WO2021074980A1 - パワーモジュール - Google Patents

パワーモジュール Download PDF

Info

Publication number
WO2021074980A1
WO2021074980A1 PCT/JP2019/040555 JP2019040555W WO2021074980A1 WO 2021074980 A1 WO2021074980 A1 WO 2021074980A1 JP 2019040555 W JP2019040555 W JP 2019040555W WO 2021074980 A1 WO2021074980 A1 WO 2021074980A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal wire
power module
semiconductor chip
sheet
metal
Prior art date
Application number
PCT/JP2019/040555
Other languages
English (en)
French (fr)
Inventor
賢太 中原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112019007832.1T priority Critical patent/DE112019007832T5/de
Priority to US17/632,164 priority patent/US20220285243A1/en
Priority to PCT/JP2019/040555 priority patent/WO2021074980A1/ja
Priority to JP2021552025A priority patent/JP7106014B2/ja
Priority to CN201980101259.6A priority patent/CN114556548A/zh
Publication of WO2021074980A1 publication Critical patent/WO2021074980A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48101Connecting bonding areas at the same height, e.g. horizontal bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48105Connecting bonding areas at different heights
    • H01L2224/48106Connecting bonding areas at different heights the connector being orthogonal to a side surface of the semiconductor or solid-state body, e.g. parallel layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48105Connecting bonding areas at different heights
    • H01L2224/48108Connecting bonding areas at different heights the connector not being orthogonal to a side surface of the semiconductor or solid-state body, e.g. fanned-out connectors, radial layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/4813Connecting within a semiconductor or solid-state body, i.e. fly wire, bridge wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • H01L2224/48229Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item the bond pad protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4846Connecting portions with multiple bonds on the same bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/053Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having an insulating or insulated base as a mounting for the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present invention relates to an improvement in heat dissipation in a power module.
  • wiring on a semiconductor chip is performed by bonding using a metal wire. If a metal wire is used for wiring on a semiconductor chip, it is possible to develop a variety of products in which the size or electrode shape of the semiconductor chip is changed in the same package by changing the wiring shape.
  • Patent Document 1 discloses a technique for improving heat dissipation in the bonding of the lower side of a semiconductor chip.
  • Patent Document 2 discloses a technique for improving the heat dissipation of the encapsulant.
  • the temperature of the wire wiring when the power module is energized rises.
  • the life of the semiconductor chip and the wire bond joint is shortened due to the temperature cycle of heat generation and cooling, or the wire wiring itself is blown.
  • the present invention has been made to solve the above problems, and an object of the present invention is to improve the heat dissipation of a metal wire on a semiconductor chip in a power module.
  • the power module of the present invention includes a base plate, an insulating substrate provided on the base plate and having a circuit pattern, at least one semiconductor chip mounted on the circuit pattern of the insulating substrate, and a plurality of connected to the surface of the semiconductor chip.
  • the metal wire comprises a metal wire and a heat conductive sheet that contacts the metal wire from above, and the metal wire includes at least one first metal wire that connects the surface of the semiconductor chip and the circuit pattern, and two on the surface of the semiconductor chip. It comprises at least one second metal wire, which connects the points and has the same potential as the first metal wire, the heat conductive sheet comprises a graphite sheet, and the sheet surface of the heat conductive sheet is at least one first metal.
  • the wire is in contact with at least one second metal wire.
  • the sheet surface of the heat conductive sheet containing the graphite sheet comes into contact with at least one first metal wire and at least one second metal wire. Therefore, the heat of the second metal wire is transferred to the first metal wire through the graphite sheet and radiated from the first metal wire to the circuit pattern, so that the temperature rise of the second metal wire can be prevented. In this way, the heat dissipation of the metal wire on the semiconductor chip is improved.
  • FIG. It is sectional drawing of the power module of Embodiment 1.
  • FIG. It is an isometric view of the power module of Embodiment 2.
  • FIG. It is a top view of the power module of Embodiment 2.
  • FIG. 1 is a cross-sectional view of the power module 101 of the first embodiment.
  • the power module 101 includes a base plate 1, an insulating substrate 7, a diode chip 81, transistor chips 9a1, 9b1, metal wires 10a, 10b, 10c, a graphite sheet 11, a case 12, and a sealing material 13.
  • the insulating substrate 7 is formed on the upper surface of the base plate 1.
  • the insulating substrate 7 is composed of an insulating base material 4, a lower surface pattern 2 made of a metal bonded to the lower surface of the insulating base material 4 with a bonding material 3, and a metal bonded to the upper surface of the insulating base material 4 with a bonding material 5. It is configured to include circuit patterns 6a, 6b, and 6c.
  • the lower surface pattern 2 of the insulating substrate 7 is formed on the upper surface of the base plate 1.
  • the diode chip 81 and the transistor chips 9a1 and 9b1 are bonded to the circuit pattern 6b by a bonding material such as solder or a sintered material.
  • the diode chip 81 functions as a freewheeling diode for the transistor chips 9a1 and 9b1.
  • the diode chip 81 and the transistor chips 9a1 and 9b1 are examples of semiconductor chips. In place of these semiconductor chips, another semiconductor chip may be mounted on the power module 101, or one semiconductor chip may be mounted.
  • Wire wiring with metal wires is applied to the upper surface of the semiconductor chip.
  • the metal wire connecting the diode chip 81 and the circuit pattern 6a is referred to as a metal wire 10a.
  • the metal wire 10a is also referred to as a first metal wire.
  • metal wires connecting two places on the diode chip 81, two places on the diode chip 81 and the transistor chip 9a1, two places on the transistor chip 9a1, and two places on the transistor chip 9a1 and the transistor chip 9a2, and the transistor 9a2 are connected. Let it be a metal wire 10b.
  • the metal wire 10b is also referred to as a second metal wire.
  • the transistor chip 9a2 and the circuit pattern 6c are connected by a metal wire 10c.
  • the metal wire 10c is a gate wire that connects the gate electrode of the transistor chip 9a2 and the circuit pattern 6c, and has the same potential as the gate electrode (hereinafter, also referred to as “gate potential”).
  • the metal wire 10a and the metal wire 10b have the same potential as the emitter electrode of the transistor chip 9a2 (hereinafter, also referred to as “emitter potential”).
  • the graphite sheet 11 is provided on the metal wires 10a and 10b connected to the upper surface of the semiconductor chip, with the sheet surface in contact with the metal wires 10a and 10b.
  • the graphite sheet 11 is an anisotropic heat conductive material having a low thermal conductivity of 1 W / mK in the thickness direction and a high thermal conductivity of 500 W / mK or more in the plane direction. Therefore, the heat of the metal wire 10b is transferred to the metal wire 10a by the graphite sheet 11, and is further dissipated from the metal wire 10a to the circuit pattern 6a. Thereby, the temperature of the metal wire 10b can be lowered.
  • the graphite sheet 11 functions as a heat conductive sheet that conducts the heat of the metal wire 10b in the plane direction.
  • the graphite sheet 11 does not come into contact with the metal wire 10c because the metal wire 10c has a different potential than the metal wires 10a and 10b.
  • the base plate 1 is fitted to the case 12, and the case 12 accommodates the base plate 1, the insulating substrate 7, the diode chip 81, the transistor chips 9a1, 9b1, the metal wires 10a, 10b, 10c, and the graphite sheet 11. ing.
  • the inside of the case 12 is filled with a sealing material 13 made of gel or epoxy resin, and the diode chip 81, the transistor chips 9a1, 9b1, the metal wires 10a, 10b, 10c, and the graphite sheet 11 are sealed by the sealing material 13. Has been done.
  • the graphite sheet 11 is in contact with all the metal wires 10b, but as long as it is in contact with the metal wire 10a and at least one metal wire 10b having the same potential as the metal wire 10a, the above heat dissipation effect can be obtained. Obtainable. However, the larger the number of metal wires 10b that the graphite sheet 11 contacts, the more heat of the metal wires 10b can be dissipated to the circuit pattern 6a.
  • the heat generated on the semiconductor chip of the power module is transmitted to the base plate 1 through the bonding under the semiconductor chip, and is dissipated from the base plate 1 to the cooling fins.
  • the temperature of the metal wire becomes high due to heat transfer from the semiconductor chip or heat generated by the energizing current of the metal wire itself.
  • the heat of the metal wire 10b is dissipated by the graphite sheet 11 in the direction parallel to the surface of the base plate 1, so that the temperature rise of the metal wire 10b is alleviated. ..
  • the power module 101 of the first embodiment includes a base plate 1, an insulating substrate 7 provided on the base plate 1 and having circuit patterns 6a, 6b, 6c, and a circuit pattern 6b of the insulating substrate 7. It includes a diode chip 81 and transistor chips 9a1 and 9b1 which are semiconductor chips mounted on the semiconductor chip, a plurality of metal wires connected to the surface of the semiconductor chip, and a heat conductive sheet which comes into contact with the metal wires from above.
  • the metal wire connects the metal wire 10a, which is at least one first metal wire connecting the surface of the diode chip 81 and the circuit pattern 6a, and two points on the surface of the semiconductor chip, and has the same potential as the metal wire 10a.
  • the metal wire 10b which is at least one second metal wire, is provided.
  • the heat conductive sheet includes a graphite sheet 11, and the sheet surface of the heat conductive sheet is in contact with at least one metal wire 10a and at least one metal wire 10b. Therefore, the heat of the metal wire 10b is transferred to the metal wire 10a through the graphite sheet 11 and radiated from the metal wire 10a to the circuit pattern 6a, so that the temperature rise of the metal wire 10b can be prevented.
  • FIG. 2 is an isometric view of the power module 102 of the second embodiment.
  • FIG. 3 is a top view of the power module 102.
  • FIG. 4 is an isometric view showing a state before the graphite sheet 11 of the power module 102 is installed.
  • the power module 102 includes a diode chip 82-88 and transistor chips 9a2-9a8 and 9b2-9b8 in addition to the configuration of the power module 101 of the first embodiment.
  • the power module 102 is mounted in parallel with a set of eight semiconductor chips including one diode chip 8n and two transistor chips 9an and 9bn. Note that n is a natural number from 1 to 8.
  • the connection status of the metal wires in each set of semiconductor chips is the same.
  • the transistor chip is arranged in the region 14 of FIG. 3, and the diode chip is arranged in the region 15.
  • metal wires 10a and 10b are shown as ribbon wires in FIGS. 2 to 4, they may be single wire wires.
  • a wire wire has less restrictions on the chip size than a ribbon wire, and can be bonded in an oblique direction.
  • the diode chip 8n functions as a freewheeling diode of the transistor chips 9an and 9bn.
  • the fact that the semiconductor chips are mounted in parallel is shown in FIG. 4 that the metal wire 10c, which is a gate wire, is connected to each of the transistor chips 9a1-9a8 from the same circuit pattern 6c. ..
  • a plurality of semiconductor chips mounted in parallel are connected by a metal wire to form an electric circuit.
  • the transistor chip 9b1 and the transistor chip 9b2 are connected by a metal wire 10b1
  • the transistor chip 9b2 and the transistor chip 9a3 are connected by a metal wire 10b1.
  • These metal wires 10b1 have the same potential as the metal wire 10a, and are also referred to as a second metal wire like the metal wire 10b.
  • the plurality of semiconductor chips mounted in parallel are energized at the same time, and a large current of the power module 102 is realized.
  • the bond point since the semiconductor chips at both ends of the metal wire 10b1 are energized at the same time, the bond point generates heat, and when the metal wire 10b1 itself is energized, the temperature becomes higher than that on the semiconductor chip. turn into.
  • the graphite sheet 11 connects a set of transistor chips 9a1, 9b1, diode chips 81 and a set of transistor chips 9a2, 9b2, diode chips 82, in addition to the features of the first embodiment. It is formed on the upper portion of the metal wire 10b1 so as to come into contact with the metal wire 10b1.
  • the power module 102 of the second embodiment has transistor chips 9b1-9b8, which are a plurality of semiconductor chips in which a gate terminal as a control terminal is connected to the same circuit pattern 6a or a circuit pattern having the same potential. Including, the sheet surface of the heat conductive sheet comes into contact with the metal wire 10b1, which is the second metal wire connecting the transistor chips 9b1-9b8. Since the semiconductor chips 9b1-9b8 at both ends of the metal wire 10b1 are simultaneously energized and generate heat, the metal wire 10b1 may have a higher temperature than that on the semiconductor chip 9b1-9b8. By conducting the wire 10a and dissipating heat from the metal wire 10a to the circuit pattern 6a, it is possible to suppress an increase in the temperature of the metal wire 10b1. This makes it possible to extend the product life of the power module 102.
  • the heat conductive sheet is composed of the graphite sheet 11 alone.
  • a heat conductive sheet is formed by a clad material in which a graphite sheet 11 and a metal thin film 16 are laminated.
  • the metal thin film 16 is shown as a lower layer and the graphite sheet 11 is shown as an upper layer, but the graphite sheet 11 may be a lower layer and the metal thin film 16 may be an upper layer.
  • the configuration of the power module of the third embodiment other than the heat conductive sheet is the same as that of the power modules 101 and 102 of the first embodiment or the second embodiment.
  • the graphite sheet 11 Since the graphite sheet 11 has low strength and is brittle, if the graphite sheet 11 alone constitutes a heat conductive sheet, the state will change due to the handling during shape processing or assembly, and the yield in product assembly will deteriorate. I am concerned. Therefore, by forming the heat conductive sheet with a clad material in which the graphite sheet 11 and the metal thin film 16 are superposed, it is possible to process or assemble the shape of the heat conductive sheet while having the high strength of the metal thin film 16. .. Further, the high thermal conductivity in the surface direction of the graphite sheet 11 suppresses heat generation of the metal wires 10b and 10b1.
  • the thickness of the metal thin film 16 is 100 ⁇ m and the thickness of the graphite sheet 11 is 100 ⁇ m or more and 400 ⁇ m or less. As described above, when the heat conductive sheet has an appropriate thickness, it is possible to easily change the shape or install the heat conductive sheet according to the wiring material.
  • FIG. 6 is a top view of the power module 104 of the fourth embodiment.
  • the power module 104 of the fourth embodiment is different from the configuration of the power module 102 of the second embodiment in that the graphite sheet 11 is formed with a hole 15 penetrating the sheet surface. Although eight holes 15 are formed in FIG. 6, it is sufficient that at least one hole 15 is formed.
  • the case 12 is filled with the sealing material 13 as shown in FIG. If air bubbles are contained inside the cured encapsulant, the insulation quality of the power module deteriorates depending on the place where the air bubbles are generated.
  • the holes 15 of the graphite sheet 11 allow bubbles generated between the graphite sheet 11 and the semiconductor chip to be extracted above the graphite sheet 11 and further extracted from the sealing material 13.
  • the diameter of the hole 15 is preferably 1.0 mm or more in order to remove air bubbles. Further, it is desirable that the outer circumference of the hole 15 is 1.0 mm or more away from the place where the graphite sheet 11 comes into contact with the metal wires 10a and 10b. If the hole 15 is installed in a place where air bubbles are likely to remain, the effect of removing air bubbles can be easily obtained.
  • the present embodiment may be combined with the third embodiment. That is, in the present embodiment, the heat conductive sheet is composed of the graphite sheet 11 and the clad material of the metal thin film 16, and the holes 15 penetrating the graphite sheet 11 and the metal thin film 16 are formed on the sheet surface of the heat conductive sheet. Is also good. In this case, since the heat conductive sheet has high strength due to the metal thin film 16, the holes 15 can be easily machined, and defects of the member itself can be reduced.
  • the power module 104 of the fourth embodiment is fitted to the base plate 1 and houses the insulating substrate 7, the semiconductor chips 81, 9a1, 9b1, the metal wires 10a, 10b, and the heat conductive sheet, and the case 12 and the case 12. It is filled inside and includes a semiconductor chip, metal wires 10a and 10b, and a sealing material 13 for sealing the heat conductive sheet, and penetrates the sheet surface at a position not overlapping with the metal wires 10a and 10b of the heat conductive sheet. The hole 15 is formed. As a result, bubbles that affect the insulation quality of the power module generated between the graphite sheet 11 and the semiconductor chip can be extracted above the graphite sheet 11 and further extracted from the sealing material 13.
  • each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted within the scope of the invention.
  • the present invention has been described in detail, the above description is exemplary in all embodiments and the invention is not limited thereto. It is understood that innumerable variations not illustrated can be assumed without departing from the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本発明は、パワーモジュールにおける半導体チップ上の金属ワイヤの放熱性を向上することを目的とする。パワーモジュール(101)は、絶縁基板(7)の回路パターン(6b)に搭載された少なくとも1つの半導体チップと、半導体チップの表面に接続される複数の金属ワイヤ(10a,10b)と、金属ワイヤ(10a,10b)に上方から接触する熱伝導シートと、を備える。金属ワイヤは、半導体チップの表面と回路パターン(6a)を接続する少なくとも1つの金属ワイヤ(10a)と、半導体チップの表面上の2点を接続し、金属ワイヤ(10a)と同電位である、少なくとも1つの金属ワイヤ(10b)と、を備える。熱伝導シートはグラファイトシート(11)を含み、熱伝導シートのシート面は、少なくとも1つの金属ワイヤ(10a)と、少なくとも1つの金属ワイヤ(10b)とに接触する。

Description

パワーモジュール
 この発明は、パワーモジュールにおける放熱性の向上に関する。
 従来、パワーモジュールでは、金属ワイヤを用いたボンディングにより半導体チップ上の配線が行われている。半導体チップ上の配線に金属ワイヤを使用すれば、配線形状を変更することにより、同一パッケージにおいて半導体チップのサイズまたは電極形状を変更した品種展開に対応することができる。
 特許文献1には、半導体チップの下側の接合における放熱性を上げる技術が開示されている。特許文献2には、封止材の放熱性を上げる技術が開示されている。
特開2019-096731号公報 特開2017-108046号公報
 パワーモジュールの大電流化や小型化により、パワーモジュールの通電時におけるワイヤ配線の温度が上昇する。ワイヤ配線の温度が上昇すると、発熱と冷却の温度サイクルにより半導体チップとワイヤボンド接合の寿命が低下したり、ワイヤ配線自体が溶断したりするという問題がある。
 本発明は、上記の問題点を解決するためになされたものであり、パワーモジュールにおける半導体チップ上の金属ワイヤの放熱性を向上することを目的とする。
 本発明のパワーモジュールは、ベース板と、ベース板上に設けられ回路パターンを有する絶縁基板と、絶縁基板の回路パターンに搭載された少なくとも1つの半導体チップと、半導体チップの表面に接続される複数の金属ワイヤと、金属ワイヤに上方から接触する熱伝導シートと、を備え、金属ワイヤは、半導体チップの表面と回路パターンを接続する少なくとも1つの第1金属ワイヤと、半導体チップの表面上の2点を接続し、第1金属ワイヤと同電位である、少なくとも1つの第2金属ワイヤと、を備え、熱伝導シートはグラファイトシートを含み、熱伝導シートのシート面は、少なくとも1つの第1金属ワイヤと、少なくとも1つの第2金属ワイヤとに接触する。
 本発明のパワーモジュールでは、グラファイトシートを含む熱伝導シートのシート面が、少なくとも1つの第1金属ワイヤと少なくとも1つの第2金属ワイヤとに接触する。従って、第2金属ワイヤの熱をグラファイトシートを通して第1金属ワイヤに伝え、第1金属ワイヤから回路パターンに放熱することにより、第2金属ワイヤの温度上昇を防ぐことができる。このように、半導体チップ上の金属ワイヤの放熱性が向上する。本発明の目的、特徴、態様、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
実施の形態1のパワーモジュールの断面図である。 実施の形態2のパワーモジュールの等角投影図である。 実施の形態2のパワーモジュールの上面図である。 グラファイトシートを除いた実施の形態2のパワーモジュールの等角投影図である。 実施の形態3のパワーモジュールにおける熱伝導シートの構成を示す図である。 実施の形態4のパワーモジュールの上面図である。
 <A.実施の形態1>
 図1は、実施の形態1のパワーモジュール101の断面図である。パワーモジュール101は、ベース板1、絶縁基板7、ダイオードチップ81、トランジスタチップ9a1,9b1、金属ワイヤ10a,10b,10c、グラファイトシート11、ケース12、および封止材13を備えて構成される。
 ベース板1の上面に絶縁基板7が形成される。絶縁基板7は、絶縁基材4と、絶縁基材4の下面に接合材3で接合された金属からなる下面パターン2と、絶縁基材4の上面に接合材5で接合された金属からなる回路パターン6a,6b,6cとを備えて構成される。ベース板1の上面には絶縁基板7の下面パターン2が形成される。
 回路パターン6b上には、半田または焼結材等の接合材により、ダイオードチップ81およびトランジスタチップ9a1,9b1が接合される。ダイオードチップ81は、トランジスタチップ9a1,9b1に対する還流ダイオードとして機能する。ここで、ダイオードチップ81およびトランジスタチップ9a1,9b1は半導体チップの一例である。パワーモジュール101には、これらの半導体チップに代えて他の半導体チップが搭載されていても良いし、一つの半導体チップが搭載されていても良い。
 半導体チップの上面には、金属ワイヤによるワイヤ配線が施される。半導体チップの上面に接続される金属ワイヤのうち、ダイオードチップ81と回路パターン6aとを接続する金属ワイヤを金属ワイヤ10aとする。金属ワイヤ10aを第1金属ワイヤとも称する。また、ダイオードチップ81上の2か所、ダイオードチップ81とトランジスタチップ9a1、トランジスタチップ9a1上の2か所、トランジスタチップ9a1とトランジスタチップ9a2、トランジスタ9a2上の2か所を接続する金属ワイヤを、金属ワイヤ10bとする。金属ワイヤ10bを第2金属ワイヤとも称する。また、トランジスタチップ9a2と回路パターン6cとは、金属ワイヤ10cにより接続される。
 金属ワイヤ10cは、トランジスタチップ9a2のゲート電極と回路パターン6cとを接続するゲートワイヤであり、ゲート電極と同じ電位(以下、「ゲート電位」とも称する)を有している。これに対して金属ワイヤ10aと金属ワイヤ10bは、トランジスタチップ9a2のエミッタ電極と同じ電位(以下、「エミッタ電位」とも称する)を有している。
 グラファイトシート11は、半導体チップの上面に接続された金属ワイヤ10a,10b上に、そのシート面を金属ワイヤ10a,10bと接触して設けられる。グラファイトシート11は、厚み方向の熱伝導率が1W/mKと低いのに対して、面方向への熱伝導率が500W/mK以上と高い、異方性熱伝導材料である。そのため、金属ワイヤ10bの熱がグラファイトシート11によって金属ワイヤ10aに伝わり、さらに金属ワイヤ10aから回路パターン6aに放熱される。これにより、金属ワイヤ10bの温度を下げることができる。このように、パワーモジュール101においてグラファイトシート11は、金属ワイヤ10bの熱を面方向に伝導する熱伝導シートとして機能する。なお、グラファイトシート11が金属ワイヤ10cに接触しないのは、金属ワイヤ10cが金属ワイヤ10a,10bとは異なる電位だからである。
 ベース板1は、ケース12と嵌合しており、ケース12により、ベース板1、絶縁基板7、ダイオードチップ81、トランジスタチップ9a1,9b1、金属ワイヤ10a,10b,10c、グラファイトシート11が収容されている。ケース12の内部には、ゲルまたはエポキシ樹脂からなる封止材13が充填され、封止材13によりダイオードチップ81、トランジスタチップ9a1,9b1、金属ワイヤ10a,10b,10c、グラファイトシート11が封止されている。
 図1において、グラファイトシート11は全ての金属ワイヤ10bに接触しているが、金属ワイヤ10aと、金属ワイヤ10aと同電位を有する少なくとも1つの金属ワイヤ10bに接している限り、上記の放熱効果を得ることができる。但し、グラファイトシート11が接触する金属ワイヤ10bの数が多いほど、多くの金属ワイヤ10bの熱を回路パターン6aに放熱することができる。
 従来、パワーモジュールの半導体チップ上の発熱は、半導体チップ下の接合を通してベース板1へと伝わり、ベース板1から冷却フィンへ放熱される。しかし、パワーモジュールに通電する電流が増加すると、半導体チップからの伝熱または金属ワイヤ自体の通電電流による発熱によって、金属ワイヤが高温になる。これに対して、実施の形態1のパワーモジュール101では、金属ワイヤ10bの熱がグラファイトシート11によってベース板1の面に平行な方向に放熱されるため、金属ワイヤ10bの温度上昇が緩和される。
 以上に説明したように、実施の形態1のパワーモジュール101は、ベース板1と、ベース板1上に設けられ回路パターン6a,6b,6cを有する絶縁基板7と、絶縁基板7の回路パターン6bに搭載された半導体チップであるダイオードチップ81およびトランジスタチップ9a1,9b1と、半導体チップの表面に接続される複数の金属ワイヤと、金属ワイヤに上方から接触する熱伝導シートと、を備える。金属ワイヤは、ダイオードチップ81の表面と回路パターン6aを接続する少なくとも1つの第1金属ワイヤである金属ワイヤ10aと、半導体チップの表面上の2点を接続し、金属ワイヤ10aと同電位である、少なくとも1つの第2金属ワイヤである金属ワイヤ10bと、を備える。熱伝導シートはグラファイトシート11を含み、熱伝導シートのシート面は、少なくとも1つの金属ワイヤ10aと、少なくとも1つの金属ワイヤ10bとに接触する。従って、金属ワイヤ10bの熱がグラファイトシート11を通して金属ワイヤ10aに伝え、金属ワイヤ10aから回路パターン6aに放熱されることにより、金属ワイヤ10bの温度上昇を防ぐことができる。
 <B.実施の形態2>
 図2は、実施の形態2のパワーモジュール102の等角投影図である。図3は、パワーモジュール102の上面図である。図4は、パワーモジュール102のグラファイトシート11を設置する前の状態を示した等角投影図である。
 パワーモジュール102は、実施の形態1のパワーモジュール101の構成に加えて、ダイオードチップ82-88と、トランジスタチップ9a2-9a8,9b2-9b8を備えている。言い換えれば、パワーモジュール102には、1つのダイオードチップ8nと、2つのトランジスタチップ9an,9bnからなる半導体チップの組が、8個並列に搭載されている。なお、nは1から8の自然数である。半導体チップの各組における金属ワイヤの接続状況は同一である。図3の領域14にトランジスタチップが配置され、領域15にダイオードチップが配置されている。
 図2-図4では、金属ワイヤ10a,10bをリボンワイヤとして示しているが、1本の線ワイヤであっても良い。線ワイヤであれば、リボンワイヤに比べてチップサイズに対する制約が少なく、斜め方向へのボンディングも可能である。
 ダイオードチップ8nは、トランジスタチップ9an,9bnの還流ダイオードとして機能する。なお、半導体チップが並列に搭載されていることは、図4において、トランジスタチップ9a1-9a8の夫々に、同じ回路パターン6cからゲートワイヤである金属ワイヤ10cが接続されていることに表されている。
 これら並列に搭載された複数の半導体チップの間は、金属ワイヤにより接続され、電気回路が形成される。例えば図4において、トランジスタチップ9b1とトランジスタチップ9b2は金属ワイヤ10b1により接続され、トランジスタチップ9b2とトランジスタチップ9a3は金属ワイヤ10b1により接続されている。これらの金属ワイヤ10b1は、金属ワイヤ10aと同電位であり、金属ワイヤ10bと同様、第2金属ワイヤとも称する。そして、これら並列に搭載された複数の半導体チップは、同時に通電され、パワーモジュール102の大電流化が実現する。しかし、上記の金属ワイヤ10b1は、両端の半導体チップが同時に通電していることからボンド点が発熱しており、金属ワイヤ10b1自体に通電が行われた場合には、半導体チップ上よりも高温になってしまう。
 この点、パワーモジュール102においてグラファイトシート11は、実施の形態1の特徴に加えて、トランジスタチップ9a1,9b1,ダイオードチップ81の組と、トランジスタチップ9a2,9b2,ダイオードチップ82の組とを接続する金属ワイヤ10b1の上部に、当該金属ワイヤ10b1に接触するように形成される。
 以上に説明したように、実施の形態2のパワーモジュール102は、同じ回路パターン6aまたは同電位の回路パターンに制御端子であるゲート端子が接続された複数の半導体チップであるトランジスタチップ9b1-9b8を含み、熱伝導シートのシート面は、トランジスタチップ9b1-9b8を接続する第2金属ワイヤである金属ワイヤ10b1に接触する。金属ワイヤ10b1の両端の半導体チップ9b1-9b8は同時に通電され発熱するため、金属ワイヤ10b1は半導体チップ9b1-9b8上よりも高温になる場合があるが、グラファイトシート11を通して金属ワイヤ10b1の熱を金属ワイヤ10aに伝導し、金属ワイヤ10aから回路パターン6aへ放熱することにより、金属ワイヤ10b1の温度上昇を抑制することができる。これにより、パワーモジュール102の製品寿命を延ばすことが可能となる。
 <C.実施の形態3>
 実施の形態1,2のパワーモジュール101,102において、熱伝導シートはグラファイトシート11単体で構成された。これに対して実施の形態3のパワーモジュールでは、図5に示すように、グラファイトシート11と金属薄膜16が重ねあわされたクラッド材によって熱伝導シートが構成される。図5では、金属薄膜16を下層、グラファイトシート11を上層として示しているが、グラファイトシート11が下層、金属薄膜16が上層であっても良い。熱伝導シート以外の実施の形態3のパワーモジュールの構成は、実施の形態1または実施の形態2のパワーモジュール101,102と同様である。
 グラファイトシート11は、材料自体の強度が低く脆いため、グラファイトシート11単体で熱伝導シートを構成すると、形状の加工またはアセンブリ時のハンドリングで状態が変化してしまい、製品組み立てにおける歩留の悪化が懸念される。そこで、グラファイトシート11と金属薄膜16が重ね合わせたクラッド材により熱伝導シートを構成することで、金属薄膜16が持つ高い強度を持った状態で熱伝導シートの形状の加工またはアセンブリが可能となる。また、グラファイトシート11が持つ面方向への高い熱伝導性により金属ワイヤ10b,10b1の発熱が抑えられる。
 金属薄膜16の厚みは100μmであり、グラファイトシート11の厚みは100μm以上400μm以下であることが望ましい。このように、熱伝導シートが適切な厚みを有することで、配線材料に合わせた形状の変更または設置を容易に行うことが可能となる。
 <D.実施の形態4>
 図6は、実施の形態4のパワーモジュール104の上面図である。実施の形態4のパワーモジュール104は、実施の形態2のパワーモジュール102の構成と比較すると、グラファイトシート11に、そのシート面を貫通する穴15が形成されている点が異なる。図6には、8個の穴15が形成されているが、穴15は少なくとも1つ形成されていれば良い。
 パワーモジュール104を形成する上で、図1に示すように、ケース12内に封止材13が充填される。硬化した封止材の内部に気泡が含まれると、気泡の発生した場所によってはパワーモジュールの絶縁品質が低下してしまう。パワーモジュール104では、グラファイトシート11の穴15により、グラファイトシート11と半導体チップの間に生じた気泡をグラファイトシート11の上方へ抜き出し、さらに封止材13から抜き出すことが可能となる。気泡を抜くため、穴15の直径は1.0mm以上が望ましい。また、穴15の外周は、グラファイトシート11の金属ワイヤ10a,10bと接触する場所から1.0mm以上離れていることが望ましい。穴15は、特に気泡が残りやすい場所に設置されると、気泡を抜く効果が得られやすい。
 また、本実施の形態は実施の形態3と組み合わせても良い。つまり、本実施の形態において、熱伝導シートを、グラファイトシート11と金属薄膜16のクラッド材で構成し、熱伝導シートのシート面にグラファイトシート11と金属薄膜16を貫通する穴15を形成しても良い。この場合、熱伝導シートが金属薄膜16による高い強度を有しているため、穴15の加工がしやすくなり、部材自体の不良を減らすことができる。
 すなわち、実施の形態4のパワーモジュール104は、ベース板1に嵌合し、絶縁基板7、半導体チップ81,9a1,9b1、金属ワイヤ10a,10b、熱伝導シートを収容するケース12と、ケース12内部に充填され、半導体チップ、金属ワイヤ10a,10b、熱伝導シートを封止する封止材13と、を備え、熱伝導シートの金属ワイヤ10a,10bと重ならない位置に、シート面を貫通する穴15が形成されている。これにより、グラファイトシート11と半導体チップの間に生じたパワーモジュールの絶縁品質に影響する気泡を、グラファイトシート11の上方へ抜き出し、さらに封止材13から抜き出すことが可能となる。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。この発明は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 1 ベース板、2 下面パターン、3,5 接合材、4 絶縁基材、6a,6b,6c 回路パターン、7 絶縁基板、9a1-9a8,9b1-9b8 トランジスタチップ、10a,10b,10b1,10c 金属ワイヤ、11 グラファイトシート、12 ケース、13 封止材、16 金属薄膜、17 穴、81-88 ダイオードチップ、101,102,104 パワーモジュール。

Claims (5)

  1.  ベース板と、
     前記ベース板上に設けられ回路パターンを有する絶縁基板と、
     前記絶縁基板の前記回路パターンに搭載された少なくとも1つの半導体チップと、
     前記半導体チップの表面に接続される複数の金属ワイヤと、
     前記金属ワイヤに上方から接触する熱伝導シートと、を備え、
     前記金属ワイヤは、
     前記半導体チップの表面と前記回路パターンを接続する少なくとも1つの第1金属ワイヤと、
     前記半導体チップの表面上の2点を接続し、前記第1金属ワイヤと同電位である、少なくとも1つの第2金属ワイヤと、を備え、
     前記熱伝導シートはグラファイトシートを含み、
     前記熱伝導シートのシート面は、少なくとも1つの前記第1金属ワイヤと、少なくとも1つの前記第2金属ワイヤとに接触する、
    パワーモジュール。
  2.  前記半導体チップは、同じ前記回路パターンまたは同電位の前記回路パターンに制御端子が接続された複数の半導体チップを含み、
     前記熱伝導シートのシート面は、前記複数の半導体チップを接続する前記第2金属ワイヤに接触する、
    請求項1に記載のパワーモジュール。
  3.  前記熱伝導シートは、金属薄膜と前記グラファイトシートが重なったクラッド材である、
    請求項1または請求項2に記載のパワーモジュール。
  4.  前記金属薄膜の厚みは100μmであり、
     前記グラファイトシートの厚みは100μm以上400μm以下である、
    請求項3に記載のパワーモジュール。
  5.  前記ベース板に嵌合し、前記絶縁基板、前記半導体チップ、前記金属ワイヤ、前記熱伝導シートを収容するケースと、
     前記ケース内部に充填され、前記半導体チップ、前記金属ワイヤ、前記熱伝導シートを封止する封止材と、をさらに備え、
     前記熱伝導シートの、前記金属ワイヤと重ならない位置に、シート面を貫通する穴が形成されている、
    請求項1から請求項4のいずれか1項に記載のパワーモジュール。
PCT/JP2019/040555 2019-10-16 2019-10-16 パワーモジュール WO2021074980A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112019007832.1T DE112019007832T5 (de) 2019-10-16 2019-10-16 Leistungsmodul
US17/632,164 US20220285243A1 (en) 2019-10-16 2019-10-16 Power module
PCT/JP2019/040555 WO2021074980A1 (ja) 2019-10-16 2019-10-16 パワーモジュール
JP2021552025A JP7106014B2 (ja) 2019-10-16 2019-10-16 パワーモジュール
CN201980101259.6A CN114556548A (zh) 2019-10-16 2019-10-16 功率模块

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/040555 WO2021074980A1 (ja) 2019-10-16 2019-10-16 パワーモジュール

Publications (1)

Publication Number Publication Date
WO2021074980A1 true WO2021074980A1 (ja) 2021-04-22

Family

ID=75538043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040555 WO2021074980A1 (ja) 2019-10-16 2019-10-16 パワーモジュール

Country Status (5)

Country Link
US (1) US20220285243A1 (ja)
JP (1) JP7106014B2 (ja)
CN (1) CN114556548A (ja)
DE (1) DE112019007832T5 (ja)
WO (1) WO2021074980A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249607A (ja) * 2002-02-26 2003-09-05 Seiko Epson Corp 半導体装置及びその製造方法、回路基板並びに電子機器
JP2008235492A (ja) * 2007-03-20 2008-10-02 Matsushita Electric Ind Co Ltd 半導体装置および半導体装置の製造方法
JP2018166184A (ja) * 2017-03-28 2018-10-25 株式会社ケーヒン パワーモジュール

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120032350A1 (en) * 2010-08-06 2012-02-09 Conexant Systems, Inc. Systems and Methods for Heat Dissipation Using Thermal Conduits
KR20120026909A (ko) * 2010-09-10 2012-03-20 삼성전자주식회사 반도체 패키지 및 그의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249607A (ja) * 2002-02-26 2003-09-05 Seiko Epson Corp 半導体装置及びその製造方法、回路基板並びに電子機器
JP2008235492A (ja) * 2007-03-20 2008-10-02 Matsushita Electric Ind Co Ltd 半導体装置および半導体装置の製造方法
JP2018166184A (ja) * 2017-03-28 2018-10-25 株式会社ケーヒン パワーモジュール

Also Published As

Publication number Publication date
JP7106014B2 (ja) 2022-07-25
US20220285243A1 (en) 2022-09-08
JPWO2021074980A1 (ja) 2021-04-22
DE112019007832T5 (de) 2022-06-30
CN114556548A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
KR950008241B1 (ko) 필름 캐리어 테이프 및 그것을 내장한 적층형 멀티칩 반도체 장치와 그의 제조방법
JP6361821B2 (ja) 半導体装置
KR100752239B1 (ko) 전력 모듈 패키지 구조체
JP5212417B2 (ja) パワー半導体モジュール
US20100134979A1 (en) Power semiconductor apparatus
US10879222B2 (en) Power chip integration module, manufacturing method thereof, and double-sided cooling power module package
JP2010027814A (ja) 電力用半導体装置
JPH09129822A (ja) 半導体装置
WO2005119896A1 (ja) インバータ装置
JP2008270527A (ja) 電力用半導体モジュール
KR102172689B1 (ko) 반도체 패키지 및 그 제조방법
JP2018133527A (ja) 半導体装置及び半導体装置の製造方法
JP6945418B2 (ja) 半導体装置および半導体装置の製造方法
KR102196397B1 (ko) 메탈포스트, 이를 포함하는 반도체 패키지 및 반도체 패키지 제조방법
JP2012074730A (ja) 電力用半導体モジュール
JP2015076511A (ja) 半導体装置およびその製造方法
JP5477157B2 (ja) 半導体装置
WO2021074980A1 (ja) パワーモジュール
JP6488658B2 (ja) 電子装置
JP2012238737A (ja) 半導体モジュール及びその製造方法
JP4810898B2 (ja) 半導体装置
JPS63190363A (ja) パワ−パツケ−ジ
JPH05160304A (ja) 半導体装置
WO2022270161A1 (ja) 半導体モジュール
US20230135498A1 (en) Semiconductor package, method of forming the package and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021552025

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19949466

Country of ref document: EP

Kind code of ref document: A1