WO2020211416A1 - 空调室外机和空调器 - Google Patents

空调室外机和空调器 Download PDF

Info

Publication number
WO2020211416A1
WO2020211416A1 PCT/CN2019/126464 CN2019126464W WO2020211416A1 WO 2020211416 A1 WO2020211416 A1 WO 2020211416A1 CN 2019126464 W CN2019126464 W CN 2019126464W WO 2020211416 A1 WO2020211416 A1 WO 2020211416A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
working fluid
air conditioner
flow path
dissipation module
Prior art date
Application number
PCT/CN2019/126464
Other languages
English (en)
French (fr)
Inventor
庄佳兰
朱振学
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2020211416A1 publication Critical patent/WO2020211416A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof

Definitions

  • This application relates to the field of heat dissipation technology, for example, to an air conditioner outdoor unit and an air conditioner.
  • the inverter module is an important component in the inverter air conditioner.
  • the heat dissipation problem of the inverter module is closely related to the reliability of the air conditioner.
  • the higher the compressor frequency the more heat generated by the inverter module.
  • the chip design is more compact, the density of components continues to increase, and the volume of components tends to be miniaturized, which makes the heat dissipation of the inverter module more and more difficult.
  • the heat dissipation of the frequency conversion module of the outdoor unit of the air conditioner generally uses an extruded radiator, and the heat dissipation is optimized by changing the area and shape of the fin.
  • the existing radiator still cannot radiate the heat generated by the frequency conversion module in time, which seriously affects the reliability of the air conditioner.
  • an outdoor unit of an air conditioner is provided.
  • the outdoor unit of the air conditioner includes a fan bracket, a sound insulation board, and a radiator arranged inside the casing of the outdoor unit of the air conditioner, and the radiator includes: a first heat dissipation module configured to There is a first working fluid flow path, a second heat dissipation module, a second working fluid flow path, a first pipeline, which connects the first working fluid flow path and the second working fluid flow path, and the second pipeline, Connect the first working fluid flow path and the second working fluid flow path; wherein the first working fluid flow path, the second working fluid flow path, the first pipeline and the second pipeline form a working fluid circuit, so
  • the working fluid circuit is configured to be filled with a phase change working fluid, and the second heat dissipation module is connected with the fan bracket and the sound insulation board.
  • the radiator of the outdoor unit of the air conditioner provided by the embodiment of the present disclosure can more effectively radiate the heat generated by the frequency conversion module, thereby improving the reliability of the operation of the air conditioner.
  • an air conditioner According to a second aspect of an embodiment of the present disclosure, there is provided an air conditioner.
  • the air conditioner includes the aforementioned air conditioner outdoor unit.
  • the radiator of the outdoor unit of the air conditioner provided by the embodiment of the present disclosure includes a first heat dissipation module and a second heat dissipation module.
  • the two heat dissipation modules can perform heat dissipation at the same time, which improves the heat dissipation effect of the heat sink and improves the reliability of the operation of the air conditioner.
  • the second heat dissipation module is fixed on the fan bracket and the sound insulation board, which improves the heat dissipation effect of the radiator.
  • Fig. 1 is a schematic structural diagram showing an outdoor unit of an air conditioner according to an exemplary embodiment
  • Fig. 2 is a schematic structural diagram of a heat sink according to an exemplary embodiment
  • Fig. 3 is a schematic structural diagram showing a first heat dissipation module according to an exemplary embodiment
  • Fig. 4 is a schematic structural diagram showing a second heat dissipation module according to an exemplary embodiment
  • Fig. 5 is a schematic structural diagram showing a second heat dissipation module according to an exemplary embodiment
  • Fig. 6 is a structural schematic diagram showing a sealing member and a fixing member of a first heat dissipation module according to an exemplary embodiment
  • Fig. 7 is an exploded structure diagram showing a sealing member and a fixing member of a first heat dissipation module according to an exemplary embodiment
  • Fig. 8 is a schematic diagram showing the structure of a seal of a first heat dissipation module according to an exemplary embodiment.
  • 1 the first heat dissipation module; 2: the second heat dissipation module; 3: the first pipeline; 4: the second pipeline; 5: fan; 6: frequency conversion module; 7: fan support; 8: sound insulation board; 11 : First substrate; 12: first heat dissipation member; 13: first layer of working fluid flow path; 14: threaded hole; 15: first fixing part; 16: second fixing part; 17: first sealing part; 18: Second seal; 171: channel; 172: through hole; 173: trapezoidal structure; 21: first layer of substrate; 22: second layer of substrate; 23: second heat dissipation member; 24: clamping part; Second working fluid flow path.
  • the embodiment of the present disclosure provides an outdoor unit of an air conditioner.
  • the outdoor unit of the air conditioner provided by the embodiment of the present disclosure includes a fan bracket, a sound insulation board, and a radiator arranged inside the casing of the outdoor unit of the air conditioner.
  • the radiator includes a first heat dissipation module provided with a first working fluid flow path, and a second The heat dissipation module is provided with a second working fluid flow path, a first pipe connecting the first working fluid flow path and the second working fluid flow path, and a second pipe connecting the first working fluid flow path and the second working fluid Flow path; wherein, the first working fluid flow path, the second working fluid flow path, the first pipeline and the second pipeline constitute a working fluid circuit, the working fluid circuit is set to be filled with a phase change working fluid, and the second heat dissipation module and The fan bracket is connected with the sound insulation board.
  • the radiator of the outdoor unit of the air conditioner provided by the embodiment of the present disclosure includes a first heat dissipation module 1, a second heat dissipation module 2, a first pipeline 3, and a second pipeline 4, wherein the second The heat dissipation module is connected with the fan bracket, and the second heat dissipation module is also connected with the sound insulation board.
  • the location of the second heat dissipation module is well ventilated, which is beneficial to the heat dissipation of the second heat dissipation module.
  • the second heat dissipation module includes a first end and a second end, the first end is connected to the fan bracket, and the second end is connected to the sound insulation board.
  • the first end and the second end of the second heat dissipation module are arranged opposite to each other.
  • the first end of the second heat dissipation module 2 is fixed on the fan bracket 7, and the second end is fixed on the sound insulation board 8.
  • the sound insulation board 8 is a panel that divides the cabin enclosed by the casing of the outdoor unit of the air conditioner into a fan cabin and a compressor cabin.
  • the fan cabin is the cabin where the fan 5 is located
  • the compressor cabin is the cabin where the compressor is located.
  • the second heat dissipation module 2 is fixed in the space between the fan bracket 7 and the sound insulation board 8, which is beneficial to the heat dissipation of the second heat dissipation module 2 and improves the heat dissipation effect of the heat sink.
  • the fan bracket 7 includes a first surface close to the sound insulation board 8 and a second surface away from the sound insulation board 8.
  • the first end of the second heat dissipation module 2 is connected to the first surface.
  • “close” and “far” are mutual.
  • the connecting surface between the first end of the second heat dissipation module 2 and the fan bracket 7 is the first surface of the fan bracket 7.
  • the connection here is a fixed connection or a detachable connection
  • the connection method of the fixed connection may be welding
  • the connection method of the detachable connection may be a snap connection, and so on.
  • the fixed connection is beneficial to improve the stability of the connection between the second heat dissipation module 2 and the fan bracket 7, and the detachable connection is convenient for cleaning after the second heat dissipation module 2 is disassembled.
  • the sound insulation board 8 includes a third surface close to the upper bottom plate of the casing of the air conditioner outdoor unit and a fourth surface close to the lower bottom plate of the casing of the air conditioner outdoor unit.
  • the second end is connected to the third surface.
  • the connecting surface between the second end of the second heat dissipation module 2 and the sound insulation board 8 is the third surface of the sound insulation board 8.
  • the connection here is a fixed connection or a detachable connection
  • the connection method of the fixed connection may be welding
  • the connection method of the detachable connection may be a snap connection, and so on.
  • the fixed connection is beneficial to improve the connection stability of the second heat dissipation module 2 and the sound insulation board 8, and the detachable connection is convenient for cleaning after the second heat dissipation module 2 is disassembled.
  • the height of the first end of the second heat dissipation module 2 is higher than the height of the second end.
  • the inclined installation of the second heat dissipation module 2 is beneficial to increase the length of the second heat dissipation module 2, increase the heat dissipation area of the second heat dissipation module 2, and improve the heat dissipation effect of the heat sink.
  • the height of the first end of the second heat dissipation module 2 is higher than the height of the second end.
  • the gaseous phase change working fluid of the first heat dissipation module 1 enters the second heat dissipation module 2 through the first pipeline 3, and dissipates heat in the second working fluid flow path of the second heat dissipation module 2, and the gaseous phase change working fluid radiates heat from the second The second end of the module 2 moves upward to the first end of the second heat dissipation module 2, which facilitates the heat dissipation of the gaseous phase change working fluid.
  • the sound insulation board 8 divides the cabin enclosed by the shell of the air conditioner outdoor unit into a fan cabin and a compressor cabin, and the first heat dissipation module 1 is arranged in the compressor cabin.
  • the first heat dissipation module 1 is in thermally conductive contact with the frequency conversion module of the outdoor unit of the air conditioner, and is arranged in the compressor compartment.
  • one or more openings can be opened on the shell of the compressor compartment to form an air duct, which is beneficial to the heat dissipation of the first heat dissipation module.
  • the radiator of the outdoor unit of the air conditioner includes: a first heat dissipation module 1, a second heat dissipation module 2, a first pipeline 3, and a second pipeline 4, wherein the first A heat dissipation module 1 is provided with a first working medium flow path, and the second heat dissipation module 2 is provided with a second working medium flow path 25.
  • the first working medium flow path and the second working medium flow path 25 adopt the first pipeline 3 and the second working medium flow path.
  • the two pipelines 4 are connected, and the first working fluid flow path, the second working fluid flow path 25, the first pipe 3 and the second pipe 4 constitute a working fluid circuit, and the working fluid circuit is set to be filled with a phase change working fluid.
  • the heat sink provided by the embodiment of the present disclosure includes two heat dissipation modules at the same time, that is, the first heat dissipation module 1 and the second heat dissipation module 2, and both of the two heat dissipation modules are provided with a working fluid flow path.
  • the phase change working fluid in the working fluid flow path can transfer the heat of the first heat dissipation module 1 to the second heat dissipation module 2, so that the first heat dissipation module 1 and the second heat dissipation module 2 can perform heat dissipation functions at the same time, which improves the heat dissipation of the heat sink. ability.
  • the heat dissipation capability of the heat sink provided by the embodiments of the present disclosure is as follows: when the ambient temperature is 52°C, when the existing heat sink is used for heat dissipation, the case temperature of high-power components is more than 90°C, even more than 100°C, The radiator provided in the embodiment of the present disclosure cools the frequency conversion module 6, and when the ambient temperature is 52°C, the case temperature of the high-power components is 72-82°C. It can be seen that the heat sink provided by the embodiments of the present disclosure can lower the high-power components by 20-25°C more than the existing heat sink.
  • the frequency conversion module 6 of the outdoor unit of the air conditioner is equipped with multiple high-power components.
  • the chip design of the electronic control module outside the air conditioner is more compact and the components
  • the density of components continues to increase, and the volume of components tends to be miniaturized. Therefore, the heating power consumption of high-power components is increasing, and the heat flux density is rising sharply.
  • the heat dissipation performance of the frequency conversion module 6 is very important.
  • the existing improvement method for the radiator of the frequency conversion module 6 of the outdoor unit of the air conditioner is generally to optimize the body of the radiator, for example, to increase the heat dissipation area of the radiator by increasing the height of the fins and the number of fins.
  • the space of the outdoor unit of the radiator is limited, the optimization space of the radiator body is small, and the improvement of heat dissipation capacity is limited.
  • the radiator has two heat dissipation modules, which improves the heat dissipation capacity of the frequency conversion module 6 and improves the reliability and stability of the operation of the frequency conversion module 6.
  • the method of using the radiator provided by the embodiment of the present disclosure to dissipate the frequency conversion module 6 may be as follows: the first heat dissipation module 1 receives heat from the frequency conversion module 6, and part of the heat is dissipated through the air cooling effect of the fan 5, and the undissipated heat is The working fluid in the first working fluid flow path is absorbed, and the working fluid is quickly vaporized after being heated and takes the heat away, and enters the second working fluid flow path 25 of the second heat dissipation module 2 through the first pipeline 3, and the second heat dissipation module 2 Air cooling and natural convection can be performed at the same time.
  • the gas working medium in the second working medium flow path 25 dissipates heat through the second heat dissipating module 2.
  • the first heat dissipation module 1 and the second heat dissipation module 2 can simultaneously heat the frequency conversion module 6, which improves the heat dissipation capacity of the heat sink and can The heat generated by the frequency conversion module 6 is effectively dissipated, which improves the reliability of the operation of the air conditioner.
  • the first working fluid flow path, the second working fluid flow path 25, the first pipe 3 and the second pipe 4 constitute a working fluid circuit, and the working fluid circuit is set to fill phase change The working fluid, or the working fluid loop is filled with a phase change working fluid.
  • the radiator provided by the embodiment of the present disclosure may be prepared through preparation processes such as welding, vacuuming, and infusing working fluid.
  • This embodiment does not limit the type of working fluid, for example, it may be a fluid that can undergo phase change, such as a refrigerant.
  • This embodiment does not limit the filling amount of the working fluid in the working fluid circuit.
  • the working fluid is sealed in the working fluid circuit.
  • the sealing method of the working fluid in the first heat dissipation module 1 can adopt the sealing member shown in Figs. 6-8, including a first seal 17 and a second seal 18, and a first seal 17 and a second seal 18 are provided with channels 171, which are arranged to connect multiple channels in the first working fluid channel.
  • the gaseous working fluids in the multiple channels in the first working fluid channel can flow through the through holes 172 and enter In the first pipeline 3, similarly, the liquid working fluid in the second pipeline 4 can be split through the through holes in the second sealing member 18 and enter the first working fluid flow path.
  • the connection between the first sealing member 17 and the second sealing member 18 and the base of the first heat dissipation module 1 may be brazing.
  • the material of the first pipeline 3 is metal, and similarly, the material of the second pipeline 4 is metal.
  • the first heat dissipation module 1 of the heat sink provided by the embodiment of the present disclosure includes a first base 11 and a plurality of first heat dissipation members 12 arranged on the first base 11, and the first working medium flow path is arranged at Inside the first base 11.
  • the first heat dissipation module 1 provided by the embodiment of the present disclosure may also be referred to as an evaporation end.
  • the first base 11 of the first heat dissipation module 1 and the plurality of first heat dissipation members 12 arranged on the first base 11 can be prepared by a direct extrusion method.
  • the embodiment of the present disclosure does not limit the number and structural size of the first heat dissipation member 12, for example, it can be set according to the size of the space where the first heat dissipation module 1 is located.
  • the pitches of the plurality of first heat dissipation members 12 provided on the first base 11 may not be equal.
  • the first heat dissipation member 12 may be a fin, and the height of the fin may be 30-50 mm, that is, the distance from the free end of the fin to the surface of the first base 11 is 30-50 mm, and the thickness is 1.5 mm.
  • the first heat dissipation module 1 provided by the embodiment of the present disclosure can be coated with thermally conductive silicone grease or attached to the frequency conversion module 6 to reduce the contact thermal resistance between the two, and effectively receive the heat from the frequency conversion module. 6 heat, and conduct heat dissipation.
  • one or more threaded holes 14 may be provided on the first base 11 of the first heat dissipation module 1, and the first heat dissipation module 1 and the frequency conversion module 1 are connected by a screw thread. Module 6 is fixed.
  • the area where the threaded hole 14 is provided on the first base 11 does not overlap the area where the first heat dissipation member 12 is provided.
  • the first heat dissipation module 1 is also provided with a fixing member. As shown in FIGS.
  • the first base 11 is provided with first
  • the ends of the fixing member 15 and the second fixing member 16 the first sealing member 17 and the second sealing member 18 may be provided with a trapezoidal structure 173, so that the cross-sectional structure of the first sealing member 17 and the second sealing member 18 is the same as that of the first sealing member 17 and the second sealing member 18
  • the cross-sectional structure size of the heat dissipation module 1 is the same.
  • the material of the first fixing member 15 and the second fixing member 16 may be metal.
  • the first fixing member 15 and the second fixing member 16 The piece 16 may be a sheet metal structure.
  • the first fixing member 15 and the second fixing member 16 are provided with through holes, which can be configured to connect the first base 11 and the electric control box.
  • the first working fluid flow path in the first heat dissipation module 1 is arranged in the first base 11.
  • a first working fluid flow path composed of a plurality of flow paths is provided in the first base body 11.
  • the first base 11 and the first working fluid flow path are integrally formed.
  • the area where the threaded hole 14 is provided on the first base 11 does not overlap with the area where the first working fluid flow path is provided.
  • the first working fluid flow path includes at least a first working fluid flow path 13 and a second working fluid flow path.
  • the first working fluid flow path includes the first working fluid flow path 13 framed by the dashed line and the second working fluid flow path located under the first working fluid flow path 13 that is not framed by the dashed line.
  • the first layer of working fluid flow path 13 is located on the first plane
  • the second layer of working fluid flow path is located on the second plane
  • the first plane is parallel to the second plane.
  • the second heat dissipation module 2 includes a second base, and the second working fluid flow path 25 is provided in the second base.
  • the second base and the second working fluid flow path 25 One piece.
  • the second heat dissipation module 2 includes a second base body and a plurality of second heat exchange members 23 arranged on the second base body, and the second working fluid flow path 25 is arranged on the second base body. In the matrix.
  • the second heat dissipation module 2 provided by the embodiment of the present disclosure may also be referred to as a condenser end.
  • the second heat dissipation module may be an inflation plate, a tube fin heat dissipation plate or a wire tube heat dissipation plate.
  • the second substrate of the second heat dissipation module 2 may be a temperature equalization plate, for example, an inflation type temperature equalization plate, which is formed by pressing two layers of aluminum plates, and is provided with a second working fluid flow path communicating with each other. 25.
  • the second heat dissipation module 2 provided with a second working medium flow path has the functions of working medium flow path and heat sink at the same time, which can perform natural convection and air cooling at the same time, and has high heat transfer capacity, high thermal conductivity, light weight, etc. advantage.
  • the second base body of the second heat dissipation module 2 includes at least a first layer substrate 21 and a second layer substrate 22 that are connected, and a third layer substrate 21 is provided with a third layer.
  • Layer working fluid flow path, a fourth layer working fluid flow path is provided in the second layer substrate 22, and the third layer working fluid flow path is connected with the fourth layer working fluid flow path.
  • the double-layer or multi-layer working fluid flow path design in the second base improves the heat dissipation capacity of the second heat dissipation module 2.
  • the preparation method of the two-layer or multi-layer second substrate may be to use a piece of temperature equalizing plate to fold the symmetrical two or more layers from the middle position.
  • one or more fixing bolts are arranged between the first layer substrate 21 and the second layer substrate 22, which not only improves the overall stability of the second substrate, but also ensures that the first layer substrate 21 and the second layer substrate The stability of the distance between 22.
  • the second base body of the second heat dissipation module 2 is provided with a connecting member configured to fix the second heat dissipation module 2.
  • the second base body of the second heat dissipation module 2 is provided with a plurality of second heat dissipation members 23.
  • the shape of the second heat dissipation member 23 is not limited in this embodiment. For example, it may be a rectangular or triangular winglet.
  • the multiple second heat dissipation members 23 provided on the temperature equalization plate can destroy the development of the boundary layer on the surface of the temperature equalization plate, enhance the degree of gas disturbance, and improve the heat dissipation capacity of the second heat dissipation module 2.
  • the second heat dissipation member 23 may be disposed on the outer surface of the uniform temperature plate, or may be disposed on the inner surface of the uniform temperature plate.
  • the path of the second working fluid flow path 25 in the second heat dissipation module 2 may be as shown in FIG. 5, and the second working fluid flow path 25 communicating with each other is formed by a plurality of interlaced pipelines.
  • the embodiment of the present disclosure does not make too many restrictions on the path form of the second working fluid flow path 25.
  • the first layer of the working fluid flow path 13 in the first base 11 of the first heat dissipation module 1 is located at a first horizontal plane
  • the second layer of working fluid flow path is located on the second horizontal plane
  • the third layer of working fluid flow path in the second base of the second heat dissipation module 2 is located on the third horizontal plane
  • the fourth layer working fluid flow path is located on the fourth horizontal plane
  • the path 3 connects the first layer of working fluid path 13 and the third layer of working fluid path
  • the second pipeline 4 connects the second layer of working fluid path and the fourth layer of working fluid path.
  • the bottom-up arrangement of the first horizontal plane, the second horizontal plane, the third horizontal plane, and the fourth horizontal plane are: the second horizontal plane, the first horizontal plane, the fourth horizontal plane, and the third horizontal plane, that is, the first horizontal plane
  • the arrangement of the mass flow path 13, the second layer of the working fluid flow path, the third layer of the working fluid flow path, and the fourth layer of the working fluid flow path in the vertical direction from bottom to top are: The first layer of working fluid flow path 13, the fourth layer of working fluid flow path, and the third layer of working fluid flow path.
  • the height difference here can be formed by the first pipe 3 and the second pipe 4.
  • the first pipeline 3 includes a first branch, a second branch, and a third branch that are connected in sequence, and the second branch causes the first branch and the third branch to form a height difference, or the second
  • the pipeline 4 includes a fourth branch, a fifth branch and a sixth branch connected in sequence, and the fifth branch makes the fourth branch and the sixth branch form a height difference.
  • the flow of the working fluid in the working fluid circuit can be described as: the first heat dissipation module 1 receives heat from the object to be dissipated, the first layer of the working fluid path 13 and the second layer
  • the working fluid in the working fluid flow path is heated to a gaseous state.
  • the gaseous working fluid enters the third working fluid flow path through the first pipeline 3, and the gas working fluid in the third working fluid flow path
  • the temperature decreases and becomes a liquid. Under the action of gravity, it flows into the fourth layer of working fluid flow path, and flows into the second layer of working fluid flow path through the second pipe 4 to perform the next heat absorption cycle.
  • This application also provides an air conditioner including the aforementioned outdoor unit of the air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

一种空调室外机和空调器,其中,空调器室外机包括设置于空调室外机的壳体内部的风机支架(7)、隔音板(8)和散热器,散热器包括:第一散热模块(1),设置有第一工质流路,第二散热模块(2),设置有第二工质流路(25),第一管路(3),连通所述第一工质流路和第二工质流路(25),和第二管路(4),连通所述第一工质流路和第二工质流路(25);其中,所述第一工质流路、第二工质流路(25)、第一管路(3)和第二管路(4)构成工质回路,所述工质回路被设置为填充相变工质,所述第二散热模块(2)与风机支架(7)和隔音板(8)连接,该空调室外机的散热器具有较高的散热能力。

Description

空调室外机和空调器
本申请基于申请号为201910318917.9、申请日为2019年4月19日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及散热技术领域,例如涉及一种空调室外机和空调器。
背景技术
变频模块是变频空调器中的重要元器件,变频模块的散热问题与空调器的可靠性密切相关。压缩机频率越高,变频模块发热越多,其次,芯片设计上更加紧凑,元器件的密度不断增加,且元器件的体积也趋于微小化,导致变频模块的散热越来越困难。
目前,空调器室外机变频模块的散热一般采用挤压型材散热器,通过改变肋片的面积和形状进行散热优化。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:现有的散热器仍无法将变频模块产生的热量及时散发出去,严重影响了空调器的可靠性。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
根据本公开实施例的第一方面,提供了一种空调室外机。
在一些可选实施例中,所述一种空调室外机,包括设置于所述空调室外机的壳体内部的风机支架、隔音板和散热器,所述散热器包括:第一散热模块,设置有第一工质流路,第二散热模块,设置有第二工质流路,第一管路,连通所述第一工质流路和第二工质流路,和第二管路,连通所述第一工质流路和第二工质流路;其中,所述第一工质流路、第二工质流路、第一管路和第二管路构成工质回路,所述工质回路被设置为填充相变工质,所述第二散热模块与风机支架和隔音板连接。本公开实施例提供的空调室外机的散热器可以将变频模块产生的热量更加有效的的散发出去,提高了空调器运行的可靠性。
根据本公开实施例的第二方面,提供了一种空调器。
在一些可选实施例中,所述空调器包括如前述的空调室外机。
本公开实施例提供的技术方案可以包括以下有益效果:
本公开实施例提供的空调室外机的散热器包括第一散热模块和第二散热模块,两个散热模块可同时进行散热,提高了散热器的散热效果,提高了空调器运行的可靠性。第二散 热模块固定于风机支架和隔音板上,提高了散热器的散热效果。
以上的总体描述和下文中的描述是示例性和解释性的,不限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是根据一示例性实施例示出的一种空调室外机的结构示意图;
图2是根据一示例性实施例示出的一种散热器的结构示意图;
图3是根据一示例性实施例示出的一种第一散热模块的结构示意图;
图4是根据一示例性实施例示出的一种第二散热模块的结构示意图;
图5是根据一示例性实施例示出的一种第二散热模块的结构示意图;
图6是根据一示例性实施例示出的一种第一散热模块的密封构件和固定构件的结构示意图;
图7是根据一示例性实施例示出的一种第一散热模块的密封构件和固定构件的分解结构示意图;以及
图8是根据一示例性实施例示出的一种第一散热模块的密封件结构示意图。
其中,1:第一散热模块;2:第二散热模块;3:第一管路;4:第二管路;5:风机;6:变频模块;7:风机支架;8:隔音板;11:第一基体;12:第一散热构件;13:第一层工质流路;14:螺纹孔;15:第一固定件;16:第二固定件;17:第一密封件;18:第二密封件;171:槽道;172:通孔;173:梯形结构;21:第一层基板;22:第二层基板;23:第二散热构件;24:卡接件;25:第二工质流路。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例提供了一种空调室外机。
本公开实施例提供的空调室外机,包括设置于空调室外机的壳体内部的风机支架、隔音板和散热器,散热器包括:第一散热模块,设置有第一工质流路,第二散热模块,设置有第二工质流路,第一管路,连通第一工质流路和第二工质流路,和第二管路,连通第一工质流路和第二工质流路;其中,第一工质流路、第二工质流路、第一管路和第二管路构成工质回路,工质回路被设置为填充相变工质,第二散热模块与风机支架和隔音板连接。
如图1和图2所示,本公开实施例提供的空调室外机的散热器包括第一散热模块1、第二散热模块2、第一管路3和第二管路4,其中,第二散热模块与风机支架连接,且,第二散热模块还与隔音板连接。第二散热模块的设置位置,通风较好,有利于第二散热模块热量的散失。
本公开实施例提供的空调室外机中,第二散热模块包括第一端和第二端,第一端与风机支架连接,第二端与隔音板连接。可选的,第二散热模块的第一端与第二端相对设置。第二散热模块2的第一端固定于风机支架7上,第二端固定于隔音板8上。可选的,隔音板8为将空调室外机的壳体围成的舱体分为风机舱和压缩机舱的面板,风机舱为风机5所在的舱体,压缩机舱为压缩机所在的舱体。第二散热模块2固定于风机支架7和隔音板8之间的空间,有利于第二散热模块2的热量散失,提高了散热器的散热效果。
本公开实施例提供的空调室外机,风机支架7包括靠近隔音板8的第一面和远离隔音板8的第二面,第二散热模块2的第一端与第一面连接。此处的“靠近”和“远离”是相互的。如图1所示,第二散热模块2的第一端与风机支架7的连接面即为风机支架7的第一面。可选的,此处的连接为固定连接或可拆卸连接,固定连接的连接方式可以为焊接,可拆卸连接的连接方式可以为卡接,等等。固定连接的连接方式有利于提高第二散热模块2与风机支架7连接的稳定性,可拆卸连接的连接方式便于将第二散热模块2拆卸后进行清洗。
本公开实施例提供的空调室外机,隔音板8包括靠近空调室外机的壳体的上底板的第三面和靠近空调室外机的壳体的下底板的第四面,第二散热模块2的第二端与第三面连接。如图1所示,第二散热模块2的第二端与隔音板8的连接面即为隔音板8的第三面。可选的,此处的连接为固定连接或可拆卸连接,固定连接的连接方式可以为焊接,可拆卸连接的连接方式可以为卡接,等等。固定连接的连接方式有利于提高第二散热模块2与隔音板8的连接稳定性,可拆卸连接的连接方式便于将第二散热模块2拆卸后进行清洗。
本公开实施例提供的空调室外机,如图1所示,垂直方向上,第二散热模块2的第一端的高度高于第二端的高度。第二散热模块2倾斜安装,有利于增加第二散热模块2的长度,提高第二散热模块2的散热面积,提高散热器的散热效果。可选的,第二散热模块2的第一端的高度高于第二端的高度。第一散热模块1的气态相变工质经第一管路3进入第二散热模块2,在第二散热模块2的第二工质流路进行散热,气态的相变工质从第二散热模块2的第二端向上运动至第二散热模块2的第一端,有利于气态的相变工质的散热。
本公开实施例提供的空调室外机,隔音板8将空调室外机的壳体围成的舱体分为风机舱和压缩机舱,第一散热模块1设置于压缩机舱内。可选的,第一散热模块1与空调室外机的变频模块导热接触,并设置于压缩机舱内。可选的,可在压缩机舱的壳体上开设一个或一个以上开口,形成风道,有利于第一散热模块热量的散失。
如图2和图5所示,本公开实施例提供的空调室外机的散热器包括:第一散热模块1,第二散热模块2,第一管路3和第二管路4,其中,第一散热模块1设置有第一工质流路, 第二散热模块2设置有第二工质流路25,第一工质流路和第二工质流路25采用第一管路3和第二管路4连通,第一工质流路、第二工质流路25、第一管路3和第二管路4构成工质回路,工质回路被设置为填充相变工质。
本公开实施例提供的散热器同时包括两个散热模块,即第一散热模块1和第二散热模块2,且,两个散热模块中均设置有工质流路。工质流路内的相变工质可以将第一散热模块1的热量传递至第二散热模块2,使得第一散热模块1与第二散热模块2同时发挥散热功能,提高了散热器的散热能力。本公开实施例提供的散热器的散热能力表现为:环境温度为52℃时,采用现有的散热器进行散热时,大功率元器件的壳温为九十多摄氏度,甚至超过100℃,采用本公开实施例提供的散热器对变频模块6进行降温,环境温度为52℃时,大功率元器件壳温为72-82℃。可见,本公开实施例提供的散热器比现有的散热器给大功率元器件多降20-25℃。
空调室外机的变频模块6设置有多个大功率元器件,随着空调器外机小型化,以及空调器功能多样化的需要,空调器外机电控模块的芯片设计上更加紧凑,元器件的密度不断增加,且元器件的体积也趋于微小化。因此,大功率元器件发热功耗越来越大,热流密度急剧升高。为保证空调器外机电控的安全性和可靠性,变频模块6的散热性能至关重要。现有的对空调器室外机的变频模块6的散热器的改进方法一般是优化散热器的本体,例如,通过增加肋片高度、肋片数量等方法提高散热器的散热面积,但是,由于空调器室外机的空间有限,散热器本体的优化空间很小,散热能力提升有限。本公开实施例提供的空调室外机中,散热器具有两个散热模块,提高了对变频模块6的散热能力,提高了变频模块6运行的可靠性和稳定性。
采用本公开实施例提供的散热器对变频模块6进行散热的方法可以是:第一散热模块1接收来自于变频模块6的热量,通过风机5的风冷作用散失部分热量,未散失的热量被第一工质流路中的工质吸收,工质受热后快速汽化并将热量带走,通过第一管路3进入第二散热模块2的第二工质流路25,第二散热模块2可以同时进行风冷散热和自然对流,第二工质流路25内的气体工质通过第二散热模块2将热量散热,温度降低后,变为液体,液态的工质通过第二管路4流回第一散热模块1的第一工质流路内,进行下一个吸热变为气态的循环。可见,采用本公开实施例提供的散热器对变频模块6进行散热时,可通过第一散热模块1与第二散热模块2同时对变频模块6进行散热,提高了散热器的散热能力,可将变频模块6产生的热量有效散失,提高了空调器运行的可靠性。
本公开实施例提供的散热器中,第一工质流路、第二工质流路25、第一管路3和第二管路4构成工质回路,工质回路被设置为填充相变工质,或者,工质回路内填充有相变工质。
可选的,本公开实施例提供的散热器可经过焊接、抽真空、灌注工质等制备过程制备得到。本实施例对工质的种类不作限制,例如可以是可进行相变的流体,如冷媒等。本实施例对工质回路中工质的填充量不作限制。
可选的,工质密封在工质回路中。其中,工质在第一散热模块1内的密封方式可以采用如图6-8所示的密封构件,包括第一密封件17和第二密封件18,第一密封件17和第二密封件18均设置有槽道171,被设置为将第一工质流路内的多个流道连通,第一工质流路内多个流道中的气态工质可通过通孔172进行汇流,进入第一管路3,类似的,第二管路4内的液态工质可通过第二密封件18中的通孔进行分流,进入第一工质流路。第一密封件17和第二密封件18与第一散热模块1的基体的连接方式可以为钎焊。
可选的,第一管路3的材质为金属,类似的,第二管路4的材质为金属。
如图3所示,本公开实施例提供的散热器的第一散热模块1包括第一基体11和设置于第一基体11上的多个第一散热构件12,第一工质流路设置于第一基体11内。
本公开实施例提供的第一散热模块1,也可称作蒸发端。第一散热模块1的第一基体11和设置于第一基体11上的多个第一散热构件12,可采用直接挤压成型的制备方法制备得到。本公开实施例对第一散热构件12的数量及结构尺寸不作限制,例如,可根据第一散热模块1所在的空间的大小进行设置。可选的,设置于第一基体11上的多个第一散热构件12的间距可以不相等。可选的,第一散热构件12可以是肋片,肋片高度可以为30-50mm,即肋片的自由端至第一基体11表面的距离为30-50mm,厚度为1.5mm。
可选的,本公开实施例提供的第一散热模块1可以与变频模块6之间涂覆导热硅脂或贴附导热片,减少两者之间的接触热阻,有效的接收来自于变频模块6的热量,并进行散热。为了提高第一散热模块1与变频模块6接触的稳定性,第一散热模块1的第一基体11上可以设置一个或多个螺纹孔14,采用螺纹连接的方式将第一散热模块1与变频模块6进行固定。可选的,第一基体11上设置有螺纹孔14的区域与设置有第一散热构件12的区域不重叠。为了提高第一散热模块1与变频模块6连接的稳定性,第一散热模块1还设置有固定构件,如图6和图7所示,在第一基体11的两个端部设置有第一固定件15和第二固定件16,第一密封件17和第二密封件18的端部可设置有梯形结构173,这样,第一密封件17和第二密封件18的截面结构与第一散热模块1的截面结构尺寸一致,通过增加第一固定件15和第二固定件16的长度,使得第一固定件15和第二固定件16可将第一基体11与第一密封件17和第二密封件18一同与电控盒进行固定,并提高了第一散热模块1与电控盒接触部位的密封性。为了使第一固定件15和第二固定件16更好的发固定效果,第一固定件15和第二固定件16的材质可以是金属,可选的,第一固定件15和第二固定件16可以为钣金结构件。第一固定件15和第二固定件16上设置有通孔,可设置为连接第一基体11与电控盒。
可选的,第一散热模块1中的第一工质流路设置于第一基体11内。如图3所示,第一基体11内设置有由多条流道组成的第一工质流路。可选的,为了提高第一散热模块1的散热能力,第一基体11与第一工质流路一体成型。可选的,第一基体11上设置有螺纹孔14的区域与设置有第一工质流路的区域不重叠。可选的,为了提高第一散热模块1的第一基体11的均温性和载热能力,对集中热源有更好的控制能力,同时,消除局部过热 现象,提高变频模块6工作的稳定性和可靠性,第一工质流路至少包括第一层工质流路13和第二层工质流路。如图3所示,第一工质流路包括虚线部分框起第一层工质流路13和未被虚线框起的位于第一层工质流路13下层的第二层工质流路。其中,第一层工质流路13位于第一平面,第二层工质流路位于第二平面,第一平面与第二平面平行。
可选的,第二散热模块2包括第二基体,第二工质流路25设置于第二基体内,为了提高第二散热模块2的散热能力,第二基体与第二工质流路25一体成型。
可选的,如图4和图5所示,第二散热模块2包括第二基体和设置于第二基体上的多个第二换热构件23,第二工质流路25设置于第二基体内。
本公开实施例提供的第二散热模块2,也可称作冷凝端。第二散热模块可以为吹胀板、管翅散热板或丝管散热板。可选的,第二散热模块2的第二基体可以为均温板,例如可以是吹胀式均温板,由两层铝板压合而成,内部设置有互相连通的第二工质流路25。设置有第二工质流路的第二散热模块2,同时具有工质流路和散热片的功能,可同时进行自然对流与风冷散热,具有高传热能力、高热传导率、重量轻等优点。可选的,为了提高第二散热模块2的散热能力,第二散热模块2的第二基体至少包括连通的第一层基板21和第二层基板22,第一层基板21内设置有第三层工质流路,第二层基板22内设置有第四层工质流路,第三层工质流路与第四层工质流路连通。第二基体内双层或多层的工质流路设计,提高了第二散热模块2散热能力。可选的,两层或多层的第二基体的制备方法可以是,采用一片均温板,从中间位置折为对称的两层或多层。可选的,第一层基板21与第二层基板22之间设置有一个或多个固定螺栓,既提高了第二基体的整体稳定性,又保证了第一层基板21与第二层基板22之间距离的稳定性。可选的,第二散热模块2的第二基体上设置有连接部件,被设置为将第二散热模块2固定。
可选的,第二散热模块2的第二基体上设置有多个第二散热构件23,本实施例对第二散热构件23的形状不作限定,例如,可以是矩形、三角形的小翼等。均温板上设置的多个第二散热构件23,可破坏均温板表面边界层的发展,增强气体扰动程度,提高第二散热模块2的散热能力。可选的,第二散热构件23可设置于均温板的外表面,也可设置于均温板的内表面。
可选的,第二散热模块2内的第二工质流路25的路径可以如图5所示,由多条相互交错的管路形成互相连通的第二工质流路25。本公开实施例对第二工质流路25的路径形式不作过多限制。
可选的,为了提高第一散热模块1与第二散热模块2之间工质的顺利流动,第一散热模块1的第一基体11内的第一层工质流路13位于第一水平面,第二层工质流路位于第二水平面,第二散热模块2的第二基体内的第三层工质流路位于第三水平面,第四层工质流路位于第四水平面,第一管路3连接第一层工质流路13与第三层工质流路,第二管路4连接第二层工质流路与第四层工质流路。垂直方向上,第一水平面、第二水平面、第三水平面、第四水平面自下而上的排列依次为:第二水平面、第一水平面、第四水平面、第三 水平面,即,第一层工质流路13、第二层工质流路、第三层工质流路、第四层工质流路在垂直方向上自下而上的排列依次为:第二层工质流路、第一层工质流路13、第四层工质流路、第三层工质流路。此处的高度差可由第一管路3和第二管路4形成。可选的,第一管路3包括依次连通的第一支路,第二支路和第三支路,第二支路使第一支路与第三支路形成高度差,或者,第二管路4包括依次连通的第四支路,第五支路和第六支路,第五支路使第四支路与第六支路形成高度差。
结合工质的气态与液态的相变,工质在工质回路中的流动方式可以描述为:第一散热模块1接收来自待散热物体的热量,第一层工质流路13与第二层工质流路内的工质受热变为气态,根据气体向上流动的原理,气态工质通过第一管路3进入第三层工质流路,第三层工质流路内的气态工质热量散热后温度降低,变为液态,在重力作用下,流入第四层工质流路,并通过第二管路4流入第二层工质流路,进行下一次热量吸收循环。
本申请同时提供了一种包括前述空调室外机的空调器。
本申请并不局限于上面已经描述并在附图中示出的结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围由所附的权利要求来限制。

Claims (10)

  1. 一种空调室外机,其特征在于,包括设置于所述空调室外机的壳体内部的风机支架、隔音板和散热器,所述散热器包括:
    第一散热模块,设置有第一工质流路,
    第二散热模块,设置有第二工质流路,
    第一管路,连通所述第一工质流路和第二工质流路,和
    第二管路,连通所述第一工质流路和第二工质流路;
    其中,所述第一工质流路、第二工质流路、第一管路和第二管路构成工质回路,所述工质回路被设置为填充相变工质,
    所述第二散热模块与风机支架和隔音板连接。
  2. 根据权利要求1所述的空调室外机,其特征在于,
    所述第二散热模块包括第一端和第二端,所述第一端与所述风机支架连接,所述第二端与所述隔音板连接。
  3. 根据权利要求2所述的空调室外机,其特征在于,
    所述风机支架包括靠近所述隔音板的第一面和远离所述隔音板的第二面,
    所述第二散热模块的第一端与所述风机支架的第一面连接。
  4. 根据权利要求2所述的空调室外机,其特征在于,
    所述隔音板包括靠近所述空调室外机的壳体的上底板的第三面和靠近所述空调室外机的壳体的下底板的第四面,
    所述第二散热模块的第二端与所述隔音板的第三面连接。
  5. 根据权利要求2所述的空调室外机,其特征在于,
    垂直方向上,所述第二散热模块的第一端的高度高于第二端的高度。
  6. 根据权利要求1所述的空调室外机,其特征在于,
    所述第二散热模块为吹胀板、管翅散热板或丝管散热板。
  7. 根据权利要求1-6中任一项所述的空调室外机,其特征在于,
    所述隔音板将所述空调室外机的壳体围成的舱体分为风机舱和压缩机舱,
    所述第一散热模块设置于所述压缩机舱内。
  8. 根据权利要求1-6中任一项所述的空调室外机,其特征在于,所述第一散热模块、第二散热模块中一个或一个以上被设置为:
    所述第一散热模块包括第一基体,所述第一工质流路设置于所述第一基体内,所述第一基体与所述第一工质流路一体成型;
    所述第二散热模块包括第二基体,所述第二工质流路设置于所述第二基体内,所述第二基体与所述第二工质流路一体成型。
  9. 根据权利要求1-6中任一项所述的空调室外机,其特征在于,所述第一管路、第二管路中的一个或一个以上被设置为:
    所述第一管路包括依次连通的第一支路,第二支路和第三支路,所述第二支路使所述第一支路与第三支路形成高度差;
    所述第二管路包括依次连通的第四支路,第五支路和第六支路,所述第五支路使所述第四支路与第六支路形成高度差。
  10. 一种空调器,其特征在于,包括权利要求1-9中任一项所述的空调室外机。
PCT/CN2019/126464 2019-04-19 2019-12-19 空调室外机和空调器 WO2020211416A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910318917.9A CN110030629B (zh) 2019-04-19 2019-04-19 一种空调室外机和空调器
CN201910318917.9 2019-04-19

Publications (1)

Publication Number Publication Date
WO2020211416A1 true WO2020211416A1 (zh) 2020-10-22

Family

ID=67239256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126464 WO2020211416A1 (zh) 2019-04-19 2019-12-19 空调室外机和空调器

Country Status (2)

Country Link
CN (1) CN110030629B (zh)
WO (1) WO2020211416A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109974137B (zh) * 2019-04-19 2024-05-17 青岛海尔智能技术研发有限公司 一种空调室外机和空调器
CN110030629B (zh) * 2019-04-19 2024-07-16 青岛海尔空调器有限总公司 一种空调室外机和空调器
CN110736153B (zh) * 2019-09-30 2022-06-14 重庆海尔空调器有限公司 空调室外机
CN110736156B (zh) * 2019-09-30 2022-04-15 青岛海尔空调器有限总公司 空调室外机
CN110736154B (zh) * 2019-09-30 2022-03-29 青岛海尔空调器有限总公司 空调室外机
CN110736157B (zh) * 2019-09-30 2022-04-19 青岛海尔空调器有限总公司 空调室外机
CN112197353A (zh) * 2020-10-30 2021-01-08 广东美的制冷设备有限公司 空调室外机及空调器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100121558A (ko) * 2009-05-09 2010-11-18 홍부표 분리형 에어컨 실외기 응축기
CN201663784U (zh) * 2010-02-09 2010-12-01 中兴通讯股份有限公司 一种通讯机柜散热结构
CN205783408U (zh) * 2016-06-17 2016-12-07 上海嘉熙科技有限公司 基于热超导散热板的电控器及空调室外机
CN109974137A (zh) * 2019-04-19 2019-07-05 青岛海尔智能技术研发有限公司 一种空调室外机和空调器
CN110030629A (zh) * 2019-04-19 2019-07-19 青岛海尔空调器有限总公司 一种空调室外机和空调器
CN110043972A (zh) * 2019-04-19 2019-07-23 青岛海尔空调器有限总公司 一种散热器、空调室外机和空调器
CN110043974A (zh) * 2019-04-19 2019-07-23 青岛海尔空调器有限总公司 一种散热器、空调室外机和空调器
CN110043975A (zh) * 2019-04-19 2019-07-23 青岛海尔空调器有限总公司 一种散热器、空调室外机和空调器
CN110043973A (zh) * 2019-04-19 2019-07-23 青岛海尔空调器有限总公司 一种散热器、空调室外机和空调器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10608303B2 (en) * 2017-02-08 2020-03-31 Denso Corporation Power source apparatus and work machine having the same
CN107166564B (zh) * 2017-06-20 2023-05-19 珠海格力电器股份有限公司 热管换热器、空调控制散热组件、空调室外机和空调器
CN207487003U (zh) * 2017-10-23 2018-06-12 中山长虹电器有限公司 空调室外机的隔音板固定结构
CN107906705B (zh) * 2017-12-15 2024-04-09 珠海格力电器股份有限公司 空调器及其电器盒
CN109237639A (zh) * 2018-10-25 2019-01-18 奥克斯空调股份有限公司 一种辅助换热装置及空调器
CN210014472U (zh) * 2019-04-19 2020-02-04 青岛海尔空调器有限总公司 一种空调室外机和空调器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100121558A (ko) * 2009-05-09 2010-11-18 홍부표 분리형 에어컨 실외기 응축기
CN201663784U (zh) * 2010-02-09 2010-12-01 中兴通讯股份有限公司 一种通讯机柜散热结构
CN205783408U (zh) * 2016-06-17 2016-12-07 上海嘉熙科技有限公司 基于热超导散热板的电控器及空调室外机
CN109974137A (zh) * 2019-04-19 2019-07-05 青岛海尔智能技术研发有限公司 一种空调室外机和空调器
CN110030629A (zh) * 2019-04-19 2019-07-19 青岛海尔空调器有限总公司 一种空调室外机和空调器
CN110043972A (zh) * 2019-04-19 2019-07-23 青岛海尔空调器有限总公司 一种散热器、空调室外机和空调器
CN110043974A (zh) * 2019-04-19 2019-07-23 青岛海尔空调器有限总公司 一种散热器、空调室外机和空调器
CN110043975A (zh) * 2019-04-19 2019-07-23 青岛海尔空调器有限总公司 一种散热器、空调室外机和空调器
CN110043973A (zh) * 2019-04-19 2019-07-23 青岛海尔空调器有限总公司 一种散热器、空调室外机和空调器

Also Published As

Publication number Publication date
CN110030629B (zh) 2024-07-16
CN110030629A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
WO2020211416A1 (zh) 空调室外机和空调器
WO2020211489A1 (zh) 一种空调室外机和空调器
TWI525300B (zh) 功率模組用複合式散熱器組件
CN110043972B (zh) 一种散热器、空调室外机和空调器
CN104197612B (zh) 一种半导体冰箱的高效散热组件
WO2017215143A1 (zh) 基于热超导散热板的电控器及空调室外机
US20100032141A1 (en) cooling system utilizing carbon nanotubes for cooling of electrical systems
CN210070063U (zh) 一种散热器、空调室外机和空调器
CN105555102A (zh) 具有热超导半导体制冷系统的密封机柜
CN210014472U (zh) 一种空调室外机和空调器
CN210014477U (zh) 一种散热器、空调室外机和空调器
CN210014475U (zh) 一种散热器、空调室外机和空调器
CN210014478U (zh) 一种散热器、空调室外机和空调器
CN110043975B (zh) 一种散热器、空调室外机和空调器
CN210014476U (zh) 一种散热器、空调室外机和空调器
CN110043973B (zh) 一种散热器、空调室外机和空调器
CN110043974B (zh) 一种散热器、空调室外机和空调器
WO2021189726A1 (zh) 散热器和空调室外机
JPH0783582A (ja) 密閉機器筐体冷却装置
KR20070115312A (ko) 냉각장치용 히트파이프 모듈
WO2021077631A1 (zh) 散热器和空调器
CN210663105U (zh) 一种空调室外机和空调器
CN215269268U (zh) 一种集成式大功率散热模组
CN210399239U (zh) 一种散热构件、散热器、空调室外机和空调器
CN212628953U (zh) 一种显示设备的散热结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924891

Country of ref document: EP

Kind code of ref document: A1