WO2021072812A1 - Dispositif de transistor à effet de champ à jonction à enrichissement à base de gan latéral et son procédé de préparation - Google Patents
Dispositif de transistor à effet de champ à jonction à enrichissement à base de gan latéral et son procédé de préparation Download PDFInfo
- Publication number
- WO2021072812A1 WO2021072812A1 PCT/CN2019/114216 CN2019114216W WO2021072812A1 WO 2021072812 A1 WO2021072812 A1 WO 2021072812A1 CN 2019114216 W CN2019114216 W CN 2019114216W WO 2021072812 A1 WO2021072812 A1 WO 2021072812A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gan
- channel layer
- layer
- effect transistor
- junction field
- Prior art date
Links
- 230000005669 field effect Effects 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title abstract description 3
- 238000005468 ion implantation Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 47
- 239000002184 metal Substances 0.000 claims description 26
- 239000000758 substrate Substances 0.000 claims description 24
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 239000010703 silicon Substances 0.000 claims description 11
- 238000005566 electron beam evaporation Methods 0.000 claims description 10
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims description 9
- 239000012159 carrier gas Substances 0.000 claims description 6
- 238000004151 rapid thermal annealing Methods 0.000 claims description 6
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 claims description 6
- 229910052594 sapphire Inorganic materials 0.000 claims description 4
- 239000010980 sapphire Substances 0.000 claims description 4
- 238000000137 annealing Methods 0.000 claims description 3
- 238000002513 implantation Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims description 2
- 229910001425 magnesium ion Inorganic materials 0.000 claims description 2
- 108091006146 Channels Proteins 0.000 abstract description 73
- 102000004129 N-Type Calcium Channels Human genes 0.000 abstract description 4
- 108090000699 N-Type Calcium Channels Proteins 0.000 abstract description 4
- 230000005684 electric field Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 230000003471 anti-radiation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66893—Unipolar field-effect transistors with a PN junction gate, i.e. JFET
- H01L29/66901—Unipolar field-effect transistors with a PN junction gate, i.e. JFET with a PN homojunction gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1025—Channel region of field-effect devices
- H01L29/1029—Channel region of field-effect devices of field-effect transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/80—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
- H01L29/808—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
Definitions
- the invention relates to an enhanced junction field effect transistor (JFET), in particular to a lateral GaN-based enhanced junction field effect transistor.
- JFET junction field effect transistor
- GaN-based field effect transistors have the advantages of high operating frequency, low on-resistance, high power density, and high breakdown voltage, so they have broad application prospects.
- AlGaN/GaN Heterojunction High Electron Mobility Transistor (HEMT) has developed rapidly due to the relatively easy growth process to achieve, while GaN-based junction field effect transistor (JFET) requires the use of re-growth or ion implantation process to achieve pn junction. The process is more complicated, so its development is relatively lagging behind.
- JFET devices have the characteristics of high input impedance, low noise, high limit frequency, low power consumption, and strong anti-radiation ability. They have important applications in the field of variable resistors and power amplifiers. JFET is generally a depletion type device, and the gate can only work normally by applying a reverse voltage. For power electronics applications, power semiconductor devices are often required to be enhanced devices, otherwise it will increase the design difficulty of the drive circuit and increase The off-state loss of high-power semiconductor devices.
- the purpose of the present invention is to provide a lateral GaN-based enhancement mode junction field effect transistor device, which realizes an enhancement mode GaN-based junction field effect transistor.
- a lateral GaN-based enhancement mode junction field effect transistor device includes:
- n-GaN channel layer grown on a semi-insulating GaN layer, where a plurality of parallel channels are arranged in the n-GaN channel layer, reaching as deep as the semi-insulating GaN layer;
- It also includes strip-shaped p-GaN filled in the channel of the n-GaN channel layer, and the p-GaN and the n-GaN channel layer form multiple sandwich p-n junctions;
- the source electrode and the drain electrode are respectively arranged at both ends of the top surface of the n-GaN channel layer;
- the gate electrode covers the top surface of the p-GaN and is connected at one end to form a gate electrode with an interdigital structure.
- the substrate layer is a sapphire substrate, a Si substrate or a SiC substrate.
- the height of the semi-insulating GaN layer is 2-5 ⁇ m.
- the channel width of the n-GaN channel layer is 300-500 nm.
- the channel thickness of n-GaN is 50-200nm, the channel length is 15-30 ⁇ m, and the silicon doping concentration is 1*10 18 cm -3 ;
- the surface of p-GaN and n- The surface of the GaN channel layer is flush or slightly higher than the surface of the n-GaN channel layer, the width of p-GaN is 50-100nm, the length is the same as the channel length of the n-GaN channel layer, and the doping concentration is 1*10 18 -1*10 19 cm-3, control the width of the channel so that the channel is in a depleted state under zero bias. That is, the device is in enhanced mode.
- Slightly higher than the surface of the n-GaN channel layer means that the height difference is within 50 nm.
- the source electrode and the drain electrode are Ti/Al/Ni/Au multilayer metal with a thickness of 30/150/50/150 nm
- the gate electrode is Ni/Au multilayer metal with a thickness of 50/100 nm.
- the invention also discloses a method for preparing the above-mentioned lateral GaN-based enhancement type junction field effect transistor device, the steps of which include:
- MOCVD method deposits a semi-insulating GaN layer and an n-GaN channel layer on the surface of the substrate;
- the method for growing semi-insulating GaN in step (1) Trimethylgallium and NH 3 are used as Ga source and N source respectively, the carrier gas is H 2 or N 2 , the growth temperature is 1000-1100° C., and the growth time is 2 -5h, the growth method of the n-GaN channel layer: temperature 950-1050°C, silicon doping concentration 1*10 18 cm -3 , growth time 15-20min;
- the channel depth is to the semi-insulating GaN layer and over-etched by 50-100 nm to ensure that the n-GaN is completely removed;
- step (4) an electron beam evaporation method is used to fabricate Ti/Al/Ni/Au30/150/50/150nm multilayer metal on both ends of the top surface of the n-GaN channel layer as the source and drain electrodes.
- the Ni/Au 50/100nm gate metal electrode with interdigital structure was fabricated on the top surface of GaN, and it was placed in a rapid thermal annealing furnace at 850°C for 30s.
- the invention also discloses another preparation method of the above-mentioned lateral GaN-based enhancement type junction field effect transistor device, the steps of which include:
- MOCVD method deposits a semi-insulating GaN layer and an n-GaN channel layer on the surface of the substrate;
- the method for growing semi-insulating GaN in step (1) Trimethylgallium and NH 3 are used as Ga source and N source respectively, the carrier gas is H 2 or N 2 , the growth temperature is 1000-1100° C., and the growth time is 2 -5h, the growth method of the n-GaN channel layer: temperature 950-1050°C, silicon doping concentration 1*10 18 cm -3 , growth time 15-20min;
- step (2) the energy of ion implantation is 100-120KeV, the implantation dose is 1*10 18 cm -3 -1*10 19 cm -3 , annealing is performed at 800-1200 degrees for 30s-60s;
- step (3) an electron beam evaporation method is used to fabricate Ti/Al/Ni/Au30/150/50/150nm multilayer metal on both ends of the top surface of the n-GaN channel layer as source and drain electrodes.
- the Ni/Au 50/100nm gate metal electrode with interdigital structure was fabricated on the top surface of GaN, and it was placed in a rapid thermal annealing furnace at 850°C for 30s.
- a multi-piece vertical interdigital structure p-GaN is obtained on an n-GaN substrate by groove + epitaxial re-growth or ion implantation, and a plurality of thin pn junction lateral n-type channels are formed with the n-GaN substrate, and then through
- the control of the channel thickness and the p-type and n-type doping concentration makes the n-type channel in a fully depleted state of the built-in electric field of the pn junction under zero bias, that is, the device is in the off state, and a forward bias is required to Make the channel in a conductive state, that is, the device has a positive threshold voltage.
- the multi-channel ensures the large current output of the device.
- the invention realizes an enhanced GaN-based junction field effect transistor.
- the traditional junction field effect transistors are all depletion type, and they are in the on state under zero bias, which will increase the off-state loss of the power semiconductor device, and it is not safe to use.
- the enhanced device of the present invention not only does not have these problems, but can also simplify the driving circuit.
- the multi-channel ensures that the GaN-based junction field effect transistor has a large output current.
- Fig. 1 is a schematic diagram of the structure of the n-GaN epitaxial wafer obtained in step (1) of Example 1.
- FIG. 2 is a schematic diagram of the structure of the n-GaN epitaxial wafer obtained in step (2) of Example 1.
- Fig. 3 is a schematic structural diagram of a lateral GaN-based enhancement mode device obtained in step (3) of Example 1.
- FIG. 4 is a schematic diagram of the structure of the lateral GaN-based enhancement mode device obtained in step (4) of Example 1.
- FIG. 5 is a schematic diagram of the lateral GaN-based enhancement mode device in FIG. 3 with dimensions in various directions marked.
- a method for manufacturing a lateral GaN-based enhancement mode junction field effect transistor device the steps include:
- MOCVD method deposits a semi-insulating GaN layer 2 and an n-GaN channel layer 3 on the surface of the sapphire substrate 1, as shown in Figure 1.
- the growth method of semi-insulating GaN Trimethylgallium and NH 3 are used as Ga sources respectively With N source, the carrier gas is H 2 or N 2 , the growth temperature is 1000-1100°C, and the growth time is 3-5h.
- the growth method of the n-GaN channel layer temperature 950-1050°C, silicon doping concentration 1*10 18 cm -3 , growth time 15-20min;
- p-GaN strip structure is about n higher -
- the surface of the GaN channel layer is 10-50nm, forming multiple sandwich pn junctions, as shown in Figure 3;
- Ti/Al/Ni/Au30/150/50/150nm multilayer metal is fabricated on both ends of the top surface of the n-GaN channel layer by electron beam evaporation method, and annealed at 850 degrees for 30s in a rapid thermal annealing furnace ,
- the source alloy electrode 6 and the drain alloy electrode 7 are formed, and an interdigitated Ni/Au 50/100nm gate metal electrode 8 is fabricated on the top surface of the p-GaN to obtain the lateral GaN-based enhancement mode junction field shown in Figure 4 Effect tube device.
- the method for preparing a lateral GaN-based enhancement mode junction field effect transistor device has basically the same steps as in Embodiment 1. The difference is that the p-GaN strip structure is substantially flush with the surface of the n-GaN channel layer.
- a method for preparing a lateral GaN-based enhancement type junction field effect transistor device the steps of which include:
- MOCVD method deposits semi-insulating GaN layer and n-GaN channel layer on the surface of SiC substrate.
- the growth method of semi-insulating GaN Trimethylgallium and NH 3 are used as Ga source and N source respectively, and the carrier gas is H 2 Or N 2 , the growth temperature is 1000-1100°C, and the growth time is 3-5h.
- the growth method of the n-GaN channel layer temperature 950-1050°C, silicon doping concentration 1*10 18 cm -3 , growth time 15-20min;
- Ti/Al/Ni/Au30/150/50/150nm multilayer metal is fabricated on both ends of the top surface of the n-GaN channel layer by electron beam evaporation method, and annealed at 850 degrees for 30s in a rapid thermal annealing furnace , Forming source and drain alloy electrodes, and fabricating an interdigitated Ni/Au 50/100nm gate metal on the top surface of the p-GaN.
- a sapphire substrate layer A sapphire substrate layer
- An n-GaN channel layer grown on a semi-insulating GaN layer has a thickness (ie, the channel width of n-GaN) of 300 nm, and a plurality of parallel grooves are provided in the n-GaN channel layer to a depth of half Insulating GaN layer, the channel thickness of n-GaN is 50 nm, and the channel length is 15 ⁇ m.
- the n-GaN silicon doping concentration is 1*10 18 cm -3 ;
- It also includes p-GaN filled in the groove of the n-GaN channel layer.
- the p-GaN and the n-GaN channel layer form multiple sandwich pn junctions.
- the surface of the p-GaN is slightly higher than the n-GaN channel.
- the layer surface is 10nm; the width of p-GaN is 50nm, the length is 15 ⁇ m, and the doping concentration of p-GaN is 1*10 19 cm -3 ;
- the source electrode and the drain electrode are respectively arranged at both ends of the top surface of the n-GaN channel layer; the source electrode and the drain electrode are Ti/Al/Ni/Au multilayer metal with a thickness of 30/150/50/150nm;
- the gate electrode of the interdigital structure covers the top surface of the p-GaN.
- the gate electrode is a Ni/Au multilayer metal with a thickness of 50/100nm.
- An n-GaN channel layer grown on a semi-insulating GaN layer has a thickness (that is, the width of the n-GaN channel) of 500 nm, and a plurality of parallel grooves are provided in the n-GaN channel layer to a depth of half Insulating GaN layer, the channel thickness of n-GaN is 200 nm, and the channel length is 30 ⁇ m.
- the n-GaN silicon doping concentration is 1*10 18 cm -3 ;
- It also includes p-GaN filled in the groove of the n-GaN channel layer.
- the p-GaN and the n-GaN channel layer form multiple sandwich pn junctions; the width of p-GaN is 100 nm and the length is 30 ⁇ m.
- the p-GaN and n-GaN channel layer surfaces are flush, and the doping concentration of p-GaN is 1*10 18 cm -3 ;
- the source electrode and the drain electrode are respectively arranged at both ends of the top surface of the n-GaN channel layer; the source electrode and the drain electrode are Ti/Al/Ni/Au multilayer metal with a thickness of 30/150/50/150nm;
- the gate electrode of the interdigital structure covers the top surface of the p-GaN.
- the gate electrode is a Ni/Au multilayer metal with a thickness of 50/100nm.
- An n-GaN channel layer grown on a semi-insulating GaN layer has a thickness (that is, the width of the n-GaN channel) of 400 nm, and a plurality of parallel grooves are provided in the n-GaN channel layer to a depth of half Insulating GaN layer, the channel thickness of n-GaN is 100 nm, and the channel length is 25 ⁇ m.
- the n-GaN silicon doping concentration is 1*10 18 cm -3 ;
- It also includes p-GaN filled in the groove of the n-GaN channel layer.
- the p-GaN and the n-GaN channel layer form multiple sandwich pn junctions.
- the surface of the p-GaN is slightly higher than the n-GaN channel.
- the layer surface is 50nm; the width of p-GaN is 80nm, the length is 25 ⁇ m, and the doping concentration of p-GaN is 1*10 19 cm -3 ;
- the source electrode and the drain electrode are respectively arranged at both ends of the top surface of the n-GaN channel layer; the source electrode and the drain electrode are Ti/Al/Ni/Au multilayer metal with a thickness of 30/150/50/150nm;
- the gate electrode of the interdigital structure covers the top surface of the p-GaN.
- the gate electrode is a Ni/Au multilayer metal with a thickness of 50/100nm.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
L'invention concerne un dispositif de transistor à effet de champ à jonction à enrichissement à base de GaN latéral et son procédé de préparation. Selon le dispositif, au moyen d'un rainurage et d'une re-croissance épitaxiale ou d'une implantation ionique, de multiples structures de bande verticale p-GaN sont obtenues sur un substrat n-GaN, et forment de multiples canaux du type n latéraux de jonction p-n mince avec le substrat n-GaN ; puis, au moyen d'une commande de l'épaisseur de canal et des concentrations de dopage du type p et du type n, les canaux du type n sont dans l'état complètement appauvri du champ électrique intrinsèque d'une jonction p-n sous polarisation nulle, c'est-à-dire que le dispositif est dans un état bloqué, et une polarisation directe doit être appliquée pour mettre les canaux dans un état passant, c'est-à-dire que le dispositif a une tension de seuil positive. De plus, les multiples canaux assurent une sortie à fort courant du dispositif.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910981564.0 | 2019-10-16 | ||
CN201910981564.0A CN110690273B (zh) | 2019-10-16 | 2019-10-16 | 横向GaN基增强型结型场效应管器件及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021072812A1 true WO2021072812A1 (fr) | 2021-04-22 |
Family
ID=69112894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/114216 WO2021072812A1 (fr) | 2019-10-16 | 2019-10-30 | Dispositif de transistor à effet de champ à jonction à enrichissement à base de gan latéral et son procédé de préparation |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110690273B (fr) |
WO (1) | WO2021072812A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115732563A (zh) * | 2022-11-29 | 2023-03-03 | 西安电子科技大学 | 一种热电优化的鳍式氧化镓mosfet结构及制作方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111524973A (zh) * | 2020-05-06 | 2020-08-11 | 南京冠鼎光电科技有限公司 | 叉指状p-GaN栅结构HEMT型紫外探测器及其制备方法 |
CN111599856B (zh) * | 2020-05-27 | 2022-06-21 | 南京大学 | 双沟道增强型准垂直结构GaN基JFET及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0167810A1 (fr) * | 1984-06-08 | 1986-01-15 | Eaton Corporation | JFET de puissance comportant plusieurs pincements latéraux |
US5118632A (en) * | 1989-10-20 | 1992-06-02 | Harris Corporation | Dual layer surface gate JFET having enhanced gate-channel breakdown voltage |
FR2818013A1 (fr) * | 2000-12-13 | 2002-06-14 | St Microelectronics Sa | Transistor a effet de champ a jonction destine a former un limiteur de courant |
JP2004349327A (ja) * | 2003-05-20 | 2004-12-09 | Sumitomo Electric Ind Ltd | 横型トランジスタおよび直流交流変換装置 |
CN108054215A (zh) * | 2017-12-21 | 2018-05-18 | 深圳市晶特智造科技有限公司 | 结型场效应晶体管及其制作方法 |
US20180219106A1 (en) * | 2017-01-30 | 2018-08-02 | QROMIS, Inc. | Lateral gallium nitride jfet with controlled doping profile |
-
2019
- 2019-10-16 CN CN201910981564.0A patent/CN110690273B/zh active Active
- 2019-10-30 WO PCT/CN2019/114216 patent/WO2021072812A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0167810A1 (fr) * | 1984-06-08 | 1986-01-15 | Eaton Corporation | JFET de puissance comportant plusieurs pincements latéraux |
US5118632A (en) * | 1989-10-20 | 1992-06-02 | Harris Corporation | Dual layer surface gate JFET having enhanced gate-channel breakdown voltage |
FR2818013A1 (fr) * | 2000-12-13 | 2002-06-14 | St Microelectronics Sa | Transistor a effet de champ a jonction destine a former un limiteur de courant |
JP2004349327A (ja) * | 2003-05-20 | 2004-12-09 | Sumitomo Electric Ind Ltd | 横型トランジスタおよび直流交流変換装置 |
US20180219106A1 (en) * | 2017-01-30 | 2018-08-02 | QROMIS, Inc. | Lateral gallium nitride jfet with controlled doping profile |
CN108054215A (zh) * | 2017-12-21 | 2018-05-18 | 深圳市晶特智造科技有限公司 | 结型场效应晶体管及其制作方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115732563A (zh) * | 2022-11-29 | 2023-03-03 | 西安电子科技大学 | 一种热电优化的鳍式氧化镓mosfet结构及制作方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110690273A (zh) | 2020-01-14 |
CN110690273B (zh) | 2021-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5468768B2 (ja) | 電界効果トランジスタ及びその製造方法 | |
US10026834B2 (en) | Method of manufacturing enhanced device and enhanced device | |
CN110112215B (zh) | 兼具栅介质与刻蚀阻挡功能结构的功率器件及制备方法 | |
US10629720B2 (en) | Layered vertical field effect transistor and methods of fabrication | |
CN113380623A (zh) | 通过p型钝化实现增强型HEMT的方法 | |
CN102403348A (zh) | 氮化镓基半导体器件及其制造方法 | |
CN109037326B (zh) | 一种具有p型埋层结构的增强型hemt器件及其制备方法 | |
WO2021072812A1 (fr) | Dispositif de transistor à effet de champ à jonction à enrichissement à base de gan latéral et son procédé de préparation | |
CN108054208B (zh) | 横向型氮化镓基场效应晶体管及其制作方法 | |
CN106783962A (zh) | 一种p‑GaN增强型AlGaN/GaN高电子迁移率晶体管 | |
CN112289858A (zh) | Ⅲ族氮化物增强型hemt器件及其制备方法 | |
JP2008147311A (ja) | 電界効果トランジスタおよびその製造方法 | |
CN107958939A (zh) | 一种氮化鎵基异质结肖特基二极管结构 | |
CN111900203A (zh) | 一种GaN基高空穴迁移率晶体管及其制备方法 | |
CN117766561A (zh) | 一种p沟道氮化镓异质结晶体管及其制备方法 | |
WO2021077758A1 (fr) | Procédé d'utilisation d'une mbe pour la recroissance d'un dispositif jfet au gan à structure monogrille p-gan | |
JP2001210657A (ja) | 半導体装置およびその製造方法 | |
JP2008004807A (ja) | ヘテロ接合バイポーラトランジスタ | |
JP2011210785A (ja) | 電界効果トランジスタ、およびその製造方法 | |
JP2009302191A (ja) | 半導体装置及びその製造方法 | |
CN105826369A (zh) | 一种新型增强型iii-v异质结场效应晶体管 | |
CN106449406B (zh) | 一种垂直结构GaN基增强型场效应晶体管及其制造方法 | |
CN212542443U (zh) | 一种氮化镓晶体管结构及氮化镓基外延结构 | |
CN111211176B (zh) | 一种氮化镓基异质结集成器件结构及制造方法 | |
CN113363319A (zh) | 一种常关型氧化镓基mis-hfet器件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19949421 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19949421 Country of ref document: EP Kind code of ref document: A1 |