WO2023142579A1 - 一种碳化硅表面化学机械复合加工方法 - Google Patents

一种碳化硅表面化学机械复合加工方法 Download PDF

Info

Publication number
WO2023142579A1
WO2023142579A1 PCT/CN2022/129543 CN2022129543W WO2023142579A1 WO 2023142579 A1 WO2023142579 A1 WO 2023142579A1 CN 2022129543 W CN2022129543 W CN 2022129543W WO 2023142579 A1 WO2023142579 A1 WO 2023142579A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
grinding
chemical
polishing
mechanical
Prior art date
Application number
PCT/CN2022/129543
Other languages
English (en)
French (fr)
Inventor
黄辉
武民
张傅楠
Original Assignee
华侨大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华侨大学 filed Critical 华侨大学
Publication of WO2023142579A1 publication Critical patent/WO2023142579A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/228Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding thin, brittle parts, e.g. semiconductors, wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • B24B41/068Table-like supports for panels, sheets or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/04Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor involving a rotary work-table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/06Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor involving conveyor belts, a sequence of travelling work-tables or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0475Changing the shape of the semiconductor body, e.g. forming recesses

Definitions

  • the invention relates to the technical field of ultra-precision machining, in particular to a chemical-mechanical composite machining method for the surface of silicon carbide.
  • silicon carbide As a third-generation semiconductor material, silicon carbide (SiC) has excellent physical properties such as band gap, high thermal conductivity, good thermal stability, and high saturation drift. It is used in high frequency, high temperature, radiation resistance, optoelectronics and other fields Has a wide range of applications.
  • the industrial application of silicon carbide requires extremely high surface quality. At the same time, the extremely high hardness and chemical inertness of silicon carbide make it difficult to process. These characteristics hinder its wide application in the industrial field.
  • the processing procedures of single crystal SiC are mainly wire saw cutting, grinding and chemical mechanical polishing.
  • Chemical mechanical polishing is the last process of silicon carbide processing. Under the action of appropriate pressure, a polishing liquid is added to polish the surface of the silicon carbide wafer with a polishing pad. It is easy to cause pollution, and the removal rate is low, requiring multiple procedures and a lot of processing time.
  • the Chinese patent discloses a surface polishing method for the carbon surface of a large-diameter 4H-SiC wafer.
  • the acidic polishing solution provided by the patent improves the surface polishing effect of a single wafer, but the polishing efficiency is low and the polishing time is low. Too long and the polishing liquid is easy to cause pollution.
  • the Chinese patent discloses a grinding and polishing method for SiC single wafers.
  • the patent uses water-based grinding liquid and polishing liquid to grind and polish SiC single wafers, but there are still low removal efficiency and long processing time.
  • the problem of the use of grinding fluid and polishing fluid is also easy to cause pollution to the environment.
  • the Chinese patent discloses a polishing method for silicon carbide crystals. Although the patent has improved the polishing rate and effect to a certain extent, the improvement effect is limited, and there are still problems such as low polishing efficiency, long polishing time and Polishing fluid is prone to pollution problems.
  • the object of the present invention is to provide a chemical-mechanical composite processing method for the surface of silicon carbide, which solves the existing problems of low processing efficiency of silicon carbide, large damage to the surface and subsurface of silicon carbide, and environmental pollution of polishing liquid.
  • the solution of the present invention is: a chemical mechanical composite processing method on the surface of silicon carbide, comprising the following steps: firstly install the grinding and polishing tool and silicon carbide on the machine table of the grinding and polishing equipment respectively, and then The silicon carbide is pressed to the surface of the grinding and polishing tool, and finally the high-speed rotating grinding and polishing tool and the silicon carbide are relatively moved, thereby generating high-speed friction, thus forming a chemical-mechanical compound cycle processing method, and realizing the surface grinding and polishing of silicon carbide.
  • the grinding and polishing tool includes composite active metal and abrasive particles
  • the process of the chemical-mechanical composite cycle is: the active metal in the grinding and polishing tool reacts chemically with the surface of silicon carbide due to friction induction, forming The chemical reaction layer is then scraped off the chemical reaction layer by the mechanical action of the abrasive grains, exposing the fresh silicon carbide surface, and a chemical reaction occurs again to form a chemical reaction layer, which is then mechanically scraped off by the abrasive grains again. This cycle acts to form the chemical reaction layer.
  • - Processing method of mechanical compound cycle is
  • the grinding and polishing tool is made by hot-pressing and sintering active metal and abrasive grains at a volume ratio of 7:1-1:1.
  • the active metal is a metal that chemically reacts with the C surface of silicon carbide or the Si surface of silicon carbide.
  • the active metal that chemically reacts with the C surface of silicon carbide includes one or more of iron, cobalt, nickel, manganese, chromium, titanium, vanadium, zirconium, molybdenum, tungsten, aluminum and niobium, and the resulting chemical reaction
  • the layer contains at least one of metal silicide, metal carbide, Si and C.
  • the active metal that chemically reacts with the Si surface of silicon carbide includes one or more of cobalt, nickel, manganese, chromium, titanium, vanadium, zirconium, molybdenum, tungsten, aluminum and niobium, and the resulting chemical reaction layer contains At least one of metal silicide, metal carbide, Si and C.
  • the active metal is one or more combination of metal element and metal alloy.
  • the abrasive grains include one or a combination of aluminum oxide, cubic boron nitride, diamond, silicon nitride and silicon carbide.
  • the high-speed friction is dry friction or wet friction
  • the gas environment of the high-speed friction is at least one of air environment, oxygen-enriched environment and inert gas environment
  • the temperature of the high-speed friction is room temperature or high temperature
  • the high-speed friction The speed of the friction is 1-50 m/s
  • the pressure of the high-speed friction is 0.1-1 Mpa.
  • the grinding and polishing equipment includes a high-speed rotating platform and a translation worktable.
  • the main shaft of the high-speed rotation platform is driven to rotate by a rotation mechanism, and the translation worktable is driven up and down by a transmission mechanism.
  • the silicon carbide is installed on the fixture of the translation workbench.
  • the present invention is a chemical-mechanical composite processing method for the surface of silicon carbide, which adopts the method of combining metal friction-induced chemical reaction and mechanical scraping to remove silicon carbide, and uses active metals to chemically react with silicon carbide under high-speed friction conditions, Generating a soft chemical reaction layer (metal silicide, metal carbide, Si and C, etc.), and then removing the generated chemical reaction layer by mechanical scraping of abrasive grains to achieve high-quality and efficient removal of silicon carbide.
  • a soft chemical reaction layer metal silicide, metal carbide, Si and C, etc.
  • a chemical-mechanical compound processing method for the surface of silicon carbide of the present invention has the following beneficial effects: 1. By combining chemical reaction and mechanical removal, a nearly non-damaged silicon carbide surface can be obtained, and the degree of damage is much smaller than that of grinding; 2. The silicon carbide removal efficiency of the present invention is much higher than that of chemical mechanical polishing; 3. The present invention effectively avoids the problem of waste liquid pollution in the grinding and polishing processes.
  • Fig. 1 is a schematic structural view of grinding and polishing equipment in the present invention, in which arrow a represents downward pressure, and arrow b represents the direction of relative movement;
  • Fig. 2 is a schematic diagram of a chemical-mechanical composite processing method for silicon carbide surfaces of the present invention.
  • grinding and polishing tool 1 silicon carbide 2; chemical reaction layer 3; spindle 101; fixture 102.
  • a chemical-mechanical composite processing method for the surface of silicon carbide comprising the following steps: as shown in Figure 1, the grinding and polishing tool 1 and the silicon carbide 2 are respectively installed on the machine table of the grinding and polishing equipment, and then the silicon carbide is 2 is pressed against the surface of the grinding and polishing tool 1, and finally the high-speed rotating grinding and polishing tool 1 and the silicon carbide 2 undergo relative motion, thereby generating high-speed friction, thereby forming a chemical-mechanical compound cycle processing method, and realizing the surface grinding and polishing of silicon carbide.
  • the grinding and polishing tool 1 includes composite active metals and abrasive grains, and the process of chemical-mechanical compound cycle is: the active metal in the grinding and polishing tool 1 reacts with the surface of silicon carbide 2 due to friction induction, and generates chemical The reaction layer 3 is then scraped off the chemical reaction layer 3 through the mechanical action of the abrasive grains, exposing the surface of the fresh silicon carbide 2, and the chemical reaction occurs again to form the chemical reaction layer 3, which is then mechanically scraped off by the abrasive grains again.
  • a processing method that forms a chemical-mechanical compound cycle is: the active metal in the grinding and polishing tool 1 reacts with the surface of silicon carbide 2 due to friction induction, and generates chemical The reaction layer 3 is then scraped off the chemical reaction layer 3 through the mechanical action of the abrasive grains, exposing the surface of the fresh silicon carbide 2, and the chemical reaction occurs again to form the chemical reaction layer 3, which is then mechanically scraped off by the abrasive grains again.
  • the grinding and polishing tool 1 is made by hot-pressing and sintering active metal and abrasive grains at a volume ratio of 7:1-1:1.
  • the active metal is a metal that chemically reacts with the C surface of the silicon carbide 2 or the Si surface of the silicon carbide 2 .
  • the active metals that chemically react with the C-face of silicon carbide 2 include one or more of iron, cobalt, nickel, manganese, chromium, titanium, vanadium, zirconium, molybdenum, tungsten, aluminum and niobium, when the high-speed friction gas
  • the generated chemical reaction layer contains metal silicide and C, or contains metal carbide and Si, or contains metal carbide and metal silicide.
  • the chemical reaction layer generated The reaction layer also contains silicon dioxide.
  • the active metals that chemically react with the Si surface of silicon carbide 2 include one or more of cobalt, nickel, manganese, chromium, titanium, vanadium, zirconium, molybdenum, tungsten, aluminum, and niobium.
  • the generated chemical reaction layer contains metal silicide and C, or contains metal carbide and Si, or contains metal carbide and metal silicide.
  • the generated chemical reaction layer also contains silica.
  • the active metal is one or more combination of metal element and metal alloy.
  • the abrasive grains include one or more combinations of aluminum oxide, cubic boron nitride, diamond, silicon nitride and silicon carbide.
  • the high-speed friction is dry friction or wet friction.
  • the gas environment for high-speed friction is at least one of air environment, oxygen-enriched environment and inert gas environment.
  • the temperature of high-speed friction is room temperature or high temperature, and the speed of high-speed friction is 1 ⁇ 50 m/ s, the pressure of high-speed friction is 0.1 ⁇ 1 Mpa.
  • the grinding and polishing equipment includes a high-speed rotating platform and a translational worktable installed above the high-speed rotating platform.
  • the tool 1 is installed on the main shaft 101 of the high-speed rotating platform, and the silicon carbide 2 is installed on the fixture 102 of the translation worktable. Grinding and polishing equipment is well known in the art.
  • Embodiment 1 a chemical-mechanical composite processing method for the surface of silicon carbide, comprising the following steps: Step 1, preparing grinding and polishing tools: first mix iron powder and brown corundum (mainly composed of alumina) according to the volume ratio of 3:2 After passing through a 100-mesh sieve, the obtained mixture is then hot-pressed and sintered: in a vacuum hot-pressing sintering machine, the temperature is raised to 300°C at a heating rate of 3°C/min, and then the temperature is raised to 900°C at a heating rate of 5°C/min.
  • Step 1 preparing grinding and polishing tools: first mix iron powder and brown corundum (mainly composed of alumina) according to the volume ratio of 3:2 After passing through a 100-mesh sieve, the obtained mixture is then hot-pressed and sintered: in a vacuum hot-pressing sintering machine, the temperature is raised to 300°C at a heating rate of 3°C/min, and then the temperature is raised to 900°C at a
  • Step 2 install the grinding and polishing tool: then install the grinding and polishing tool on the main shaft of the high-speed rotating platform of the grinding and polishing equipment, and put the The silicon carbide is installed on the fixture of the translational worktable; step 3, grinding and polishing process: finally, driven by the translational worktable, the silicon carbide is pressed to the surface of the grinding and polishing tool, so that the high-speed rotating grinding and polishing tool and the silicon carbide Relative motion occurs, which in turn produces high-speed friction, thereby forming a chemical-mechanical compound cycle processing method to realize surface grinding and polishing of silicon carbide.
  • high-speed friction is dry friction at room temperature and in an atmospheric environment.
  • the speed of high-speed friction is 10 m/s, the pressure is 0.2 Mpa, and the time is 10 min.
  • the chemical-mechanical composite cycle process is: the iron powder in the grinding and polishing tool reacts chemically with the C surface of silicon carbide due to friction induction, forming a chemical reaction layer containing FeSi, C and SiO2, and then passes through The mechanical action of the abrasive brown corundum scrapes off the chemical reaction layer, exposing the fresh silicon carbide surface, and a chemical reaction occurs again to form a chemical reaction layer, which is then mechanically scraped off by the abrasive grains again. This cycle of action forms a chemical-mechanical compound cycle processing Way.
  • Embodiment 2 a chemical-mechanical compound processing method for the surface of silicon carbide, comprising the following steps: Step 1, prepare grinding and polishing tools: firstly mix nickel powder and white corundum (mainly composed of alumina) according to the volume ratio of 3:1 After passing through a 100-mesh sieve, the obtained mixture is then hot-pressed and sintered: in a vacuum hot-pressing sintering machine, the temperature is raised to 300°C at a heating rate of 3°C/min, and then the temperature is raised to 900°C at a heating rate of 5°C/min.
  • Step 1 prepare grinding and polishing tools: firstly mix nickel powder and white corundum (mainly composed of alumina) according to the volume ratio of 3:1 After passing through a 100-mesh sieve, the obtained mixture is then hot-pressed and sintered: in a vacuum hot-pressing sintering machine, the temperature is raised to 300°C at a heating rate of 3°C/min, and then the temperature is raised to 900°C at a heating rate of 5
  • Step 2 install the grinding and polishing tool: then install the grinding and polishing tool on the main shaft of the high-speed rotating platform of the grinding and polishing equipment, and put the The silicon carbide is installed on the fixture of the translational worktable; step 3, grinding and polishing process: finally, driven by the translational worktable, the silicon carbide is pressed to the surface of the grinding and polishing tool, so that the high-speed rotating grinding and polishing tool and the silicon carbide Relative motion occurs, which in turn produces high-speed friction, thereby forming a chemical-mechanical compound cycle processing method to realize surface grinding and polishing of silicon carbide.
  • high-speed friction is dry friction at room temperature and in an atmospheric environment.
  • the speed of high-speed friction is 2 m/s, the pressure is 0.4 Mpa, and the time is 25 min.
  • the process of chemical-mechanical composite cycle is: the nickel powder in the grinding and polishing tool reacts with the C surface and Si surface of silicon carbide due to friction induction, forming a chemical reaction layer containing Ni2Si, C and SiO2 , and then the chemical reaction layer is scraped off by the mechanical action of the abrasive white corundum, exposing the fresh silicon carbide surface, and the chemical reaction occurs again to form the chemical reaction layer, which is then mechanically scraped off by the abrasive grains again.
  • This cycle acts to form a chemical-mechanical compound Cyclic processing.
  • a chemical-mechanical compound processing method for the surface of silicon carbide of the present invention has the following beneficial effects: 1. By combining chemical reaction and mechanical removal, a nearly non-damaged silicon carbide surface can be obtained, and the degree of damage is much smaller than that of grinding; 2. The silicon carbide removal efficiency of the present invention is much higher than that of chemical mechanical polishing; 3. The present invention effectively avoids the problem of waste liquid pollution in the grinding and polishing processes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

一种碳化硅表面化学机械复合加工方法,包括以下步骤:先将磨抛工具(1)和碳化硅(2)分别安装在磨抛设备的机台上,磨抛工具(1)包括复合而成的活性金属和磨粒,然后在外力作用下将碳化硅(2)压向磨抛工具(1)的表面,最后使得高速转动的磨抛工具(1)与碳化硅(2)发生相对运动,进而产生高速摩擦并诱导活性金属与碳化硅(2)发生化学反应,再以磨粒与碳化硅(2)间的机械作用去除反应层,从而形成化学-机械复合循环的加工方式,实现碳化硅(2)的表面研磨与抛光。

Description

一种碳化硅表面化学机械复合加工方法 技术领域
本发明涉及超精密加工技术领域,具体涉及的是一种碳化硅表面化学机械复合加工方法。
背景技术
作为第三代半导体材料,碳化硅(SiC)具有禁带宽、热导率高、热稳定性好、高饱和漂移度等优良的物理学性能,其在高频、高温、抗辐射、光电子等领域有着广泛的应用。碳化硅的工业应用对其表面质量要求极高,同时,碳化硅极高的硬度和化学惰性使其难以被加工,这些特点阻碍了其在工业领域广泛应用。
目前,单晶SiC的加工工序主要为线锯切割、磨削和化学机械抛光。化学机械抛光为碳化硅加工的最后一道工序,在适当压力的作用下,加入抛光液,利用抛光垫对碳化硅晶片的表面进行抛光,然而其面临的问题是:加工过程中的抛光液对环境容易造成污染,同时去除率较低,需要多道工序和大量的加工时间。
中国专利(授权公告号为CN101966689B)公开了一种大直径4H-SiC晶片碳面的表面抛光方法,该专利提供的酸性抛光液提升了单晶片的表面抛光效果,但是存在抛光效率低、抛光时间过长以及抛光液容易造成污染的问题。
中国专利(授权公告号为CN109702639B)公开了一种SiC单晶片的磨抛方法,该专利采用水基研磨液和抛光液对SiC单晶片进行研磨和抛光,但是依然存在去除效率低,加工时间长的问题,使用的研磨液和抛光液也容易对环境造成污染。
中国专利(授权公告号为CN108949036B)公开了一种碳化硅晶体的抛光方法,该专利虽然在一定程度上提升了抛光速率和效果,但是提升效果有限,依然存在抛光效率低、抛光时间过长以及抛光液容易造成污染的问题。
技术问题
本发明的目的在于提供一种碳化硅表面化学机械复合加工方法,解决了现有碳化硅加工效率低、碳化硅表面及亚表面损伤大和抛光液的环境污染等问题。
技术解决方案
为了达成上述目的,本发明的解决方案是:一种碳化硅表面化学机械复合加工方法,包括以下步骤:先将磨抛工具和碳化硅分别安装在磨抛设备的机台上,然后在外力作用下将碳化硅压向磨抛工具的表面,最后使得高速转动的磨抛工具与碳化硅发生相对运动,进而产生高速摩擦,从而形成化学-机械复合循环的加工方式,实现碳化硅的表面研磨与抛光;所述磨抛工具包括复合而成的活性金属和磨粒,所述化学-机械复合循环的过程为:磨抛工具中的活性金属与碳化硅的表面因摩擦诱导而发生化学反应,生成化学反应层,随后通过磨粒的机械作用刮除化学反应层,露出新鲜的碳化硅表面,再次产生化学反应生成化学反应层,进而再次被磨粒机械刮除,如此循环作用,形成所述化学-机械复合循环的加工方式。
所述磨抛工具由活性金属与磨粒按7:1~1:1的体积比热压烧结制得。
所述活性金属为与碳化硅的C面或者碳化硅的Si面发生化学反应的金属。
与碳化硅的C面发生化学反应的所述活性金属包括铁、钴、镍、锰、铬、钛、钒、锆、钼、钨、铝和铌中的一种或多种,生成的化学反应层含有金属硅化物、金属碳化物、Si和C中的至少一种。
与碳化硅的Si面发生化学反应的所述活性金属包括钴、镍、锰、铬、钛、钒、锆、钼、钨、铝和铌中的一种或多种,生成的化学反应层含有金属硅化物、金属碳化物、Si和C中的至少一种。
所述活性金属为金属单质和金属合金中的一种或者多种的组合。
所述磨粒包括氧化铝、立方氮化硼、金刚石、氮化硅和碳化硅中的一种或者多种的组合。
所述高速摩擦为干摩擦或者湿摩擦,所述高速摩擦的气体环境为空气环境、富氧环境和惰性气体环境中的至少一种,所述高速摩擦的温度为室温或者高温,所述高速摩擦的速度为1~50 m/s,所述高速摩擦的压强为0.1~1 Mpa。
所述磨抛设备包括高速转动平台和平动工作台,所述高速转动平台的主轴由转动机构驱动转动,所述平动工作台由传动机构驱动升降,所述磨抛工具安装在所述高速转动平台的主轴上,所述碳化硅安装在所述平动工作台的夹具上。
本发明一种碳化硅表面化学机械复合加工方法,采用的是金属摩擦诱导化学反应与机械刮除作用相结合去除碳化硅的方法,利用活性金属在高速摩擦的条件下与碳化硅发生化学反应,生成质地较软的化学反应层(金属硅化物、金属碳化物、Si和C等),再以磨粒的机械刮除作用去除生成的化学反应层,实现碳化硅的高质高效去除。
有益效果
本发明一种碳化硅表面化学机械复合加工方法,具有以下有益效果:1、通过化学反应与机械去除相结合的方式,能够得到近无损伤的碳化硅表面,损伤程度远小于磨削;2、本发明的碳化硅去除效率远远高于化学机械抛光;3、本发明有效地避免了磨削、抛光工序中的废液污染问题。
附图说明
图1为本发明中磨抛设备的结构示意图,图中箭头a表示向下的压力,箭头b表示相对运动方向;图2为本发明一种碳化硅表面化学机械复合加工方法示意图。
图中:磨抛工具1;碳化硅 2;化学反应层3;主轴101;夹具102。
本发明的实施方式
为了进一步解释本发明的技术方案,下面通过具体实施例来对本发明进行详细阐述。
一种碳化硅表面化学机械复合加工方法,包括以下步骤:如图1所示,先将磨抛工具1和碳化硅2分别安装在磨抛设备的机台上,然后在外力作用下将碳化硅2压向磨抛工具1的表面,最后使得高速转动的磨抛工具1与碳化硅2发生相对运动,进而产生高速摩擦,从而形成化学-机械复合循环的加工方式,实现碳化硅的表面研磨与抛光;磨抛工具1包括复合而成的活性金属和磨粒,化学-机械复合循环的过程为:磨抛工具1中的活性金属与碳化硅2的表面因摩擦诱导而发生化学反应,生成化学反应层3,随后通过磨粒的机械作用刮除化学反应层3,露出新鲜的碳化硅2的表面,再次产生化学反应生成化学反应层3,进而再次被磨粒机械刮除,如此循环作用,形成化学-机械复合循环的加工方式。
磨抛工具1由活性金属与磨粒按7:1~1:1的体积比热压烧结制得。
活性金属为与碳化硅2的C面或者碳化硅2的Si面发生化学反应的金属。
与碳化硅2的C面发生化学反应的活性金属包括铁、钴、镍、锰、铬、钛、钒、锆、钼、钨、铝和铌中的一种或多种,当高速摩擦的气体环境为惰性气体环境时,生成的化学反应层含有金属硅化物和C,或者含有金属碳化物和Si,或者含有金属碳化物和金属硅化物,当高速摩擦的气体环境含氧气时,生成的化学反应层还含有二氧化硅。
与碳化硅2的Si面发生化学反应的活性金属包括钴、镍、锰、铬、钛、钒、锆、钼、钨、铝和铌中的一种或多种,当高速摩擦的气体环境为惰性气体环境时,生成的化学反应层含有金属硅化物和C,或者含有金属碳化物和Si,或者含有金属碳化物和金属硅化物,当高速摩擦的气体环境含氧气时,生成的化学反应层还含有二氧化硅。
活性金属为金属单质和金属合金中的一种或者多种的组合。
磨粒包括氧化铝、立方氮化硼、金刚石、氮化硅和碳化硅中的一种或者多种的组合。
高速摩擦为干摩擦或者湿摩擦,高速摩擦的气体环境为空气环境、富氧环境和惰性气体环境中的至少一种,高速摩擦的温度为室温或者高温,高速摩擦的速度为1~50 m/s,高速摩擦的压强为0.1~1 Mpa。
如图2所示,磨抛设备包括高速转动平台和安装在高速转动平台上方的平动工作台,高速转动平台的主轴101由转动机构驱动转动,平动工作台由传动机构驱动升降,磨抛工具1安装在高速转动平台的主轴101上,碳化硅2安装在平动工作台的夹具102上。磨抛设备为本领域公知的设备。
实施例1,一种碳化硅表面化学机械复合加工方法,包括以下步骤:步骤1、准备磨抛工具:先将铁粉和棕刚玉(主要成分为氧化铝)按照3:2的体积比混合均匀后过100目筛,然后将得到的混合物进行热压烧结:在真空热压烧结机中以3℃/min的升温速度升温至300℃,接着以5℃/min的升温速度升温至900℃,然后保温30 min,最后随炉冷却至室温,烧结成型得到磨抛工具;步骤2、安装磨抛工具:然后将磨抛工具安装在磨抛设备的高速转动平台的主轴上,将待磨抛的碳化硅安装在平动工作台的夹具上;步骤3、磨抛过程:最后在平动工作台的带动下,将碳化硅压向磨抛工具的表面,使得高速转动的磨抛工具与碳化硅发生相对运动,进而产生高速摩擦,从而形成化学-机械复合循环的加工方式,实现碳化硅的表面研磨与抛光。
在本实施例中,高速摩擦为在室温、大气环境下进行的干摩擦,高速摩擦的速度为10 m/s,压强为0.2 Mpa,时间为10 min。
在本实施例中,化学-机械复合循环的过程为:磨抛工具中的铁粉与碳化硅的C面因摩擦诱导而发生化学反应,生成含FeSi、C和SiO2的化学反应层,随后通过磨粒棕刚玉的机械作用刮除化学反应层,露出新鲜的碳化硅表面,再次产生化学反应生成化学反应层,进而再次被磨粒机械刮除,如此循环作用,形成化学-机械复合循环的加工方式。
实施例2,一种碳化硅表面化学机械复合加工方法,包括以下步骤:步骤1、准备磨抛工具:先将镍粉和白刚玉(主要成分为氧化铝)按照3:1的体积比混合均匀后过100目筛,然后将得到的混合物进行热压烧结:在真空热压烧结机中以3℃/min的升温速度升温至300℃,接着以5℃/min的升温速度升温至900℃,然后保温30 min,最后随炉冷却至室温,烧结成型得到磨抛工具;步骤2、安装磨抛工具:然后将磨抛工具安装在磨抛设备的高速转动平台的主轴上,将待磨抛的碳化硅安装在平动工作台的夹具上;步骤3、磨抛过程:最后在平动工作台的带动下,将碳化硅压向磨抛工具的表面,使得高速转动的磨抛工具与碳化硅发生相对运动,进而产生高速摩擦,从而形成化学-机械复合循环的加工方式,实现碳化硅的表面研磨与抛光。
在本实施例中,高速摩擦为在室温、大气环境下进行的干摩擦,高速摩擦的速度为2 m/s,压强为0.4 Mpa,时间为25 min。
在本实施例中,化学-机械复合循环的过程为:磨抛工具中的镍粉与碳化硅的C面和Si面因摩擦诱导而发生化学反应,生成含Ni2Si、C和SiO2的化学反应层,随后通过磨粒白刚玉的机械作用刮除化学反应层,露出新鲜的碳化硅表面,再次产生化学反应生成化学反应层,进而再次被磨粒机械刮除,如此循环作用,形成化学-机械复合循环的加工方式。
本发明一种碳化硅表面化学机械复合加工方法,具有以下有益效果:1、通过化学反应与机械去除相结合的方式,能够得到近无损伤的碳化硅表面,损伤程度远小于磨削;2、本发明的碳化硅去除效率远远高于化学机械抛光;3、本发明有效地避免了磨削、抛光工序中的废液污染问题。
上述实施例和图式并非限定本发明的产品形态和式样,任何所属技术领域的普通技术人员对其所做的适当变化或修饰,皆应视为不脱离本发明的专利范畴。

Claims (7)

  1. 一种碳化硅表面化学机械复合加工方法,其特征在于:包括以下步骤:先将磨抛工具和碳化硅分别安装在磨抛设备的机台上,然后在外力作用下将碳化硅压向磨抛工具的表面,最后使得高速转动的磨抛工具与碳化硅发生相对运动,进而产生高速摩擦并诱导活性金属与碳化硅发生化学反应,再以机械作用去除反应层,从而形成化学-机械复合循环的加工方式,实现碳化硅的表面研磨与抛光;所述磨抛工具包括复合而成的活性金属和磨粒,所述化学-机械复合循环的过程为:磨抛工具中的活性金属与碳化硅的表面因摩擦诱导而发生化学反应,生成化学反应层,随后通过磨粒的机械作用刮除化学反应层,露出新鲜的碳化硅表面,再次产生化学反应生成化学反应层,进而再次被磨粒机械刮除,如此循环作用,形成所述化学-机械复合循环的加工方式;所述磨抛工具由活性金属与磨粒按7:1~1:1的体积比热压烧结制得;所述活性金属为与碳化硅的C面或者碳化硅的Si面发生化学反应的金属。
  2. 根据权利要求1所述的一种碳化硅表面化学机械复合加工方法,其特征在于:与碳化硅的C面发生化学反应的所述活性金属包括铁、钴、镍、锰、铬、钛、钒、锆、钼、钨、铝和铌中的一种或多种。
  3. 根据权利要求1所述的一种碳化硅表面化学机械复合加工方法,其特征在于:与碳化硅的Si面发生化学反应的所述活性金属包括钴、镍、锰、铬、钛、钒、锆、钼、钨、铝和铌中的一种或多种。
  4. 根据权利要求1所述的一种碳化硅表面化学机械复合加工方法,其特征在于:所述活性金属为金属单质和金属合金中的一种或者多种的组合。
  5. 根据权利要求1所述的一种碳化硅表面化学机械复合加工方法,其特征在于:所述磨粒包括氧化铝、立方氮化硼、金刚石、氮化硅和碳化硅中的一种或者多种的组合。
  6. 根据权利要求1所述的一种碳化硅表面化学机械复合加工方法,其特征在于:所述高速摩擦为干摩擦或者湿摩擦,所述高速摩擦的气体环境为空气环境、富氧环境和惰性气体环境中的至少一种,所述高速摩擦的温度为室温或者高温,所述高速摩擦的速度为1~50 m/s,所述高速摩擦的压强为0.1~1 Mpa。
  7. 根据权利要求1所述的一种碳化硅表面化学机械复合加工方法,其特征在于:所述磨抛设备包括高速转动平台和平动工作台,所述高速转动平台的主轴由转动机构驱动转动,所述平动工作台由传动机构驱动升降,所述磨抛工具安装在所述高速转动平台的主轴上,所述碳化硅安装在所述平动工作台的夹具上。
PCT/CN2022/129543 2022-01-25 2022-11-03 一种碳化硅表面化学机械复合加工方法 WO2023142579A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210086357.0 2022-01-25
CN202210086357.0A CN114406825B (zh) 2022-01-25 2022-01-25 一种碳化硅表面化学机械复合加工方法

Publications (1)

Publication Number Publication Date
WO2023142579A1 true WO2023142579A1 (zh) 2023-08-03

Family

ID=81278178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129543 WO2023142579A1 (zh) 2022-01-25 2022-11-03 一种碳化硅表面化学机械复合加工方法

Country Status (2)

Country Link
CN (1) CN114406825B (zh)
WO (1) WO2023142579A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114406825B (zh) * 2022-01-25 2023-06-27 华侨大学 一种碳化硅表面化学机械复合加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972979A (zh) * 2010-08-30 2011-02-16 南京航空航天大学 一种金刚石表面化学机械复合加工方法与装置
JP2014187131A (ja) * 2013-03-22 2014-10-02 Osaka Univ 陽極酸化を援用した形状創成エッチング方法、研磨方法及び高精度形状創成方法
CN110774118A (zh) * 2019-10-23 2020-02-11 华侨大学 一种大尺寸单晶金刚石的磨削方法
CN113524025A (zh) * 2021-07-30 2021-10-22 河南科技学院 一种SiC单晶片抛光方法
CN114406825A (zh) * 2022-01-25 2022-04-29 华侨大学 一种碳化硅表面化学机械复合加工方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026031A1 (ja) * 2015-08-10 2017-02-16 株式会社ナノ炭素研究所 球形ダイヤモンドおよびその製造方法
CN110774153B (zh) * 2019-10-23 2022-02-08 华侨大学 一种大尺寸单晶金刚石的抛光方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972979A (zh) * 2010-08-30 2011-02-16 南京航空航天大学 一种金刚石表面化学机械复合加工方法与装置
JP2014187131A (ja) * 2013-03-22 2014-10-02 Osaka Univ 陽極酸化を援用した形状創成エッチング方法、研磨方法及び高精度形状創成方法
CN110774118A (zh) * 2019-10-23 2020-02-11 华侨大学 一种大尺寸单晶金刚石的磨削方法
CN113524025A (zh) * 2021-07-30 2021-10-22 河南科技学院 一种SiC单晶片抛光方法
CN114406825A (zh) * 2022-01-25 2022-04-29 华侨大学 一种碳化硅表面化学机械复合加工方法

Also Published As

Publication number Publication date
CN114406825A (zh) 2022-04-29
CN114406825B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
JP7241434B2 (ja) 大型単結晶ダイヤモンドの研削方法
CN105401034B (zh) 高密度聚晶超硬材料及其制备方法
WO2023142579A1 (zh) 一种碳化硅表面化学机械复合加工方法
WO2008117883A1 (ja) 合成砥石
CN109129028B (zh) 一种高效的碳化硅晶片的加工方法
Qi et al. Vacuum brazing diamond grits with Cu-based or Ni-based filler metal
JP2004181584A (ja) 研磨用複合材料及び砥石、研削材料、研磨材料並びに電子部品の加工方法及びシリコンの加工方法
JP2019127415A (ja) 単結晶4H−SiC成長用種結晶及びその加工方法
CN105833796A (zh) 一种透明立方氮化硼—金刚石聚晶的制备方法
CN103381573B (zh) 一种SiC单晶片研磨工序用固结磨料化学机械研磨盘
CN1098975A (zh) 用低氧化硼研磨的方法及低氧化硼制品和所使用的组合物
CN105922146A (zh) 金属结合剂金刚石砂轮片的加工方法
Xue et al. Catalytic mechanism of tribochemical mechanical polishing on (0001) C-face of single crystal 6H-SiC substrate
CN102658529A (zh) 一种超细磨粒纳米磨削制备纳米颗粒方法
CN1947947A (zh) 用于大尺寸金刚石膜平坦化磨削的砂轮制作方法
Zhou et al. Mechanochemical grinding diamond film using titanium-coated diamond active abrasives prepared by vacuum micro-evaporation coating
JP3734722B2 (ja) ダイヤモンド薄膜の化学機械研磨方法
CN107042467A (zh) 纳米深度损伤层机械化学磨削方法
CN108098569A (zh) 一种抛光蓝宝石晶片的内含钕化物软质磨料固着磨具及其制作方法
JP2013052488A (ja) ダイヤモンド材料研磨用の研磨盤及びダイヤモンド材料の研磨方法
CN110744465A (zh) 一种蓝宝石研磨盘的制备方法
Huang et al. A novel dry processing technique to construct a high-performance superfine diamond grinding wheel with thermal and material characterizations
CN110253147A (zh) 一种激光辅助水合加工抛光方法
CN110539240A (zh) 一种碳化硅单晶衬底的加工方法
JP2019055897A (ja) 炭化珪素部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923376

Country of ref document: EP

Kind code of ref document: A1