WO2021078247A1 - 一种大尺寸单晶金刚石的磨削方法 - Google Patents

一种大尺寸单晶金刚石的磨削方法 Download PDF

Info

Publication number
WO2021078247A1
WO2021078247A1 PCT/CN2020/123172 CN2020123172W WO2021078247A1 WO 2021078247 A1 WO2021078247 A1 WO 2021078247A1 CN 2020123172 W CN2020123172 W CN 2020123172W WO 2021078247 A1 WO2021078247 A1 WO 2021078247A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
abrasive
diamond
single crystal
grinding wheel
Prior art date
Application number
PCT/CN2020/123172
Other languages
English (en)
French (fr)
Inventor
陆静
徐西鹏
王艳辉
罗求发
马忠强
Original Assignee
华侨大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华侨大学 filed Critical 华侨大学
Priority to JP2021541739A priority Critical patent/JP7241434B2/ja
Publication of WO2021078247A1 publication Critical patent/WO2021078247A1/zh
Priority to US17/728,319 priority patent/US20220288741A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/22Single-purpose machines or devices for particular grinding operations not covered by any other main group characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/16Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of diamonds; of jewels or the like; Diamond grinders' dops; Dop holders or tongs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0009Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using moulds or presses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping

Definitions

  • the invention belongs to the technical field of ultra-precision grinding, and specifically relates to a grinding method of large-size single crystal diamond.
  • Single crystal diamond has a unique face-centered cubic lattice structure, and has excellent physical, chemical and electrical properties, such as: high thermal conductivity, is an ideal heat dissipation material for electronic devices; good light transmittance, is an infrared optical window and high Ideal material for power laser windows; good chemical stability, which guarantees the device can be used stably in harsh environments; wide band gap, is a guarantee for high stability and reliability in the production of semiconductor devices. These excellent characteristics make it the most ideal material for third-generation semiconductors. However, because diamond is the hardest substance in nature, single crystal diamond has the characteristics of high hardness and high brittleness, and its physical and chemical properties are stable, making it very difficult to process. Special processing technology is required to process semiconductor surface quality requirements. Single crystal diamond.
  • the traditional fast removal methods of diamond mainly include mechanical grinding, thermochemical processing and tribochemical processing.
  • Mechanical grinding uses diamond grinding wheel or diamond grinding powder as the grinding medium, which has the characteristics of simple process and good stability, but the pure mechanical removal efficiency is low, the diamond micro-surface quality is poor, and defects such as micro-cracks, grooves and scratches are prone to occur, and Obvious anisotropy;
  • thermochemical processing has high processing efficiency for single crystal and polycrystalline diamond and can obtain better surface quality, but due to its high processing temperature, it will produce polishing disc softening deformation and wear resistance The problem of descent cannot guarantee the surface accuracy of diamond and the requirements of subsurface damage;
  • tribochemical processing is a method of dynamic friction, which generates heat through high-speed scratching instead of local heating of diamond, which improves the processing equipment and processing environment.
  • the problem that the polishing disc is easy to soften due to high temperature has not been solved, and the diamond surface accuracy is still poor.
  • Both types of chemical processing are achieved by reactive removal through the graphit
  • the purpose of the present invention is to overcome the problems of low processing efficiency of existing diamonds, poor surface precision, large surface and subsurface damage, etc., and to provide a method for grinding large-size single crystal diamonds.
  • a method for grinding large-size single crystal diamond includes the following steps:
  • the base material, active abrasive and hard abrasive are mixed uniformly and then sieved.
  • the base material is ceramic, metal or cermet composite material.
  • the active abrasive is an abrasive capable of reacting with diamond to form carbides.
  • the hard abrasive is To be able to remove the abrasive of the carbide layer, and the mass ratio of the active abrasive to the hard abrasive is 1-5:10; the mass ratio of the matrix material to the sum of the hard abrasive and the active abrasive is 1-2:2;
  • step (3) The material obtained in step (2) is added to a wetting agent, and after compression molding, it is sintered to form a grinding wheel;
  • the surface grinding temperature of the active abrasive in the grinding wheel and the large-size single crystal diamond make the grinding temperature lower than the graphitization temperature of diamond, and ensure that the diamond reacts to form carbides without graphitization, thereby making the large-size single crystal diamond
  • the hardness of the surface layer decreases, and at the same time, the hard abrasive in the grinding wheel grinds and removes the above-mentioned carbides, and finally obtains a large-size single crystal diamond surface with low surface roughness and small surface subsurface damage.
  • the particle size of the matrix material is W0.1-W10.
  • the active abrasive is at least one of iron powder, tungsten powder, molybdenum powder, chromium powder and titanium powder.
  • the particle size of the active abrasive is W3-W40.
  • the hard abrasive is at least one of diamond, alumina, cubic boron nitride, silicon nitride and silicon carbide.
  • the particle size of the hard abrasive is W3-W40.
  • the grinding fluid is deionized water.
  • the additive is at least one of alumina hollow spheres, PMM microspheres, hollow glass spheres and carbon powder.
  • the wetting agent is at least one of starch, water glass and dextrin.
  • the sintering process is specifically: heating from room temperature to 295-305°C at a heating rate of 2.5-4°C/min, and the heating time is 75-120min, and then according to the difference of the base material
  • the heating rate of 3-5°C/min is increased from 295-305°C to 680-830°C, the heating time is 75-175min, then the temperature is kept for 30-60min, and finally it is cooled to room temperature with the furnace.
  • the rotation speed of the grinding wheel is 1000-5000 rpm, and the feed is 10-70 ⁇ m/min.
  • the large-size single crystal diamond is a round piece of 1 inch or more or a piece of 10 mm ⁇ 10 mm ⁇ 1 mm or more.
  • the present invention uses large-size single crystal diamond carbon atoms and active abrasives to chemically react to form carbides under specific grinding conditions not higher than the graphitization temperature, and at the same time, use hard abrasives to remove the formed carbides to achieve high efficiency The purpose of high-quality grinding diamond surface.
  • the grinding process parameters (rotation speed) adopted by the present invention are far lower than the requirements of dynamic friction, and the energy consumption is low.
  • the grinding fluid used in the present invention is deionized water, which can effectively avoid pollution of the environment by the grinding waste fluid.
  • the present invention is different from the traditional diamond graphitization removal method, and can obtain a high-quality diamond surface with high surface accuracy, low surface roughness, and small processing damage.
  • Fig. 1 is a schematic structural diagram of a self-rotating grinding machine used in an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the structure of the grinding wheel of the present invention in contact with the surface of a large-size single crystal diamond, in which the metal abrasive particles are the active abrasives of the present invention.
  • FIG. 3 is one of the schematic diagrams of the principle of grinding in the embodiment of the present invention.
  • Fig. 4 is the second schematic diagram of the grinding principle in the embodiment of the present invention.
  • Figure 5 is a diagram of the surface morphology before and after grinding in Examples 1 and 2 of the present invention.
  • Figure a is a rough-ground diamond surface
  • Figure b is a fine-ground diamond surface
  • Figure c is a diamond after dynamic friction processing in a comparative example. surface.
  • the base material is copper powder with a particle size of 50 ⁇ m and a density of 8.92 g/cm 3 .
  • the active abrasive is iron powder with a particle size of 40 ⁇ m
  • the hard abrasive is alumina with a particle size of 40 ⁇ m
  • the mass ratio of active abrasive to hard abrasive is 1:2
  • the mass ratio of the matrix material to the sum of the hard abrasive and active abrasive is 1:2;
  • step (2) Mix the material obtained in step (1) with starch and hollow alumina spheres and sieving, then add dextrin liquid to mix evenly and sieving, the final concentration of the starch and dextrin liquid after adding is 5wt%, the alumina hollow sphere The final concentration of the ball is 30wt%, and the size of the alumina hollow ball is 40 ⁇ m;
  • step (3) After the material obtained in step (2) is molded by cold pressing, it is sintered to form a grinding wheel; the specific sintering process is: heating up from room temperature to 300°C at a heating rate of 2.5°C/min, and the heating time is 120min , Then heat up from 300°C to 780°C at a heating rate of 5°C/min, the heating time is 96min, then hold for 30min, and finally cool to room temperature with the furnace;
  • the hard abrasive in the grinding wheel grinds and removes the carbides on the surface of the large-size single crystal diamond ,
  • the final large-size single crystal diamond surface with low surface roughness and small surface subsurface damage is obtained.
  • the material removal rate of this embodiment is 50 ⁇ m/min, and the surface roughness of the large-size single crystal diamond obtained is 34nm, TTV5. 1 ⁇ m;
  • the spindle speed (that is, the speed of the grinding wheel) of the above-mentioned self-rotating grinding machine is 1500 rpm, the feed is 50 ⁇ m/min, the table speed is 200 rpm, and the grinding time is 5 min.
  • the base material is ceramic powder with a particle size of 1 ⁇ m and a density of 2.6 g/cm 3 .
  • the active abrasive is iron powder with a particle size of 10 ⁇ m
  • the hard abrasive is alumina with a particle size of 10 ⁇ m
  • the mass ratio of active abrasive to hard abrasive is 1:2
  • step (2) Mix the material obtained in step (1) with starch and hollow alumina spheres and sieving, then add dextrin liquid to mix evenly and sieving, the final concentration of the starch and dextrin liquid after adding is 5wt%, the alumina hollow sphere The final concentration of the ball is 30wt%;
  • step (3) After the material obtained in step (2) is molded by cold pressing, it is sintered to make a grinding wheel; the sintering process is specifically: heating up from room temperature to 300°C at a heating rate of 2.5°C/min, heating time 120min, Then, the temperature is increased from 300°C to 680°C at a heating rate of 5°C/min, the heating time is 76 minutes, then the temperature is kept for 30 minutes, and finally it is cooled to room temperature with the furnace;
  • the hard abrasive in the grinding wheel The carbides on the surface of the crystal diamond are removed by grinding, and finally a large-size single crystal diamond surface with low surface roughness and small surface subsurface damage is obtained.
  • the material removal rate of this embodiment is 20 ⁇ m/min, and the large-size single crystal obtained
  • the roughness of the diamond surface is 1.6nm and TTV is 2.8 ⁇ m;
  • the spindle speed (that is, the speed of the grinding wheel) of the above-mentioned self-rotating grinding machine table is 1500 rpm, the feed is 20 ⁇ m/min, the table speed is 200 rpm, and the grinding time is 10 minutes.
  • the rough processing methods of diamond mainly include traditional mechanical removal, dynamic friction processing and thermochemical processing.
  • the high hardness and good wear resistance of diamond result in low grinding efficiency and long working hours.
  • the main method of mechanical removal is grinding with a grinding wheel. Grinding wheels are mainly divided into metal bond grinding wheels, ceramic bond grinding wheels and cermet composite bond grinding wheels. When the speed of the traditional grinding wheel is below 600rpm, the grinding efficiency is basically 0; when the speed is 900rpm, the grinding efficiency is 0.2 ⁇ m/ min; when the speed is 1500rpm, the grinding efficiency is 0.6 ⁇ m/min. It can be seen from the above data that the grinding efficiency of single crystal diamond is extremely low.
  • the traditional grinding wheel processing method is mainly mechanical removal, which uses the "hard-to-hard” method to grind the diamond, which results in deep scratches and poor surface quality.
  • the dynamic friction processing method is that in the atmospheric environment, the diamond is in contact with a metal polishing disc with a higher rotation speed (line speed 15-25m/s) at a higher pressure (3-7MPa).
  • the violent friction produces a lot of heat to form a high temperature at the interface, which provides conditions for the thermochemical reaction of diamond.
  • the polishing effect is realized.
  • the diamond is processed with a polishing pressure of 65N and a dynamic friction processing technology of 8000rpm, and a removal rate of 2.3 ⁇ m/min and a surface quality of Ra0.33 ⁇ m can be obtained.
  • thermochemical processing is that carbon atoms in diamond diffuse to transition metals at high temperatures, and the diamond surface is graphitized and oxidized.
  • Thermochemistry has high requirements on equipment, not only requiring higher temperatures, but also a specific environmental atmosphere. With a temperature of 1000°C and a rotation speed of 5 rpm, the surface roughness Ra of 0.28 ⁇ m is obtained.
  • Both dynamic friction technology and thermochemical processing make use of the characteristics of diamond graphitization at high temperature to process diamond. However, high temperature tends to soften the processing disk and easily lead to uneven heating. The diamond workpiece is prone to chipping and the overall surface accuracy is low. .
  • the invention discloses a method for grinding large-size single crystal diamonds.
  • the carbon atoms of the large-size single crystal diamond and active abrasives are chemically reacted to generate carbides under specific grinding conditions, and then hard abrasives are used to remove the generated carbides.
  • Carbide to achieve the purpose of high-efficiency and high-quality grinding of the diamond surface.
  • the grinding fluid used in the present invention is deionized water, which has no pollution to the environment and the grinding process parameters (rotation speed) of the present invention are far lower than the requirements of dynamic friction processing.
  • the invention is different from the traditional diamond graphitization removal method, and can obtain a high-quality diamond surface with lower surface roughness, fewer cracks, and shallower grooves.
  • the grinding method of the invention effectively reduces the processing cost, lays a good foundation for the application of large-size single crystal diamond in the high-tech field, and has industrial practicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种大尺寸单晶金刚石的磨削方法,利用大尺寸单晶金刚石的碳原子和活性磨料在特定的磨削条件下发生化学反应生成碳化物,再以硬质磨料去除生成的碳化物,实现高效高质量磨削金刚石表面。磨削液为去离子水,对环境无污染且磨削转速远低于动摩擦加工的要求。与传统的金刚石石墨化去除方式不同,能够得到表面粗糙度更低、裂纹更少、沟槽更浅的金刚石表面,可降低加工成本。

Description

一种大尺寸单晶金刚石的磨削方法 技术领域
本发明属于超精密磨削技术领域,具体涉及一种大尺寸单晶金刚石的磨削方法。
背景技术
单晶金刚石具有独特的面心立方晶格结构,且具有优异的物理、化学和电学特性,如:热导率高,是电子器件的理想散热材料;透光性好,是红外光学窗口和高功率激光窗口的理想材料;化学稳定性好,是器件能在恶劣环境中稳定使用的保障;禁带宽度宽,是制作半导体器件稳定性高和可靠性高的保证。这些优异的特性使它成为第三代半导体最理想的材料。但由于金刚石是自然界中最硬的物质,单晶金刚石具有高硬度高脆性的特点,且其物理化学性质稳定,使其加工难度非常大,需要特殊的加工工艺才能加工出符合半导体表面质量要求的单晶金刚石。
目前金刚石传统快速去除的方式主要有机械研磨、热化学加工和摩擦化学加工。机械研磨以金刚石砂轮或者金刚石研磨粉作为磨削介质,具有工艺简单稳定性好的特点,但是纯机械去除效率低、金刚石微观表面质量差,容易产生微裂纹、沟槽以及划痕等缺陷,且有明显的各向异性;热化学加工对单晶和多晶金刚石都有较高的加工效率并能获得较好的表面质量,但由于其加工温度高,会产生抛光盘软化变形、耐磨性下降的问题,无法保证金刚石的面型精度及亚表面损伤的要求;摩擦化学加工是采用动摩擦的方法,它通过高速划擦产生热量来替代金刚石局部加热的方式,改善了加工设备和加工环境,但抛光盘容易因高温软化的问题仍然没有解决,金刚石面型精度依然较差。这两类化学加工都是通过金刚石的石墨化相变达到反应去除,无法避免对金刚石的过度消耗和损伤。
发明内容
本发明的目的在于克服现有金刚石加工效率低、面型精度差、表面及亚表面损伤大等问题,提供一种大尺寸单晶金刚石的磨削方法。
本发明的技术方案如下:
一种大尺寸单晶金刚石的磨削方法,包括如下步骤:
(1)将基体材料、活性磨料和硬质磨料混合均匀后过筛,上述基体材料为陶瓷、金属或金属陶瓷复合材料,上述活性磨料为能够与金刚石反应形成碳化物的磨料,上 述硬质磨料为能够去除碳化物层的磨料,且活性磨料与硬质磨料的质量比为1-5:10;基体材料和硬质磨料和活性磨料的总和的质量之比为1-2:2;
(2)将步骤(1)所得的物料与添加剂混合均匀过筛;
(3)将步骤(2)所得的物料加入润湿剂,压制成型后,进行烧结,制成砂轮;
(4)将上述砂轮、大尺寸单晶金刚石固定在磨床上,利用该砂轮在磨削液的配合下对大尺寸单晶金刚石表面进行磨削,磨削的过程中,通过控制砂轮的转速精确掌控砂轮中的活性磨料与大尺寸单晶金刚石的表面磨削温度,使磨削温度低于金刚石的石墨化温度,确保金刚石反应形成碳化物而不产生石墨化,进而使得大尺寸单晶金刚石的表层硬度降低,与此同时,砂轮中的硬质磨料对上述碳化物进行磨削去除,最终得到表面粗糙度低、表面亚表面损伤小的大尺寸单晶金刚石表面。
在本发明的一个优选实施方案中,所述基体材料的粒径为W0.1-W10。
在本发明的一个优选实施方案中,所述活性磨料为铁粉、钨粉、钼粉、铬粉和钛粉中的至少一种。
进一步优选的,所述活性磨料的粒径为W3-W40。
在本发明的一个优选实施方案中,所述硬质磨料为金刚石、氧化铝、立方氮化硼、氮化硅和碳化硅中的至少一种。
进一步优选的,所述硬质磨料的粒径为W3-W40。
在本发明的一个优选实施方案中,所述磨削液为去离子水。
在本发明的一个优选实施方案中,所述添加剂为氧化铝空心球、PMM微球、空心玻璃球和碳粉中的至少一种。
在本发明的一个优选实施方案中,所述润湿剂为淀粉、水玻璃和糊精中的至少一种。
在本发明的一个优选实施方案中,所述烧结过程具体为:以2.5-4℃/min的升温速率从室温升温至295-305℃,升温时间为75-120min,接着根据基体材料的不同以3-5℃/min的升温速率从295-305℃升温至680-830℃,升温时间75-175min,然后保温30-60min,最后随炉冷却至室温。
在本发明的一个优选实施方案中,所述磨削的过程中,砂轮的转速为1000-5000rpm,进给为10-70μm/min。
在本发明的一个优选实施方案中,所述的大尺寸单晶金刚石为1英寸以上圆片或者10mm×10mm×1mm以上方片。
本发明的有益效果是:
1、本发明利用大尺寸单晶金刚石的碳原子和活性磨料在不高于石墨化温度的特定磨削条件下发生化学反应生成碳化物,同时以硬质磨料去除生成的碳化物,实现高效率高质量磨削金刚石表面的目的。
2、本发明采用的磨削工艺参数(转速)远低于动摩擦的要求,能源消耗少。
3、本发明采用的磨削液为去离子水,能有效避免磨削废液污染环境。
4、本发明与传统金刚石的石墨化去除方式不同,能够得到面型精度高、表面粗糙度低,加工损伤小的高质量金刚石表面。
附图说明
图1为本发明实施例中所用的自旋转磨削机台的结构示意图。
图2为本发明的砂轮与大尺寸单晶金刚石表面接触的结构示意图,其中的金属磨粒即为本发明所述的活性磨料。
图3为本发明实施例中的磨削的原理示意图之一。
图4为本发明实施例中的磨削的原理示意图之二。
图5为本发明实施例1和2中磨削加工前后表面形貌图,其中图a为粗磨的金刚石表面,图b为精磨的金刚石表面,图c为对比例中动摩擦加工后的金刚石表面。
具体实施方式
以下通过具体实施方式结合附图对本发明的技术方案进行进一步的说明和描述。
实施例1
(1)基体材料为铜粉,粒度50μm密度8.92g/cm 3。活性磨料为粒径40μm的铁粉,硬质磨料为粒径40μm的氧化铝,活性磨料和硬质磨料的质量比为1:2,基体材料和硬质磨料和活性磨料的总和的质量比为1:2;
(2)将步骤(1)所得的物料与淀粉、氧化铝空心球混合均匀过筛,再加入糊精液混匀过筛,上述淀粉和糊精液加入后的终浓度均为5wt%,氧化铝空心球的终浓 度为30wt%,氧化铝空心球尺寸为40μm;
(3)将步骤(2)所得的物料通过冷压压制成型后,进行烧结,制成砂轮;该烧结过程具体为:以2.5℃/min的升温速率从室温升温至300℃,升温时间为120min,接着以5℃/min的升温速率从300℃升温至780℃,升温时间为96min,然后保温30min,最后随炉冷却至室温;
(4)将上述砂轮与大尺寸单晶金刚石(单晶金刚石尺寸为1英寸)固定在如图1所示的自旋转磨削机台上,利用该砂轮在磨削液的配合下对大尺寸单晶金刚石表面进行磨削,如图2至5所示,磨削的过程中,通过控制砂轮的转速精确掌控砂轮中的活性磨料与大尺寸单晶金刚石的表面磨削温度,使磨削温度低于金刚石的石墨化温度,确保表层金刚石反应形成硬度较低的碳化物而不产生石墨化,与此同时,砂轮中的硬质磨料对该大尺寸单晶金刚石表面的碳化物进行磨削去除,最终得到表面粗糙度低、表面亚表面损伤小的大尺寸单晶金刚石表面,该实施例的材料去除率为50μm/min,所获得的大尺寸单晶金刚石表面的粗糙度为34nm,TTV5.1μm;
上述自旋转磨削机台的主轴转速(即砂轮的转速)为1500rpm,进给50μm/min,工作台转速200rpm,磨削时间为5min。
实施例2
(1)基体材料为陶瓷粉,粒度为1μm,密度2.6g/cm 3。活性磨料为粒径10μm的铁粉,硬质磨料为粒径10μm的氧化铝,活性磨料和硬质磨料的质量比为1:2,且基体材料和硬质磨料和活性磨料的总和的质量比为1:2;
(2)将步骤(1)所得的物料与淀粉、氧化铝空心球混合均匀过筛,再加入糊精液混匀过筛,上述淀粉和糊精液加入后的终浓度均为5wt%,氧化铝空心球的终浓度为30wt%;
(3)将步骤(2)所得的物料通过冷压压制成型后,进行烧结,制成砂轮;该烧结过程具体为:以2.5℃/min的升温速率从室温升温至300℃,升温时间120min,接着以5℃/min的升温速率从300℃升温至680℃,升温时间为76min,然后保温30min,最后随炉冷却至室温;
(4)将上述砂轮与大尺寸单晶金刚石(单晶金刚石尺寸为10mm×10mm×1mm) 固定在如图1所示的自旋转磨削机台上,利用该砂轮在磨削液的配合下对大尺寸单晶金刚石表面进行磨削,如图2至5所示,磨削的过程中,通过控制砂轮的转速精确掌控砂轮中的活性磨料与大尺寸单晶金刚石的表面磨削温度,使磨削温度低于金刚石的石墨化温度,确保金刚石反应形成碳化物而不产生石墨化,进而使得大尺寸单晶金刚石的表层硬度降低,与此同时,砂轮中的硬质磨料对该大尺寸单晶金刚石表面的碳化物进行磨削去除,最终得到表面粗糙度低、表面亚表面损伤小的大尺寸单晶金刚石表面,该实施例的材料去除率为20μm/min,所获得的大尺寸单晶金刚石表面的粗糙度为1.6nm,TTV2.8μm;
上述自旋转磨削机台的主轴转速(即砂轮的转速)为1500rpm,进给20μm/min,工作台转速200rpm,磨削时间为10min。
对比例
金刚石的粗加工方式主要有传统的机械去除、动摩擦加工以及热化学加工,金刚石硬度大、耐磨性好导致研磨效率低,耗费工时长。机械去除的主要方式采用砂轮进行磨削。砂轮主要分为金属结合剂砂轮、陶瓷结合剂砂轮和金属陶瓷复合材料结合剂砂轮,传统的砂轮在转速600rpm以下时,磨削效率基本为0;转速为900rpm时,磨削效率为0.2μm/min;转速为1500rpm时,磨削效率为0.6μm/min。从上述的数据可以看出,单晶金刚石的研磨效率极低。传统的砂轮加工方式以机械去除为主,采用的是“硬碰硬”的方式对金刚石进行磨削,导致划痕深,表面质量差。
动摩擦加工方式是在大气环境下,金刚石以较高的压力(3-7MPa)与较高的转速(线速度15-25m/s)的金属抛光盘相接触。剧烈的摩擦作用产生大量的热形成界面高温,为金刚石的热化学反应提供了条件。金刚石产生石墨化,扩散等转变后,实现抛光效果。以65N的抛光压力与8000rpm的动摩擦加工技术对金刚石进行加工,可得到2.3μm/min的去除率和Ra0.33μm的表面质量。
热化学加工的原理是金刚石中的碳原子在高温下,扩散至过渡金属,金刚石表面石墨化和氧化。热化学对设备要求高,不仅需要较高的温度,还需要特定的环境气氛。以温度为1000℃,转速为5rpm,得到表面粗糙度Ra为0.28μm。动摩擦技术和热化学加工都是利用金刚石在高温下能石墨化的特点对金刚石进行加工,然而高温易使加 工盘软化,且容易导致受热不均,金刚石工件容易出现崩碎,整体面型精度低。
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。
工业实用性
本发明公开了一种大尺寸单晶金刚石的磨削方法,利用大尺寸单晶金刚石的碳原子和活性磨料在特定的磨削条件下发生化学反应生成碳化物,再以硬质磨料去除生成的碳化物,实现高效高质量磨削金刚石表面的目的。本发明采用的磨削液为去离子水,对环境无污染且本发明的磨削工艺参数(转速)远低于动摩擦加工的要求。本发明与传统的金刚石石墨化去除方式不同,能够得到表面粗糙度更低,裂纹更少,沟槽更浅的高质量金刚石表面。本发明的磨削方法有效降低加工成本,为大尺寸单晶金刚石在高新技术领域应用奠定良好的基础,具有工业实用性。

Claims (11)

  1. 一种大尺寸单晶金刚石的磨削方法,其特征在于包括如下步骤:
    (1)将基体材料、活性磨料和硬质磨料混合均匀,所述基体材料为陶瓷、金属或金属陶瓷复合材料,所述活性磨料为能够与金刚石反应形成碳化物的磨料,所述硬质磨料为能够去除碳化物层的磨料,且活性磨料与硬质磨料的质量比为1-5:10;基体材料和硬质磨料和活性磨料的总和的质量之比为1-2:2;
    (2)将步骤(1)所得的物料与添加剂混合均匀过筛;
    (3)将步骤(2)所得的物料加入润湿剂,压制成型后,进行烧结,制成砂轮;
    (4)将上述砂轮、大尺寸单晶金刚石固定在磨床上,利用该砂轮在磨削液的配合下对大尺寸单晶金刚石表面进行磨削,磨削的过程中,砂轮的转速为1000-5000rpm,进给为10-70μm/min;
    通过控制砂轮的转速精确掌控砂轮中的活性磨料与大尺寸单晶金刚石的表面磨削温度,使磨削温度低于金刚石的石墨化温度,确保金刚石反应形成碳化物而不产生石墨化,进而使得大尺寸单晶金刚石的表层硬度降低,与此同时,砂轮中的硬质磨料对上述碳化物进行磨削去除,最终得到表面粗糙度低、表面亚表面损伤小的大尺寸单晶金刚石表面。
  2. 如权利要求1所述的磨削方法,其特征在于:所述活性磨料为铁粉、钨粉、钼粉、铬粉和钛粉中的至少一种。
  3. 如权利要求1所述的磨削方法,其特征在于:所述硬质磨料为金刚石、氧化铝、立方氮化硼、氮化硅和碳化硅中的至少一种。
  4. 如权利要求1所述的磨削方法,其特征在于:所述磨削液为去离子水。
  5. 如权利要求1所述的磨削方法,其特征在于:所述添加剂为氧化铝空心球、PMM微球、空心玻璃球和碳粉中的至少一种。
  6. 如权利要求1所述的磨削方法,其特征在于:所述润湿剂为淀粉、水玻璃和糊精中的至少一种。
  7. 如权利要求1所述的磨削方法,其特征在于:所述烧结过程具体为:以2.5-4℃/min的升温速率从室温升温至295-305℃,升温时间为75-120min,接着根据基体材料的不同以3-5℃/min的升温速率从295-305℃升温至680-830℃,升温时间 75-175min,然后保温30-60min,最后随炉冷却至室温。
  8. 如权利要求1所述的磨削方法,其特征在于:所述磨削的过程中,砂轮的转速为1500rpm,进给20μm/min。。
  9. 如权利要求1所述的磨削方法,其特征在于;所述的大尺寸单晶金刚石为1英寸以上圆片或者10mm×10mm×1mm以上方片。
  10. 一种大尺寸单晶金刚石的磨削方法,其特征在于砂轮的制备和磨削方法,砂轮的制备包括如下步骤:
    (1)将基体材料、活性磨料和硬质磨料混合均匀,所述基体材料为陶瓷、金属或金属陶瓷复合材料,所述活性磨料为能够与金刚石反应形成碳化物的磨料,所述硬质磨料为能够去除碳化物层的磨料,且活性磨料与硬质磨料的质量比为1-5:10;基体材料和硬质磨料和活性磨料的总和的质量之比为1-2:2;
    (2)将步骤(1)所得的物料与添加剂混合均匀过筛;
    (3)将步骤(2)所得的物料加入润湿剂,压制成型后,进行烧结,制成砂轮;
    所述活性磨料为铁粉、钨粉、钼粉、铬粉和钛粉中的至少一种;
    磨削方法如下:
    (4)将上述制得的砂轮、及大尺寸单晶金刚石固定在磨床上,利用该砂轮在磨削液的配合下对大尺寸单晶金刚石表面进行磨削,磨削的过程中,砂轮的转速为1000-5000rpm,进给为10-70μm/min。
  11. 如权利要求10所述的磨削方法,其特征在于:所述磨削的过程中,砂轮的转速为1500rpm,进给20μm/min。
PCT/CN2020/123172 2019-10-23 2020-10-23 一种大尺寸单晶金刚石的磨削方法 WO2021078247A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021541739A JP7241434B2 (ja) 2019-10-23 2020-10-23 大型単結晶ダイヤモンドの研削方法
US17/728,319 US20220288741A1 (en) 2019-10-23 2022-04-25 Method for grinding single-crystal diamond

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911010812.3A CN110774118B (zh) 2019-10-23 2019-10-23 一种大尺寸单晶金刚石的磨削方法
CN201911010812.3 2019-10-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/728,319 Continuation US20220288741A1 (en) 2019-10-23 2022-04-25 Method for grinding single-crystal diamond

Publications (1)

Publication Number Publication Date
WO2021078247A1 true WO2021078247A1 (zh) 2021-04-29

Family

ID=69386351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123172 WO2021078247A1 (zh) 2019-10-23 2020-10-23 一种大尺寸单晶金刚石的磨削方法

Country Status (4)

Country Link
US (1) US20220288741A1 (zh)
JP (1) JP7241434B2 (zh)
CN (1) CN110774118B (zh)
WO (1) WO2021078247A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114406825A (zh) * 2022-01-25 2022-04-29 华侨大学 一种碳化硅表面化学机械复合加工方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110774118B (zh) * 2019-10-23 2021-04-30 华侨大学 一种大尺寸单晶金刚石的磨削方法
CN112676999A (zh) * 2020-12-30 2021-04-20 华侨大学 金刚石磨抛一体化的加工设备及其加工方法
CN114310500A (zh) * 2021-12-30 2022-04-12 江苏时代华宜电子科技有限公司 新型高精度钼合金圆片的加工方法
CN116984972B (zh) * 2023-08-10 2024-03-26 沈阳工业大学 一种用于金刚石晶片的磨削抛光一体化方法与装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972979A (zh) * 2010-08-30 2011-02-16 南京航空航天大学 一种金刚石表面化学机械复合加工方法与装置
US20180237945A1 (en) * 2015-08-10 2018-08-23 Nanocarbon Research Institute, Ltd. Spherical diamond and manufacturing method for same
CN110026831A (zh) * 2019-04-17 2019-07-19 中国科学院大学 金属粉末辅助机械抛光单晶金刚石的方法
CN110774118A (zh) * 2019-10-23 2020-02-11 华侨大学 一种大尺寸单晶金刚石的磨削方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3717046B2 (ja) 2000-01-21 2005-11-16 独立行政法人産業技術総合研究所 ダイヤモンド研磨用砥石及びダイヤモンド研磨方法並びにダイヤモンド研磨用複合砥石
JP4222515B2 (ja) 2004-01-22 2009-02-12 地方独立行政法人 東京都立産業技術研究センター ダイヤモンドの研磨方法と装置
CN1947939A (zh) * 2006-11-02 2007-04-18 大连理工大学 一种大尺寸金刚石膜的平坦化加工方法
CN101302403B (zh) * 2008-07-03 2011-10-19 大连理工大学 用于大尺寸金刚石晶圆超精密低损伤抛光的抛光液及制备方法
JP5817116B2 (ja) 2010-02-03 2015-11-18 東洋製罐株式会社 ダイヤモンド表面の研磨方法
EP2660004B1 (en) * 2010-12-28 2021-07-14 Toyo Seikan Group Holdings, Ltd. Diamond surface polishing method
CN207997223U (zh) * 2018-03-05 2018-10-23 湖北碳六科技有限公司 一种用于单晶金刚石精密抛光的装置
CN109590811B (zh) * 2018-11-26 2022-03-25 南京航空航天大学 一种激光辅助抛光cvd金刚石的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972979A (zh) * 2010-08-30 2011-02-16 南京航空航天大学 一种金刚石表面化学机械复合加工方法与装置
US20180237945A1 (en) * 2015-08-10 2018-08-23 Nanocarbon Research Institute, Ltd. Spherical diamond and manufacturing method for same
CN110026831A (zh) * 2019-04-17 2019-07-19 中国科学院大学 金属粉末辅助机械抛光单晶金刚石的方法
CN110774118A (zh) * 2019-10-23 2020-02-11 华侨大学 一种大尺寸单晶金刚石的磨削方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114406825A (zh) * 2022-01-25 2022-04-29 华侨大学 一种碳化硅表面化学机械复合加工方法

Also Published As

Publication number Publication date
CN110774118A (zh) 2020-02-11
JP7241434B2 (ja) 2023-03-17
US20220288741A1 (en) 2022-09-15
JP2022532279A (ja) 2022-07-14
CN110774118B (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2021078247A1 (zh) 一种大尺寸单晶金刚石的磨削方法
WO2021078237A1 (zh) 一种大尺寸单晶金刚石的抛光方法
TWI748260B (zh) 高平整度、低損傷大直徑單晶碳化矽基材及其製備方法
CN113831845B (zh) 一种可见光辅助金刚石化学机械抛光液及抛光方法
CN103694955B (zh) 一种单晶金刚石磨粒的制备方法
CN105817976A (zh) 一种纳米深度损伤层高效超精密磨削方法
CN104835731A (zh) 一种大尺寸4H、6H-SiC单晶片的快速抛光方法
CN109129028B (zh) 一种高效的碳化硅晶片的加工方法
Yuan et al. Chemical kinetics mechanism for chemical mechanical polishing diamond and its related hard-inert materials
CN107953148A (zh) 一种基于内含钕化物软质磨料固着磨具的蓝宝石晶片抛光方法
Yin et al. Polishing Characteristics of MnO 2 Polishing Slurry on the Si-face of SiC Wafer
CN112809458B (zh) 碳化硅晶片及其加工方法
Xue et al. Catalytic mechanism of tribochemical mechanical polishing on (0001) C-face of single crystal 6H-SiC substrate
WO2023142579A1 (zh) 一种碳化硅表面化学机械复合加工方法
Yang et al. Progress and prospect of diamond dynamic friction polishing technology
CN110744465A (zh) 一种蓝宝石研磨盘的制备方法
Huang et al. A novel dry processing technique to construct a high-performance superfine diamond grinding wheel with thermal and material characterizations
JP2013077661A (ja) 化合物半導体基板の表面研磨方法
JP2002346915A (ja) ダイヤモンド薄膜の化学機械研磨方法
CN105154968A (zh) 蓝宝石led灯丝基板的制备方法
CN110539240A (zh) 一种碳化硅单晶衬底的加工方法
CN105185877A (zh) 蓝宝石led灯丝的制备方法
JP2014231114A (ja) 砥石
JP2013052488A (ja) ダイヤモンド材料研磨用の研磨盤及びダイヤモンド材料の研磨方法
JP4283088B2 (ja) 工作物表面加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021541739

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879993

Country of ref document: EP

Kind code of ref document: A1