WO2021077631A1 - 散热器和空调器 - Google Patents

散热器和空调器 Download PDF

Info

Publication number
WO2021077631A1
WO2021077631A1 PCT/CN2020/070823 CN2020070823W WO2021077631A1 WO 2021077631 A1 WO2021077631 A1 WO 2021077631A1 CN 2020070823 W CN2020070823 W CN 2020070823W WO 2021077631 A1 WO2021077631 A1 WO 2021077631A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
side wall
heat dissipation
base
optionally
Prior art date
Application number
PCT/CN2020/070823
Other languages
English (en)
French (fr)
Inventor
徐佳
王定远
王飞
董旭
王大伟
裴玉哲
Original Assignee
青岛海尔空调器有限总公司
青岛海尔智能技术研发有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔智能技术研发有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2021077631A1 publication Critical patent/WO2021077631A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor

Definitions

  • This application relates to the field of heat dissipation technology, such as a radiator and an air conditioner.
  • the inverter module is an important component in the inverter air conditioner.
  • the chip design is more compact, the density of components continues to increase, and the volume of components also tends to be miniaturized. Therefore, the heat dissipation problem of the inverter module seriously affects the reliability of the air conditioner.
  • the heat dissipation of the frequency conversion module of the external unit of the air conditioner is generally an extruded heat sink.
  • the heat-conducting bases of the current extruded heat sinks are all connected with heat-dissipating fins, which cannot be assembled with other heat-dissipating components.
  • the embodiments of the present disclosure provide a radiator and an air conditioner to solve the technical problem that the extruded profile radiator cannot be assembled with other heat dissipation elements.
  • the heat sink includes: a heat-conducting base, including a first part and a second part, wherein the first part is provided with a first through hole; and a heat-dissipating fin connected to the second part of the heat-conducting base .
  • the air conditioner includes the aforementioned radiator.
  • the heat-conducting substrate of the heat sink provided by the embodiment of the present disclosure includes a first part and a second part, wherein the first part is provided with a first through hole, and the first through hole can be used for connection and assembly with other heat dissipation elements, which improves the heat dissipation from other heat dissipation elements.
  • FIG. 1 is a schematic structural diagram of a heat sink provided by an embodiment of the present disclosure
  • FIG. 2 is another schematic diagram of the structure of the heat sink provided by the embodiment of the present disclosure.
  • first heat dissipation element 11: first part; 111: first through hole; 112: base; 113: first side wall; 114: second side wall; 115: boss; 12: second part; 121: Radiating fins; 2: second radiating element; 21: evaporating end; 22: condensing end; 23: first communicating pipe; 24: second communicating pipe; 211: groove; 212: second through hole.
  • first, second, etc. are only used to distinguish one element from another element, and do not require or imply any actual relationship or order between these elements.
  • first element can also be called the second element, and vice versa.
  • the terms “including”, “including” or any other variations thereof are intended to cover non-exclusive inclusion, so that a structure, device, or device including a series of elements includes not only those elements, but also other elements that are not explicitly listed. Elements, or also include elements inherent to such structures, devices, or equipment. If there are no more restrictions, the element defined by the sentence "including one" does not exclude the existence of other identical elements in the structure, device or equipment including the element.
  • the various embodiments herein are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same or similar parts between the various embodiments can be referred to each other.
  • An embodiment of the present disclosure provides a heat sink, including a heat-conducting base, including a first part and a second part, wherein the first part is provided with a first through hole; and a heat-dissipating fin connected to the second part of the heat-conducting base.
  • the thermally conductive substrate includes a first portion 11 and a second portion 12.
  • the first portion 11 and the second portion 12 are connected to form a thermally conductive substrate in an achievable connection manner, such as welding; optionally, the first portion 11 and the second part 12 are integrally formed to improve the heat conduction effect between the first part 11 and the second part 12.
  • the second part 12 of the heat-conducting base is provided with heat-dissipating fins 121.
  • the heat-conducting base and the heat-dissipating fins 121 are integrally formed.
  • the first part 11 of the thermally conductive base is not provided with fins.
  • the first part 11 is provided with a first through hole 111.
  • the first through hole 111 penetrates through two opposite surfaces of the first part 11 of the heat conducting base, and the first through hole 111 is configured to allow a screw to pass through.
  • the inner surface of the first through hole 111 is a smooth surface, or is provided with an internal thread that matches the thread of the screw surface.
  • the number of the first through holes 111 may be one or more, for example, the number of the first through holes is 1-10, such as 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 and so on.
  • a plurality of first through holes are arranged equidistantly, as shown in FIG. 1, the number of the first through holes is four.
  • the heat-conducting substrate and the heat-dissipating fins 121 constitute the first heat-dissipating element 1, and the first heat-dissipating element 1 is provided with one or more first through holes 111, which can be used to penetrate through connecting parts such as screws, and connect and assemble with other heat-dissipating elements. Improve the stability of the connection with other heat dissipation components.
  • the first heat dissipation element 1 is an extruded profile heat dissipation element.
  • the heat dissipation performance of the heat sink is improved.
  • the heat dissipation element to be connected may be a non-extruded profile heat dissipation element, which improves the heat dissipation diversity of the heat sink.
  • the first part 11 is in direct contact with the chip to receive heat from the chip
  • the second part 12 may be arranged in the fan compartment of the outdoor unit of the air conditioner, and the wind power of the fan is used to
  • the heat of the heat dissipation fin 121 of the first heat dissipation element 1 is dissipated, and the heat dissipation effect of the heat dissipation fin 121 of the first heat dissipation element 1 is improved.
  • the heat sink provided by the embodiment of the present disclosure further includes a substrate.
  • the heat sink provided by the embodiment of the present disclosure further includes a separate substrate.
  • the mounting method of the first heat dissipation element 1 provided by the embodiment of the present disclosure includes: soldering one or more chips on a computer board; connecting the computer board with the chips welded to the substrate to obtain a sandwich including the computer board, the chip, and the substrate in turn. The pre-assembled parts of the structure, this step can be completed on the assembly line of the chip welding.
  • the assembly line requires high precision, improves the bonding degree of the substrate and the chip, and improves the heat conduction effect of the substrate ; Connect the pre-assembled part with the aforementioned heat-conducting base to complete the installation of the first heat dissipation element 1.
  • the aforementioned pre-assembled part is connected with the first part 11 of the heat-conducting base.
  • the number of chips may be four.
  • a thermal conductive sheet or silicone grease is arranged between the chip and the substrate to improve the efficiency of heat transfer between the chip and the substrate.
  • the area of the substrate is the same as the area of the first part 11 of the thermally conductive base.
  • the first part 11 of the thermally conductive substrate includes a base 112, a first side wall 113 bent and extended along a first edge of the base 112, and a second side wall 114 bent and extended along a second edge of the base 112, wherein , The first edge is opposite to the second edge, and the first side wall 113 and the second side wall 114 extend in the same direction.
  • the outer surface of the base 112 is flat, which improves the heat conduction effect with the chip or the substrate.
  • the base 112, the first side wall 113, and the second side wall 114 form an inverted U-shaped receiving groove, and the first side wall 113 and the second side wall 114 are configured as the second heat dissipation element to be connected Limiting and clamping to improve the connection stability of the second heat dissipation element to be connected in the first part 11; optionally, the base 112, the first side wall 113, and the second side wall 114 are integrally formed, and the first part 11
  • the side wall 113 and the second side wall 114 can also perform a heat conduction function, transfer the heat of the first part 11 to the second heat dissipation element to be connected, increase the heat conduction area of the first part 11 and improve the heat conduction effect of the first part 11.
  • the thickness of the base 112 is the same as the thickness of the first side wall 113 and the second side wall 114 to improve the uniformity of heat conduction of the first part 11.
  • the thickness of the base 112 is greater than the thickness of the first side wall 113, and the thickness of the base 112 is greater than the thickness of the second side wall 114, so as to improve the heat uniformity of the second heat dissipation element to be connected.
  • the thickness of the first side wall 113 and the thickness of the second side wall 114 are the same.
  • the first side wall 113 is perpendicular to the base 112
  • the second side wall 114 is perpendicular to the base 112, which improves the limiting effect of the second heat dissipation element to be connected.
  • the base 112 is provided with a boss 115, and the first through hole 111 is provided on the boss 115.
  • the base 112 includes a heat-conducting surface in thermal contact with the chip or the aforementioned substrate, and a heat-conducting surface opposite to the heat-conducting surface.
  • the boss 115 is disposed on the heat-conducting surface, that is, disposed at the bottom of the inverted U-shaped receiving groove.
  • the connected second heat dissipation element plays a role of limiting, which improves the stability of the connection between the first heat dissipation element 1 and the second heat dissipation element.
  • the length of the boss 115 is the same as the length of the base 112.
  • One or more first through holes 111 are provided in the portion of the first portion 11 where the boss 115 is provided, which increases the effective depth of the first through holes 111 and improves the connection stability of the second heat dissipation element to be connected.
  • the boss 115 and the first part 11 are integrally formed, which improves the heat conduction effect of the boss 115 part.
  • the boss 115 is parallel to the first side wall 113, and the boss 115 is parallel to the second side wall 114.
  • the boss 115 is arranged in the middle of the heat transfer surface, that is, the first distance between the boss 115 and the first side wall 113 is equal to the second distance between the boss 115 and the second side wall 114, which improves
  • the boss 115 limits the position of the second heat dissipation element to be connected and the stability of the connection.
  • the height of the boss 115 is less than or equal to the height of the first side wall 113 or the second side wall 114.
  • the vertical distance between the connecting end of the boss 115 and the heat transfer surface and the free end of the boss 115 is defined as the height of the boss 115
  • the bent connecting end of the first side wall 113 and the base 112 is defined to the first side wall 113
  • the vertical distance between the free ends of the first side wall 113 is the height of the first side wall 113, and defines the distance between the bent connecting end of the second side wall 114 and the base 112 to the second side wall 114 and the bent connecting end of the second part 12
  • the distance is the height of the second side wall 114, the height of the boss 115 is less than or equal to the height of the first side wall 113, and the height of the boss 115 is less than or equal to the height of the second side wall 114, which improves the connection between the first part 11 and the The connection stability of the second heat dissipation element.
  • the height of the first side wall 113 is greater than or equal to the height of the second side wall 114.
  • the height of the first side wall 113 is greater than or equal to the height of the second side wall 114, which improves the limiting effect of the second heat dissipation element to be connected.
  • the first side wall 113 and the second side wall 114 are parallel.
  • the second part 12 of the thermally conductive base is connected to the second side wall 114 by bending.
  • the second part 12 of the heat-conducting base body is bent and connected to the second side wall 114, and the first part 11 and the second part 12 of the heat-conducting base body form a step shape.
  • the first part 11 of the heat-conducting base body is a high-level step.
  • the second part 12 is a low-level step.
  • One or more heat dissipation fins 121 are connected to the second part 12, and the extension direction of the heat dissipation fins 121 is the same as the extension direction of the first side wall 113 and the second side wall 114.
  • the thickness of the heat dissipation fin 121 is smaller than the thickness of the first side wall 113, and the thickness of the heat dissipation fin 121 is smaller than the thickness of the second side wall 114.
  • the vertical distance between the connecting end of the heat dissipation fin 121 and the second part 12 and the free end of the heat dissipation fin 121 is defined as the height of the heat dissipation fin 121, and the height of the heat dissipation fin 121 is greater than that of the first side wall 113 and the second side wall 113.
  • the height of the side wall 114 is the vertical distance between the connecting end of the heat dissipation fin 121 and the second part 12 and the free end of the heat dissipation fin 121.
  • the aforementioned radiator further includes: an evaporating end provided with a first working fluid flow path, and a second through hole corresponding to the first through hole; and a condensing end provided with a second working fluid flow path;
  • the connecting pipeline connects the first working fluid flow path and the second working fluid flow path.
  • the communication pipeline includes a first communication pipeline and a second communication pipeline
  • the first communication pipeline communicates the first working fluid flow path and the second working fluid flow path
  • the second communication pipeline communicates the first working fluid The flow path and the second working fluid flow path.
  • the first working fluid flow path in the evaporating end, the second working fluid flow path in the condensing end, the first communication pipeline and the second communication pipeline constitute a working fluid circuit, and the working fluid circuit is filled with a phase change working fluid.
  • the heat dissipating element composed of the evaporating end, the condensing end and the communicating pipeline can be used as the second heat dissipating element, which is connected with the aforementioned first heat dissipating element.
  • the heat dissipation method of the second heat dissipation element 2 may be: the evaporating end 21 receives the heat from the first part 11 of the first heat dissipation element 1, and is cooled by a fan or natural wind. Part of the heat is dissipated, and the undissipated heat is absorbed by the working fluid in the first working fluid flow path of the evaporating end 21. After being heated, the working fluid quickly vaporizes and takes the heat away, and enters the first connecting pipe 23 of the condensing end 22 through the first connecting pipe 23. Two working fluid flow paths, the condensing end 22 can perform air cooling and natural convection at the same time.
  • the gaseous working fluid in the second working fluid flow path dissipates heat through the condensing end 22. After the working fluid decreases in temperature, it becomes liquid and liquid. The working fluid flows back into the first working fluid flow path of the evaporating end 21 through the second communication pipe 24 to perform the next cycle of absorbing heat and turning into a gaseous state.
  • the first working fluid flow path, the second working fluid flow path, the first communication pipe 23 and the second communication pipe 24 constitute a working fluid circuit, and the working fluid circuit is filled with There is a phase change working fluid.
  • the second heat dissipation element 2 provided in the embodiment of the present disclosure may be prepared through preparation processes such as welding, vacuuming, and infusion of working fluid.
  • This embodiment does not specifically limit the type of working fluid, for example, it may be a fluid that can undergo phase change, such as a refrigerant.
  • This embodiment does not specifically limit the filling amount of the working fluid in the working fluid circuit.
  • the material of the first communication pipe 23 is metal, and similarly, the material of the second communication pipe 24 is metal.
  • the second heat dissipation element 2 is composed of the evaporation end 21, the condensation end 22 and the communication pipeline, which can be connected with the aforementioned first heat dissipation element 1 to obtain a radiator containing both the first heat dissipation element 1 and the second heat dissipation element 2, which improves The heat dissipation effect of the radiator is improved.
  • the evaporation end 21 of the second heat dissipation element 2 is provided with a second through hole 212 corresponding to the first through hole 111, and the number of the second through hole 212 is the same as the number of the first through hole 111.
  • the first through hole 111 and the second through hole 212 are configured as screws and other connecting members to penetrate through, connect the first portion 11 of the first heat dissipation element 1 and the evaporation end 21 of the second heat dissipation element 2 to obtain the first heat dissipation element at the same time.
  • the second through hole 212 is provided with an internal thread that matches with the thread of the screw.
  • the second through hole 212 avoids the arrangement of the first working fluid flow path.
  • the length of the screw is greater than the sum of the thickness of the chip and the thickness of the first portion 11 of the first heat dissipation element 1.
  • the evaporation end 21 is connected to the first part 11 of the first heat dissipation element 1 through the first through hole 111.
  • the first part 11 is in the shape of a receiving groove formed by the base 112, the first side wall 113 and the second side wall 114
  • the evaporating end 21 is clamped in the receiving groove, which improves the limiting effect of the first side wall 113 and the second side wall 114 on the evaporating end.
  • the thickness of the evaporating end 21 is less than or equal to the height of the second side wall 114, and the thickness of the evaporating end 21 is less than or equal to the thickness of the second side wall 114, which improves the pairing of the first side wall 113 and the second side wall 114.
  • the limiting function of the evaporation end 21 is optionally, the upper surface of the evaporation end 21 is coated with silicone grease, which improves the heat conduction effect between the first part 11 and the evaporation end 21.
  • the material of the first heat dissipation element 1 and the material of the evaporation end 21 are the same, which improves the heat conduction effect between the evaporation ends 21 of the first heat dissipation element 1 and the second heat dissipation element 2.
  • the first part 11 of the heat-conducting substrate includes a base 112, the base 112 is provided with a boss 115, and the evaporation end 21 is also provided with a groove 211, which is clamped with the boss 115.
  • the evaporation end 21 of the second heat dissipation element 2 is provided with a groove 211 that matches with the boss 115 of the first part 11 of the first heat dissipation element 1, and the boss 115 provided at the base of the first part 11 can be clamped to the evaporation end In the groove 211 of 21, a clamping connection is formed, which improves the connection stability of the evaporation end 21 of the first heat dissipation element 1 and the second heat dissipation element 2, as shown in FIG. 2.
  • the second through hole 212 of the evaporation end 21 is disposed at the groove 211, which improves the connection stability of the evaporation end 21 of the first heat dissipation element 1 and the second heat dissipation element 2.
  • condensation end 22 of the second heat dissipation element 2 is a temperature equalizing plate.
  • a micro-channel type second working fluid flow path is arranged in the uniform temperature plate, which has a large heat dissipation area and improves the heat dissipation effect of the condensing end 22.
  • the embodiments of the present disclosure also provide an air conditioner including the aforementioned radiator.
  • the aforementioned radiator is installed on the outdoor unit of the air conditioner to dissipate heat from the chips on the computer board of the outdoor unit.
  • the first heat dissipation element 1 is in direct contact with the chip, and receives heat from the chip in the form of contact and heat conduction. Part of the heat of the first heat dissipation element 1 is dissipated through the heat dissipation fins 121, and the other part of the heat is transferred to the second heat dissipation element 2.
  • the second heat dissipation element 2 further dissipates heat.
  • the second part 12 of the first heat dissipation element 1 is arranged between the evaporating end 21 and the condensation end 22 of the second heat dissipation element 2, which facilitates the use of a fan of the outdoor unit to dissipate heat from the heat dissipation fins 121, thereby improving the first heat dissipation element.
  • the condensation end 22 of the second heat dissipation element 2 is arranged in the fan compartment of the outdoor unit; optionally, the installation height of the evaporation end 21 of the second heat dissipation element 2 in the outdoor unit is lower than that of the condensation end 22 in the outdoor The installation height inside the machine facilitates the working fluid in the second heat dissipation element 2 to form a loop between the evaporating end 21 and the condensing end 22, which increases the flow rate of the working fluid and improves the heat dissipation efficiency of the second heat dissipation element 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种散热器和包含有前述散热器的空调器,涉及散热技术领域, 该散热器包括:导热基体,包括第一部分(11)和第二部分(12),其中,所述第一部分(11)设置有第一贯穿孔(111);散热翅片(121),与所述导热基体的第二部分(11)连接,第一贯穿孔(111)可用于与其他散热元件进行连接、组装,以提高散热器的散热性能。

Description

散热器和空调器
本申请基于申请号为201911007089.3、申请日为2019年10月22日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及散热技术领域,例如涉及一种散热器和空调器。
背景技术
变频模块时变频空调器中的重要元器件,压缩机频率越高,变频模块发热越多。其次,芯片设计上更加紧凑,元器件的密度不断增加,且元器件的体积也趋于微小化。因此,变频模块的散热问题严重影响了空调器的可靠性。
目前,空调器外机变频模块的散热一般采用的是挤压型材散热器。在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
目前的挤压型材散热器的导热基体均连接有散热翅片,无法与其他散热元件进行组装。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种散热器和空调器,以解决挤压型材散热器无法与其他散热元件进行组装的技术问题。
在一些实施例中,所述散热器包括:导热基体,包括第一部分和第二部分,其中,所述第一部分设置有第一贯穿孔;散热翅片,与所述导热基体的第二部分连接。
在一些实施例中,所述空调器包括如前述的散热器。
本公开实施例提供的散热器和空调器,可以实现以下技术效果:
本公开实施例提供的散热器的导热基体包括第一部分和第二部分,其中,第一部分设置有第一贯穿孔,第一贯穿孔可用于与其他散热元件进行连接、组装,提高了与其他散热元件的连接稳定性。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不 构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的散热器的结构示意图;
图2是本公开实施例提供的散热器的另一结构示意图。
附图标记:
1:第一散热元件;11:第一部分;111:第一贯穿孔;112:基底;113:第一侧壁;114:第二侧壁;115:凸台;12:第二部分;121:散热翅片;2:第二散热元件;21:蒸发端;22:冷凝端;23:第一连通管道;24:第二连通管道;211:凹槽;212:第二贯穿孔。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本文中,术语“第一”、“第二”等仅被用来将一个元素与另一个元素区分开来,而不要求或者暗示这些元素之间存在任何实际的关系或者顺序。实际上第一元素也能够被称为第二元素,反之亦然。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的结构、装置或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种结构、装置或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的结构、装置或者设备中还存在另外的相同要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本公开实施例提供了一种散热器,包括:导热基体,包括第一部分和第二部分,其中,第一部分设置有第一贯穿孔;散热翅片,与导热基体的第二部分连接。
如图1所示,导热基体包括第一部分11和第二部分12,可选地,第一部分11与第二部分12以可实现的连接方式连接成导热基体,如焊接;可选地,第一部分11与第二部分12一体成型,以提高第一部分11与第二部分12之间的导热效果。导热基体的第二部分12设置有散热翅片121,可选地,导热基体与散热翅片121一体成型。可选地,导热基体的第一部分11不设置翅片。
第一部分11设置有第一贯穿孔111,可选地,第一贯穿孔111贯穿导热基体的第一部分11的相对的两个表面,第一贯穿孔111被配置为使螺钉穿过。可选地,第一贯穿孔111的内表面为光滑表面,或设置有与螺钉表面的螺纹相匹配的内螺纹。可选地,第一贯 穿孔111的数量可以为1个或多个,如第一贯穿孔的数量为1-10,如1、2、3、4、5、6、7、8、9或10个等。可选地,多个第一贯穿孔等距排列,如图1所示,第一贯穿孔的数量为4。
定义导热基体和散热翅片121构成第一散热元件1,第一散热元件1设置有一个或多个第一贯穿孔111,可用于螺钉等连接件的贯穿,与其他散热元件进行连接、组装,提高了与其他散热元件的连接稳定性。可选地,第一散热元件1为挤压型材散热元件。
本公开实施例提供的第一散热元件1与其他散热元件进行连接后,提高了散热器的散热性能。可选地,待连接的散热元件可以为非挤压型材散热元件,提高了散热器的散热多样性。
可选地,本公开实施例提供的第一散热元件1中,第一部分11与芯片直接接触,接受芯片的热量,第二部分12可设置于空调的室外机的风机舱,利用风机的风力对第一散热元件1的散热翅片121的热量进行散失,提高了第一散热元件1的散热翅片121的散热效果。
可选地,本公开实施例提供的散热器还包括基板。
为保证发热元器件与第一散热元件1表面贴合的紧密程度以及电脑板与电控盒的安装稳定性,本公开实施例提供的散热器还包括单独的基板。本公开实施例提供的第一散热元件1的安装方法包括:将一个或多个芯片焊接在电脑板上;将焊接有芯片的电脑板与基板连接,得到依次包括电脑板、芯片、基板的三明治结构的预装件,此步骤可在芯片焊接的流水线上完成,该流水线相对于空调器室外机的组装流水线,精密度要求高,提高了基板与芯片的贴合程度,提高了基板的导热效果;将预装件与前述的导热基体连接,完成了第一散热元件1的安装,可选地,前述的预装件与导热基体的第一部分11连接。可选地,芯片的数量可以为4个,可选地,芯片与基板之间设置有导热片或涂覆有硅脂,提高芯片与基板之间热量传递的效率。可选地,基板的面积与导热基体的第一部分11的面积相同。
可选地,导热基体的第一部分11包括:基底112,沿基底112的第一边缘弯折延伸的第一侧壁113,沿基底112的第二边缘弯折延伸的第二侧壁114,其中,第一边缘与第二边缘相对,第一侧壁113与第二侧壁114的延伸方向相同。
可选地,基底112的外表面为平面,提高了与芯片或基板之间的导热效果。可选地,由基底112、第一侧壁113和第二侧壁114构成类似倒U型的容纳凹槽,第一侧壁113和第二侧壁114被配置为对待连接的第二散热元件进行限位、卡接,提高第一部分11对待连接的第二散热元件的连接稳定性;可选地,基底112、第一侧壁113和第二侧壁114一体成型,第一部分11的第一侧壁113和第二侧壁114也可以发挥导热功能,将第一部分11的热量传递至待连接的第二散热元件,提高第一部分11的导热面积,提高了第一部分11的导热效果。可选地,基底112的厚度与第一侧壁113和第二侧壁114的厚度相同,提高第一部分11导热的均匀性。可选地,基底112的厚度大于第一侧壁113的厚度,基底112的厚度大于第二侧壁114的厚度,提高待连接的第二散热元件的受热均匀性。可选 地,第一侧壁113的厚度与第二侧壁114的厚度相同。可选地,第一侧壁113与基底112垂直,第二侧壁114与基底112垂直,提高了对待连接的第二散热元件的限位作用。
可选地,基底112设置有凸台115,第一贯穿孔111设置于凸台115。
基底112包括与芯片或前述的基板导热接触的导热面,和与导热面相对的传热面,凸台115设置于传热面,即,设置于倒U型的容纳凹槽的底部,可对待连接的第二散热元件发挥限位作用,提高了第一散热元件1与第二散热元件之间的连接稳定性。可选地,凸台115的长度与基底112的长度相同。一个或多个第一贯穿孔111设置于第一部分11的设置有凸台115的部位,增加了第一贯穿孔111的有效深度,提高了对待连接的第二散热元件的连接稳定性。可选地,凸台115与第一部分11一体成型,提高了凸台115部分的导热效果。可选地,凸台115与第一侧壁113平行,凸台115与第二侧壁114平行。可选地,凸台115设置于传热面的中部,即凸台115到第一侧壁113之间的第一距离与凸台115到第二侧壁114之间的第二距离相等,提高凸台115对待连接的第二散热元件的限位作用和连接的稳定性。
可选地,凸台115的高度小于或等于第一侧壁113或第二侧壁114的高度。
定义凸台115与传热面的连接端至凸台115的自由端之间的垂直距离为凸台115的高度,定义第一侧壁113与基底112的弯折连接端至第一侧壁113的自由端之间的垂直距离为第一侧壁113的高度,定义第二侧壁114与基底112的弯折连接端至第二侧壁114与第二部分12的弯折连接端之间的距离为第二侧壁114的高度,凸台115的高度小于或等于第一侧壁113的高度,凸台115的高度小于或等于第二侧壁114的高度,提高了第一部分11与待连接的第二散热元件的连接稳定性。
可选地,第一侧壁113的高度大于或等于第二侧壁114的高度。
第一侧壁113的高度大于或等于第二侧壁114的高度,提高了对待连接的第二散热元件的限位作用。可选地,第一侧壁113与第二侧壁114平行。
可选地,导热基体的第二部分12与第二侧壁114弯折连接。
导热基体的第二部分12与第二侧壁114弯折连接,导热基体的第一部分11与第二部分12构成台阶状,可选地,导热基体的第一部分11为高阶台阶,导热基体的第二部分12为低阶台阶。第二部分12连接有一个或多个散热翅片121,散热翅片121的延伸方向与第一侧壁113和第二侧壁114的延伸方向相同。可选地,散热翅片121的厚度小于第一侧壁113的厚度,散热翅片121的厚度小于第二侧壁114的厚度。定义散热翅片121与第二部分12连接的连接端至散热翅片121的自由端之间的垂直距离为散热翅片121的高度,散热翅片121的高度大于第一侧壁113和第二侧壁114的高度。
可选地,前述的散热器还包括:蒸发端,设置有第一工质流路,和,与第一贯穿孔相对应的第二贯穿孔;冷凝端,设置有第二工质流路;连通管路,连通第一工质流路与第二工质流路。
可选地,连通管路包括第一连通管路和第二连通管路,第一连通管路连通第一工质流 路与第二工质流路,第二连通管路连通第一工质流路和第二工质流路。蒸发端内的第一工质流路、冷凝端内的第二工质流路、第一连通管路和第二连通管路构成工质回路,工质回路内填充有相变工质。由蒸发端、冷凝端和连通管路构成的散热元件可作为第二散热元件,与前述的第一散热元件进行连接。
如图2所示,本公开实施例提供的第二散热元件2的散热方法可以是:蒸发端21接收来自于第一散热元件1的第一部分11的热量,通过风机的风冷作用或自然风散失部分热量,未散失的热量被蒸发端21的第一工质流路中的工质吸收,工质受热后快速汽化并将热量带走,通过第一连通管路23进入冷凝端22的第二工质流路,冷凝端22可以同时进行风冷散热和自然对流,第二工质流路内的气态工质通过冷凝端22将热量散失,工质降低温度后,变为液体,液态的工质通过第二连通管路24流回蒸发端21的第一工质流路内,进行下一个吸热变为气态的循环。可见,采用本公开实施例提供的第二散热元件2进行散热时,可通过蒸发端21与冷凝端22同时进行散热,提高了第二散热元件2的散热能力,可将热量有效散失,保证了芯片的顺利运行,进而保证了空调器运行的可靠性。
本公开实施例提供的第二散热元件2中,第一工质流路、第二工质流路、第一连通管路23和第二连通管路24构成工质回路,工质回路内填充有相变工质。可选地,本公开实施例提供的第二散热元件2可经过焊接、抽真空、灌注工质等制备过程制备得到。本实施例对工质的种类不作具体限制,例如可以是可进行相变的流体,如冷媒等。本实施例对工质回路中工质的填充量不作具体限制。
可选地,第一连通管路23的材质为金属,类似的,第二连通管路24的材质为金属。
由蒸发端21、冷凝端22和连通管路构成第二散热元件2,可与前述的第一散热元件1连接,得到同时包含有第一散热元件1和第二散热元件2的散热器,提高了散热器的散热效果。
第二散热元件2的蒸发端21设置有与第一贯穿孔111相对应的第二贯穿孔212,第二贯穿孔212的数量与第一贯穿孔111的数量相同。第一贯穿孔111和第二贯穿孔212被配置为螺钉等连接件贯穿连接,将第一散热元件1的第一部分11和第二散热元件2的蒸发端21连接,得到同时包含有第一散热元件1和第二散热元件2的散热器。可选地,第二贯穿孔212设置有与螺钉的螺纹相配合的内螺纹。可选地,第二贯穿孔212避让第一工质流路设置。可选地,螺钉的长度大于芯片厚度与第一散热元件1的第一部分11的厚度之和。
蒸发端21通过第一贯穿孔111与第一散热元件1的第一部分11连接,可选地,第一部分11为由基底112、第一侧壁113和第二侧壁114构成的容纳凹槽形状,蒸发端21卡接于容纳凹槽内,提高了第一侧壁113和第二侧壁114对蒸发端的限位作用。可选地,蒸发端21的厚度小于或等于第二侧壁114的高度,蒸发端21的厚度小于或等于第二侧壁114的厚度,提高了第一侧壁113和第二侧壁114对蒸发端21的限位作用。可选地,蒸发端21的上表面涂覆有硅脂,提高了第一部分11与蒸发端21之间的导热效果。
可选地,第一散热元件1的材质与蒸发端21的材质相同,提高了第一散热元件1与第二散热元件2的蒸发端21之间的导热效果。
可选地,导热基体的第一部分11包括基底112,基底112设置有凸台115,蒸发端21还设置有凹槽211,与凸台115卡接。
第二散热元件2的蒸发端21设置有与第一散热元件1的第一部分11的凸台115相配合的凹槽211,设置于第一部分11的基底处的凸台115可卡接于蒸发端21的凹槽211内,形成卡接,提高了第一散热元件1与第二散热元件2的蒸发端21的连接稳定性,如图2所示。
可选地,蒸发端21的第二贯穿孔212设置于凹槽211处,提高了第一散热元件1与第二散热元件2的蒸发端21的连接稳定。
可选地,第二散热元件2的冷凝端22为均温板。
均温板内设置有微通道式的第二工质流路,散热面积大,提高了冷凝端22的散热效果。
本公开实施例同时提供了一种空调器,包括如前述的散热器。
如前述的散热器安装于空调器的室外机,为室外机的电脑板上的芯片散热。
其中,第一散热元件1与芯片直接接触,通过接触导热的形式接受芯片的热量,第一散热元件1的部分热量经散热翅片121散失,另一部分热量传递至第二散热元件2,采用第二散热元件2对热量进行进一步散失。可选地,第一散热元件1的第二部分12设置于第二散热元件2的蒸发端21与冷凝端22之间,有利于利用室外机的风机对散热翅片121进行散热,提高了第一散热元件1的散热效果;可选地,第二散热元件2的冷凝端22安装于室外机的风机支架处,有利于冷凝端22利用室外机的风机进行散热,提高了冷凝端22的散热效果;可选地,第二散热元件2的冷凝端22设置于室外机的风机舱;可选地,第二散热元件2的蒸发端21在室外机内的安装高度低于冷凝端22在室外机内的安装高度,有利于第二散热元件2内的工质在蒸发端21与冷凝端22之间形成回路,提高工质的流速,提高第二散热元件2的散热效率。

Claims (10)

  1. 一种散热器,其特征在于,包括:
    导热基体,包括第一部分和第二部分,其中,所述第一部分设置有第一贯穿孔;
    散热翅片,与所述导热基体的第二部分连接。
  2. 根据权利要求1所述的散热器,其特征在于,所述导热基体的第一部分包括:
    基底,沿所述基底的第一边缘弯折延伸的第一侧壁,沿所述基底的第二边缘弯折延伸的第二侧壁,
    其中,所述第一边缘与所述第二边缘相对,所述第一侧壁与所述第二侧壁的延伸方向相同。
  3. 根据权利要求2所述的散热器,其特征在于,
    所述基底设置有凸台,所述第一贯穿孔设置于所述凸台。
  4. 根据权利要求3所述的散热器,其特征在于,
    所述凸台的高度小于或等于所述第一侧壁或第二侧壁的高度。
  5. 根据权利要求2所述的散热器,其特征在于,
    所述第一侧壁的高度大于或等于所述第二侧壁的高度。
  6. 根据权利要求2所述的散热器,其特征在于,
    所述导热基体的第二部分与所述第二侧壁弯折连接。
  7. 根据权利要求1-6任一项所述的散热器,其特征在于,还包括:
    蒸发端,设置有第一工质流路,和,与所述第一贯穿孔相对应的第二贯穿孔;
    冷凝端,设置有第二工质流路;
    连通管路,连通所述第一工质流路与所述第二工质流路。
  8. 根据权利要求7所述的散热器,其特征在于,所述导热基体的第一部分包括基底,所述基底设置有凸台,
    所述蒸发端还设置有凹槽,与所述凸台卡接。
  9. 根据权利要求7所述的散热器,其特征在于,
    所述冷凝端为均温板。
  10. 一种空调器,其特征在于,包括如权利要求1-9任一项所述的散热器。
PCT/CN2020/070823 2019-10-22 2020-01-08 散热器和空调器 WO2021077631A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911007089.3 2019-10-22
CN201911007089.3A CN110848820A (zh) 2019-10-22 2019-10-22 散热器和空调器

Publications (1)

Publication Number Publication Date
WO2021077631A1 true WO2021077631A1 (zh) 2021-04-29

Family

ID=69597659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070823 WO2021077631A1 (zh) 2019-10-22 2020-01-08 散热器和空调器

Country Status (2)

Country Link
CN (1) CN110848820A (zh)
WO (1) WO2021077631A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109974137B (zh) * 2019-04-19 2024-05-17 青岛海尔智能技术研发有限公司 一种空调室外机和空调器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09116284A (ja) * 1995-10-20 1997-05-02 Fujitsu General Ltd 放熱器
US5710694A (en) * 1996-04-30 1998-01-20 Evercool Technology Co., Ltd. Adjustable radiation fin fastening device for an integrated circuit chip
CN1444438A (zh) * 2002-03-08 2003-09-24 东芝开利株式会社 电气部件装置
CN101059321A (zh) * 2007-05-16 2007-10-24 中山大学 一种均温回路热管装置
CN206790865U (zh) * 2017-04-26 2017-12-22 广东美的暖通设备有限公司 散热器及控制板组件
CN110043972A (zh) * 2019-04-19 2019-07-23 青岛海尔空调器有限总公司 一种散热器、空调室外机和空调器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013252006A (ja) * 2012-06-01 2013-12-12 Sharp Corp モータ駆動装置及びそれを備えた空気調和機
CN204560098U (zh) * 2015-03-30 2015-08-12 广东美的制冷设备有限公司 用于空调器的电控盒组件及具有其的空调器
CN106016507A (zh) * 2016-06-28 2016-10-12 海信(山东)空调有限公司 一种空调变频器用散热器及变频空调
CN208387167U (zh) * 2018-06-27 2019-01-15 厦门华联电子科技有限公司 一种散热片
CN109974135A (zh) * 2019-04-19 2019-07-05 青岛海尔智能技术研发有限公司 一种散热器、空调室外机和空调器
CN211177171U (zh) * 2019-10-22 2020-08-04 青岛海尔空调器有限总公司 散热器和空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09116284A (ja) * 1995-10-20 1997-05-02 Fujitsu General Ltd 放熱器
US5710694A (en) * 1996-04-30 1998-01-20 Evercool Technology Co., Ltd. Adjustable radiation fin fastening device for an integrated circuit chip
CN1444438A (zh) * 2002-03-08 2003-09-24 东芝开利株式会社 电气部件装置
CN101059321A (zh) * 2007-05-16 2007-10-24 中山大学 一种均温回路热管装置
CN206790865U (zh) * 2017-04-26 2017-12-22 广东美的暖通设备有限公司 散热器及控制板组件
CN110043972A (zh) * 2019-04-19 2019-07-23 青岛海尔空调器有限总公司 一种散热器、空调室外机和空调器

Also Published As

Publication number Publication date
CN110848820A (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
US6966361B2 (en) Bi-level heat sink
US6490160B2 (en) Vapor chamber with integrated pin array
US20040035558A1 (en) Heat dissipation tower for circuit devices
WO2020211416A1 (zh) 空调室外机和空调器
WO2020211489A1 (zh) 一种空调室外机和空调器
CN210070062U (zh) 一种散热器、空调室外机和空调器
TW201143590A (en) Heat dissipation device
JP2005260237A (ja) 半導体素子冷却用モジュール
CN110848822A (zh) 散热构件、散热器和空调器
WO2021077631A1 (zh) 散热器和空调器
JP4728522B2 (ja) ヒートシンク
WO2021189726A1 (zh) 散热器和空调室外机
CN210014477U (zh) 一种散热器、空调室外机和空调器
CN210014478U (zh) 一种散热器、空调室外机和空调器
CN210014475U (zh) 一种散热器、空调室外机和空调器
CN210014476U (zh) 一种散热器、空调室外机和空调器
CN210014472U (zh) 一种空调室外机和空调器
CN211177171U (zh) 散热器和空调器
WO1999053256A1 (en) Plate type heat pipe and its installation structure
CN215269268U (zh) 一种集成式大功率散热模组
CN210014474U (zh) 一种散热器、空调室外机和空调器
CN210516704U (zh) 散热模块
CN110678038A (zh) 一种散热装置及空调变频模块结构
JP7269422B1 (ja) ヒートシンク
KR100488104B1 (ko) 전자칩 냉각장치의 방열핀 조립구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879659

Country of ref document: EP

Kind code of ref document: A1