor 10E are bonded to each other only via the conductive adhesive 30.
  • the support electrode layer 100 of each of the fourth capacitor 10D and the fifth capacitor 10E and the dielectric layer 120 covering the support electrode layer 100 do not penetrate the insulating portion 20 and are located only on the capacitor 10 side of the insulating portion 20. ing.
  • the upper surface electrode layer 40 is located on the side opposite to the support electrode layer 100 side of the counter electrode layer 130 in the fifth capacitor 10E, which is the capacitor 10 located on the onemost side in the stacking direction among the plurality of capacitors 10. Therefore, it is electrically connected to the counter electrode layer 130.
  • the counter electrode layer 130 and the top electrode layer 40 of the third capacitor 10C are bonded to each other only via the conductive adhesive 30.
  • the direction in which the upper surface electrode layer 40 is pulled out is substantially the same as the direction in which the support electrode layer 100 and the dielectric layer 120 of the first capacitor 10A are pulled out.
  • the counter electrode layer 130 of the second capacitor 10B and the upper surface electrode layer 40 are electrically and indirectly connected to each other via the fifth capacitor 10E.
  • the support electrode layer 100 and the upper surface electrode layer 40 of the first capacitor 10A can be used as one terminal by electrically connecting to each other. Further, the support electrode layer 100 of the second capacitor 10B can be used as the other terminal.
  • the fourth capacitor 10D is connected in series with the first capacitor 10A.
  • the fifth capacitor 10E is connected in series with the second capacitor 10B.
  • the first capacitor 10A and the fourth capacitor 10D and the second capacitor 10B and the fifth capacitor 10E are connected in parallel with each other.
  • the four capacitors 10 can be configured in two parallel ⁇ 2 series.
  • the second capacitor 10B is connected in parallel with the first capacitor 10A. Further, in the composite capacitor 2 according to the second embodiment of the present invention, since some of the plurality of capacitors 10 are connected in series, the withstand voltage can be improved.
  • the composite capacitor according to the third embodiment of the present invention is different from the composite capacitor 1 according to the first embodiment of the present invention in that it further includes a side conductive portion. Therefore, the description of the same configuration as that of the first embodiment of the present invention will not be repeated.
  • FIG. 13 is a cross-sectional view showing the composite capacitor according to the third embodiment of the present invention.
  • the composite capacitor 3 according to the third embodiment of the present invention further includes one side electrode portion 50 and the other side electrode portion.
  • One side electrode portion 50 is provided on the insulating portion 20 on the side of the insulating portion 20 opposite to the capacitor 10 side.
  • the other side electrode portion 60 is provided on the insulating portion 20 on the side of the insulating portion 20 opposite to the capacitor 10 side, away from the one side electrode portion 50.
  • One side electrode portion 50 is connected to each of the support electrode layer 100 of the first capacitor 10A and the support electrode layer 100 of the third capacitor 10C.
  • the other side electrode portion 60 is connected to each of the support electrode layer 100 and the top electrode layer 40 of the second capacitor 10B.
  • one side electrode portion 50 is electrically connected to each of the support electrode layer 100 of the first capacitor 10A and the counter electrode layer 130 of the second capacitor 10B.
  • the other side electrode portion 60 is electrically connected to each of the counter electrode layer 130 of the first capacitor 10A and the support electrode layer 100 of the second capacitor 10B.
  • the mounting becomes easy.
  • one side electrode portion 50 functions as one terminal of the composite capacitor 3
  • the other side electrode portion 60 is used as the composite capacitor. It can function as the other terminal of 3.
  • the composite capacitor according to the fourth embodiment of the present invention is different from the composite capacitor 3 according to the third embodiment of the present invention mainly in that an insulating portion surrounds the entire capacitor. Therefore, the description of the same configuration as that of the composite capacitor 3 according to the third embodiment of the present invention will not be repeated.
  • FIG. 14 is a cross-sectional view showing the composite capacitor according to the fourth embodiment of the present invention. As shown in FIG. 14, in the composite capacitor 4 according to the fourth embodiment of the present invention, the plurality of capacitors 10 have the same configuration as each other.
  • the composite capacitor 4 according to the present embodiment includes a plurality of top electrode layers 40.
  • Each of the plurality of top electrode layers 40 is located on the side opposite to the support electrode layer 100 side of each counter electrode layer 130 of the plurality of capacitors 10, and is electrically connected to the counter electrode layer 130.
  • the insulating portion 20 is located so as to surround each of the plurality of capacitors 10 and the entire corresponding upper surface electrode layer 40. Therefore, the insulating portion 20 is located between the plurality of capacitors 10. However, in each of the plurality of capacitors 10, a part of the upper surface electrode layer 40 is exposed from the insulating portion 20, and the supporting electrode layer 100 is the insulating portion 20 in a direction different from the exposed direction of the upper surface electrode layer 40. It is exposed from.
  • each of the plurality of one side electrode portions 50 and the plurality of other side electrode portions 60 are located so as to correspond to each of the plurality of capacitors 10.
  • one side electrode portion 50 is electrically connected to the upper surface electrode layer 40.
  • the plurality of one side electrode portions 50 are electrically connected to each other.
  • the other side electrode portion 60 is electrically connected to the support electrode layer 100.
  • the plurality of other side electrode portions 60 are electrically connected to each other. Therefore, also in this embodiment, the second capacitor 10B is connected in parallel with the first capacitor 10A.
  • 1,1a, 2,3,4,9 composite capacitor 10 capacitor, 10A 1st capacitor, 10B 2nd capacitor, 10C 3rd capacitor, 10D 4th capacitor, 10E 5th capacitor, 11 peripheral side surface, 20 insulation part, 30 conductive adhesive, 40 top electrode layer, 50 one side electrode part, 60 other side electrode part, 100 support electrode layer, 100X collective support electrode layer, 110 conductive columnar part, 115 end part, 120 dielectric layer , 130 counter electrode layer, 200 substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

複合キャパシタ(1)は、複数のキャパシタ(10)と、絶縁部(20)とを備えている。複数のキャパシタ(10)は、互いに積層されている。絶縁部(20)は、複数のキャパシタ(10)の積層方向を中心軸の軸方向として、複数のキャパシタ(10)の周側面(11)を覆っている。複数のキャパシタ(10)の各々は、支持電極層(100)と、複数の導電柱状部(110)と、誘電体層(120)と、対向電極層(130)とを含んでいる。複数の導電柱状部(110)の各々は、ナノサイズの外径を有している。複数のキャパシタ(10)は、第1キャパシタ(10A)と、第2キャパシタ(10B)とを含んでいる。第2キャパシタ(10B)は、第1キャパシタ(10A)に対して上記一方側に位置している。第2キャパシタ(10B)は、第1キャパシタ(10A)と並列に接続されている。

Description

複合キャパシタ
 本発明は、複合キャパシタに関する。
 ナノサイズの外径を有する導電柱状部を備えるキャパシタを開示した文献として、特許第5511746号(特許文献1)がある。特許文献1に記載されたキャパシタにおいては、カーボン・ナノチューブが、触媒パッドから上向きに略垂直方向に延びるように配向されている。誘電体層は、触媒パッド上に堆積されている。誘電体層はまた、カーボン・ナノチューブの各々の外側も被覆している。絶縁基板上に堆積された導電性材料のブランケット層は、隣接するカーボン・ナノチューブ間の空いた空間を充填し、ナノチューブ、絶縁基板、および触媒パッドを覆っている。
特許第5511746号公報
 特許文献1に記載されたキャパシタの静電容量を向上させようとする場合、導電柱状部であるカーボン・ナノチューブの並んでいる方向に、キャパシタを大きくすることが考えられる。しかしながら、このように静電容量を向上させた場合、導電柱状部の延出方向から見たときの面積当たりの容量密度は向上しない。
 また、特許文献1に記載されたキャパシタは上下方向に対向電極が並んでいる。このため、上記キャパシタを複数個準備し、これら複数のキャパシタを互いに積層した場合には、複数のキャパシタが互いに直列に接続される。このように構成された複合キャパシタは、全体としての静電容量が増加しない。
 本発明は上記の問題点に鑑みてされたものであり、キャパシタの積層方向から見たときの面積容量密度を高くし、かつ、静電容量を増加させることができる、複合キャパシタを提供することを目的とする。
 本発明に基づく複合キャパシタは、複数のキャパシタと、絶縁部とを備えている。複数のキャパシタは、互いに積層されている。絶縁部は、複数のキャパシタの積層方向を中心軸の軸方向として、複数のキャパシタの周側面を覆っている。複数のキャパシタの各々は、支持電極層と、複数の導電柱状部と、誘電体層と、対向電極層とを含んでいる。複数の導電柱状部の各々は、支持電極層に対して積層方向の一方側において、支持電極層から積層方向に沿って延出している。複数の導電柱状部の各々は、ナノサイズの外径を有している。誘電体層は、支持電極層の上記一方側において支持電極層および複数の導電柱状部を被覆する。対向電極層は、誘電体層を被覆し、誘電体層を介して支持電極層および複数の導電柱状部と対向する。複数のキャパシタは、第1キャパシタと、第2キャパシタとを含んでいる。第2キャパシタは、第1キャパシタに対して上記一方側に位置している。第2キャパシタは、第1キャパシタと並列に接続されている。
 本発明によれば、複合キャパシタについて、キャパシタの積層方向から見たときの面積容量密度を高くし、かつ、静電容量を増加させることができる。
本発明の実施形態1に係る複合キャパシタを示す断面図である。 本発明の実施形態1の変形例に係る複合キャパシタを示す断面図である。 比較例に係る複合キャパシタを示す断面図である。 本発明の実施形態1に係る複合キャパシタの製造方法において、基板に複数の導電柱状部を形成した状態を示す断面図である。 本発明の実施形態1に係る複合キャパシタの製造方法において、複数の導電柱状部を基板から集合支持電極層に転写した状態を示す断面図である。 本発明の実施形態1に係る複合キャパシタの製造方法において、集合支持電極層および複数の導電柱状部に誘電体層を被覆した状態を示す断面図である。 本発明の実施形態1に係る複合キャパシタの製造方法において、誘電体層に対向電極層を被覆した状態を示す断面図である。 本発明の実施形態1に係る複合キャパシタの製造方法において、対向電極層を平坦化した状態を示す断面図である。 本発明の実施形態1に係る複合キャパシタの製造方法において、対向電極層を分割した状態を示す断面図である。 本発明の実施形態1に係る複合キャパシタの製造方法において、集合支持電極層と誘電体層とを分割した状態示す断面図である。 本発明の実施形態1に係る複合キャパシタの製造方法において、複数のキャパシタの各々に絶縁部を設けた状態を示す断面図である。 本発明の実施形態2に係る複合キャパシタを示す断面図である。 本発明の実施形態3に係る複合キャパシタを示す断面図である。 本発明の実施形態4に係る複合キャパシタを示す断面図である。
 以下、本発明の各実施形態に係る複合キャパシタについて図面を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。
 (実施形態1)
 図1は、本発明の実施形態1に係る複合キャパシタを示す断面図である。図1に示すように、本発明の実施形態1に係る複合キャパシタ1は、複数のキャパシタ10と、絶縁部20とを備えている。複数のキャパシタ10は、互いに積層されている。絶縁部20は、複数のキャパシタ10の積層方向を中心軸の軸方向として、複数のキャパシタ10の周側面11を覆っている。
 まず、複数のキャパシタ10の全てに共通する構成について説明する。図1に示すように、複数のキャパシタ10の各々は、支持電極層100と、複数の導電柱状部110と、誘電体層120と、対向電極層130とを含んでいる。
 支持電極層100は、平板状、箔状、または薄膜状であってもよい。支持電極層100が平板状であれば、複合キャパシタ1を製造する際の支持電極層100の取扱いが容易となり、複合キャパシタ1の設計が容易となる。支持電極層100が箔状であれば、複合キャパシタ1を製造する際の支持電極層100の取扱いが容易となる。支持電極層100が薄膜状であれば、複合キャパシタ1を低背化できる。
 支持電極層100を複数のキャパシタ10の積層方向から見たときの支持電極層100の外形および面積は、キャパシタ10の静電容量を考慮して適宜設計することができる。支持電極層100を上記積層方向から見たときに、支持電極層100は、矩形状、角部が湾曲した矩形状、または、楕円形状の外形を有している。支持電極層100は、上記積層方向から見たときに、孔が形成されていてもよい。
 支持電極層100を構成する材料は、特に限定されない。支持電極層100は、たとえば銅などの金属で構成されている。支持電極層100が金属で構成されている場合、他の導電部材と支持電極層100とを互い接触させることで、容易に導電経路を構成することができる。また、支持電極層100が金属で構成されている場合、支持電極層100の抵抗値を比較的低くすることができるとともに、耐熱性を向上できる。
 支持電極層100は、複数の導電柱状部110など他の導電部材と接続して導電経路を構成するための配線を有していてもよい。支持電極層100が配線を有する場合、支持電極層100の配線以外の部分は絶縁材料で構成されていてもよい。支持電極層100の配線以外の部分は、セラミックで構成されていてもよい。支持電極層100の配線以外の部分がセラミックで構成されている場合、支持電極層100の機械的特性が向上する。
 複数の導電柱状部110の各々は、支持電極層100に支持されている。複数の導電柱状部110の各々は、支持電極層100に対して積層方向の一方側において、支持電極層100から積層方向に沿って延出している。本実施形態において、複数の導電柱状部110の各々は、支持電極層100の表面上から延出するように設けられているが、支持電極層100の内部から外側へ延出するように設けられていてもよい。また、本実施形態においては、複数の導電柱状部110の各々は、支持電極層100を構成する部材と互いに異なる部材で構成されているが、複数の導電柱状部110の各々は、支持電極層100とともに一体の部材で構成されていてもよい。
 複数の導電柱状部110の各々は、ナノサイズの外径を有している。本明細書において、ナノサイズとは、たとえば、0.1nm以上1000nm以下であることを意味する。複数の導電柱状部110の各々は、筒状であってもよいし、有底筒状であってもよい。
 複数の導電柱状部110を構成する材料は特に限定されない。本実施形態において、複数の導電柱状部110は、導電性材料または半導体材料で構成されているが、複数の導電柱状部110は、半導体材料もしくは絶縁材料で構成された部材が金属によって薄くコーティングされることによって形成された柱状物で構成されていてもよい。
 複数の導電柱状部110の各々は、たとえば、カーボンナノファイバー、または、ZnOなどで構成される他のナノファイバー、ZnO、GaNもしくはヘマタイトなどで構成されるナノロッドまたはナノワイヤを含んでいる。本実施形態において、複数の導電柱状部110は、具体的にはカーボンナノチューブからなり、より具体的には、複数の導電柱状部110の各々は、たとえば100本~200本の、複数のカーボンナノチューブからなる。
 本実施形態において、カーボンナノチューブのカイラリティは特に限定されない。カーボンナノチューブは、半導体型または金属型でもよく、カーボンナノチューブは、半導体型と金属型の両方を含んでいてもよい。電気抵抗の観点から、カーボンナノチューブは、半導体型と比較して金属型の比率が高いことが好ましい。
 本実施形態において、カーボンナノチューブを構成する層の数は特に限定されない。カーボンナノチューブは、1層で構成されるSWCNT(Single Wall Carbon Nanotube)でもよいし、2層以上で構成されるMWCNT(Multiwall Carbon Nanotube)でもよい。
 複数の導電柱状部110の各々の長さは特に限定されない。複数の導電柱状部110の各々の長さは、複数の導電柱状部110の延在方向に直交する面方向における面積あたりの容量密度の観点から、長いことが好ましい。複数の導電柱状部110の各々の長さは、たとえば、数μm以上、20μm以上、50μm以上、100μm以上、500μm以上、750μm以上、1000μm以上、または、2000μm以上である。
 また、複数の導電柱状部110の各々の長さは、互いに異なっていてもよいが、複数の導電柱状部110の各々の先端は、積層方向に略垂直な仮想平面上において整列していることが好ましい。これにより、キャパシタ10の静電容量を容易に制御することができる。
 誘電体層120は、支持電極層100の上記一方側において支持電極層100および複数の導電柱状部110を被覆する。誘電体層120は、複数の導電柱状部110が設けられた部分を除き、支持電極層100の導電柱状部110側の面の全体をさらに被覆している。
 誘電体層120と複数の導電柱状部110との間には、追加の導電体層が設けられていてもよい。これにより、キャパシタ10の寄生抵抗をより低減することができる。
 誘電体層120を構成する材料は、特に限定されないが、たとえば、二酸化シリコン、酸化アルミニウム、窒化シリコン、酸化タンタル、酸化ハフニウム、チタン酸バリウム、ジルコン酸チタン酸鉛、または、これらの組み合わせが挙げられる。
 対向電極層130は、誘電体層120を被覆し、誘電体層120を介して支持電極層100および複数の導電柱状部110と対向する。本実施形態において、対向電極層130の支持電極層100側とは反対側の面は、平面状である。
 対向電極層130を構成する材料は特に限定されないが、銀、金、銅、白金、アルミニウムなどの金属、または、これらを含む合金などが挙げられる。
 次に、複合キャパシタ1の全体の構成について説明する。
 本実施形態に係る複合キャパシタ1においては、複数のキャパシタ10が、第1キャパシタ10Aと、第2キャパシタ10Bと、第3キャパシタ10Cとを含んでいる。
 第2キャパシタ10Bは、第1キャパシタ10Aに対して、複数のキャパシタ10の積層方向のうち複数の導電柱状部110の延出側である一方側に位置している。本実施形態においては、複数のキャパシタ10のうちの1つである第1キャパシタ10Aの対向電極層130は、第1キャパシタ10Aの対向電極層130の上記一方側において最も近くに位置する他のキャパシタ10である第2キャパシタ10Bの支持電極層100と電気的に直接接続されている。第1キャパシタ10Aの対向電極層130と、第2キャパシタ10Bの支持電極層100とは、導電接着剤30のみを介して互いに接合されている。
 第3キャパシタ10Cは、第2キャパシタ10Bに対して、複数のキャパシタ10の積層方向のうち複数の導電柱状部110の延出側である一方側に位置している。本実施形態においては、複数のキャパシタ10のうちの1つである第2キャパシタ10Bの対向電極層130は、第2キャパシタ10Bの対向電極層130の上記一方側において最も近くに位置する他のキャパシタ10である第3キャパシタ10Cの支持電極層100と電気的に直接接続されている。第2キャパシタ10Bの対向電極層130と、第3キャパシタ10Cの支持電極層100とは、導電接着剤30のみを介して互いに接合されている。
 複数のキャパシタ10のうちの1つである第1キャパシタ10Aの支持電極層100および当該支持電極層100を被覆する誘電体層120は、絶縁部20の端部を切り欠くように延出して、絶縁部20のキャパシタ10側とは反対側に引き出されている。
 複数のキャパシタ10のうちの1つである第2キャパシタ10Bの支持電極層100および当該支持電極層100を被覆する誘電体層120は、絶縁部20を貫通して、絶縁部20のキャパシタ10側とは反対側に引き出されている。本実施形態において、第2キャパシタ10Bの支持電極層100および誘電体層120が引き出される方向は、第1キャパシタ10Aの支持電極層100および誘電体層120が引き出される方向と異なっている。
 複数のキャパシタ10のうちの1つである第3キャパシタ10Cの支持電極層100および当該支持電極層100を被覆する誘電体層120は、絶縁部20を貫通して、絶縁部20のキャパシタ10側とは反対側に引き出されている。本実施形態において、第3キャパシタ10Cの支持電極層100および誘電体層120が引き出される方向は、第1キャパシタ10Aの支持電極層100および誘電体層120が引き出される方向と略同一である。
 本実施形態に係る複合キャパシタ1は、上面電極層40をさらに備えている。上面電極層40は、支持電極層100と同様の構成を有している。上面電極層40は、複数のキャパシタ10のうち、積層方向において最も上記一方側に位置するキャパシタ10である第3キャパシタ10Cの対向電極層130と電気的に直接接続されている。上面電極層40は、第3キャパシタ10Cの対向電極層130の支持電極層100側とは反対側に位置している。第3キャパシタ10Cの対向電極層130と上面電極層40とは、導電接着剤30のみを介して互いに接合されている。
 上面電極層40は、絶縁部20の端部を切り欠くように延出して、絶縁部20のキャパシタ10側とは反対側に引き出されている。本実施形態において、上面電極層40が引き出される方向は、第2キャパシタ10Bの支持電極層100および誘電体層120が引き出される方向と略同一である。
 なお、本発明の実施形態1に係る複合キャパシタ1は、上面電極層40を備えていなくてもよい。図2は、本発明の実施形態1の変形例に係る複合キャパシタを示す断面図である。図2に示すように、本発明の実施形態1の変形例に係る複合キャパシタ1aは、上面電極層を備えていない。本変形例に係る複合キャパシタ1aは、第3キャパシタ10Cの対向電極層130が外部に露出している。
 以下、本発明の実施形態1に係る複合キャパシタ1に含まれる3つのキャパシタ10によって構成される回路について、比較例に係る複合キャパシタと対比することにより説明する。
 図3は、比較例に係る複合キャパシタを示す断面図である。図3に示すように、比較例に係る複合キャパシタ9は、支持電極層100、誘電体層120および上面電極層40が、絶縁部20のキャパシタ10側とは反対側に引き出されていない点で、本発明の実施形態1に係る複合キャパシタ1と異なっている。
 比較例に係る複合キャパシタ9においては、第1キャパシタ10Aの支持電極層100を一方の端子、上面電極層40を他方の端子として用いた場合、上記一方の端子から上記他方の端子にかけて回路が構成される。当該回路においては、複数のキャパシタ10が互いに直列に接続される。すなわち、比較例に係る複合キャパシタ9においては、第1キャパシタ10A、第2キャパシタ10Bおよび第3キャパシタ10Cは、互いに並列に接続されていない。
 一方、図1に示すように、本発明の実施形態1に係る複合キャパシタ1においては、第1キャパシタ10Aの支持電極層100および第3キャパシタ10Cの支持電極層100を電気的に互いに接続することで、一方の端子として用いることができる。また、第2キャパシタ10Bの支持電極層100および上面電極層40を互いに電気的に接続することで、他方の端子として用いることができる。
 本実施形態に係る複合キャパシタ1の上記一方の端子から上記他方の端子にかけて構成される回路においては、第2キャパシタ10Bは、第1キャパシタ10Aと並列に接続されている。第3キャパシタ10Cは、第1キャパシタ10Aおよび第2キャパシタ10Bの両方と並列に接続されている。このように、本実施形態に係る複合キャパシタ1においては、3つのキャパシタ10を、3並列×1直列で構成することができる。
 以下、本発明の実施形態1に係る複合キャパシタ1の製造方法について説明する。複合キャパシタ1の製造方法は特に限定されないが、本発明の実施形態1に係る複合キャパシタ1の製造方法は、基板に導電柱状部を形成する工程と、導電柱状部を集合支持電極層に転写する工程と、誘電体層を被覆する工程と、対向電極層を被覆する工程と、対向電極層を平坦化する工程と、対向電極層を分割する工程と、集合支持電極層と誘電体層とをそれぞれ分割する工程と、絶縁部を設ける工程と、積層工程とを備えている。
 図4は、本発明の実施形態1に係る複合キャパシタの製造方法において、基板に複数の導電柱状部を形成した状態を示す断面図である。図4に示すように、まず、複数の導電柱状部110を、基板200に形成する。具体的には、基板200に触媒粒子が配置され、当該触媒粒子から導電柱状部110を成長させる。複数の導電柱状部110は、基板200側とは反対側に端部115を有する。
 触媒粒子は、導電柱状部110がカーボンナノチューブである場合はたとえばFe、NiまたはCo、もしくはこれらを含む合金などからなり、導電柱状部110がZnOを含む場合はたとえばPtまたはAuもしくはこれらを含む合金などからなる。触媒粒子を配置する方法としては、CVD(Chemical Vapor Deposition)法、スパッタリングまたはPVD(Physical Vapor Deposition)法と、リソグラフィまたはエッチングなどとを組み合わせることが挙げられる。なお、触媒粒子の位置はパターニングにより適宜選択される。
 複数の導電柱状部110の成長方法は特に限定されない。本実施形態において、複数の導電柱状部110は、CVD法またはプラズマ強化CVD法などを用いて成長させることができる。CVD法またはプラズマ強化CVD法において使用するガスとしては、一酸化炭素、メタン、エチレン、アセチレン、または、これらと水素あるいはアンモニアの混合物などが挙げられる。
 複数の導電柱状部110の各々は、触媒粒子の表面から成長する。複数の導電柱状部110の各々は、端部115が、基板200から離れていくようにして、成長する。
 複数の導電柱状部110の各々を、上記CVDまたはプラズマ強化CVD法などを用いて成長させる場合、温度条件およびガス条件などを適宜選択することで、複数の導電柱状部110の各々が、所望の範囲内の長さおよび外径を有するように複数の導電柱状部110の各々を成長させることができる。ただし、複数の導電柱状部110の各々の具体的な長さは、基板200の表面上におけるガスの濃度、ガスの流量、温度のばらつきによって、互いに異なっている。
 基板200を構成する材料としては、たとえば、酸化シリコン、シリコン、ガリウム砒素、アルミニウム、または、SUSなどが挙げられる。
 図5は、本発明の実施形態1に係る複合キャパシタの製造方法において、複数の導電柱状部を基板から集合支持電極層に転写した状態を示す断面図である。図5に示すように、基板200上に形成された複数の導電柱状部110を、端部115において集合支持電極層100Xに接合させる。集合支持電極層100Xに複数の導電柱状部110を接合させた後、複数の導電柱状部110から基板200を剥がす。このようにして、複数の導電柱状部110を基板200から集合支持電極層100Xに転写する。集合支持電極層100Xは、複数のキャパシタ10の各々が備えている支持電極層100の集合体である。具体的には、集合支持電極層100Xは、複数の支持電極層100が面内方向において互いに接続された状態のものである。
 また、複数の導電柱状部110を基板200から集合支持電極層100Xに転写する際、複数の導電柱状部110を集合支持電極層100Xに化学的または機械的に差し込むように転写してもよい。これにより、複数の導電柱状部110の、支持電極層100から外側に延出している部分の長さを、互いに揃えることができる。
 なお、複数の導電柱状部110の各々は、支持電極層100とともに一体の部材で構成される場合には、上述した方法に代えて、1つの平板状の電極層の表面を、化学エッチングなどにより凹凸状に加工することにより、複数の導電柱状部110と集合支持電極層100Xとを形成してもよい。
 図6は、本発明の実施形態1に係る複合キャパシタの製造方法において、集合支持電極層および複数の導電柱状部に誘電体層を被覆した状態を示す断面図である。図6に示すように、複数の導電柱状部110が設けられた集合支持電極層100Xの全面にわたって、誘電体層120を被覆する。誘電体層120の被覆方法は特に限定されず、めっき法、ALD(Atomic Layer Deposition)法、CVD法、MOCVD(Metalorganic Chemical Vapor Deposition)法、超臨界流体成膜法、またはスパッタリングなどが挙げられる。
 図7は、本発明の実施形態1に係る複合キャパシタの製造方法において、誘電体層に対向電極層を被覆した状態を示す断面図である。図7に示すように、誘電体層120に対向電極層130を被覆する。対向電極層130の被覆方法は特に限定されず、めっき法、ALD法、CVD法、MOCVD法、超臨界流体成膜法、またはスパッタリングなどが挙げられる。
 図8は、本発明の実施形態1に係る複合キャパシタの製造方法において、対向電極層を平坦化した状態を示す断面図である。図8に示すように、対向電極層130のうち、複数の導電柱状部110の集合支持電極層100X側とは反対側に位置する部分を、CMP(Chemical Mechanical Polishing)により平坦化する。
 図9は、本発明の実施形態1に係る複合キャパシタの製造方法において、対向電極層を分割した状態を示す断面図である。図9に示すように、複数の導電柱状部110を複数のグループに分けて、複数の導電柱状部110に対応する対向電極層130が、上記グループごと互いに離間するように、対向電極層130を複数個に分割する。複数の対向電極層130同士の間においては、誘電体層120が露出する。対向電極層130の分割は、フォトマスキングおよびエッチング処理により行なう。
 図10は、本発明の実施形態1に係る複合キャパシタの製造方法において、集合支持電極層と誘電体層とを分割した状態示す断面図である。図10に示すように、誘電体層120が露出している位置において、集合支持電極層100Xと誘電体層120とをダイシングにより分割する。これにより、集合支持電極層100Xが分割されることで形成された複数の支持電極層100の各々と対応するように、複数のキャパシタ10が形成される。このとき、支持電極層100および誘電体層120が、キャパシタ10において一方向に延出するように、上記の分割を行なう。
 図11は、本発明の実施形態1に係る複合キャパシタの製造方法において、複数のキャパシタの各々に絶縁部を設けた状態を示す断面図である。図11に示すように、複数のキャパシタ10の各々の周側面11に絶縁部20を設ける。絶縁部20を設ける方法は特に限定されない。絶縁部20を設ける方法としては、絶縁材料を含むペースト状の基材を塗布した後に焼成する方法、めっき法、ALD法、CVD法、MOCVD法、超臨界流体成膜法、またはスパッタリングなどが挙げられる。
 最後に、絶縁部20が設けられた複数のキャパシタ10と、上面電極層40とを、導電接着剤30を介して互いに積層することにより、図1に示すような本発明の実施形態1に係る複合キャパシタが製造される。なお、絶縁部20を複数のキャパシタ10の各々に設ける前にキャパシタ10を互いに積層して、互いに積層された複数のキャパシタ10に絶縁部20を設けてもよい。また、積層工程において、絶縁部20が設けられた複数のキャパシタ10のみを、導電接着剤30を介して互いに積層すると、本発明の実施形態1の変形例に係る複合キャパシタ1aが製造される。
 上記のように、本発明の実施形態1に係る複合キャパシタ1は、複数のキャパシタ10と、絶縁部20とを備えている。複数のキャパシタ10は、互いに積層されている。絶縁部20は、複数のキャパシタ10の積層方向を中心軸の軸方向として、複数のキャパシタ10の周側面11を覆っている。複数のキャパシタ10の各々は、支持電極層100と、複数の導電柱状部110と、誘電体層120と、対向電極層130とを含んでいる。複数の導電柱状部110の各々は、支持電極層100に対して積層方向の一方側において、支持電極層100から積層方向に沿って延出している。複数の導電柱状部110の各々は、ナノサイズの外径を有している。誘電体層120は、支持電極層100の上記一方側において支持電極層100および複数の導電柱状部110を被覆する。対向電極層130は、誘電体層120を被覆し、誘電体層120を介して支持電極層100および複数の導電柱状部110と対向する。複数のキャパシタ10は、第1キャパシタ10Aと、第2キャパシタ10Bとを含んでいる。第2キャパシタ10Bは、第1キャパシタ10Aに対して上記一方側に位置している。第2キャパシタ10Bは、第1キャパシタ10Aと並列に接続されている。
 これにより、複合キャパシタ1について、キャパシタ10の積層方向から見たときの面積容量密度を高くし、かつ、静電容量を増加させることができる。
 本実施形態に係る複合キャパシタ1において、複数のキャパシタ10の少なくとも1つの支持電極層100は、絶縁部20を貫通して、絶縁部20のキャパシタ10側とは反対側に引き出されている。
 これにより、複数のキャパシタ10を互いに並列に接続するために、引き出された支持電極層100を、複合キャパシタ1の端子とすることができる。
 本実施形態に係る複合キャパシタ1において、複数のキャパシタ10の少なくとも1つの対向電極層130は、該対向電極層130の上記一方側において最も近くに位置する他のキャパシタ10の支持電極層100と電気的に接続されている。
 これにより、絶縁部20の内側において、複数のキャパシタ10の電極層同士を電気的に接続することができる。
 本実施形態に係る複合キャパシタ1において、上記他のキャパシタ10の支持電極層100は、絶縁部20を貫通して、絶縁部20のキャパシタ10側とは反対側に引き出されている。
 これにより、複数のキャパシタ10を互いに並列に接続するため、上記キャパシタ10の対向電極層130を、引き出された上記他のキャパシタ10の支持電極層100を介して、複合キャパシタ1の端子とすることができる。
 本実施形態に係る複合キャパシタ1において、複数の導電柱状部110は、カーボンナノチューブからなる。
 これにより、複数の導電柱状部110の機械的特性を向上できるため、複数のキャパシタ10を積層させた時に、キャパシタ10の構造が変化することを抑制でき、ひいては、複合キャパシタ1の静電容量の低下を抑制することができる。
 (実施形態2)
 以下、本発明の実施形態2に係る複合キャパシタについて説明する。本発明の実施形態2に係る複合キャパシタは、一部の複数のキャパシタ同士が直列に接続されている点が主に、本発明の実施形態1に係る複合キャパシタ1と異なる。よって、本発明の実施形態1と同様の構成については説明を繰り返さない。
 図12は、本発明の実施形態2に係る複合キャパシタを示す断面図である。図12に示すように、本発明の実施形態2に係る複合キャパシタ2においては、複数のキャパシタ10が、第1キャパシタ10Aと、第2キャパシタ10Bと、第4キャパシタ10Dと、第5キャパシタ10Eとを含んでいる。
 第4キャパシタ10Dは、第1キャパシタ10Aに対して、複数のキャパシタ10の積層方向のうち複数の導電柱状部110の延出側である一方側に位置している。本実施形態においては、複数のキャパシタ10のうちの1つである第1キャパシタ10Aの対向電極層130は、第1キャパシタ10Aの対向電極層130の上記一方側において最も近くに位置する他のキャパシタ10である第4キャパシタ10Dの支持電極層100と電気的に直接接続されている。第1キャパシタ10Aの対向電極層130と、第4キャパシタ10Dの支持電極層100とは、導電接着剤30のみを介して互いに接合されている。
 第2キャパシタ10Bは、第4キャパシタ10Dに対して、複数のキャパシタ10の積層方向のうち複数の導電柱状部110の延出側である一方側に位置している。本実施形態においては、複数のキャパシタ10のうちの1つである第4キャパシタ10Dの対向電極層130は、第4キャパシタ10Dの対向電極層130の上記一方側において最も近くに位置する他のキャパシタ10である第2キャパシタ10Bの支持電極層100と電気的に直接接続されている。第4キャパシタ10Dの対向電極層130と、第2キャパシタ10Bの支持電極層100とは、導電接着剤30のみを介して互いに接合されている。
 すなわち、本実施形態において、第1キャパシタ10Aの対向電極層130と、第2キャパシタ10Bの支持電極層100とは、第4キャパシタ10Dを介して、電気的に間接的に互いに接続されている。
 第5キャパシタ10Eは、第2キャパシタ10Bに対して、複数のキャパシタ10の積層方向のうち複数の導電柱状部110の延出側である一方側に位置している。本実施形態においては、複数のキャパシタ10のうちの1つである第2キャパシタ10Bの対向電極層130は、第2キャパシタ10Bの対向電極層130の上記一方側において最も近くに位置する他のキャパシタ10である第5キャパシタ10Eの支持電極層100と電気的に直接接続されている。第2キャパシタ10Bの対向電極層130と、第5キャパシタ10Eの支持電極層100とは、導電接着剤30のみを介して互いに接合されている。
 第4キャパシタ10Dおよび第5キャパシタ10Eの各々の支持電極層100および当該支持電極層100を被覆する誘電体層120は、絶縁部20を貫通せず、絶縁部20のキャパシタ10側のみに位置している。
 上面電極層40は、複数のキャパシタ10のうち、積層方向において最も上記一方側に位置するキャパシタ10である第5キャパシタ10Eにおける、対向電極層130の支持電極層100側とは反対側に位置して、当該対向電極層130と電気的に接続されている。第3キャパシタ10Cの対向電極層130と上面電極層40とは、導電接着剤30のみを介して互いに接合されている。本実施形態において、上面電極層40が引き出される方向は、第1キャパシタ10Aの支持電極層100および誘電体層120が引き出される方向と略同一である。
 すなわち、本実施形態において、第2キャパシタ10Bの対向電極層130と、上面電極層40とは、第5キャパシタ10Eを介して、電気的に間接的に互いに接続されている。
 本発明の実施形態2に係る複合キャパシタ2においては、第1キャパシタ10Aの支持電極層100および上面電極層40を互いに電気的に接続することで、一方の端子として用いることができる。また、第2キャパシタ10Bの支持電極層100を他方の端子として用いることができる。
 本実施形態に係る複合キャパシタ2の上記一方の端子から上記他方の端子にかけて構成される回路においては、第4キャパシタ10Dが、第1キャパシタ10Aと直列に接続されている。第5キャパシタ10Eが、第2キャパシタ10Bと直列に接続されている。そして、第1キャパシタ10Aおよび第4キャパシタ10Dと、第2キャパシタ10Bおよび第5キャパシタ10Eとが、互いに並列に接続されている。このように、本実施形態に係る複合キャパシタ2においては、4つのキャパシタ10を、2並列×2直列で構成することができる。
 本発明の実施形態2に係る複合キャパシタ2においても、第2キャパシタ10Bは、第1キャパシタ10Aと並列に接続されている。さらに、本発明の実施形態2に係る複合キャパシタ2においては、複数のキャパシタ10のうち一部のキャパシタが直列に接続されているため、耐電圧を向上させることができる。
 (実施形態3)
 以下、本発明の実施形態3に係る複合キャパシタについて説明する。本発明の実施形態3に係る複合キャパシタは、側方導電部をさらに備える点で、本発明の実施形態1に係る複合キャパシタ1と異なる。よって、本発明の実施形態1と同様の構成については説明を繰り返さない。
 図13は、本発明の実施形態3に係る複合キャパシタを示す断面図である。図13に示すように、本発明の実施形態3に係る複合キャパシタ3は、一方の側方電極部50と、他方の側方電極部とをさらに備えている。一方の側方電極部50は、絶縁部20のキャパシタ10側とは反対側において絶縁部20上に設けられている。他方の側方電極部60は、絶縁部20のキャパシタ10側とは反対側において、一方の側方電極部50と離間して絶縁部20上に設けられている。
 一方の側方電極部50は、第1キャパシタ10Aの支持電極層100および第3キャパシタ10Cの支持電極層100の各々に接続されている。他方の側方電極部60は、第2キャパシタ10Bの支持電極層100および上面電極層40の各々に接続されている。
 このようにして、一方の側方電極部50は、第1キャパシタ10Aの支持電極層100および第2キャパシタ10Bの対向電極層130の各々に電気的に接続されている。他方の側方電極部60は、第1キャパシタ10Aの対向電極層130および第2キャパシタ10Bの支持電極層100の各々に電気的に接続されている。
 上記の構成により、複合キャパシタ3を、複数のキャパシタ10の積層方向が実装基板に対して垂直となるようにして実装基板に実装する際に、当該実装が容易になる。具体的には、上記のように複合キャパシタ3を実装した場合には、一方の側方電極部50を、複合キャパシタ3の一方の端子として機能させ、他方の側方電極部60を、複合キャパシタ3の他方の端子として機能させることができる。
 (実施形態4)
 以下、本発明の実施形態4に係る複合キャパシタについて説明する。本発明の実施形態4に係る複合キャパシタは、絶縁部が1つのキャパシタ全体を取り囲んでいる点が主に、本発明の実施形態3に係る複合キャパシタ3と異なる。よって、本発明の実施形態3に係る複合キャパシタ3と同様の構成については説明を繰り返さない。
 図14は、本発明の実施形態4に係る複合キャパシタを示す断面図である。図14に示すように、本発明の実施形態4に係る複合キャパシタ4においては、複数のキャパシタ10が、互いに同一の構成を有している。
 本実施形態に係る複合キャパシタ4は、複数の上面電極層40を備えている。複数の上面電極層40の各々は、複数のキャパシタ10の各々の対向電極層130の支持電極層100側とは反対側に位置して、当該対向電極層130と電気的に接続されている。
 本実施形態においては、絶縁部20が、複数のキャパシタ10の各々および対応する上面電極層40の全体を取り囲むように位置している。このため、複数のキャパシタ10同士の間には、絶縁部20が位置している。ただし、複数のキャパシタ10の各々においては、上面電極層40の一部が絶縁部20から露出し、支持電極層100が、上面電極層40の露出している方向とは異なる方向において絶縁部20から露出している。
 本実施形態においては、複数の一方の側方電極部50および複数の他方の側方電極部60の各々が、複数のキャパシタ10の各々に対応するように位置している。複数のキャパシタ10の各々において、一方の側方電極部50は、上面電極層40と電気的に接続されている。複数の一方の側方電極部50同士は互いに電気的に接続されている。他方の側方電極部60は、支持電極層100と電気的に接続されている。複数の他方の側方電極部60同士は互いに電気的に接続されている。このため、本実施形態においても、第2キャパシタ10Bは、第1キャパシタ10Aと並列に接続される。
 上述した実施形態の説明において、組み合わせ可能な構成を相互に組み合わせてもよい。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,1a,2,3,4,9 複合キャパシタ、10 キャパシタ、10A 第1キャパシタ、10B 第2キャパシタ、10C 第3キャパシタ、10D 第4キャパシタ、10E 第5キャパシタ、11 周側面、20 絶縁部、30 導電接着剤、40 上面電極層、50 一方の側方電極部、60 他方の側方電極部、100 支持電極層、100X 集合支持電極層、110 導電柱状部、115 端部、120 誘電体層、130 対向電極層、200 基板。

Claims (6)

  1.  複合キャパシタであって、
     前記複合キャパシタは、
     互いに積層された複数のキャパシタと、
     前記複数のキャパシタの積層方向を中心軸の軸方向として、前記複数のキャパシタの周側面を覆う絶縁部とを備え、
     前記複数のキャパシタの各々は、
     支持電極層と、
     前記支持電極層に対して前記積層方向の一方側において、前記支持電極層から前記積層方向に沿って延出し、かつ、ナノサイズの外径を有する、複数の導電柱状部と、
     前記支持電極層の前記一方側において前記支持電極層および前記複数の導電柱状部を被覆する誘電体層と、
     前記誘電体層を被覆し、前記誘電体層を介して前記支持電極層および前記複数の導電柱状部と対向する、対向電極層とを含み、
     前記複数のキャパシタは、
     第1キャパシタと、
     前記第1キャパシタに対して前記一方側に位置する、第2キャパシタとを含み、
     前記第2キャパシタは、前記第1キャパシタと並列に接続されている、複合キャパシタ。
  2.  前記複数のキャパシタの少なくとも1つの前記支持電極層は、前記絶縁部を貫通して、前記絶縁部のキャパシタ側とは反対側に引き出されている、請求項1に記載の複合キャパシタ。
  3.  前記複数のキャパシタの少なくとも1つの前記対向電極層は、該対向電極層の前記一方側において最も近くに位置する他のキャパシタの前記支持電極層と電気的に接続されている、請求項1または請求項2に記載の複合キャパシタ。
  4.  前記他のキャパシタの前記支持電極層は、前記絶縁部を貫通して、前記絶縁部のキャパシタ側とは反対側に引き出されている、請求項3に記載の複合キャパシタ。
  5.  前記絶縁部のキャパシタ側とは反対側において前記絶縁部上に設けられた一方の側方電極部と、
     前記絶縁部のキャパシタ側とは反対側において、前記一方の側方電極部と離間して前記絶縁部上に設けられた他方の側方電極部とをさらに備え、
     前記一方の側方電極部は、前記第1キャパシタの前記支持電極層および前記第2キャパシタの前記対向電極層の各々に電気的に接続され、
     前記他方の側方電極部は、前記第1キャパシタの前記対向電極層および前記第2キャパシタの前記支持電極層の各々に電気的に接続されている、請求項1から請求項4のいずれか1項に記載の複合キャパシタ。
  6.  前記複数の導電柱状部は、カーボンナノチューブからなる、請求項1から請求項5のいずれか1項に記載の複合キャパシタ。
PCT/JP2020/026831 2019-10-24 2020-07-09 複合キャパシタ WO2021079566A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021554072A JPWO2021079566A1 (ja) 2019-10-24 2020-07-09
CN202080073908.9A CN114600209A (zh) 2019-10-24 2020-07-09 复合电容器
US17/659,521 US11869719B2 (en) 2019-10-24 2022-04-18 Composite capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019193614 2019-10-24
JP2019-193614 2019-10-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/659,521 Continuation US11869719B2 (en) 2019-10-24 2022-04-18 Composite capacitor

Publications (1)

Publication Number Publication Date
WO2021079566A1 true WO2021079566A1 (ja) 2021-04-29

Family

ID=75620434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026831 WO2021079566A1 (ja) 2019-10-24 2020-07-09 複合キャパシタ

Country Status (4)

Country Link
US (1) US11869719B2 (ja)
JP (1) JPWO2021079566A1 (ja)
CN (1) CN114600209A (ja)
WO (1) WO2021079566A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7151907B2 (ja) * 2019-09-25 2022-10-12 株式会社村田製作所 キャパシタおよびその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249417A (ja) * 2002-02-25 2003-09-05 Tdk Corp コンデンサ構造体およびその製造方法
JP2006287197A (ja) * 2005-03-31 2006-10-19 Hynix Semiconductor Inc ナノチューブを有するキャパシタ及びその製造方法
JP2008130778A (ja) * 2006-11-20 2008-06-05 Taiyo Yuden Co Ltd コンデンサ素子及びその製造方法並びにコンデンサ
JP2009010371A (ja) * 2007-06-26 2009-01-15 Headway Technologies Inc キャパシタおよびその製造方法並びにキャパシタユニット
JP2009170861A (ja) * 2008-01-11 2009-07-30 Young Joo Oh 金属キャパシタ及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4150552B2 (ja) * 2002-08-28 2008-09-17 富士通株式会社 複合キャパシタ
JP4695817B2 (ja) 2002-10-23 2011-06-08 富士通株式会社 キャパシタ、半導体記憶装置及び方法
US20050167655A1 (en) 2004-01-29 2005-08-04 International Business Machines Corporation Vertical nanotube semiconductor device structures and methods of forming the same
JP4920335B2 (ja) * 2006-08-07 2012-04-18 新光電気工業株式会社 キャパシタ内蔵インターポーザ及びその製造方法と電子部品装置
KR100874912B1 (ko) 2006-12-06 2008-12-19 삼성전자주식회사 반도체 소자 및 그 제조방법
JP2009021512A (ja) * 2007-07-13 2009-01-29 Taiyo Yuden Co Ltd 積層コンデンサ
JP5171407B2 (ja) * 2008-06-06 2013-03-27 昭和電工株式会社 回路基板およびその製造方法並びに電子装置
EP2828870A4 (en) * 2012-03-22 2016-03-30 California Inst Of Techn MICRO AND NANOSCALIC CAPACITORS FOR THE FORMATION OF AN ARRAY OF CONDUCTIVE ELEMENTS WITH EXTENDED BODIES
JP6451186B2 (ja) * 2014-09-30 2019-01-16 株式会社村田製作所 コンデンサ素子
JP6439856B2 (ja) * 2015-02-27 2018-12-19 株式会社村田製作所 可変容量素子
KR102460748B1 (ko) 2017-09-21 2022-10-31 삼성전기주식회사 커패시터 부품
KR102427927B1 (ko) 2017-11-10 2022-08-02 삼성전기주식회사 3단자 적층형 커패시터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249417A (ja) * 2002-02-25 2003-09-05 Tdk Corp コンデンサ構造体およびその製造方法
JP2006287197A (ja) * 2005-03-31 2006-10-19 Hynix Semiconductor Inc ナノチューブを有するキャパシタ及びその製造方法
JP2008130778A (ja) * 2006-11-20 2008-06-05 Taiyo Yuden Co Ltd コンデンサ素子及びその製造方法並びにコンデンサ
JP2009010371A (ja) * 2007-06-26 2009-01-15 Headway Technologies Inc キャパシタおよびその製造方法並びにキャパシタユニット
JP2009170861A (ja) * 2008-01-11 2009-07-30 Young Joo Oh 金属キャパシタ及びその製造方法

Also Published As

Publication number Publication date
JPWO2021079566A1 (ja) 2021-04-29
CN114600209A (zh) 2022-06-07
US20220238275A1 (en) 2022-07-28
US11869719B2 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
US11955291B2 (en) Composite capacitor
US11749463B2 (en) Capacitor and method for manufacturing the same
CN108022754B (zh) 多层薄膜电容器
TW201742220A (zh) 中介層裝置
WO2021059570A1 (ja) ナノ構造集合体およびその製造方法
US9646933B2 (en) Semiconductor device and manufacturing method thereof
US8407871B2 (en) Method of manufacturing a shapeable short-resistant capacitor
WO2021079566A1 (ja) 複合キャパシタ
US11702725B2 (en) Bonding structure and method of manufacturing bonding structure
CN108964628A (zh) 体声波谐振器
CN107204331A (zh) 多层电容器的制造方法
JP6725095B2 (ja) 配線基板および半導体装置
US20230005663A1 (en) Structural body
JP2004319675A (ja) カーボンナノチューブインダクタおよびその製造方法
CN113314517A (zh) 半导体封装设备和其制造方法
KR101942729B1 (ko) 박막 커패시터
JP7180623B2 (ja) 半導体装置
JP2006302992A (ja) 半導体装置の製造方法、及び半導体装置
TWI698891B (zh) 電容器封裝結構及其抗氧化複合式電極箔
CN111263978B (zh) 半导体装置
WO2024095536A1 (ja) キャパシタ
CN111279466B (zh) 半导体装置
JP7156369B2 (ja) キャパシタ集合体
CN117650122A (zh) 一种半导体结构及其制造方法
JP6620412B2 (ja) コンデンサおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554072

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880090

Country of ref document: EP

Kind code of ref document: A1