WO2021070002A1 - 二次電池用正極、二次電池および電子機器 - Google Patents

二次電池用正極、二次電池および電子機器 Download PDF

Info

Publication number
WO2021070002A1
WO2021070002A1 PCT/IB2020/059076 IB2020059076W WO2021070002A1 WO 2021070002 A1 WO2021070002 A1 WO 2021070002A1 IB 2020059076 W IB2020059076 W IB 2020059076W WO 2021070002 A1 WO2021070002 A1 WO 2021070002A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
active material
electrode active
layer
Prior art date
Application number
PCT/IB2020/059076
Other languages
English (en)
French (fr)
Inventor
荻田香
門間裕史
廣瀬智哉
米田祐美子
岩城裕司
高橋辰義
山崎舜平
三上真弓
種村和幸
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to CN202080071374.6A priority Critical patent/CN114586192A/zh
Priority to JP2021550722A priority patent/JPWO2021070002A5/ja
Priority to KR1020227015415A priority patent/KR20220079932A/ko
Priority to US17/766,336 priority patent/US20230246198A1/en
Publication of WO2021070002A1 publication Critical patent/WO2021070002A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the homogeneity of the present invention relates to a product, a method, or a manufacturing method.
  • the present invention relates to a process, machine, manufacture, or composition (composition of matter).
  • One aspect of the present invention relates to a semiconductor device, a display device, a light emitting device, a power storage device, a lighting device, an electronic device, or a method for manufacturing the same.
  • the electronic device refers to all devices having a power storage device, and the electro-optical device having the power storage device, the information terminal device having the power storage device, and the like are all electronic devices.
  • lithium ion secondary batteries lithium ion capacitors
  • air batteries air batteries
  • all-solid-state batteries all-solid-state batteries
  • high-power, high-capacity lithium-ion secondary batteries are rapidly expanding in demand with the development of the semiconductor industry, and have become indispensable to the modern information society as a source of rechargeable energy. ..
  • the positive electrode active material is being improved with the aim of increasing the capacity of the lithium ion secondary battery and improving the cycle characteristics (for example, Patent Document 1).
  • a thin-film secondary battery in which a positive electrode, an electrolyte, and a negative electrode are formed by PVD (physical vapor deposition), CVD (chemical vapor deposition), or the like is also a type of all-solid-state battery (for example, Patent Document 2).
  • Thin-film secondary batteries have room for improvement in various aspects such as charge / discharge characteristics, cycle characteristics, reliability, safety, or cost.
  • charge / discharge characteristics the crystal structure of the positive electrode active material may collapse as charging and discharging are repeated, leading to a decrease in charging and discharging capacity.
  • a side reaction occurs at the interface between the positive electrode active material and the electrolyte, the interface between the positive electrode active material and the positive electrode current collector, and the like, which may also lead to a decrease in charge / discharge capacity.
  • one aspect of the present invention is to provide a positive electrode for a secondary battery in which side reactions are unlikely to occur at the interface between the positive electrode active material and the electrolyte, the interface between the positive electrode active material and the positive electrode current collector, and the like even after repeated charging and discharging.
  • Another issue is to provide a positive electrode for a secondary battery whose crystal structure does not easily collapse even after repeated charging and discharging.
  • Another issue is to provide a positive electrode for a secondary battery having excellent charge / discharge cycle characteristics.
  • Another issue is to provide a positive electrode for a secondary battery having a large charge / discharge capacity.
  • Another object of the present invention is to provide a positive electrode for a secondary battery in which a decrease in capacity in a charge / discharge cycle is suppressed. Another issue is to provide a secondary battery having excellent charge / discharge cycle characteristics. Another issue is to provide a secondary battery having a large charge / discharge capacity. Alternatively, one of the issues is to provide a secondary battery having high safety or reliability.
  • one aspect of the present invention is to provide a novel substance, active material particles, a power storage device, or a method for producing them.
  • a cap layer is provided on the positive electrode active material layer in order to prevent the crystal structure from collapsing, suppress side reactions, and improve cycle characteristics.
  • One aspect of the present invention is a positive electrode for a secondary battery, which has a base film, a positive electrode active material layer, and a cap layer, and at least one of the base film and the cap layer has titanium oxide.
  • the positive electrode active material layer has lithium cobalt oxide
  • the cap layer has a titanium compound containing oxygen, which is a positive electrode for a secondary battery.
  • both the crystal structure of the base film and the crystal structure of the positive electrode active material layer have a surface on which only anions are arranged.
  • both the base film and the positive electrode active material layer have a crystal structure in which cations and anions are alternately arranged.
  • one aspect of the present invention is a secondary battery having the above-mentioned positive electrode for a secondary battery, a solid electrolyte, and a negative electrode.
  • one aspect of the present invention is an electronic device having the above-mentioned secondary battery.
  • one aspect of the present invention is an electronic device having the above-mentioned secondary battery, a positive electrode, a negative electrode, an electrolytic solution, and a lithium ion secondary battery having a separator.
  • a positive electrode for a secondary battery in which side reactions are unlikely to occur at the interface between the positive electrode active material and the electrolyte, the interface between the positive electrode active material and the positive electrode current collector, and the like even after repeated charging and discharging. It is possible to provide a positive electrode for a secondary battery whose crystal structure does not easily collapse even after repeated charging and discharging. Further, it is possible to provide a positive electrode for a secondary battery having excellent charge / discharge cycle characteristics. Further, it is possible to provide a positive electrode for a secondary battery having a large charge / discharge capacity.
  • a positive electrode for a secondary battery in which a decrease in capacity in a charge / discharge cycle is suppressed. Further, it is possible to provide a secondary battery having excellent charge / discharge cycle characteristics. Further, it is possible to provide a secondary battery having a large charge / discharge capacity. Further, it is possible to provide a secondary battery having high safety or reliability.
  • FIGS. 4B to 4D are cross-sectional views showing one aspect of the present invention.
  • 5A and 5C are top views showing one aspect of the present invention, and FIGS. 5B and 5D are cross-sectional views showing one aspect of the present invention.
  • FIG. 6A is a top view showing one aspect of the present invention, and FIG. 6B is a cross-sectional view showing one aspect of the present invention.
  • FIG. 7A is a top view showing one aspect of the present invention
  • FIG. 7B is a cross-sectional view showing one aspect of the present invention.
  • FIG. 8 is a diagram illustrating a flow for manufacturing a secondary battery according to an aspect of the present invention.
  • 9A and 9B are top views showing one aspect of the present invention.
  • FIG. 10 is a cross-sectional view showing one aspect of the present invention.
  • FIG. 11 is a diagram illustrating a flow for manufacturing a secondary battery according to an aspect of the present invention.
  • FIG. 12 is a schematic top view of the secondary battery manufacturing apparatus.
  • FIG. 13 is a cross-sectional view of a part of the secondary battery manufacturing apparatus.
  • FIG. 14A is a perspective view showing an example of a battery cell.
  • FIG. 14A is a perspective view showing an example of a battery cell.
  • FIG. 14B is a perspective view of the circuit.
  • FIG. 14C is a perspective view when the battery cell and the circuit are overlapped.
  • FIG. 15A is a perspective view showing an example of a battery cell.
  • FIG. 15B is a perspective view of the circuit.
  • 15C and 15D are perspective views when the battery cell and the circuit are overlapped.
  • FIG. 16A is a perspective view of the battery cell.
  • FIG. 16B is a diagram showing an example of an electronic device.
  • 17A to 17C are diagrams showing an example of an electronic device.
  • 18A to 18C are diagrams showing an example of an electronic device.
  • 19A to 19D are diagrams showing an example of an electronic device.
  • FIG. 20A is a diagram showing a part of a system according to an aspect of the present invention.
  • FIG. 20A is a diagram showing a part of a system according to an aspect of the present invention.
  • FIG. 20A is a diagram showing a part of a system according to an
  • FIG. 20B is a diagram showing an example of an electronic device according to an aspect of the present invention.
  • FIG. 21A is a schematic view of an electronic device according to an aspect of the present invention.
  • 21B is a diagram showing a part of the system, and
  • FIG. 21C is an example of a perspective view of a portable data terminal used in the system.
  • 22A and 22B are graphs of charge / discharge characteristics of the secondary battery according to the first embodiment.
  • 23A and 23B are graphs of cycle characteristics of the secondary battery according to the first embodiment.
  • FIG. 24 is a cross-sectional TEM image of the positive electrode according to the second embodiment.
  • FIG. 25A is a cross-sectional TEM image of the positive electrode active material layer according to Example 2.
  • 25B is a microelectron diffraction image of the positive electrode active material layer according to Example 2.
  • 26A and 26B are microelectron diffraction images of the positive electrode active material layer according to Example 2.
  • FIG. 27 is a cross-sectional TEM image of the positive electrode according to the second embodiment.
  • 28A and 28B are cross-sectional TEM images of the positive electrode according to the second embodiment.
  • FIG. 29 is an EELS spectrum of the positive electrode active material layer according to Example 2.
  • FIG. 30 is a cross-sectional TEM image of the positive electrode according to the second embodiment.
  • 31A and 31B are cross-sectional TEM images of the positive electrode according to the second embodiment.
  • FIG. 32 is an EELS spectrum of the positive electrode active material layer according to Example 2.
  • FIG. 33A is a cross-sectional TEM image of the positive electrode active material layer according to Example 2.
  • FIG. 33B is a microelectron diffraction image of the positive electrode active material layer according to Example 2.
  • 34A and 34B are microelectron diffraction images of the positive electrode active material layer according to Example 2.
  • FIG. 35A is a cross-sectional TEM image of the positive electrode active material layer according to Example 2.
  • FIG. 35B is a microelectron diffraction image of the positive electrode active material layer according to Example 2.
  • 36A and 36B are microelectron diffraction images of the positive electrode active material layer according to Example 2.
  • FIG. 37 is a graph showing the charge / discharge cycle characteristics of the secondary battery according to the second embodiment.
  • FIG. 38A and 38B are diagrams for explaining impedance measurement of the secondary battery according to the second embodiment.
  • FIG. 39 is an impedance measurement result of the secondary battery according to the second embodiment.
  • FIG. 40 shows the impedance measurement result of the secondary battery according to the second embodiment.
  • the Miller index is used for the notation of the crystal plane and the direction. Individual planes indicating crystal planes are represented by (). The orientation is indicated by []. The same index is used for the reciprocal lattice points, but without parentheses. Crystallographically, the notation of the crystal plane, direction, and space group has a superscript bar attached to the number, but in the present specification and the like, due to the limitation of the application notation, instead of adding a bar above the number, the number is preceded. It may be expressed with a minus sign.
  • the layered rock salt type crystal structure of the composite oxide containing lithium and the transition metal has a rock salt type ion arrangement in which cations and anions are alternately arranged, and the transition metal and lithium are present.
  • a crystal structure capable of two-dimensional diffusion of lithium because it is regularly arranged to form a two-dimensional plane.
  • the layered rock salt crystal structure may have a distorted lattice of rock salt crystals.
  • the rock salt type crystal structure means a structure in which cations and anions are alternately arranged. There may be a cation or anion deficiency.
  • Layered rock salt crystals and anions of rock salt crystals have a cubic closest packed structure (face-centered cubic lattice structure). When they come into contact, there are crystal planes with matching cubic closest packed structures composed of anions.
  • the space group of the layered rock salt type crystal is R-3m, which is different from the rock salt type space group Fm-3m, the Miller index of the crystal plane satisfying the above conditions is different between the layered rock salt type crystal and the rock salt type crystal. ..
  • the crystal orientations are substantially the same.
  • the theoretical capacity of the positive electrode active material means the amount of electricity when all the lithium that can be inserted and removed from the positive electrode active material is desorbed.
  • the theoretical capacity of LiCoO 2 is 274 mAh / g
  • the theoretical capacity of LiNiO 2 is 274 mAh / g
  • the theoretical capacity of LiMn 2 O 4 is 148 mAh / g.
  • the charging depth when all the lithium that can be inserted and removed is inserted is 0, and the charging depth when all the lithium that can be inserted and removed from the positive electrode active material is removed is 1. And.
  • the fact that the faces are parallel means not only when they are mathematically strictly parallel, but also when the angle between the faces is 5 ° or less or 2.5 ° or less. ..
  • FIG. 1A is a perspective view of an example of a positive electrode 100, which is one aspect of the present invention.
  • the positive electrode 100 has a positive electrode current collector 103, an undercoat film 104, a positive electrode active material layer 101, and a cap layer 102.
  • the base film 104 is provided between the positive electrode current collector 103 and the positive electrode active material layer 101.
  • the base film 104 has a function of increasing the conductivity between the positive electrode current collector 103 and the positive electrode active material layer 101. Alternatively, it has a function of suppressing side reactions such as oxidation of the positive electrode current collector 103 by oxygen contained in the positive electrode active material layer 101 or the like, or diffusion of metal atoms contained in the positive electrode current collector 103 into the positive electrode active material layer 101. Alternatively, it has a function of stabilizing the crystal structure of the positive electrode active material layer 101.
  • a conductive material As the base film 104. Further, it is preferable to use a material that easily suppresses oxidation. For example, titanium oxide, titanium nitride, titanium oxide partially replaced with nitrogen, titanium nitride partially substituted with oxygen, or titanium oxide nitride (TIM x N y, 0 ⁇ x ⁇ 2, 0 ⁇ y), which are titanium compounds. ⁇ 1) and the like can be applied. Of these, titanium nitride is particularly preferable because it has high conductivity and a high function of suppressing oxidation.
  • the cap layer 102 is provided on the positive electrode active material layer 101.
  • the cap layer 102 has a function of suppressing a side reaction between the positive electrode active material layer 101 and the electrolyte. Alternatively, it has a function of stabilizing the crystal structure of the positive electrode active material layer 101.
  • the electrolyte includes not only a solid electrolyte but also an electrolytic solution in which a lithium salt is dissolved in a liquid solvent and an electrolytic solution in which a lithium salt is dissolved in a gel-like compound.
  • the positive electrode active material layer 101 has lithium, a transition metal M, and oxygen. It may be said that the positive electrode active material layer 101 has a composite oxide containing lithium and a transition metal M.
  • the transition metal M contained in the positive electrode active material layer 101 it is preferable to use a metal capable of forming a layered rock salt type composite oxide belonging to the space group R-3m together with lithium.
  • the transition metal M for example, one or more of manganese, cobalt, and nickel can be used. That is, as the transition metal of the positive electrode active material layer 101, only cobalt may be used, only nickel may be used, two types of cobalt and manganese, or two types of cobalt and nickel may be used. Three kinds of cobalt, manganese and nickel may be used.
  • the positive electrode active material layer 101 includes lithium cobalt oxide, lithium nickel oxide, lithium cobalt oxide in which a part of cobalt is substituted with manganese, lithium cobalt oxide in which a part of cobalt is substituted with nickel, and nickel-manganese-cobalic acid. It can have a composite oxide containing lithium and a transition metal M, such as lithium.
  • the positive electrode active material layer 101 may contain elements other than the transition metal M such as magnesium, fluorine, and aluminum. These elements may further stabilize the crystal structure of the positive electrode active material layer 101. That is, the positive electrode active material layer 101 is composed of lithium cobalt oxide to which magnesium and fluorine are added, lithium nickel-cobalt oxide to which magnesium and fluorine are added, lithium cobalt-cobalt-alumite to which magnesium and fluorine are added, and nickel-cobalt-aluminum. It can have lithium nickel-cobalt-lithium aluminum oxide or the like to which lithium oxide, magnesium and fluorine have been added.
  • the atomic number ratio of nickel is, for example, 0.05 when the atomic number ratio of cobalt contained in the positive electrode active material layer 101 is 100. More than 2 or less is preferable, 0.1 or more and 1.5 or less is more preferable, and 0.1 or more and 0.9 or less is further preferable.
  • the atomic number ratio of cobalt contained in the positive electrode active material layer 101 is 100
  • the atomic number ratio of aluminum is, for example, preferably 0.05 or more and 2 or less, more preferably 0.1 or more and 1.5 or less, and 0.1 or more and 0. 0.9 or less is more preferable.
  • the atomic number ratio of magnesium is preferably 0.1 or more and 6 or less, and more preferably 0.3 or more and 3 or less. Further, when the atomic number ratio of magnesium contained in the positive electrode active material layer 101 is 1, the atomic number ratio of fluorine is preferably 2 or more and 3.9 or less, for example.
  • the positive electrode active material layer 101 having a high capacity and excellent charge / discharge cycle characteristics can be obtained.
  • Molar concentrations of cobalt, nickel, aluminum and magnesium can be assessed, for example, by inductively coupled plasma mass spectrometry (ICP-MS).
  • the molar concentration of fluorine can be evaluated, for example, by glow discharge mass spectrometry (GD-MS).
  • FIG. 2A is a diagram when titanium nitride is applied as the base film 104. It was calculated assuming that titanium nitride has a rock salt type crystal structure belonging to the space group Fm-3m and lithium cobalt oxide has a layered rock salt type crystal structure belonging to the space group R-3m. The (111) plane of titanium nitride and the (001) plane of lithium cobalt oxide are laminated so as to be parallel to each other.
  • FIG. 2B is a diagram when titanium oxide is applied as the base film 104. It was calculated assuming that titanium oxide has a rutile-type crystal structure belonging to the space group P42 / nmm and lithium cobalt oxide has a layered rock salt-type crystal structure belonging to the space group R-3m. The (100) plane of titanium oxide and the (001) plane of lithium cobalt oxide are laminated so as to be parallel to each other.
  • Each figure shows an excerpt of the interface between the positive electrode active material layer 101 and the base film 104.
  • Table 1 shows other calculation conditions.
  • the Ti-O distance is 2.03 ⁇
  • the Ti-N distance is 1.93 ⁇
  • the Co-O distance is 2.25 ⁇
  • a plane in which only anions are arranged exists in a plane parallel to the (111) plane.
  • titanium nitride only nitrogen atoms are arranged on a plane parallel to the (111) plane.
  • a plane in which only anions are arranged exists in a plane parallel to the (001) plane.
  • lithium cobalt oxide only oxygen atoms are arranged on a plane parallel to the (001) plane.
  • both the rock salt type crystal structure belonging to the space group Fm-3m and the layered rock salt type crystal structure belonging to the space group R-3m are crystal structures in which cations and anions are alternately arranged. .. Therefore, when lithium cobalt oxide having a layered rock salt type crystal structure is laminated on titanium nitride having a rock salt type crystal structure, the crystal orientations of the base film 104 and the positive electrode active material layer 101 are likely to roughly match.
  • Titanium oxide with a rutile-type crystal structure does not have oxygen atoms arranged on a plane parallel to the (100) plane. Therefore, the function of stabilizing the layered rock salt type crystal structure may be lower than that of titanium nitride.
  • titanium nitride is particularly suitable as the base film 104.
  • FIG. 1B is a perspective view of another example of the positive electrode 100, which is one aspect of the present invention.
  • the positive electrode 100 shown in FIG. 1B has a positive electrode current collector 103, a positive electrode active material layer 101, and a cap layer 102.
  • the positive electrode 100 does not necessarily have the base film 104. Even if the base film 104 is not provided, it may be possible to obtain a secondary battery having sufficiently improved cycle characteristics by having the cap layer 102.
  • FIG. 1A and FIG. 1B have described a positive electrode in which the positive electrode current collector 103 also functions as a current collector and a substrate, one aspect of the present invention is not limited to this.
  • FIG. 1C is a perspective view of another example of the positive electrode 100, which is one aspect of the present invention.
  • the positive electrode 100 may be formed by forming a positive electrode current collector 103, a base film 104, a positive electrode active material layer 101, and a cap layer 102 on the substrate 110.
  • This embodiment can be implemented in combination with other embodiments as appropriate.
  • FIG. 3A is a diagram illustrating an example of a laminated structure of a secondary battery 200 having a positive electrode 100 for a secondary battery according to one aspect of the present invention.
  • the secondary battery 200 is a thin film battery, has a positive electrode 100 described in the previous embodiment, and has a solid electrolyte layer 203 formed on the positive electrode 100 and a negative electrode 212 formed on the solid electrolyte layer 203.
  • the negative electrode 212 has a negative electrode current collector 205 and a negative electrode active material layer 204. Further, as shown in FIG. 3A, the negative electrode 212 preferably has a base film 214 and a cap layer 209.
  • the base film 214 is provided between the negative electrode current collector 205 and the negative electrode active material layer 204.
  • the base film 214 has a function of increasing the conductivity between the negative electrode current collector 205 and the negative electrode active material layer 204. Alternatively, it has a function of suppressing excessive expansion of the negative electrode active material layer. Alternatively, it has a function of suppressing a side reaction between the negative electrode current collector 205 and the negative electrode active material layer 204.
  • a conductive material as the base film 214. Further, it is preferable to use a material capable of suppressing excessive expansion of the negative electrode active material layer. Further, it is preferable to use a material that easily suppresses side reactions. For example, titanium oxide, titanium nitride, titanium oxide partially replaced with nitrogen, titanium nitride partially substituted with oxygen, or titanium oxide nitride (TIM x N y, 0 ⁇ x ⁇ 2, 0 ⁇ y), which are titanium compounds. It is preferable to have ⁇ 1). In particular, titanium nitride is preferable because it has high conductivity and a function of suppressing side reactions.
  • the cap layer 209 is provided between the negative electrode active material layer 204 and the solid electrolyte layer 203.
  • the cap layer 209 has a function of suppressing a side reaction between the negative electrode active material layer 204 and the solid electrolyte layer 203.
  • titanium or a titanium compound as the cap layer 209.
  • the titanium compound include titanium oxide, titanium nitride, titanium oxide partially substituted with nitrogen, titanium nitride partially substituted with oxygen, or titanium oxide nitride (TiO x N y , 0 ⁇ x ⁇ 2, 0 ⁇ y. It is preferable to have ⁇ 1). Titanium is a material that can be contained in solid electrolytes. Therefore, titanium and titanium compounds are particularly suitable as the cap layer 209.
  • the negative electrode active material layer 204 silicon, carbon, titanium oxide, vanadium oxide, indium oxide, zinc oxide, tin oxide, nickel oxide and the like can be used.
  • materials that alloy with lithium such as tin, gallium, and aluminum, can be used.
  • these metal oxides to be alloyed may be used.
  • lithium titanium oxide Li 4 Ti 5 O 12 , LiTi 2 O 4, etc.
  • SiO x film a material containing silicon and oxygen
  • lithium metal may be used as the negative electrode active material layer 204.
  • a mixture of these materials may also be used.
  • a mixture of silicon particles and carbon is suitable because it has good reliability and a relatively high energy density per volume.
  • the solid electrolyte layer 203 is provided between the positive electrode 100 and the negative electrode 212.
  • As the material of the solid electrolyte layer 203 Li 0.35 La 0.55 TiO 3 , La (2 / 3A) Li 3A TiO 3, Li 3 PO 4, LixPO (4-B) N B, LiNb (1 ⁇ A) Ta (A) WO 6 , Li 7 La 3 Zr 2 O 12 , Li (1 + A) Al (A) Ti (2-A) (PO 4 ) 3 , Li (1 + A) Al (A) Ge (2) -A) (PO 4 ) 3 , LiNbO 2, and the like.
  • a film forming method a sputtering method, a vapor deposition method or the like can be used.
  • the cap layer 102 of the positive electrode 100 and the cap layer 209 of the negative electrode 212 have titanium, if a material having titanium is also used for the solid electrolyte layer 203, a secondary battery can be easily manufactured.
  • SiO C (0 ⁇ C ⁇ 2) can also be used as the solid electrolyte layer 203.
  • SiO C (0 ⁇ C ⁇ 2) may be used as the solid electrolyte layer 203, and SiO C (0 ⁇ C ⁇ 2) may be used as the negative electrode active material layer 204.
  • the ratio of silicon to oxygen (O / Si) of SiO C is preferably higher in the solid electrolyte layer 203.
  • the solid electrolyte layer 203 may have a laminated structure, and when laminated, it is also called a material (Li 3 PO (4-Z) NZ : LiPON) in which nitrogen is added to one layer of lithium phosphate (Li 3 PO 4). ) May be laminated.
  • the secondary battery 200 may have a negative electrode 212 in which a plurality of negative electrode active material layers 204 and a cap layer 209 are laminated.
  • a negative electrode 212 in which a plurality of negative electrode active material layers 204 and a cap layer 209 are laminated.
  • the cap layer 209 in contact with the solid electrolyte layer 203 and the cap layer 209 sandwiched between the negative electrode active material layers 204 may be made of the same material or different materials.
  • titanium oxide may be used for the cap layer 209 in contact with the solid electrolyte layer 203
  • titanium nitride may be used for the cap layer 209 sandwiched between the negative electrode active material layers 204.
  • the secondary battery 200 may have a positive electrode 100 in which a plurality of positive electrode active material layers 101 and cap layers 102 are laminated.
  • a positive electrode 100 in which a plurality of positive electrode active material layers 101 and cap layers 102 are laminated.
  • the cap layer 102 in contact with the solid electrolyte layer 203 and the cap layer 102 sandwiched between the positive electrode active material layers 101 may be made of the same material or different materials.
  • titanium oxide may be used for the cap layer 102 in contact with the solid electrolyte layer 203
  • titanium nitride may be used for the cap layer 102 sandwiched between the positive electrode active material layers 101.
  • FIGS. 4A and 4B show a more specific example of the secondary battery 200 of one aspect of the present invention.
  • the secondary battery 200 formed on the substrate 110 will be described.
  • FIG. 4A is a top view
  • FIG. 4B is a cross-sectional view taken along the line AA'in FIG. 4A.
  • the secondary battery 200 is a thin film battery, and as shown in FIG. 4B, the positive electrode 100 described in the above embodiment is formed on the substrate 110, the solid electrolyte layer 203 is formed on the positive electrode 100, and the solid electrolyte layer 203 is formed.
  • a negative electrode 210 is formed on the surface.
  • the negative electrode 210 has a negative electrode current collector 205, a base film 214, a negative electrode active material layer 204, and a cap layer 209.
  • the secondary battery 200 has a protective layer 206 formed on the positive electrode 100, the solid electrolyte layer 203, and the negative electrode 210.
  • the films forming these layers can be formed by using a metal mask, respectively.
  • the positive electrode current collector 103, the base film 104, the positive electrode active material layer 101, the cap layer 102, the solid electrolyte layer 203, the cap layer 209, the negative electrode active material layer 204, the base film 214, and the negative electrode current collector 205 are formed. It can be formed selectively. Further, the solid electrolyte layer 203 may be selectively formed by using a co-deposited method and using a metal mask.
  • a part of the negative electrode current collector 205 and the positive electrode current collector 103 is exposed to form a negative electrode terminal portion and a positive electrode terminal portion.
  • the region other than the negative electrode terminal portion and the positive electrode terminal portion is covered with the protective layer 206.
  • the solid electrolyte layer 203, the negative electrode active material layer 204, and the negative electrode current collector 205 are placed on the positive electrode 100 having the positive electrode current collector 103, the base film 104, the positive electrode active material layer 101, and the cap layer 102.
  • the configurations in which they are stacked in order have been described, one aspect of the present invention is not limited to this.
  • the secondary battery 200 may have a positive electrode 100 having no base film 104 between the positive electrode current collector 103 and the positive electrode active material layer 101. Further, it may have a negative electrode 210 having no base film 214 and a cap layer 209.
  • both the positive electrode and the negative electrode of the secondary battery of one aspect of the present invention may have a laminated structure of an active material layer and a cap layer.
  • the secondary battery 200 may have a negative electrode 210 in which a plurality of negative electrode active material layers 204 and a cap layer 209 are laminated.
  • it may have a positive electrode 100 in which a plurality of positive electrode active material layers 101 and a cap layer 102 are laminated.
  • the secondary battery of one aspect of the present invention may be a secondary battery 201 having a negative electrode 211 that also serves as a negative electrode current collector layer and a negative electrode active material layer.
  • FIG. 5A is a top view of the secondary battery 201
  • FIG. 5B is a cross-sectional view taken along the line BB'in FIG. 5A.
  • the secondary battery of one aspect of the present invention may be a secondary battery 202 in which a solid electrolyte layer 203 and a positive electrode 100 are laminated on a negative electrode 210.
  • FIG. 5C is a top view of the secondary battery 202
  • FIG. 5D is a cross-sectional view taken along the line CC'in FIG. 5C.
  • FIGS. 4 and 5 have described a secondary battery in which not only the positive electrode but also the solid electrolyte layer and the negative electrode are formed of a thin film, one aspect of the present invention is not limited to this.
  • One aspect of the present invention may be a secondary battery having an electrolytic solution. Further, it may be a secondary battery having an electrolytic solution and having a negative electrode that also serves as a negative electrode current collector layer and a negative electrode active material layer. Further, it may be a secondary battery having a negative electrode produced by applying a powdered negative electrode active material to a negative electrode current collector.
  • FIGS. 6A and 6B The secondary battery 230 having the electrolytic solution is shown in FIGS. 6A and 6B.
  • FIG. 6A is a top view
  • FIG. 6B is a cross-sectional view taken along the line DD'in FIG. 6A.
  • the secondary battery 230 has a positive electrode 100 on the substrate 110, a negative electrode 212 on the substrate 111, a separator 220, an electrolytic solution 221 and an exterior body 222.
  • the negative electrode current collector 205 of the negative electrode 212, the negative electrode active material layer 204, and the cap layer 209 are formed of a thin film.
  • the secondary battery 230 has a lead electrode 223a and a lead electrode 223b.
  • the lead electrode 223a is electrically connected to the positive electrode current collector 103.
  • the lead electrode 223b is electrically connected to the negative electrode current collector 205. A part of the lead electrode 223a and the lead electrode 223b is pulled out of the exterior body 222.
  • FIGS. 7A and 7B A secondary battery 231 having an electrolytic solution and a negative electrode 211 that also serves as a negative electrode current collector layer and a negative electrode active material layer is shown in FIGS. 7A and 7B.
  • FIG. 7A is a top view
  • FIG. 7B is a cross-sectional view taken along the line EE'in FIG. 7A.
  • the secondary battery 231 includes a positive electrode 100, a negative electrode 211 that also serves as a negative electrode current collector layer and a negative electrode active material layer, a separator 220, an electrolytic solution 221 and an exterior body 222.
  • the negative electrode 211 that also serves as the negative electrode current collector layer and the negative electrode active material layer the process can be simplified and a highly productive secondary battery can be obtained. Further, it can be a secondary battery having a high energy density.
  • the positive electrode current collector 103 is formed on the substrate 110 (S1).
  • a film forming method a sputtering method, a vapor deposition method or the like can be used.
  • a conductive substrate may be used as a current collector.
  • the positive electrode current collector 103 includes highly conductive materials such as metals such as gold, platinum, aluminum, titanium, copper, magnesium, iron, cobalt, nickel, zinc, germanium, indium, silver, and palladium, and alloys thereof. Can be used.
  • aluminum to which an element for improving heat resistance such as silicon, titanium, neodymium, scandium, and molybdenum is added can be used.
  • it may be formed of a metal element that reacts with silicon to form silicide.
  • Metal elements that react with silicon to form silicide include zirconium, titanium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, cobalt, nickel and the like.
  • the substrate 110 a ceramic substrate, a glass substrate, a resin substrate, a silicon substrate, a metal substrate, or the like can be used. If a flexible material is used as the substrate 110, a flexible thin-film secondary battery can be produced.
  • the positive electrode current collector 103 can also have the functions of the substrate and the positive electrode current collector by using a highly conductive material. In this case, it is preferable to use a metal substrate such as titanium or copper.
  • the base film 104 suppresses the oxidation of the positive electrode current collector 103 by oxygen contained in the positive electrode active material layer 101 or the like, or the diffusion of metal atoms. Therefore, even a material that is easily oxidized or a material that contains a metal atom that is easily diffused can be applied to the positive electrode current collector 103.
  • the undercoat film 104 is formed (S2).
  • a film forming method of the base film 104 a sputtering method, a vapor deposition method or the like can be used.
  • titanium nitride can be formed by a reactive sputtering method using a titanium target and nitrogen gas.
  • the positive electrode active material layer 101 is formed (S3).
  • the positive electrode active material layer 101 can be formed by a sputtering method using, for example, a sputtering target containing lithium and an oxide having one or more of manganese, cobalt, and nickel as main components.
  • a sputtering target containing lithium cobalt oxide (LiCoO 2 , LiCo 2 O 4, etc.) as a main component a sputtering target containing lithium manganese oxide (LiMnO 2 , LiMn 2 O 4, etc.) as a main component, or a lithium nickel oxide.
  • a sputtering target containing (LiNiO 2 , LiNi 2 O 4, etc.) as a main component can be used.
  • the film may be formed by a vacuum vapor deposition method.
  • a metal mask can be used to selectively form a film.
  • the positive electrode active material layer 101 may be patterned by selectively removing it by dry etching or wet etching using a resist mask or the like.
  • a sputtering target having magnesium, fluorine, aluminum and the like in addition to lithium and one or more of manganese, cobalt and nickel May be formed using. Further, after forming a film using a sputtering target containing lithium and an oxide having one or more of manganese, cobalt, and nickel as main components, magnesium, fluorine, aluminum, and the like are formed by a vacuum vapor deposition method. It may be annealed.
  • the cap layer 102 is formed on the positive electrode active material layer 101 (S4).
  • a film forming method for the cap layer 102 a sputtering method, a vapor deposition method, or the like can be used.
  • titanium oxide when titanium oxide is used as the cap layer 102, titanium oxide can be formed by a reactive sputtering method using a titanium target and oxygen gas.
  • a film can also be formed by sputtering a titanium oxide target.
  • the positive electrode active material layer 101 and the cap layer 102 are formed at a high temperature (500 ° C. or higher). A positive electrode 100 having better crystallinity can be produced.
  • the solid electrolyte layer 203 is formed on the positive electrode active material layer 101 (S5).
  • a compound containing titanium for the solid electrolyte layer 203. Since the cap layer 102 of the positive electrode 100 has titanium, if a material having titanium is also used for the solid electrolyte layer 203, a secondary battery can be easily manufactured. As a film forming method, a sputtering method, a vapor deposition method or the like can be used.
  • the negative electrode active material layer 204 is formed on the solid electrolyte layer 203 (S6).
  • a film forming method a sputtering method, a vapor deposition method or the like can be used.
  • the negative electrode current collector 205 is produced on the negative electrode active material layer 204 (S7).
  • the material of the negative electrode current collector 205 one or more kinds of conductive materials selected from aluminum, titanium, copper, gold, chromium, tungsten, molybdenum, nickel, silver and the like are used.
  • a film forming method a sputtering method, a vapor deposition method or the like can be used.
  • a metal mask can be used to selectively form a film.
  • the conductive film may be patterned by selectively removing it by dry etching or wet etching using a resist mask or the like.
  • the positive electrode current collector 103 or the negative electrode current collector 205 is formed by a sputtering method
  • the sputtering apparatus can perform continuous film formation in the same chamber or using a plurality of chambers, and can be a multi-chamber type manufacturing apparatus or an in-line type manufacturing apparatus.
  • the sputtering method is a manufacturing method suitable for mass production using a chamber and a sputtering target. Further, the sputtering method can be formed thinly and has excellent film forming characteristics.
  • the protective layer 206 is a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, neodymium, lanthanum, magnesium and the like. Can be used. Further, silicon nitride oxide, silicon nitride and the like can also be used.
  • the protective layer 206 can be formed into a film by a sputtering method.
  • each layer described in the present embodiment is not particularly limited to the sputtering method, and the vapor phase method (vacuum vapor deposition method, thermal spraying method, pulse laser deposition method (PLD method)), ion plating method, cold spray method, aerosol de.
  • the position method can also be used.
  • the aerosol deposition (AD) method is a method for forming a film without heating the substrate. Aerosol refers to fine particles dispersed in the gas. Further, a CVD method or an ALD (Atomic Layer Deposition) method may be used.
  • the secondary battery 200 which is one aspect of the present invention, can be manufactured.
  • This embodiment can be implemented in combination with other embodiments as appropriate.
  • the secondary batteries can be connected in series.
  • an example of a secondary battery having one cell is shown, but in the present embodiment, an example of manufacturing a thin film secondary battery in which a plurality of cells are connected in series is shown.
  • FIG. 9A shows a top view immediately after the formation of the first secondary battery
  • FIG. 9B shows a top view in which the two secondary batteries are connected in series.
  • the same reference numerals are used for the same parts as those in FIG. 5A shown in the second embodiment.
  • FIG. 9A shows a state immediately after the negative electrode current collector 205 is formed.
  • the upper surface shape of the negative electrode current collector 205 is different from that of FIG. 5A.
  • the negative electrode current collector 205 shown in FIG. 9A is partially in contact with the side surface of the solid electrolyte layer and is also in contact with the insulating surface of the substrate.
  • a second negative electrode active material layer, a second solid electrolyte layer 213, a second positive electrode active material layer, and a second positive electrode are placed on the region of the negative electrode current collector 205 that does not overlap with the first negative electrode active material layer.
  • the current collector 215 is formed in this order.
  • the protective layer 206 is formed (Fig. 9B).
  • FIG. 9B shows a configuration in which two solid-state secondary batteries are arranged in a plane and connected in series.
  • This embodiment can be implemented in combination with other embodiments as appropriate.
  • FIG. 10 is an example of a cross section of a thin film battery of a three-layer cell.
  • a positive electrode current collector 103 is formed on the substrate 110, and a base film 104, a positive electrode active material layer 101, a cap layer 102, a solid electrolyte layer 203, a negative electrode active material layer 204, and a negative electrode current collector 205 are formed on the positive electrode current collector 103.
  • a base film 104 a positive electrode active material layer 101, a cap layer 102, a solid electrolyte layer 203, a negative electrode active material layer 204, and a negative electrode current collector 205 are formed on the positive electrode current collector 103.
  • a base film 104 is sequentially formed to form the first cell.
  • the second negative electrode active material layer 204, the solid electrolyte layer, the cap layer, the positive electrode active material layer, the base film, and the positive electrode current collector layer are sequentially formed on the negative electrode current collector 205 to form the second layer. It constitutes a cell.
  • the third layer is formed. Consists of the cells of.
  • the protective layer 206 is finally formed.
  • the three-layer stacking shown in FIG. 10 is configured to be connected in series in order to increase the capacity, but it can also be connected in parallel by an external connection. It is also possible to select series and parallel or series-parallel for external wiring.
  • the solid electrolyte layer 203, the second solid electrolyte layer, and the third solid electrolyte layer are preferable because the production cost can be reduced by using the same material.
  • FIG. 10 An example of a manufacturing flow for obtaining the structure shown in FIG. 10 is shown in FIG.
  • a lithium cobalt oxide film as the positive electrode active material layer and a titanium film as the positive electrode current collector and the negative electrode current collector (conductive layer) in order to reduce the number of manufacturing steps.
  • a titanium film as a common electrode, a three-layer laminated cell can be realized with a small number of configurations.
  • This embodiment can be implemented in combination with other embodiments as appropriate.
  • FIGS. 12 and 13 examples of a multi-chamber type manufacturing apparatus capable of fully automating the production of the secondary battery from the positive electrode current collector layer to the negative electrode current collector layer are shown in FIGS. 12 and 13.
  • the manufacturing apparatus can be suitably used for manufacturing a thin film secondary battery according to an aspect of the present invention.
  • FIG. 12 shows gates 880, 881, 882, 883, 884, 885, 886, 887, 888, load lock chamber 870, mask alignment chamber 891, first transport chamber 871, second transport chamber 872, and third transport chamber 873.
  • a plurality of film forming chambers (first film forming chamber 892, second film forming chamber 874), heating chamber 893, second material supply chamber 894, first material supply chamber 895, third material supply chamber 896. This is an example of a multi-chamber manufacturing device provided.
  • the mask alignment chamber 891 has at least a stage 851 and a substrate transfer mechanism 852.
  • the first transfer chamber 871 has a substrate cassette elevating mechanism
  • the second transfer chamber 872 has a substrate transfer mechanism 853
  • the third transfer chamber 873 has a substrate transfer mechanism 854.
  • an exhaust device may be appropriately selected according to the intended use of each room.
  • an exhaust mechanism equipped with a pump having an adsorption means such as a cryopump, a sputter ion pump, or a titanium sublimation pump, or an exhaust mechanism.
  • An exhaust mechanism or the like equipped with a cold trap in a turbo molecular pump can be mentioned.
  • the substrate 850 or the substrate cassette is installed in the load lock chamber 870 and transported to the mask alignment chamber 891 by the substrate transport mechanism 852.
  • the mask alignment chamber 891 the mask to be used is picked up from a plurality of preset masks and aligned with the substrate on the stage 851.
  • the gate 880 is opened, and the mask and the substrate 850 are conveyed to the first transfer chamber 871 by the substrate transfer mechanism 852.
  • the gate 881 is opened and the mask and the substrate 850 are transported to the second transport chamber 872 by the substrate transport mechanism 853.
  • the first film forming chamber 892 provided in the second transport chamber 872 via the gate 882 is a sputtering film forming chamber.
  • the sputtering film formation chamber has a mechanism that can apply a voltage to the sputtering target by switching between an RF power supply and a pulse DC power supply.
  • two or three types of sputtering targets can be set.
  • a single crystal silicon target, a sputtering target containing lithium cobalt oxide (LiCoO 2 ) as a main component, and a titanium target are installed. It is also possible to provide a substrate heating mechanism in the first film forming chamber 892 and to form a film while heating to a heater temperature of 700 ° C.
  • the negative electrode active material layer can be formed by the sputtering method using a single crystal silicon target. Further, a film made into SiO X by using a reactive sputtering method using Ar gas and O 2 gas may be used as the negative electrode active material layer. It is also possible to use a silicon nitride film as a sealing film by a reactive sputtering method using Ar gas and N 2 gas. Further, a positive electrode active material layer can be formed by a sputtering method using a sputtering target containing lithium cobalt oxide (LiCoO 2) as a main component. In the sputtering method using a titanium target, a conductive film serving as a current collector can be formed. It is also possible to form a titanium nitride film by a reactive sputtering method using Ar gas and N 2 gas to form a cap layer or a base film.
  • LiCoO 2 lithium cobalt oxide
  • the gate 882 When forming the positive electrode active material layer, the mask and the substrate are overlapped and transferred from the second transfer chamber 872 to the first film formation chamber 892 by the substrate transfer mechanism 853, the gate 882 is closed, and the film is formed by the sputtering method. I do.
  • the gate 882 and the gate 883 can be opened and conveyed to the heating chamber 893, the gate 883 can be closed, and then heating can be performed.
  • an RTA (Rapid Thermal Anneal) device As the RTA device, a GRTA (Gas Rapid Thermal Anneal) device and an LRTA (Lamp Rapid Thermal Anneal) device can be used.
  • the heat treatment of the heating chamber 893 can be performed in an atmosphere of nitrogen, oxygen, a rare gas, or dry air.
  • the heating time is 1 minute or more and 24 hours or less.
  • the substrate and the mask are returned to the mask alignment chamber 891, and a new mask is aligned.
  • the aligned substrate and mask are conveyed to the first transfer chamber 871 by the substrate transfer mechanism 852.
  • the substrate is transported by the elevating mechanism of the first transport chamber 871, the gate 884 is opened, and the substrate is transported to the third transport chamber 873 by the substrate transport mechanism 854.
  • the second film forming chamber 874 which is connected to the third transport chamber 873 via the gate 885, performs film formation by thin film deposition.
  • FIG. 13 shows an example of the cross-sectional structure of the structure of the second film forming chamber 874.
  • FIG. 13 is a schematic cross-sectional view cut along the dotted line in FIG.
  • the second film forming chamber 874 is connected to the exhaust mechanism 849, and the first material supply chamber 895 is connected to the exhaust mechanism 848.
  • the second material supply chamber 894 is connected to the exhaust mechanism 847.
  • the second film forming chamber 874 shown in FIG. 13 is a vapor deposition chamber for performing vapor deposition using the vapor deposition source 856 moved from the first material supply chamber 895, and the vapor deposition source is moved from each of the plurality of material supply chambers. Multiple substances can be vaporized at the same time for vapor deposition, that is, co-evaporation.
  • FIG. 13 shows a thin-film deposition source having a thin-film deposition boat 858 also moved from the second material supply chamber 894.
  • the second film forming chamber 874 is connected to the second material supply chamber 894 via the gate 886. Further, the second film forming chamber 874 is connected to the first material supply chamber 895 via the gate 888. Further, the second film forming chamber 874 is connected to the third material supply chamber 896 via the gate 887. Therefore, the second film forming chamber 874 can be ternary co-deposited.
  • the substrate is installed on the substrate holding portion 845.
  • the board holding portion 845 is connected to the rotating mechanism 865.
  • the first vapor deposition material 855 is heated to some extent in the first material supply chamber 895, the gate 888 is opened when the vapor deposition rate is stable, the arm 862 is extended to move the vapor deposition source 856, and the lower part of the substrate is moved. Stop at the position.
  • the thin-film deposition source 856 is composed of a first thin-film deposition material 855, a heater 857, and a container for accommodating the first thin-film deposition material 855.
  • the second vapor deposition material is heated to some extent, the gate 886 is opened at the stage when the vapor deposition rate is stable, the arm 861 is extended to move the vapor deposition source, and the position below the substrate. Stop with.
  • the shutter 868 and the vapor deposition source shutter 869 are opened to perform co-deposition.
  • the rotation mechanism 865 is rotated to improve the uniformity of the film thickness.
  • the substrate after the vapor deposition follows the same path and is transported to the mask alignment chamber 891. When the substrate is taken out from the manufacturing apparatus, it is conveyed from the mask alignment chamber 891 to the load lock chamber 870 and taken out.
  • FIG. 13 a case where the substrate 850 and the mask are held by the substrate holding portion 845 is shown as an example.
  • the substrate rotation mechanism may also serve as a substrate transfer mechanism.
  • the second film forming chamber 874 may be provided with an imaging means 863 such as a CCD camera. By providing the image pickup means 863, the position of the substrate 850 can be confirmed.
  • an imaging means 863 such as a CCD camera.
  • the film thickness formed on the substrate surface can be predicted from the measurement result of the film thickness measuring mechanism 867.
  • the film thickness measuring mechanism 867 may include, for example, a crystal oscillator or the like.
  • a shutter 868 that overlaps with the substrate until the vaporization rate of the vaporized material stabilizes, and a thin-film deposition source shutter 869 that overlaps with the vapor deposition source 856 and the vapor deposition boat 858 are provided.
  • the thin-film deposition source 856 an EB (Electron Beam) vapor deposition method may be used.
  • Rubbo is shown as the container of the vapor deposition source 856, it may be a vapor deposition boat.
  • An organic material is put into the rubbo heated by the heater 857 as the first vapor deposition material 855.
  • a thin-film deposition boat 858 is used.
  • the vapor deposition boat 858 is composed of three parts, in which a member having a concave surface, an inner lid having two holes, and an upper lid having one hole are overlapped. The inner lid may be removed for vapor deposition.
  • the thin-film deposition boat 858 acts as a resistor when energized, and the thin-film deposition boat itself heats up.
  • an example of the multi-chamber method is shown, but the present invention is not particularly limited, and an in-line type manufacturing apparatus may be used.
  • This embodiment can be implemented in combination with other embodiments as appropriate.
  • FIG. 14A is an external view of the thin film secondary battery.
  • the secondary battery 913 has a terminal 951 and a terminal 952.
  • the terminal 951 is electrically connected to the positive electrode and the terminal 952 is electrically connected to the negative electrode.
  • the secondary battery of one aspect of the present invention has excellent cycle characteristics. In addition, since it can be an all-solid-state secondary battery, it is also excellent in safety. Therefore, the secondary battery of one aspect of the present invention can be suitably used as the secondary battery 913.
  • FIG. 14B is an external view of the battery control circuit.
  • the battery control circuit shown in FIG. 14B has a substrate 900 and layer 916.
  • a circuit 912 and an antenna 914 are provided on the substrate 900.
  • the antenna 914 is electrically connected to the circuit 912.
  • Terminals 971 and 972 are electrically connected to the circuit 912.
  • the circuit 912 is electrically connected to the terminal 911.
  • the terminal 911 is connected to, for example, a device to which power is supplied from a thin-film solid-state secondary battery. For example, it is connected to a display device, a sensor, or the like.
  • the layer 916 has a function capable of shielding the electromagnetic field generated by the secondary battery 913, for example.
  • a magnetic material can be used as the layer 916.
  • FIG. 14C shows an example in which the battery control circuit shown in FIG. 14B is arranged on the secondary battery 913.
  • the terminal 971 is electrically connected to the terminal 951, and the terminal 972 is electrically connected to the terminal 952.
  • Layer 916 is arranged between the substrate 900 and the secondary battery 913.
  • a flexible substrate as the substrate 900.
  • a thin battery control circuit can be realized. Further, as shown in FIG. 15D described later, the battery control circuit can be wound around the secondary battery.
  • FIG. 15A is an external view of a thin film type solid-state secondary battery.
  • the battery control circuit shown in FIG. 15B has a substrate 900 and layer 916.
  • the substrate 900 is bent according to the shape of the secondary battery 913, and the battery control circuit is arranged around the secondary battery, so that the battery control circuit is changed to the secondary battery as shown in FIG. 15D. Can be wrapped around. By using a secondary battery having such a configuration, a smaller secondary battery can be obtained.
  • This embodiment can be implemented in combination with other embodiments as appropriate.
  • FIGS. 16A, 16B and 17A to 17C an example of an electronic device using a thin film secondary battery will be described with reference to FIGS. 16A, 16B and 17A to 17C.
  • the secondary battery of one aspect of the present invention has high discharge capacity and cycle characteristics, and is highly safe. Therefore, the electronic device is highly safe and can be used for a long time.
  • FIG. 16A is an external perspective view of the thin film type secondary battery 3001 according to the present invention.
  • the positive electrode lead electrode 513 electrically connected to the positive electrode of the solid secondary battery and the negative electrode lead electrode 511 electrically connected to the negative electrode are sealed with a laminate film or an insulating material so as to project.
  • FIG. 16B is an IC card which is an example of an applied device using the thin film type secondary battery according to the present invention.
  • the electric power obtained by supplying power from the radio wave 3005 can be charged to the thin film type secondary battery 3001.
  • An antenna, an IC 3004, and a thin-film secondary battery 3001 are arranged inside the IC card 3000.
  • the ID 3002 and the photograph 3003 of the worker who wears the management badge are displayed. It is also possible to transmit a signal such as an authentication signal from the antenna by using the electric power charged in the thin film type secondary battery 3001.
  • An active matrix display device may be provided for displaying the ID 3002 and the photograph 3003.
  • Examples of the active matrix display device include a reflective liquid crystal display device, an organic EL display device, and electronic paper. It is also possible to display a video (moving image or still image) or time on the active matrix display device.
  • the electric power of the active matrix display device can be supplied from the thin film type secondary battery 3001.
  • an organic EL display device using a flexible substrate is preferable.
  • a solar cell may be provided instead of Photo 3003.
  • Light can be absorbed by irradiation with external light to generate electric power, and the electric power can be charged to the thin film type secondary battery 3001.
  • the thin film type secondary battery is not limited to the IC card, and can be used as a power source for a wireless sensor used in a vehicle, a secondary battery for a MEMS device, and the like.
  • FIG. 17A shows an example of a wearable device.
  • Wearable devices may use a secondary battery as a power source.
  • a wearable device that can perform wireless charging as well as wired charging with the connector part to be connected is exposed. It is desired.
  • the secondary battery according to one aspect of the present invention can be mounted on the spectacle-type device 400 as shown in FIG. 17A.
  • the spectacle-type device 400 has a frame 400a and a display unit 400b.
  • By mounting the secondary battery on the temple portion of the curved frame 400a it is possible to obtain a spectacle-type device 400 that is lightweight, has a good weight balance, and has a long continuous use time.
  • By providing the secondary battery, which is one aspect of the present invention it is possible to realize a configuration capable of saving space due to the miniaturization of the housing.
  • the headset type device 401 can be equipped with a secondary battery, which is one aspect of the present invention.
  • the headset-type device 401 has at least a microphone unit 401a, a flexible pipe 401b, and an earphone unit 401c.
  • a secondary battery can be provided in the flexible pipe 401b or in the earphone portion 401c.
  • the secondary battery according to one aspect of the present invention can be mounted on the device 402 that can be directly attached to the body.
  • the secondary battery 402b can be provided in the thin housing 402a of the device 402.
  • the secondary battery according to one aspect of the present invention can be mounted on the device 403 that can be attached to clothes.
  • the secondary battery 403b can be provided in the thin housing 403a of the device 403.
  • the belt type device 406 can be equipped with a secondary battery, which is one aspect of the present invention.
  • the belt-type device 406 has a belt portion 406a and a wireless power supply receiving portion 406b, and a secondary battery can be mounted inside the belt portion 406a.
  • a secondary battery which is one aspect of the present invention, can be mounted on the wristwatch type device 405.
  • the wristwatch-type device 405 has a display unit 405a and a belt unit 405b, and a secondary battery can be provided on the display unit 405a or the belt unit 405b.
  • the wristwatch type device 405 is a wearable device of a type that is directly wrapped around the wrist, a sensor for measuring the pulse, blood pressure, etc. of the user may be mounted. It is possible to manage the health by accumulating data on the amount of exercise and health of the user.
  • FIG. 17B shows a perspective view of the wristwatch-type device 405 removed from the arm.
  • FIG. 17C shows a state in which the secondary battery 913 is built in.
  • the secondary battery 913 is the secondary battery shown in the fifth embodiment.
  • the secondary battery 913 is provided at a position overlapping the display unit 405a, and is compact and lightweight.
  • This embodiment can be implemented in combination with other embodiments as appropriate.
  • an electronic device using a secondary battery having a positive electrode according to one aspect of the present invention will be described with reference to FIGS. 18A to 18C, FIGS. 19A to 19D, and FIGS. 20A and 20B.
  • the secondary battery having the positive electrode of one aspect of the present invention has high discharge capacity and cycle characteristics, and is highly safe. Therefore, it can be suitably used for the following electronic devices. It can be suitably used for electronic devices that are particularly required to have durability.
  • FIG. 18A shows a perspective view of a wristwatch-type personal digital assistant (also referred to as a smart watch) 700.
  • the personal digital assistant 700 has a housing 701, a display panel 702, a clasp 703, bands 705A and 705B, and operation buttons 711 and 712.
  • the display panel 702 mounted on the housing 701 that also serves as the bezel portion has a rectangular display area. Further, the display area constitutes a curved surface.
  • the display panel 702 is preferably flexible. The display area may be non-rectangular.
  • Bands 705A and 705B are connected to the housing 701.
  • the clasp 703 is connected to the band 705A.
  • the band 705A and the housing 701 are connected so that the connecting portion can rotate, for example, via a pin.
  • Band 705A has a secondary battery 750.
  • the secondary battery 750 for example, the secondary battery described in the previous embodiment can be used.
  • the secondary battery 750 is embedded inside the band 705A, and a part of the positive electrode lead 751 and the negative electrode lead 752 project from the band 705A (see FIG. 18B).
  • the positive electrode lead 751 and the negative electrode lead 752 are electrically connected to the display panel 702.
  • the surface of the secondary battery 750 is covered with an exterior body 753 (see FIG. 18C).
  • the pin may have the function of an electrode.
  • the positive electrode lead 751 and the display panel 702, and the negative electrode lead 752 and the display panel 702 may be electrically connected via pins connecting the band 705A and the housing 701, respectively.
  • the configuration at the connection portion of the band 705A and the housing 701 can be simplified.
  • the secondary battery 750 has flexibility. Therefore, the band 705A can be manufactured by integrally forming with the secondary battery 750.
  • the band 705A shown in FIG. 18B can be produced by setting the secondary battery 750 in a mold corresponding to the outer shape of the band 705A, pouring the material of the band 705A into the mold, and curing the material.
  • the rubber is cured by heat treatment.
  • fluororubber is used as the rubber material, it is cured by heat treatment at 170 ° C. for 10 minutes.
  • silicone rubber is used as the rubber material, it is cured by heat treatment at 150 ° C. for 10 minutes.
  • Examples of the material used for the band 705A include fluororubber, silicone rubber, fluorosilicone rubber, and urethane rubber.
  • the mobile information terminal 700 shown in FIG. 18A can have various functions. For example, a function to display various information (still images, moving images, text images, etc.) in the display area, a touch panel function, a function to display a calendar, date or time, etc., a function to control processing by various software (programs), Wireless communication function, function to connect to various computer networks using wireless communication function, function to transmit or receive various data using wireless communication function, read and display program or data recorded on recording medium It can have a function of displaying in an area, and the like.
  • a speaker In addition, a speaker, a sensor (force, displacement, position, speed, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current) are inside the housing 701. , Includes the ability to measure voltage, power, radiation, flow rate, humidity, gradient, vibration, odor or infrared rays), microphones and the like.
  • the portable information terminal 700 can be manufactured by using a light emitting element for the display panel 702.
  • FIG. 18A shows an example in which the secondary battery 750 is included in the band 705A
  • the secondary battery 750 may be included in the band 705B.
  • the band 705B the same material as the band 705A can be used.
  • FIG. 19A shows an example of a cleaning robot.
  • the cleaning robot 6300 has a display unit 6302 arranged on the upper surface of the housing 6301, a plurality of cameras 6303 arranged on the side surface, a brush 6304, an operation button 6305, various sensors, and the like. Although not shown, the cleaning robot 6300 is provided with tires, suction ports, and the like. The cleaning robot 6300 is self-propelled, can detect dust 6310, and can suck dust from a suction port provided on the lower surface.
  • the cleaning robot 6300 can analyze the image taken by the camera 6303 and determine the presence or absence of obstacles such as walls, furniture, and steps. Further, when an object that is likely to be entangled with the brush 6304 such as wiring is detected by image analysis, the rotation of the brush 6304 can be stopped.
  • the cleaning robot 6300 includes a secondary battery according to one aspect of the present invention, a semiconductor device, or an electronic component inside the cleaning robot 6300. By using the secondary battery according to one aspect of the present invention for the cleaning robot 6300, the cleaning robot 6300 can be made into a highly reliable electronic device with a long operating time.
  • FIG. 19B shows an example of a robot.
  • the robot 6400 shown in FIG. 19B includes a secondary battery 6409, an illuminance sensor 6401, a microphone 6402, an upper camera 6403, a speaker 6404, a display unit 6405, a lower camera 6406 and an obstacle sensor 6407, a moving mechanism 6408, an arithmetic unit, and the like.
  • the microphone 6402 has a function of detecting a user's voice, environmental sound, and the like. Further, the speaker 6404 has a function of emitting sound. The robot 6400 can communicate with the user by using the microphone 6402 and the speaker 6404.
  • the display unit 6405 has a function of displaying various information.
  • the robot 6400 can display the information desired by the user on the display unit 6405.
  • the display unit 6405 may be equipped with a touch panel. Further, the display unit 6405 may be a removable information terminal, and by installing the display unit 6405 at a fixed position of the robot 6400, charging and data transfer are possible.
  • the upper camera 6403 and the lower camera 6406 have a function of photographing the surroundings of the robot 6400. Further, the obstacle sensor 6407 can detect the presence or absence of an obstacle in the traveling direction when the robot 6400 moves forward by using the moving mechanism 6408. The robot 6400 can recognize the surrounding environment and move safely by using the upper camera 6403, the lower camera 6406, and the obstacle sensor 6407.
  • the robot 6400 includes a secondary battery 6409 according to an aspect of the present invention, and a semiconductor device or an electronic component inside the robot 6400.
  • the secondary battery according to one aspect of the present invention for the robot 6400, the robot 6400 can be made into a highly reliable electronic device having a long operating time.
  • FIG. 19C shows an example of an air vehicle.
  • the flying object 6500 shown in FIG. 19C has a propeller 6501, a camera 6502, a secondary battery 6503, and the like, and has a function of autonomously flying.
  • the image data taken by the camera 6502 is stored in the electronic component 6504.
  • the electronic component 6504 can analyze the image data and detect the presence or absence of an obstacle when moving.
  • the remaining battery level can be estimated from the change in the storage capacity of the secondary battery 6503 by the electronic component 6504.
  • the flying object 6500 includes a secondary battery 6503 according to one aspect of the present invention inside the flying object 6500. By using the secondary battery according to one aspect of the present invention for the flying object 6500, the flying object 6500 can be made into a highly reliable electronic device having a long operating time.
  • FIG. 19D shows an example of an automobile.
  • the automobile 7160 has a secondary battery 7161, an engine, tires, brakes, a steering device, a camera, and the like. Further, it is preferable to have the system 1000 described later.
  • the automobile 7160 includes a secondary battery 7161 according to an aspect of the present invention inside the automobile 7160. By using the secondary battery according to one aspect of the present invention in the automobile 7160, the automobile 7160 can be made into an automobile having a long cruising range, high safety, and high reliability.
  • one aspect of the present invention may be an electronic device or system having the thin film battery described in the previous embodiment and another secondary battery.
  • Other secondary batteries are not particularly limited, and for example, a lithium ion secondary battery having a positive electrode, a negative electrode, an electrolytic solution, and a separator, or a bulk all-solid-state secondary battery can be used.
  • the system means a system in which individual elements are combined. It has a secondary battery as one of the elements.
  • FIG. 20A shows a system 1000 having a thin film battery 1001 described in the previous embodiment, a positive electrode, a negative electrode, an electrolytic solution, and a lithium ion secondary battery 1002 having a separator.
  • a system 1000 preferably has a wireless power supply device. When the wireless power feeding device is provided, power can be easily supplied from the lithium ion secondary battery 1002 to the thin film battery 1001.
  • FIG. 20B shows the inside of the automobile 7160 when the system 1000 is provided.
  • the automobile 7160 has a secondary battery for driving, a wireless power supply device 7162, and a key 7163.
  • the key 7163 By arranging the key 7163 on the wireless power supply device 7162, power can be supplied from the drive secondary battery 7161 to the key 7163.
  • FIG. 20B shows an example in which the wireless power feeding device 7162 is installed on the dashboard, but the present invention is not limited to this.
  • a storage place for the key 7163 may be provided in another place around the driver's seat, and a wireless power supply device 7162 may be provided in the storage place.
  • the key 7163 has the thin-film battery described in the previous embodiment because the key can be made thinner and lighter. Further, it is easy to obtain a larger discharge capacity of the secondary battery for driving the automobile 7160, for example, a lithium ion secondary battery having a positive electrode, a negative electrode, an electrolytic solution, and a separator, or a bulk all-solid secondary battery. It is preferable to use a secondary battery.
  • This embodiment can be implemented in combination with other embodiments as appropriate.
  • the device described in this embodiment includes at least a biosensor and a solid secondary battery that supplies electric power to the biosensor, acquires various biological information using infrared light and visible light, and stores them in a memory. Can be made to. Such biometric information can be used for both personal authentication of users and healthcare.
  • the secondary battery of one aspect of the present invention has high discharge capacity and cycle characteristics, and is also highly safe. Therefore, the device is highly safe and can be used for a long time.
  • a biosensor is a sensor that acquires biometric information, and acquires biometric information that can be used for healthcare applications.
  • Biological information includes pulse wave, blood glucose level, oxygen saturation, triglyceride concentration and the like. Data is stored in memory.
  • the device described in the present embodiment is provided with a means for acquiring other biological information.
  • biological information in the body such as electrocardiogram, blood pressure, and body temperature
  • superficial biological information such as facial expression, complexion, and pupil.
  • information on the number of steps, exercise intensity, height difference of movement, and diet is also important information for health care.
  • blood pressure can be calculated from the electrocardiogram and the timing difference between the two beats of the pulse wave (the length of the pulse wave propagation time).
  • the pulse wave velocity is short, and conversely, when the blood pressure is low, the pulse wave velocity is long.
  • the physical condition of the user can be estimated from the relationship between the heart rate and blood pressure calculated from the electrocardiogram and the pulse wave. For example, if both the heart rate and blood pressure are high, it can be estimated that the person is in a tense or excited state, and conversely, if both the heart rate and blood pressure are low, it can be estimated that the person is in a relaxed state. In addition, if the condition of low blood pressure and high heart rate continues, there is a possibility of heart disease or the like.
  • the user can check the biological information measured by the electronic device and his / her physical condition estimated based on the information at any time, the health consciousness is improved. As a result, it can be an opportunity to review daily habits such as avoiding overdrinking and eating, being careful about proper exercise, and managing physical condition, and to be examined by a medical institution as needed.
  • FIG. 21A shows an example in which the biosensor 80a is embedded in the user's body and an example in which the biosensor 80b is attached to the wrist.
  • FIG. 21A shows, for example, a device having a biosensor 80a capable of measuring an electrocardiogram and a device having a biosensor 80b capable of measuring a heartbeat that optically monitors the pulse of the user's arm.
  • the watch and wristband type wearable device shown in FIG. 21A are not limited to heart rate measurement, and various biosensors can be used.
  • the implantable type device shown in FIG. 21A it is premised that it is small, that there is almost no heat generation, and that an allergic reaction does not occur even if it comes into contact with the skin.
  • the secondary battery used in the device of one aspect of the present invention is suitable because it is small in size, generates almost no heat, and does not cause an allergic reaction.
  • the embedded type device has a built-in antenna in order to enable wireless charging.
  • the device of the type to be embedded in the living body shown in FIG. 21A is not limited to the biosensor capable of measuring the electrocardiogram, and other biosensors capable of acquiring biometric data can be used.
  • the biosensor 80b built in the device may have a function of storing the acquired data in the temporary memory built in the device.
  • each data acquired by the biosensor may be wirelessly or wiredly transmitted to the portable data terminal 85 of FIG. 21B, and the portable data terminal 85 may have a function of detecting a waveform.
  • the mobile data terminal 85 is a smartphone or the like, and can detect whether or not a problem such as arrhythmia has occurred from the data acquired by each biosensor.
  • the data acquired by a plurality of biosensors is sent to the mobile data terminal 85 by wire, it is preferable to collectively transfer the acquired data before connecting by wire.
  • each detected data is automatically given a date and stored in the memory of the portable data terminal 85, and may be managed personally.
  • the biosensor 80b to the mobile data terminal 85 uses Bluetooth® or a network including a frequency band of 2.4 GHz to 2.4835 GHz, and the mobile data terminal 85 to the mobile data terminal 85.
  • High-speed communication may be performed up to the terminal 85 by using the 5th generation wireless system.
  • the fifth generation wireless system uses frequencies in the 3.7 GHz band, 4.5 GHz band, and 28 GHz band. By using the 5th generation wireless system, it is possible to acquire data and send data to the medical institution 87 not only at home but also when going out. It can be useful for treatment.
  • the portable data terminal 85 the configuration shown in FIG. 21C can be used.
  • FIG. 21C shows another example of a portable data terminal.
  • the portable data terminal 89 has a speaker, a pair of electrodes 83, a camera 84, and a microphone 86 in addition to the secondary battery.
  • the pair of electrodes 83 are provided in a part of the housing 82 with the display portion 81a interposed therebetween.
  • the display unit 81b is a region having a curved surface.
  • the electrode 83 functions as an electrode for acquiring biological information.
  • the biometric information can be acquired without the user being aware of it. can do.
  • the display unit 81a can display the electrocardiogram information 88a acquired by the pair of electrodes 83, the heart rate information 88b, and the like.
  • the biosensor 80a When the biosensor 80a is embedded in the user's body as shown in FIG. 21A, this function is unnecessary, but when it is not embedded, the user obtains an electrocardiogram by grasping the pair of electrodes 83 with both hands. Can be done. Even when the biosensor 80a is embedded in the user's body, the portable data terminal 89 shown in FIG. 21C can be used to check whether the biosensor 80a is functioning normally. Further, when comparing the electrocardiogram data among a plurality of users, the portable data terminal 89 shown in FIG. 21C can be used.
  • the camera 84 can capture a user's face and the like. Biological information such as facial expressions, pupils, and complexion can be acquired from the image of the user's face.
  • the microphone 86 can acquire the voice of the user. From the acquired voice information, voiceprint information that can be used for voiceprint authentication can be acquired. It can also be used for health management by periodically acquiring voice information and monitoring changes in voice quality. Of course, it is also possible to make a videophone call with a doctor at a medical institution 87 using a microphone 86, a camera 84, and a speaker.
  • This embodiment can be implemented in combination with other embodiments as appropriate.
  • Example 1 In this embodiment, a secondary battery having a base film and a cap layer, which is one aspect of the present invention, and a secondary battery having no base film or a cap layer as a comparative example are produced, and charge / discharge characteristics and cycle characteristics are exhibited. evaluated.
  • Sample 1 which is one aspect of the present invention, was prepared as follows. First, a titanium sheet was used as a substrate and a positive electrode current collector layer. The titanium sheet was a rolled foil having a thickness of 0.1 mm, a purity of 99.5%, an etching process, and a non-mirror surface processed to a diameter of 12 mm ⁇ .
  • Titanium nitride (TiN) was formed on the titanium sheet as a base film by a 20 nm sputtering method.
  • the sputtering conditions were as follows.
  • Target Titanium target, diameter 100 mm Spatter power supply, output: DC power supply, 500W Atmosphere: Argon flow rate 12.0 sccm, nitrogen flow rate 28 sccm, pressure 0.4 Pa
  • Film formation time 8 minutes
  • Film formation temperature Set to 600 ° C Film formation rate: 2.5 nm / min
  • lithium cobalt oxide (LiCoO 2 ) was formed into a 1000 nm film as a positive electrode active material layer by a sputtering method.
  • the sputtering conditions were as follows.
  • Target Lithium cobalt oxide target, diameter 100 mm Sputter power supply, output: RF power supply, 500W Atmosphere: Argon flow rate 40 sccm, oxygen flow rate 10 sccm, pressure 0.4 Pa
  • Film formation time 461 minutes
  • Film formation temperature set to 600 ° C.
  • Film formation rate 2.2 nm / min
  • titanium oxide (TiO x ) was formed into a film of about 20 nm as a cap layer by a sputtering method.
  • the sputtering conditions were as follows.
  • Target Titanium target, diameter 100 mm Spatter power supply, output: DC power supply, 500W Atmosphere: Argon flow rate 24 sccm, oxygen flow rate 16 sccm, pressure 0.4 Pa
  • Film formation time 27.7 minutes
  • a sample 2 having no base film and a sample 3 in which titanium oxide (TiO x) was formed as a base film were prepared. These were prepared in the same manner as in Sample 1 except for the base film.
  • Samples 4 to 6 having no cap layer were prepared. These were prepared in the same manner as in Samples 1 to 3 except that the cap layer was not formed.
  • Table 2 shows the preparation conditions for each sample.
  • Lithium metal was used as the counter electrode.
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • VC vinylene carbonate
  • Polypropylene having a thickness of 25 ⁇ m was used as the separator.
  • the positive electrode can and the negative electrode are those made of stainless steel (SUS) were used.
  • FIG. 22A and FIG. 22B it was found that all the samples exhibited good charge / discharge characteristics.
  • FIGS. 23A and 23B are graphs of Samples 1 to 3
  • FIG. 23B is a graph of Samples 4 to 6.
  • Samples 1 to 3 with a cap layer showed significantly better cycle characteristics than Samples 4 to 6 without a cap layer.
  • Sample 1 having titanium nitride as the base film showed the best characteristics, and the discharge capacity after 25 cycles was 115 mAh / g, and the discharge capacity retention rate was 93%.
  • Sample 3 having titanium oxide as the base film showed characteristics second only to sample 1, and the discharge capacity after 25 cycles was 113 mAh / g, and the discharge capacity retention rate was 93%.
  • the discharge capacity after 25 cycles was 111 mAh / g, and the discharge capacity retention rate was 92%.
  • a secondary battery having a cap layer which is one aspect of the present invention, and a secondary battery having no cap layer as a comparative example are produced, and TEM, electron energy loss spectroscopy (EELS), and microelectrons are produced.
  • TEM, electron energy loss spectroscopy (EELS), and microelectrons are produced.
  • the characteristics were analyzed by line diffraction, impedance measurement, etc., and the cycle characteristics were evaluated.
  • Sample 11 which is one aspect of the present invention was prepared as follows. First, a 100 ⁇ m titanium sheet was used as a substrate and a positive electrode current collector layer.
  • Titanium nitride (TiN) was formed on the titanium sheet as a base film by a 20 nm sputtering method.
  • the sputtering conditions were as follows.
  • Target Titanium target, 2 inch diameter spatter power supply, Output: RF power supply, 100W
  • Atmosphere Argon flow rate 3.0 sccm, nitrogen flow rate 7 sccm, pressure 0.5 Pa
  • Film formation time 15 minutes
  • Film formation temperature Set to 600 ° C
  • Target-board distance 75 mm
  • lithium cobalt oxide (LiCoO 2 ) was formed into a film of 900 nm as the positive electrode active material layer by a sputtering method.
  • the sputtering conditions were as follows.
  • Target Lithium cobalt oxide target, 2 inch diameter spatter power supply, output: RF power supply, 200W Atmosphere: Argon flow rate 10 sccm, pressure 0.5 Pa Film formation time: 109 minutes
  • Target-board distance 75 mm
  • Film formation rate 9.2 nm / min
  • titanium oxide TiO 2
  • the sputtering conditions were as follows.
  • Target Titanium target, diameter 100 mm Spatter power supply, output: DC power supply, 500W Atmosphere: Argon flow rate 24 sccm, oxygen flow rate 16 sccm, pressure 0.4 Pa
  • Film formation time 27.7 minutes
  • Film formation temperature Set to 600 ° C (actual substrate temperature is about 400 ° C)
  • Film formation rate 0.72 nm / min
  • Sample 12 was prepared in the same manner as Sample 11 except for the cap layer.
  • Table 4 shows the preparation conditions for each sample.
  • ⁇ TEM> The imaging conditions for the TEM image were as follows. Sample pretreatment: Thinning transmission electron microscope by FIB method ( ⁇ -sampling method): JEM-ARM200F manufactured by JEOL Ltd. Observation conditions Acceleration voltage: 200 kV Magnification accuracy: ⁇ 3%
  • FIG. 24 shows a cross-sectional TEM image of the sample 11 before charging / discharging. A titanium oxide cap layer 1102 was observed on the surface layer.
  • FIG. 27 shows a cross-sectional TEM image of the sample 11 after charging and discharging. A titanium oxide cap layer 1102 was observed on the surface layer.
  • FIG. 30 shows a cross-sectional TEM image of the sample 12 after charging and discharging. In each sample, it was observed that the positive electrode active material layer 1101 of lithium cobalt oxide was polycrystalline and the crystallites were vertically long columns.
  • FIG. 28A and * 3 The EELS analysis points of sample 11 after charging and discharging are shown by * 1 and * 2 in FIG. 28A and * 3, * 4 and * 5 in FIG. 28B.
  • * 1 and * 2 have a depth of about 100 nm from the outermost surface of the lithium cobalt oxide layer toward the substrate.
  • * 3 to * 5 also have a depth of about 30 nm. All analysis points are at and near the grain boundaries, but * 2, * 4 and * 5 are inside the crystal grains rather than * 1 and * 3.
  • FIG. 28B shows a photograph surrounded by a white line in FIG. 27. It is a magnified image of 3-14 parts.
  • the EELS spectra of the parts shown in * 1 to * 5 of the sample 11 are shown in FIG.
  • Co-L 3 edge and EEL spectrum obtained by subtracting the background which is calculated from the low binding energy side is calculated from the energy band between the Co-L 3 edge and Co-L 2 edge further subtracted ground
  • spectrum of L 3 level and L 2 level continuum of cobalt is shown in FIG.
  • the Background subtracted EEL spectrum was fitted from the original data with a model of power law, and the background was subtracted.
  • Co-L 2 , 3 context subtracted spectrum was obtained by further subtracting a cobalt scattering cross section model (Hartree-slatercross section model) from the data background-removed by the above power law fitting as a background function. .. Table 5 shows the area strength ratio of L 3 / L 2 and the calculated valence of cobalt.
  • FIG. 31A and 31B are cross-sectional TEM images of the sample 12 after charging and discharging.
  • the EELS analysis points are shown by * 1 and * 2 in FIG. 31A and * 3, * 4 and * 5 in FIG. 18B. All analysis points are at and near the grain boundaries, but * 2, * 4 and * 5 are inside the crystal grains rather than * 1 and * 3.
  • FIG. 31B shows a photo. It is a magnified image of 2-16 parts.
  • FIG. 32 shows the EELS spectra at * 1 to * 5 points of the sample 12 after charging and discharging.
  • Table 6 shows the area strength ratio of L 3 / L 2 and the calculated valence of cobalt.
  • FIG. 25A is a cross-sectional TEM image of the sample 11 before charging / discharging. The analysis points of the microelectron diffraction are shown by * point1-1, * point1-2, and * point1-3 in FIG. 25A. In addition, FIG. 25A shows a photograph surrounded by a black line in FIG. 24. It is a magnified image of 1-7 part.
  • FIG. 25B shows a microelectron diffraction image of the * point1-1 portion.
  • the transmitted light was set to O, and some of the diffraction spots were set to 1, 2, and 3, and are shown in the figure.
  • the electron beam incident direction is [120], and from the plane spacing and plane angle, 1 is 213 of the layered rock salt type crystal, 2 is similarly -210, and 3 is similarly 00-3. It was considered to have a layered rock salt type crystal structure.
  • FIG. 26A shows a microelectron diffraction image of the * point 1-2 portion.
  • the transmitted light was set to O, and some of the diffraction spots were set to 1, 2, and 3, and are shown in the figure.
  • the electron beam incident direction is [120], and from the plane spacing and the plane angle, 1 is 213 of the layered rock salt type crystal, 2 is similarly -210, and 3 is similarly 00-3. , It was considered to have a layered rock salt type crystal structure.
  • FIG. 26B shows a microelectron diffraction image of the * point1-3 portion.
  • the transmitted light was set to O, and some of the diffraction spots were set to 1, 2, and 3, and are shown in the figure.
  • the electron beam incident direction is [120], and from the plane spacing and the plane angle, 1 is -210 of the layered rock salt type crystal, 2 is similarly -21-3, and 3 is similarly 00-3. It was considered to have a layered rock salt type crystal structure.
  • FIG. 33A is a cross-sectional TEM image of the sample 11 after charging and discharging. The analysis points of the microelectron diffraction are shown by * point3-1, * point3-2, and * point3-3 in FIG. 33A.
  • FIG. 33B shows a microelectron diffraction image of the * point3-1 portion.
  • the transmitted light was set to O, and some of the diffraction spots were set to 1, 2, and 3, and are shown in the figure.
  • the electron beam incident direction is [0-10], and from the surface spacing and surface angle, 1 is 10-2 of the layered rock salt type crystal, 2 is 10-5 as well, and 3 is 00 as well. It was -3 and was considered to have a layered rock salt type crystal structure.
  • FIG. 34A shows a microelectron diffraction image of the * point 3-2 portion.
  • the transmitted light was set to O, and some of the diffraction spots were set to 1, 2, and 3, and are shown in the figure.
  • the electron beam incident direction is [0-10]
  • 1 is -102 of the layered rock salt type crystal
  • 2 is similarly -105
  • 3 is similarly 003, which is the layered rock salt type crystal structure.
  • FIG. 34B shows a microelectron diffraction image of the * point3-3 portion.
  • the transmitted light is set to O, and a part of the diffraction spot is set to 1, which are shown in the figure.
  • the surface spacing of 1 was calculated to be 0.470 nm.
  • the electron beam incident direction was [003]
  • 1 was 003 of the layered rock salt type crystal, which was considered to have a layered rock salt type crystal structure.
  • FIG. 35A is a cross-sectional TEM image of the sample 12 after charging and discharging. The analysis points of the microelectron diffraction are shown by * point2-1, * point2-2, and * point2-3 in FIG. 35A.
  • FIG. 35B shows a microelectron diffraction image of the * point2-1 portion.
  • the transmitted light was set to O, and some of the diffraction spots were set to 1, 2, and 3, and are shown in the figure.
  • the electron beam incident direction is [010]
  • 1 is 20-1 of the layered rock salt type crystal
  • 2 is 205 in the same manner
  • 3 is 006 in the same manner, and has a layered rock salt type crystal structure. It was thought that.
  • FIG. 36A shows a microelectron diffraction image of the * point2-2 portion.
  • the transmitted light was set to O, and some of the diffraction spots were set to 1, 2, and 3, and are shown in the figure.
  • the electron beam incident direction is [010]
  • 1 is 20-1 of the layered rock salt type crystal
  • 2 is 205 as well
  • 3 is 006 as well, and has a layered rock salt type crystal structure.
  • FIG. 36B shows a microelectron diffraction image of the * point2-3 portion.
  • the transmitted light is set to O, and a part of the diffraction spot is set to 1, which are shown in the figure.
  • the surface spacing of 1 was calculated to be 0.474 nm.
  • the electron beam incident direction was [003]
  • 1 was 003 of the layered rock salt type crystal, which was considered to have a layered rock salt type crystal structure.
  • the lattice constant of the sample 11 without the cap layer after charging / discharging tended to be larger than the lattice constant of lithium cobalt oxide before charging / discharging. It is presumed that this is due to the reduction of cobalt.
  • the a-axis tended to be small on average even after charging and discharging. This indicates that the valence of cobalt is high and the reduction of cobalt is suppressed.
  • a CR2032 type (diameter 20 mm, height 3.2 mm) coin-shaped battery cell was produced by using the sample 11 and the sample 12 as the positive electrode and the lithium metal as the counter electrode.
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • VC vinylene carbonate
  • Polypropylene having a thickness of 25 ⁇ m was used as the separator.
  • the positive electrode can and the negative electrode are those made of stainless steel (SUS) were used.
  • the cycle test was conducted under the following conditions.
  • the charging voltage was 4.2V.
  • the measurement temperature was 25 ° C.
  • Charging was CC / CV (0.2C, 0.1Cut), discharging was CC (0.1C, 2.5Vcut), and a 10-minute rest period was provided before the next charging.
  • 1C was set to 137 mA / g.
  • FIG. 37 shows the results of the charge / discharge cycle test. Compared with the sample 12 without the cap layer, the positive electrode of the sample 11 with the cap layer showed extremely good charge / discharge cycle characteristics.
  • Rs is the electrical resistance of the electrode and the resistance of the electrolytic solution.
  • the electrical resistance of the electrode includes all the simple electrical resistance contained in the coin cell.
  • the resistance of the electrolytic solution means the ion diffusion resistance in the solution.
  • R1 is sometimes referred to as Rf or Surface, and is a high-frequency component of the impedance of the secondary battery.
  • R1 includes resistance to lithium ion diffusion at the interface between the positive electrode and the electrolytic solution.
  • CPE1 constant phase element, electric double layer capacity
  • R2 is sometimes referred to as Rct and is a low frequency component.
  • R2 includes resistance in the process of deinserting Li ions into the positive electrode active material layer (LiCoO 2 in this example) (charge transfer).
  • Ws1 is the resistance associated with lithium diffusion in a solid.
  • the impedance is typically a graph as shown in FIG. 38B. In the figure, the range affected by each component is shown.
  • the impedance of the sample 11 is shown in FIG. 39, and the impedance of the sample 12 is shown in FIG. 40.
  • the graphs of the 2nd cycle and the 50th cycle are shown respectively.
  • a CELLTEST multi-channel electrochemical measurement system manufactured by Solartron was used as the measuring device, and the AC voltage of 10 mV was swept from 0.001 Hz to 1 MHz. The measurement temperature was 25 ° C.
  • the battery was charged at 0.2 C to 4.2 V and left for 2 hours.
  • the OCV at this time was 4.1308V after 2 cycles of sample 11 and 4.0607V after 50 cycles, respectively. It was 4.1162V after 2 cycles of sample 12 and 4.005V after 50 cycles.
  • R1 high frequency component
  • R1 is particularly increased when the impedances of the second cycle and the 50th cycle are compared. Therefore, deterioration occurs in the diffusion path of lithium, for example, the interface between the positive electrode active material layer and the electrolytic solution, and some grain boundaries, which is presumed to be the cause of the deterioration of the charge / discharge cycle characteristics as shown in FIG. 37. Will be done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

サイクル特性に優れた二次電池用正極を提供する。 二次電池用正極であって、正極集電体層と、下地膜と、正極活物質層と、キャップ層と、を有し、下地膜は窒化チタンを有し、正極活物質層はコバルト酸リチウムを有し、キャップ層は酸化チタンを有する二次電池用正極。下地膜に窒化チタンを適用することで、十分な導電性を確保しつつ、正極集電体層の酸化や金属原子の拡散を抑制することができる。またキャップ層に酸化チタンを適用することで、正極活物質層と電解質との副反応や極活物質の結晶構造が崩れる事を抑制し、サイクル特性を向上させることができる。

Description

二次電池用正極、二次電池および電子機器
本発明の一様態は、物、方法、又は、製造方法に関する。または、本発明は、プロセス、マシン、マニュファクチャ、又は、組成物(コンポジション・オブ・マター)に関する。本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、照明装置、電子機器、またはそれらの製造方法に関する。
なお、本明細書中において電子機器とは、蓄電装置を有する装置全般を指し、蓄電装置を有する電気光学装置、蓄電装置を有する情報端末装置などは全て電子機器である。
近年、リチウムイオン二次電池、リチウムイオンキャパシタ、空気電池、全固体電池等、種々の蓄電装置の開発が盛んに行われている。特に高出力、高容量であるリチウムイオン二次電池は半導体産業の発展と併せて急速にその需要が拡大し、充電可能なエネルギーの供給源として現代の情報化社会に不可欠なものとなっている。
また需要の拡大と併せて、より性能の高いリチウムイオン二次電池が要求されるようになっている。そのためリチウムイオン二次電池の高容量化、サイクル特性向上を目指した正極活物質の改良が進んでいる(例えば特許文献1)。
また、リチウムイオン二次電池のなかでもより安全性の高い全固体電池の開発が進められている。正極、電解質および負極がPVD(物理蒸着)、CVD(化学蒸着)等で形成される薄膜二次電池も、全固体電池の一種である(例えば特許文献2)。
特開2018−206747号公報 米国特許出願公開第2010/0190051号明細書
EELS analysis of cation valence states and oxygen vacancies in magnetic oxides、Z.L.Wang、J.S.Yin、Y.D.Jiang、Micron 31(2000)571−580
薄膜二次電池には、充放電特性、サイクル特性、信頼性、安全性、又はコストといった様々な面で改善の余地が残されている。たとえばサイクル特性については、充放電を繰り返すにつれ正極活物質の結晶構造が崩れ、充放電容量の低下につながっている可能性がある。また正極活物質と電解質との界面、正極活物質と正極集電体との界面等で副反応が生じ、これも充放電容量の低下につながっている可能性がある。
そこで本発明の一態様は、充放電を繰り返しても正極活物質と電解質との界面、正極活物質と正極集電体との界面等で副反応が生じにくい二次電池用正極を提供することを課題の一とする。また充放電を繰り返しても結晶構造が崩れにくい二次電池用正極を提供することを課題の一とする。または、充放電サイクル特性に優れた二次電池用正極を提供することを課題の一とする。または、充放電容量が大きい二次電池用正極を提供することを課題の一とする。または、充放電サイクルにおける容量の低下が抑制される二次電池用正極を提供することを課題の一とする。または、充放電サイクル特性に優れた二次電池を提供することを課題の一とする。または、充放電容量が大きい二次電池を提供することを課題の一とする。または、安全性または信頼性の高い二次電池を提供することを課題の一とする。
または、本発明の一態様は、新規な物質、活物質粒子、蓄電装置、又はそれらの作製方法を提供することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
本発明の一態様では、結晶構造を崩れにくくし、または副反応を抑制し、サイクル特性を向上するために、正極活物質層上に、キャップ層を設けることとした。
本発明の一態様は、二次電池用正極であって、下地膜と、正極活物質層と、キャップ層と、を有し、下地膜およびキャップ層の少なくとも一方は、酸化窒化チタンを有し、正極活物質層はコバルト酸リチウムを有し、キャップ層は酸素を含むチタン化合物を有する、二次電池用正極である。
または上記において、下地膜の有する結晶構造と正極活物質層の有する結晶構造はいずれも、陰イオンのみが配列する面を有することが好ましい。
また上記において、下地膜と、正極活物質層はいずれも、陽イオンと陰イオンが交互に配列している結晶構造を有することが好ましい。
また本発明の一態様は、上記の二次電池用正極と、固体電解質と、負極と、を有する二次電池である。
また本発明の一態様は、上記の二次電池を有する電子機器である。
また本発明の一態様は、上記の二次電池と、正極と、負極と、電解液と、セパレータとを有するリチウムイオン二次電池と、を有する電子機器である。
本発明の一態様により、充放電を繰り返しても正極活物質と電解質との界面、正極活物質と正極集電体との界面等で副反応が生じにくい二次電池用正極を提供することができる。充放電を繰り返しても結晶構造が崩れにくい二次電池用正極を提供することができる。また、充放電サイクル特性に優れた二次電池用正極を提供することができる。また、充放電容量が大きい二次電池用正極を提供することができる。また、充放電サイクルにおける容量の低下が抑制される二次電池用正極を提供することができる。また、充放電サイクル特性に優れた二次電池を提供することができる。また、充放電容量が大きい二次電池を提供することができる。また、安全性または信頼性の高い二次電池を提供することができる。
また本発明の一態様により、新規な物質、活物質粒子、蓄電装置、又はそれらの作製方法を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1A乃至図1Cは本発明の一態様の正極の斜視図である。
図2Aおよび図2Bは本発明の一態様の正極が有する結晶構造を説明する図である。
図3A乃至図3Cは本発明の一態様の二次電池の積層構造を説明する図である。
図4Aは、本発明の一態様を示す上面図であり、図4B乃至図4Dは、本発明の一態様を示す断面図である。
図5Aおよび図5Cは本発明の一態様を示す上面図であり、図5Bおよび図5Dは本発明の一態様を示す断面図である。
図6Aは、本発明の一態様を示す上面図であり、図6Bは、本発明の一態様を示す断面図である。
図7Aは、本発明の一態様を示す上面図であり、図7Bは、本発明の一態様を示す断面図である。
図8は、本発明の一態様の二次電池の作製フローを説明する図である。
図9Aおよび図9Bは、本発明の一態様を示す上面図である。
図10は、本発明の一態様を示す断面図である。
図11は、本発明の一態様の二次電池の作製フローを説明する図である。
図12は、二次電池の製造装置の上面模式図である。
図13は、二次電池の製造装置の一部の断面図である。
図14Aは、電池セルの一例を示す斜視図である。図14Bは、回路の斜視図である。図14Cは、電池セルと回路を重ねた場合の斜視図である。
図15Aは、電池セルの一例を示す斜視図である。図15Bは、回路の斜視図である。図15C及び図15Dは電池セルと回路を重ねた場合の斜視図である。
図16Aは、電池セルの斜視図である。図16Bは、電子機器の一例を示す図である。
図17A乃至図17Cは、電子機器の例を示す図である。
図18A乃至図18Cは、電子機器の例を示す図である。
図19A乃至図19Dは、電子機器の例を示す図である。
図20Aは本発明の一態様であるシステムの一部を示す図である。図20Bは本発明の一態様である電子機器の例を示す図である。
図21Aは、本発明の一態様である電子機器の概略図である。図21Bは、システムの一部を示す図であり、図21Cはシステムに用いる携帯データ端末の斜視図の一例である。
図22Aおよび図22Bは実施例1に係る二次電池の充放電特性のグラフである。
図23Aおよび図23Bは実施例1に係る二次電池のサイクル特性のグラフである。
図24は実施例2に係る正極の断面TEM像である。
図25Aは実施例2に係る正極活物質層の断面TEM像である。図25Bは実施例2に係る正極活物質層の極微電子線回折像である。
図26Aおよび図26Bは実施例2に係る正極活物質層の極微電子線回折像である。
図27は実施例2に係る正極の断面TEM像である。
図28Aおよび図28Bは実施例2に係る正極の断面TEM像である。
図29は実施例2に係る正極活物質層のEELSスペクトルである。
図30は実施例2に係る正極の断面TEM像である。
図31Aおよび図31Bは実施例2に係る正極の断面TEM像である。
図32は実施例2に係る正極活物質層のEELSスペクトルである。
図33Aは実施例2に係る正極活物質層の断面TEM像である。図33Bは実施例2に係る正極活物質層の極微電子線回折像である。
図34Aおよび図34Bは実施例2に係る正極活物質層の極微電子線回折像である。
図35Aは実施例2に係る正極活物質層の断面TEM像である。図35Bは実施例2に係る正極活物質層の極微電子線回折像である。
図36Aおよび図36Bは実施例2に係る正極活物質層の極微電子線回折像である。
図37は実施例2に係る二次電池の充放電サイクル特性を示すグラフである。
図38Aおよび図38Bは実施例2に係る二次電池のインピーダンス測定について説明する図である。
図39は実施例2に係る二次電池のインピーダンス測定結果である。
図40は実施例2に係る二次電池のインピーダンス測定結果である。
以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
また、本明細書等において結晶面および方向の表記にはミラー指数を用いる。結晶面を示す個別面は( )で表す。方位は[ ]で表す。逆格子点も同様の指数を用いるが、かっこは付さない。結晶面、方向および空間群の表記は、結晶学上、数字に上付きのバーを付すが、本明細書等では出願表記の制約上、数字の上にバーを付す代わりに、数字の前に−(マイナス符号)を付して表現する場合がある。
本明細書等において、リチウムと遷移金属を含む複合酸化物が有する層状岩塩型の結晶構造とは、陽イオンと陰イオンが交互に配列する岩塩型のイオン配列を有し、遷移金属とリチウムが規則配列して二次元平面を形成するため、リチウムの二次元的拡散が可能である結晶構造をいう。なお陽イオンまたは陰イオンの欠損等の欠陥があってもよい。また、層状岩塩型結晶構造は、厳密に言えば、岩塩型結晶の格子が歪んだ構造となっている場合がある。
また本明細書等において、岩塩型の結晶構造とは、陽イオンと陰イオンが交互に配列している構造をいう。なお陽イオンまたは陰イオンの欠損があってもよい。
層状岩塩型結晶、および岩塩型結晶の陰イオンは立方最密充填構造(面心立方格子構造)をとる。これらが接するとき、陰イオンにより構成される立方最密充填構造が一致する結晶面が存在する。ただし、層状岩塩型結晶の空間群はR−3mであり、岩塩型の空間群Fm−3mとは異なるため、上記の条件を満たす結晶面のミラー指数は層状岩塩型結晶と岩塩型結晶では異なる。本明細書では、層状岩塩型結晶および岩塩型結晶において、陰イオンにより構成される立方最密充填構造が一致するとき、結晶の配向が概略一致する、と言う場合がある。
二つの領域の結晶の配向が概略一致することは、TEM(透過電子顕微鏡)像、STEM(走査透過電子顕微鏡)像、HAADF−STEM(高角散乱環状暗視野走査透過電子顕微鏡)像、ABF−STEM(環状明視野走査透過電子顕微鏡)像等から判断することができる。X線回折(XRD)、電子線回折、中性子線回折等も判断の材料にすることができる。結晶の配向が概略一致していると、TEM像等で、直線状に陽イオンと陰イオンが交互に配列した列の方向の差が5度以下、あるいは2.5度以下である様子が観察できる。なお、TEM像等では酸素、フッ素をはじめとする軽元素は明確に観察できない場合があるが、その場合は金属元素の配列で配向の一致を判断することができる。
また本明細書等において、正極活物質の理論容量とは、正極活物質が有する挿入脱離可能なリチウムが全て脱離した場合の電気量をいう。たとえばLiCoOの理論容量は274mAh/g、LiNiOの理論容量は274mAh/g、LiMnの理論容量は148mAh/gである。
また本明細書等において、挿入脱離可能なリチウムが全て挿入されているときの充電深度を0、正極活物質が有する挿入脱離可能なリチウムが全て脱離したときの充電深度を1ということとする。
また本明細書等において、面同士が平行であるとは、数学的に厳密な平行である場合だけでなく、面同士のなす角度が5°以下、あるいは2.5°以下であることをいう。
(実施の形態1)
図1を用いて、本発明の一態様の二次電池用正極について説明する。
図1Aは本発明の一態様である正極100の一例の斜視図である。正極100は、正極集電体103と、下地膜104と、正極活物質層101と、キャップ層102を有する。
下地膜104は正極集電体103と正極活物質層101の間に設けられる。下地膜104は正極集電体103と正極活物質層101間の導電性を高める機能を有する。または正極活物質層101等に含まれる酸素による正極集電体103の酸化、または正極集電体103に含まれる金属原子の正極活物質層101への拡散といった副反応を抑制する機能を有する。または正極活物質層101が有する結晶構造を安定化させる機能を有する。
下地膜104としては導電性を有する材料を用いることが好ましい。また酸化を抑制しやすい材料を用いることが好ましい。たとえばチタン化合物である酸化チタン、窒化チタン、一部窒素に置換された酸化チタン、一部酸素に置換された窒化チタン、または酸化窒化チタン(TiO、0<x<2、0<y<1)等を適用することができる。中でも窒化チタンは導電性が高くかつ酸化を抑制する機能が高いため特に好ましい。
キャップ層102は、正極活物質層101の上に設けられる。キャップ層102は正極活物質層101と電解質との副反応を抑制する機能を有する。または正極活物質層101が有する結晶構造を安定化させる機能を有する。
キャップ層102としてはチタン化合物を用いることが好ましい。たとえば酸化チタン、窒化チタン、一部窒素に置換された酸化チタン、一部酸素に置換された窒化チタン、または酸化窒化チタン(TiO、0<x<2、0<y<1)を有することが好ましい。チタンおよび酸素は固体電解質に含まれうる材料である。そのため酸化チタンはキャップ層102として特に好適である。
なお本明細書等において電解質とは、固体電解質だけでなく、液体の溶媒にリチウム塩を溶解させた電解液およびゲル状の化合物にリチウム塩を溶解させた電解液も含むこととする。
正極活物質層101はリチウムと、遷移金属Mと、酸素と、を有する。正極活物質層101はリチウムと遷移金属Mを含む複合酸化物を有するといってもよい。
正極活物質層101が有する遷移金属Mとしては、リチウムとともに空間群R−3mに属する層状岩塩型の複合酸化物を形成しうる金属を用いことが好ましい。遷移金属Mとして、たとえばマンガン、コバルト、ニッケルのうち一つもしくは複数を用いることができる。つまり正極活物質層101が有する遷移金属としてコバルトのみを用いてもよいし、ニッケルのみを用いてもよいし、コバルトとマンガンの2種、またはコバルトとニッケルの2種を用いてもよいし、コバルト、マンガン、ニッケルの3種を用いてもよい。つまり正極活物質層101は、コバルト酸リチウム、ニッケル酸リチウム、コバルトの一部がマンガンで置換されたコバルト酸リチウム、コバルトの一部がニッケルで置換されたコバルト酸リチウム、ニッケル−マンガン−コバルト酸リチウム等の、リチウムと遷移金属Mを含む複合酸化物を有することができる。
また正極活物質層101は上記に加えて、マグネシウム、フッ素、アルミニウムをはじめとする遷移金属M以外の元素を有していてもよい。これらの元素が、正極活物質層101が有する結晶構造をより安定化させる場合がある。つまり正極活物質層101は、マグネシウムおよびフッ素が添加されたコバルト酸リチウム、マグネシウムおよびフッ素が添加されたニッケル−コバルト酸リチウム、マグネシウムおよびフッ素が添加されたコバルト−アルミニウム酸リチウム、ニッケル−コバルト−アルミニウム酸リチウム、マグネシウムおよびフッ素が添加されたニッケル−コバルト−アルミニウム酸リチウム等を有することができる。
正極活物質層101がリチウム、コバルト、ニッケル、アルミニウム、マグネシウム、酸素およびフッ素を有する場合、正極活物質層101が有するコバルトの原子数比を100としたときニッケルの原子数比はたとえば0.05以上2以下が好ましく、0.1以上1.5以下がより好ましく、0.1以上0.9以下がさらに好ましい。正極活物質層101が有するコバルトの原子数比を100としたときアルミニウムの原子数比はたとえば0.05以上2以下が好ましく、0.1以上1.5以下がより好ましく、0.1以上0.9以下がさらに好ましい。正極活物質層101が有するコバルトの原子数比を100としたときマグネシウムの原子数比はたとえば0.1以上6以下が好ましく、0.3以上3以下がより好ましい。また正極活物質層101が有するマグネシウムの原子数比を1としたときフッ素の原子数比はたとえば2以上3.9以下が好ましい。
上記のような濃度でニッケル、アルミニウムおよびマグネシウムを有することで、高電圧で充放電を繰り返しても安定した結晶構造を保つことができる。そのため高容量で充放電サイクル特性に優れた正極活物質層101とすることができる。
コバルト、ニッケル、アルミニウムおよびマグネシウムのモル濃度はたとえば誘導結合プラズマ質量分析法(ICP−MS)により評価することができる。フッ素のモル濃度はたとえばグロー放電質量分析法(GD−MS)により評価することができる。
<第一原理計算>
ここで正極活物質層101にコバルト酸リチウムを用いた場合の、正極活物質層101と下地膜104の界面の結晶構造について計算した結果について図2を用いて説明する。
図2Aは下地膜104として窒化チタンを適用した場合の図である。窒化チタンが空間群Fm−3mに属する岩塩型の結晶構造を有し、コバルト酸リチウムが空間群R−3mに属する層状岩塩型の結晶構造を有するとして計算した。窒化チタンの(111)面とコバルト酸リチウムの(001)面が平行となるよう積層されている。
図2Bは下地膜104として酸化チタンを適用した場合の図である。酸化チタンが空間群P42/mnmに属するルチル型の結晶構造を有し、コバルト酸リチウムが空間群R−3mに属する層状岩塩型の結晶構造を有するとして計算した。酸化チタンの(100)面とコバルト酸リチウムの(001)面が平行となるよう積層されている。
いずれの図も正極活物質層101と下地膜104の界面を抜粋して示す。その他の計算条件について表1に示す。
Figure JPOXMLDOC01-appb-T000001
下地膜104として窒化チタンを適用した図2Aの場合、Ti−O距離は2.03Å、Ti−N距離は1.93Å、Co−O距離は2.25Å、Co−N距離は2.21Åとなった。なお、1Å=10−10mである。
空間群Fm−3mに属する岩塩型の結晶構造では、陰イオンのみが配列する面が、(111)面と平行な面に存在する。窒化チタンでは(111)面と平行な面に窒素原子のみが配列している。空間群R−3mに属する層状岩塩型の結晶構造では、陰イオンのみが配列する面が、(001)面と平行な面に存在する。コバルト酸リチウムでは(001)面と平行な面に酸素原子のみが配列している。
窒化チタンの(111)面とコバルト酸リチウムの(001)面が平行であると、両者で陰イオンのみが配列する面が平行になり、結晶構造が安定になりやすい。
また空間群Fm−3mに属する岩塩型の結晶構造と、空間群R−3mに属する層状岩塩型の結晶構造はいずれも、陽イオンと陰イオンが交互に配列している結晶構造であるといえる。そのため岩塩型の結晶構造の窒化チタン上に、層状岩塩型の結晶構造のコバルト酸リチウムを積層すると、下地膜104と正極活物質層101の結晶の配向が概略一致しやすい。
一方、下地膜104として酸化チタンを適用した図2Bの場合、Ti−O距離は2.15Å、Co−O距離は1.91Åとなった。ルチル型の結晶構造の酸化チタンは、酸素原子が(100)面と平行な平面上に配列しない。そのため窒化チタンと比較すると、層状岩塩型の結晶構造を安定化させる機能が低い可能性がある。
このように正極活物質層101に層状岩塩型の結晶構造を有するコバルト酸リチウムを用いるとき、窒化チタンは下地膜104として特に好適である。
図1Bは本発明の一態様である正極100の他の一例の斜視図である。図1Bに示す正極100は、正極集電体103と、正極活物質層101と、キャップ層102を有する。このように正極100は必ずしも下地膜104を有していなくてもよい。下地膜104を有さなくても、キャップ層102を有することで十分にサイクル特性が向上した二次電池とすることができる場合がある。
図1Aおよび図1Bでは正極集電体103が集電体と基板の機能を兼ねる正極について説明したが、本発明の一態様はこれに限らない。図1Cは本発明の一態様である正極100の他の一例の斜視図である。図1Cに示すように、基板110上に正極集電体103、下地膜104、正極活物質層101およびキャップ層102を成膜して作製した正極100としてもよい。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態2)
本実施の形態では図3乃至図8を用いて、実施の形態1で説明した二次電池用正極を有する二次電池と、その作製方法ついて説明する。
[二次電池の構成]
図3Aは、本発明の一態様の二次電池用正極100を有する二次電池200の積層構造の例を説明する図である。
二次電池200は薄膜電池であり、先の実施の形態で説明した正極100を有し、正極100上に固体電解質層203、固体電解質層203上に負極212が形成されている。負極212は負極集電体205と、負極活物質層204を有する。また図3Aに示すように負極212は下地膜214とキャップ層209を有することが好ましい。
下地膜214は負極集電体205と負極活物質層204の間に設けられる。下地膜214は負極集電体205と負極活物質層204間の導電性を高める機能を有する。または負極活物質層の過度の膨張を抑制する機能を有する。または負極集電体205と負極活物質層204の副反応を抑制する機能を有する。
下地膜214としては導電性を有する材料を用いることが好ましい。また負極活物質層の過度の膨張を抑制できる材料を用いることが好ましい。また副反応を抑制しやすい材料を用いることが好ましい。たとえばチタン化合物である酸化チタン、窒化チタン、一部窒素に置換された酸化チタン、一部酸素に置換された窒化チタン、または酸化窒化チタン(TiO、0<x<2、0<y<1)を有することが好ましい。特に、窒化チタンは導電性が高くかつ副反応を抑制する機能が高く好ましい。
キャップ層209は、負極活物質層204と固体電解質層203の間に設けられる。キャップ層209は負極活物質層204と固体電解質層203との副反応を抑制する機能を有する。
キャップ層209としてはチタン、またはチタン化合物を用いることが好ましい。チタン化合物としてはたとえば酸化チタン、窒化チタン、一部窒素に置換された酸化チタン、一部酸素に置換された窒化チタン、または酸化窒化チタン(TiO、0<x<2、0<y<1)を有することが好ましい。チタンは固体電解質に含まれうる材料である。そのためチタンおよびチタン化合物はキャップ層209として特に好適である。
負極活物質層204としてはシリコン、炭素、酸化チタン、酸化バナジウム、酸化インジウム、酸化亜鉛、酸化スズ、酸化ニッケルなどを用いることができる。またスズ、ガリウム、アルミニウムなどリチウムと合金化する材料を用いる事ができる。またこれら合金化する金属酸化物を用いても良い。また、リチウムチタン酸化物(LiTi12、LiTiなど)を用いても良いが、中でもシリコン及び酸素を含む材料(SiO膜ともいう)が好ましい。また、負極活物質層204としてリチウム金属を用いてもよい。またこれらの材料の混合物を用いてもよい。たとえばシリコン粒子と炭素の混合物は、信頼性が良好でありかつ体積あたりのエネルギー密度が比較的高く好適である。
固体電解質層203は正極100と負極212の間に設けられる。固体電解質層203の材料としては、Li0.35La0.55TiO、La(2/3−A)Li3ATiO、LiPO、LixPO(4−B)、LiNb(1−A)Ta(A)WO、LiLaZr12,Li(1+A)Al(A)Ti(2−A)(PO、Li(1+A)Al(A)Ge(2−A)(PO、LiNbO等があげられる。なお、A>0、B>0である。成膜方法としては、スパッタ法、蒸着法などを用いることができる。
固体電解質層203にはチタンを含む化合物を用いることが好ましい。正極100が有するキャップ層102および負極212が有するキャップ層209がチタンを有するため、固体電解質層203にもチタンを有する材料を用いると、簡便に二次電池を作製することができる。
また、SiO(0<C≦2)も固体電解質層203として用いることができる。SiO(0<C≦2)を固体電解質層203として用い、さらに負極活物質層204としてSiO(0<C≦2)を用いてもよい。この場合、SiOのシリコンと酸素の比(O/Si)は、固体電解質層203の方が高いと好ましい。該構成とすることによって、固体電解質層203では伝導イオン(特にリチウムイオン)が拡散しやすく、負極活物質層204では伝導イオン(特にリチウムイオン)が脱離または蓄積しやすくなるため、良好な特性を有する固体二次電池とすることができる。上述のように固体電解質層203及び負極活物質層204に同じ成分からなる材料を用いることで、簡便に二次電池を作製できる。
また、固体電解質層203を積層構造としてもよく、積層とする場合、一層にリン酸リチウム(LiPO)に窒素を添加した材料(LiPO(4−Z):LiPONとも呼ばれる)を積層してもよい。なお、Z>0である。
また図3Bに示すように、負極活物質層204とキャップ層209が複数積層された負極212を有する二次電池200としてもよい。負極活物質層204とキャップ層209が複数積層されることで、容量を向上させつつ、過度な負極212の膨張を抑制することができる。このとき、固体電解質層203と接するキャップ層209と、負極活物質層204に挟まれたキャップ層209は同じ材料であってもよいし、異なる材料であってもよい。例えば固体電解質層203と接するキャップ層209に酸化チタンを用い、負極活物質層204に挟まれたキャップ層209に窒化チタンを用いてもよい。
さらに図3Cに示すように、正極活物質層101とキャップ層102が複数積層された正極100を有する二次電池200としてもよい。正極活物質層101とキャップ層102が複数積層されることで、容量を向上させつつ、正極活物質層101が有する結晶構造が崩れることを抑制することができる。このとき、固体電解質層203と接するキャップ層102と、正極活物質層101に挟まれたキャップ層102は同じ材料であってもよいし、異なる材料であってもよい。例えば固体電解質層203と接するキャップ層102に酸化チタンを用い、正極活物質層101に挟まれたキャップ層102に窒化チタンを用いてもよい。
図4Aおよび図4Bに本発明の一態様の二次電池200のより具体的な一例を示す。ここでは基板110上に形成された二次電池200について説明する。
図4Aは上面図であり、図4Bは図4A中の線A−A’で切断した断面図である。二次電池200は薄膜電池であり、図4B示すように基板110上に先の実施の形態で説明した正極100が形成され、正極100上に固体電解質層203が形成され、固体電解質層203上に負極210が形成されている。負極210は負極集電体205と、下地膜214と、負極活物質層204と、キャップ層209を有する。
また、二次電池200には正極100、固体電解質層203および負極210上に保護層206が形成されていることが好ましい。
これらの層を形成する膜は、それぞれメタルマスクを用いて形成することができる。スパッタ法を用いて正極集電体103、下地膜104、正極活物質層101、キャップ層102、固体電解質層203、キャップ層209、負極活物質層204、下地膜214、負極集電体205を選択的に形成することができる。また、共蒸着法を用い、メタルマスクを用いることで固体電解質層203を選択的に形成してもよい。
図4Aに示すように負極集電体205および正極集電体103の一部を露出させて負極端子部および正極端子部を形成している。負極端子部および正極端子部以外の領域は、保護層206で覆われている。
なお図4Aおよび図4Bでは正極集電体103、下地膜104、正極活物質層101およびキャップ層102を有する正極100上に、固体電解質層203、負極活物質層204および負極集電体205が順に積層された構成について説明したが、本発明の一態様はこれに限らない。
図4Cに示すように二次電池200は、正極集電体103と正極活物質層101の間に、下地膜104を有さない正極100を有していてもよい。また下地膜214およびキャップ層209を有さない負極210を有していてもよい。
また本発明の一態様の二次電池が有する正極および負極のいずれもが活物質層とキャップ層の積層構造となっていてもよい。たとえば図4Dに示すように二次電池200は、負極活物質層204とキャップ層209が複数積層された負極210を有していてもよい。また正極活物質層101とキャップ層102が複数積層された正極100を有していてもよい。
また図5Aおよび図5Bに示すように、本発明の一態様の二次電池は、負極集電体層と負極活物質層を兼ねた負極211を有する二次電池201であってもよい。図5Aは二次電池201の上面図であり、図5Bは図5A中の線B−B’で切断した断面図である。負極集電体層と負極活物質層を兼ねた負極211とすることで、工程が簡略化され生産性の高い二次電池とすることができる。またエネルギー密度の高い二次電池とすることができる。
また図5Cおよび図5Dに示すように、本発明の一態様の二次電池は、負極210上に固体電解質層203および正極100が積層された二次電池202であってもよい。図5Cは二次電池202の上面図であり、図5Dは図5C中の線C−C’で切断した断面図である。
また図4および図5では正極だけでなく、固体電解質層および負極も薄膜で形成されている二次電池について説明したが、本発明の一態様はこれに限らない。本発明の一態様は、電解液を有する二次電池であってもよい。また電解液を有し、かつ負極集電体層と負極活物質層を兼ねた負極を有する二次電池であってもよい。また粉体の負極活物質を負極集電体に塗工して作製された負極を有する二次電池であってもよい。
電解液を有する二次電池230を図6Aおよび図6Bに示す。図6Aは上面図であり、図6Bは図6A中の線D−D’で切断した断面図である。
図6Bに示すように二次電池230は基板110上の正極100と、基板111上の負極212と、セパレータ220と、電解液221と、外装体222と、を有する。負極212が有する負極集電体205と、負極活物質層204と、キャップ層209は薄膜で形成されている。
また図6Aに示すように二次電池230はリード電極223aおよびリード電極223bを有する。リード電極223aは正極集電体103と電気的に接続される。リード電極223bは負極集電体205と電気的に接続される。リード電極223aおよびリード電極223bの一部は外装体222の外に引き出される。
電解液と、負極集電体層と負極活物質層を兼ねた負極211を有する二次電池231を図7Aおよび図7Bに示す。図7Aは上面図であり、図7Bは図7A中の線E−E’で切断した断面図である。
図7Bに示すように二次電池231は正極100と、負極集電体層と負極活物質層を兼ねた負極211と、セパレータ220と、電解液221と、外装体222と、を有する。負極集電体層と負極活物質層を兼ねた負極211とすることで、工程が簡略化され生産性の高い二次電池とすることができる。またエネルギー密度の高い二次電池とすることができる。
[作製方法]
次に図4Aおよび図4Bに示す二次電池200の作製方法のフローの例について、図8を用いて説明する。
まず基板110上に正極集電体103を形成する(S1)。成膜方法としては、スパッタ法、蒸着法などを用いることができる。また、導電性を有する基板を集電体として用いても構わない。正極集電体103としては、金、白金、アルミニウム、チタン、銅、マグネシウム、鉄、コバルト、ニッケル、亜鉛、ゲルマニウム、インジウム、銀、パラジウム等の金属、及びこれらの合金など、導電性が高い材料を用いることができる。また、シリコン、チタン、ネオジム、スカンジウム、モリブデンなどの耐熱性を向上させる元素が添加されたアルミニウムを用いることができる。また、シリコンと反応してシリサイドを形成する金属元素で形成してもよい。シリコンと反応してシリサイドを形成する金属元素としては、ジルコニウム、チタン、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、コバルト、ニッケル等がある。
また、基板110としては、セラミックス基板、ガラス基板、樹脂基板、シリコン基板、金属基板などを用いることができる。基板110として可撓性を有する材料を用いれば、可撓性を有する薄膜二次電池を作製することができる。
正極集電体103は、導電性の高い材料を用いることで基板と正極集電体の機能を兼ねることができる。この場合、例えばチタン、銅をはじめとする金属基板を用いることが好ましい。また下地膜104を設ける場合は、下地膜104が正極活物質層101等に含まれる酸素により正極集電体103が酸化されること、または金属原子の拡散を抑制する。そのため、酸化されやすい材料、または拡散しやすい金属原子を含む材料でも正極集電体103に適用することができる。
次に下地膜104を成膜する(S2)。下地膜104の成膜方法としては、スパッタ法、蒸着法などを用いることができる。たとえば下地膜104として窒化チタンを用いる場合は、チタンターゲットと窒素ガスを用いた反応性スパッタ法により窒化チタンを成膜することができる。
次に正極活物質層101を成膜する(S3)。正極活物質層101は、たとえばリチウムと、マンガン、コバルト、ニッケルのうち一つもしくは複数を有する酸化物を主成分とするスパッタリングターゲットを用いてスパッタ法により成膜することができる。たとえばリチウムコバルト酸化物(LiCoO、LiCoなど)を主成分とするスパッタリングターゲット、リチウムマンガン酸化物(LiMnO、LiMnなど)を主成分とするスパッタリングターゲット、またはリチウムニッケル酸化物(LiNiO、LiNiなど)を主成分とするスパッタリングターゲットを用いることができる。また、真空蒸着法によって成膜してもよい。
また、スパッタ法においては、メタルマスクを用いることで選択的に成膜することができる。また、レジストマスクなどを用いてドライエッチングまたはウェットエッチングにより選択的に除去することで正極活物質層101をパターニングしてもよい。
また、マグネシウム、フッ素、アルミニウム等を有する正極活物質層101を成膜するために、リチウムと、マンガン、コバルト、ニッケルのうち一つもしくは複数に加えて、マグネシウム、フッ素、アルミニウム等を有するスパッタリングターゲットを用いて成膜してもよい。また、リチウムと、マンガン、コバルト、ニッケルのうち一つもしくは複数を有する酸化物を主成分とするスパッタリングターゲットを用いて成膜した後に、マグネシウム、フッ素、アルミニウム等を真空蒸着法により成膜し、アニールしてもよい。
次に、正極活物質層101上にキャップ層102を成膜する(S4)。キャップ層102の成膜方法としては、スパッタ法、蒸着法などを用いることができる。たとえばキャップ層102として酸化チタンを用いる場合は、チタンターゲットと酸素ガスを用いた反応性スパッタ法により酸化チタンを成膜することができる。また、酸化チタンのターゲットをスパッタする事でも成膜する事ができる。
正極活物質層101およびキャップ層102の成膜は高温(500℃以上)で行うと好ましい。より結晶性が良好な正極100を作製することができる。
次に、正極活物質層101上に固体電解質層203を成膜する(S5)。
固体電解質層203にはチタンを含む化合物を用いることが好ましい。正極100が有するキャップ層102がチタンを有するため、固体電解質層203にもチタンを有する材料を用いると、簡便に二次電池を作製することができる。成膜方法としては、スパッタ法、蒸着法などを用いることができる。
次に、固体電解質層203上に負極活物質層204を成膜する(S6)。成膜方法としては、スパッタ法、蒸着法などを用いることができる。
次に、負極活物質層204上に負極集電体205を作製する(S7)。負極集電体205の材料としては、アルミニウム、チタン、銅、金、クロム、タングステン、モリブデン、ニッケル、銀などから選ばれる一種または複数種の導電材料を用いる。成膜方法としては、スパッタ法、蒸着法などを用いることができる。また、スパッタ法においては、メタルマスクを用いることで選択的に成膜することができる。また、レジストマスクなどを用いてドライエッチングまたはウェットエッチングにより選択的に除去することで導電膜をパターニングしてもよい。
なお、上記正極集電体103または負極集電体205をスパッタ法で成膜した場合、正極活物質層101及び負極活物質層204のうち少なくとも一方はスパッタ法で形成することが好ましい。スパッタ装置は、同一チャンバー内または複数のチャンバーを用いて連続成膜を行うことも可能であり、マルチチャンバー方式の製造装置やインライン方式の製造装置とすることもできる。スパッタ法は、チャンバーとスパッタリングターゲットを用いる量産に適した製造方法である。また、スパッタ法は、薄く成形することができ、成膜特性が優れている。
次に、正極100、固体電解質層203および負極210上に保護層206を成膜することが好ましい(S8)。保護層206としては、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、ネオジム、ランタンまたは、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。また、窒化酸化シリコンまたは窒化シリコンなども用いることができる。保護層206はスパッタ法を用いて成膜することができる。
また、本実施の形態で説明した各層はスパッタ法に特に限定されず、気相法(真空蒸着法、溶射法、パルスレーザー堆積法(PLD法)、イオンプレーティング法、コールドスプレー法、エアロゾルデポジション法)を用いることもできる。なお、エアロゾルデポジション(AD)法は、基板を加熱することなく成膜を行う方法である。エアロゾルとは、ガス中に分散している微粒子を指している。また、CVD法や、ALD(Atomic Layer Deposition)法を用いてもよい。
上記の工程で、本発明の一態様である二次電池200を作製することができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態3)
薄膜二次電池の出力電圧を大きくするために、二次電池を直列接続することができる。実施の形態2ではセルが1つである二次電池の例を示したが、本実施の形態では複数のセルを直列接続させた薄膜二次電池を作製する例を示す。
図9Aに1つ目の二次電池を形成直後の上面図を示し、図9Bは、2つの二次電池が直列接続されている上面図を示す。なお、図9A及び図9Bにおいて、実施の形態2に示す図5Aと同一の部分には同一の符号を用いる。
図9Aは、負極集電体205を成膜した直後の状態を示している。図5Aとは負極集電体205の上面形状が異なっている。図9Aに示す負極集電体205は、固体電解質層側面と一部接し、基板の絶縁表面とも接している。
そして、1つめの負極活物質層と重ならない負極集電体205の領域上に、第2の負極活物質層、第2の固体電解質層213、第2の正極活物質層及び第2の正極集電体215をこの順に形成する。最後に保護層206を形成する(図9B)。
図9Bは2つの固体二次電池が平面上に並び、直列接続している構成を示している。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態4)
薄膜二次電池の出力電圧を大きくするため、または放電容量を大きくするために、正極と負極がそれぞれ複数重畳して積層される多層二次電池とすることができる。実施の形態2では単層セルである二次電池の例を示したが、本実施の形態では多層セルの薄膜電池の例を示す。
図10は3層セルの薄膜電池の断面の一例である。基板110上に正極集電体103を形成し、正極集電体103上に下地膜104、正極活物質層101、キャップ層102、固体電解質層203、負極活物質層204、負極集電体205を順次、形成することで、1つ目のセルを構成している。
さらに、負極集電体205上に2層目の負極活物質層204、固体電解質層、キャップ層、正極活物質層、下地膜、正極集電体層を順次、形成することで2つ目のセルを構成している。
さらに、2層目の正極集電体上に3層目の下地膜、正極活物質層、キャップ層、固体電解質層、負極活物質層、負極集電体層を順次、形成することで、3つ目のセルを構成している。
図10では、最後に保護層206が形成されている。図10に示す3層積層は、容量を大きくするために、直列接続する構成となっているが、外部結線で並列に接続させることもできる。また、外部結線で直列と並列または直並列を選択することもできる。
なお、固体電解質層203、2層目の固体電解質層、3層目の固体電解質層は、同じ材料を用いると製造コストを低減できるため、好ましい。
また、図10に示す構造を得るための製造フローの一例を図11に示す。
図11においては、作製工程を少なくするために、正極活物質層としてコバルト酸リチウム膜を用い、正極集電体及び負極集電体(導電層)としてチタン膜を用いると好ましい。チタン膜を共通電極として用いることで少ない構成で3層積層セルを実現することができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態5)
本実施の形態では、二次電池の正極集電体層から負極集電体層までの作製を全自動化できるマルチチャンバー方式の製造装置の例を図12及び図13に示す。該製造装置は本発明の一態様の薄膜二次電池作製に好適に用いることができる。
図12は、ゲート880、881、882、883、884、885、886、887、888、ロードロック室870、マスクアライメント室891、第1搬送室871、第2搬送室872、第3搬送室873、複数の成膜室(第1成膜室892、第2成膜室874)、加熱室893、第2の材料供給室894、第1の材料供給室895、第3の材料供給室896を備えるマルチチャンバーの製造装置の一例である。
マスクアライメント室891は、ステージ851と基板搬送機構852とを少なくとも有する。
第1搬送室871は基板カセット昇降機構を有し、第2搬送室872は、基板搬送機構853を有し、第3搬送室873は基板搬送機構854を有する。
第1成膜室892、第2成膜室874、第2の材料供給室894、第1の材料供給室895、第3の材料供給室896、マスクアライメント室891、第1搬送室871、第2搬送室872、第3搬送室873はそれぞれ排気機構と接続している。排気機構としては、各室の使用用途に応じて適宜排気装置を選定すれば良く、例えば、クライオポンプ、スパッタイオンポンプ、チタンサブリメーションポンプ等の、吸着手段を有するポンプを備えた排気機構や、ターボ分子ポンプにコールドトラップを備えた排気機構等が挙げられる。
基板に成膜する手順としては、基板850または基板カセットをロードロック室870に設置し、基板搬送機構852によってマスクアライメント室891に搬送する。マスクアライメント室891では予めセットされている複数のマスクの中から、用いるマスクをピックアップし、ステージ851上で基板と位置合わせを行う。位置合わせが終わった後、ゲート880が開けられ、基板搬送機構852によってマスクおよび基板850が第1搬送室871に搬送される。第1搬送室871にマスクおよび基板850を運んだ後、ゲート881を開けて基板搬送機構853によって第2搬送室872に搬送する。
第2搬送室872にゲート882を介して設けられている第1成膜室892はスパッタ成膜室である。スパッタ成膜室はRF電源と、パルスDC電源を切り替えてスパッタターゲットに電圧を印加できる機構となっている。また、スパッタターゲットは2種または3種類セットすることができる。本実施の形態では、単結晶シリコンターゲットと、リチウムコバルト酸化物(LiCoO)を主成分とするスパッタリングターゲットと、チタンターゲットと、を設置する。第1成膜室892に基板加熱機構を設け、ヒータ温度700℃まで加熱したまま成膜することも可能である。
単結晶シリコンターゲットを用いるスパッタ法では負極活物質層を形成することができる。また、ArガスとOガスによる反応性スパッタ法を用いてSiOとした膜を負極活物質層としても良い。ArガスとNガスによる反応性スパッタ法により窒化シリコン膜を封止膜として用いる事も可能である。また、リチウムコバルト酸化物(LiCoO)を主成分とするスパッタリングターゲットを用いるスパッタ法では正極活物質層を形成することができる。チタンターゲットを用いるスパッタ法では、集電体となる導電膜を形成することができる。ArガスとNガスによる反応性スパッタ法により窒化チタン膜とし、キャップ層または下地膜を形成する事も可能である。
正極活物質層を形成する場合は、マスクと基板を重ねた状態で基板搬送機構853によって第2搬送室872から第1成膜室892に搬送し、ゲート882を閉めて、スパッタリング法による成膜を行う。成膜を終えた後は、ゲート882及びゲート883を開けて、加熱室893に搬送し、ゲート883を閉めた後、加熱を行うことができる。加熱室893の加熱処理には、RTA(Rapid Thermal Anneal)装置、抵抗加熱炉、マイクロ波加熱装置を用いることができる。RTA装置には、GRTA(Gas Rapid Thermal Anneal)装置、LRTA(Lamp Rapid Thermal Anneal)装置を用いることができる。加熱室893の加熱処理は、窒素、酸素、希ガス、または乾燥空気の雰囲気下で行うことができる。また、加熱時間は1分以上24時間以下とする。
そして、成膜または加熱処理を終えた後は、基板及びマスクをマスクアライメント室891まで戻し、新たなマスクを位置合わせする。位置合わせを終えた基板及びマスクは、基板搬送機構852によって第1搬送室871に搬送される。第1搬送室871の昇降機構によって基板を運び、ゲート884を開けて基板搬送機構854によって第3搬送室873に搬送する。
第3搬送室873とゲート885を介して接続している第2成膜室874は蒸着による成膜を行う。
第2成膜室874の構成の断面構造の一例を図13に示す。図12中の点線で切断した断面模式図が図13である。第2成膜室874は排気機構849と接続し、第1の材料供給室895は排気機構848と接続している。第2の材料供給室894は排気機構847と接続している。図13に示す第2成膜室874は、第1の材料供給室895から移動させた蒸着源856を用いて蒸着を行う蒸着室であり、複数の材料供給室からそれぞれ蒸着源を移動させ、複数の物質を同時に気化して蒸着、即ち共蒸着ができる。図13においては第2の材料供給室894からも移動させた蒸着ボート858を有する蒸着源を示している。
また、第2成膜室874は、ゲート886を介して第2の材料供給室894と接続されている。また、第2成膜室874は、ゲート888を介して第1の材料供給室895と接続されている。また、第2成膜室874は、ゲート887を介して第3の材料供給室896と接続されている。従って、第2成膜室874は3元共蒸着が可能である。
蒸着を行う手順としては、まず基板を基板保持部845に設置する。基板保持部845は回転機構865と接続されている。そして、第1の材料供給室895である程度、第1の蒸着材料855を加熱し、蒸着レートが安定した段階でゲート888を開け、アーム862を伸ばして蒸着源856を移動させ、基板の下方の位置で停止させる。蒸着源856は、第1の蒸着材料855と、ヒータ857と、第1の蒸着材料855を収納する容器と、で構成される。また、第2の材料供給室894においてもある程度、第2の蒸着材料を加熱し、蒸着レートが安定した段階でゲート886を開け、アーム861を伸ばして蒸着源を移動させ、基板の下方の位置で停止させる。
その後、シャッター868、及び蒸着源シャッター869を開けて共蒸着を行う。蒸着の間は回転機構865を回転させて膜厚の均一性を高める。蒸着を終えた基板は、同じ経路をたどり、マスクアライメント室891に搬送される。製造装置から基板を取り出す場合にはマスクアライメント室891からロードロック室870に搬送して取り出すこととなる。
また、図13では、基板保持部845に基板850及びマスクが保持されているときを一例として示す。基板回転機構により基板850(及びマスク)を回転させることで、成膜の均一性を高めることができる。基板回転機構は、基板搬送機構を兼ねていても良い。
また、第2成膜室874には、CCDカメラ等の撮像手段863を備えていても良い。撮像手段863を備えることで、基板850の位置確認が可能となる。
また、第2成膜室874では、膜厚計測機構867の測定結果により、基板表面に成膜された膜厚が予測できる。膜厚計測機構867としては、例えば、水晶振動子等を備えていれば良い。
なお、気化した蒸着材料の蒸着を制御するため、蒸着材料の気化の速度が安定するまで基板と重なるシャッター868や、蒸着源856や蒸着ボート858と重なる蒸着源シャッター869を備えている。
蒸着源856において、抵抗加熱方式の例を示しているが、EB(Electron Beam)蒸着方式であってもよい。また、蒸着源856の容器としてルッボの例を示しているが、蒸着ボートであってもよい。ヒータ857で加熱するルッボには第1の蒸着材料855として有機材料を入れる。また、ペレットや粒子状のSiOなどを蒸着材料として用いる場合には蒸着ボート858を用いる。蒸着ボート858は3つのパーツからなり、凹面を有する部材と、2つの穴の開いた中蓋と、一つの穴の開いた上蓋とが重ねられている。なお、中蓋は取り外して蒸着を行ってもよい。蒸着ボート858は通電させることで抵抗として働き、蒸着ボート自身が加熱する仕組みである。
また、本実施の形態ではマルチチャンバー方式の例を示したが特に限定されず、インライン方式の製造装置としてもよい。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態6)
本実施の形態では、電池制御回路等を有する薄膜二次電池の例について説明する。
図14Aは、薄膜二次電池の外観図である。二次電池913は、端子951および端子952を有する。端子951は正極に、端子952は負極に、それぞれ電気的に接続される。本発明の一態様の二次電池はサイクル特性が優れている。また、全固体二次電池とすることができるため、安全性にも優れる。よって、本発明の一態様の二次電池を二次電池913として好適に用いることができる。
図14Bは、電池制御回路の外観図である。図14Bに示す電池制御回路は、基板900および層916を有する。基板900上には回路912およびアンテナ914が設けられる。アンテナ914は回路912に電気的に接続される。回路912には端子971および端子972が電気的に接続される。回路912は端子911に電気的に接続される。
端子911は例えば、薄膜型の固体二次電池の電力が供給される機器に接続される。例えば、表示装置、センサ、等に接続される。
層916は、例えば二次電池913による電磁界を遮蔽することができる機能を有する。層916としては、例えば磁性体を用いることができる。
図14Cには、図14Bに示す電池制御回路を二次電池913上に配置する例を示す。端子971は端子951に、端子972は端子952に、それぞれ電気的に接続される。層916は基板900と二次電池913との間に配置される。
基板900として可撓性を有する基板を用いることが好ましい。
基板900として可撓性を有する基板を用いることにより、薄型の電池制御回路を実現することができる。また後述する図15Dに示すように電池制御回路を二次電池に巻き付けることができる。
図15A乃至図15Dを用いて、電池制御回路等を有する薄膜二次電池の他の一例について説明する。図15Aは薄膜型の固体二次電池の外観図である。図15Bに示す電池制御回路は、基板900および層916を有する。
図15Cに示すように、基板900を二次電池913の形状に合わせて曲げ、電池制御回路を二次電池の周りに配置することにより、図15Dに示すように、電池制御回路を二次電池に巻き付けることができる。このような構成の二次電池とすることで、より小型の二次電池とすることができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態7)
本実施の形態では、薄膜二次電池を用いた電子機器の例について図16A、図16B及び図17A乃至図17Cを用いて説明する。本発明の一態様の二次電池は放電容量およびサイクル特性が高く、安全性が高い。そのため該電子機器は安全性が高く、長時間使用可能である。
図16Aは、本発明に係る薄膜型二次電池3001の外観斜視図である。固体二次電池の正極と電気的に接続される正極リード電極513と、負極と電気的に接続される負極リード電極511が突出するように、ラミネートフィルムまたは絶縁材料で封止されている。
図16Bは、本発明に係る薄膜型二次電池を用いた応用機器の一例であるICカードである。電波3005からの給電により得られた電力を薄膜型二次電池3001に充電することができる。ICカード3000内部にはアンテナ及びIC3004や、薄膜型二次電池3001が配置されている。ICカード3000上には、管理バッジを装着する作業者のID3002及び写真3003が表示されている。薄膜型二次電池3001に充電した電力を用いてアンテナから認証信号などの信号を発信することもできる。
ID3002および写真3003の表示のために、アクティブマトリクス表示装置を設けてもよい。アクティブマトリクス表示装置としては反射型液晶表示装置や有機EL表示装置や電子ペーパーなどがある。アクティブマトリクス表示装置に映像(動画または静止画)や時間を表示させることもできる。アクティブマトリクス表示装置の電力は、薄膜型二次電池3001から供給することができる。
ICカードはプラスチック基板が用いられるため、フレキシブル基板を用いた有機EL表示装置が好ましい。
また、写真3003に代えて太陽電池を設けてもよい。外光の照射により光を吸収し、電力を発生させ、その電力を薄膜型二次電池3001に充電することができる。
また、薄膜型二次電池は、ICカードに限定されず、車載に用いるワイヤレスセンサの電源、MEMSデバイス用の二次電池などに用いることができる。
図17Aは、ウェアラブルデバイスの例を示している。ウェアラブルデバイスは、電源として二次電池を用いる場合がある。また、使用者が生活または屋外で使用する場合において、防沫性能、耐水性能または防塵性能を高めるため、接続するコネクタ部分が露出している有線による充電だけでなく、無線充電も行えるウェアラブルデバイスが望まれている。
例えば、図17Aに示すような眼鏡型デバイス400に本発明の一態様である二次電池を搭載することができる。眼鏡型デバイス400は、フレーム400aと、表示部400bを有する。湾曲を有するフレーム400aのテンプル部に二次電池を搭載することで、軽量であり、且つ、重量バランスがよく継続使用時間の長い眼鏡型デバイス400とすることができる。本発明の一態様である二次電池を備えることで、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、ヘッドセット型デバイス401に本発明の一態様である二次電池を搭載することができる。ヘッドセット型デバイス401は、少なくともマイク部401aと、フレキシブルパイプ401bと、イヤフォン部401cを有する。フレキシブルパイプ401b内やイヤフォン部401c内に二次電池を設けることができる。本発明の一態様である二次電池を備えることで、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、身体に直接取り付け可能なデバイス402に本発明の一態様である二次電池を搭載することができる。デバイス402の薄型の筐体402aの中に、二次電池402bを設けることができる。本発明の一態様である二次電池を備えることで、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、衣服に取り付け可能なデバイス403に本発明の一態様である二次電池を搭載することができる。デバイス403の薄型の筐体403aの中に、二次電池403bを設けることができる。本発明の一態様である二次電池を備えることで、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、ベルト型デバイス406に本発明の一態様である二次電池を搭載することができる。ベルト型デバイス406は、ベルト部406aおよびワイヤレス給電受電部406bを有し、ベルト部406aの内部に、二次電池を搭載することができる。本発明の一態様である二次電池を備えることで、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、腕時計型デバイス405に本発明の一態様である二次電池を搭載することができる。腕時計型デバイス405は表示部405aおよびベルト部405bを有し、表示部405aまたはベルト部405bに、二次電池を設けることができる。本発明の一態様である二次電池を備えることで、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
表示部405aには、時刻だけでなく、メールや電話の着信等、様々な情報を表示することができる。
また、腕時計型デバイス405は、腕に直接巻きつけるタイプのウェアラブルデバイスであるため、使用者の脈拍、血圧等を測定するセンサを搭載してもよい。使用者の運動量および健康に関するデータを蓄積し、健康を管理することができる。
図17Bに腕から取り外した腕時計型デバイス405の斜視図を示す。
また、腕時計型デバイス405の側面図を図17Cに示す。図17Cには、内部に二次電池913を内蔵している様子を示している。二次電池913は実施の形態5に示した二次電池である。二次電池913は表示部405aと重なる位置に設けられており、小型、且つ、軽量である。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態8)
本実施の形態では、本発明の一態様の正極を有する二次電池を用いた電子機器について、図18A乃至図18C、図19A乃至図19Dおよび図20Aおよび図20Bを用いて説明する。本発明の一態様の正極を有する二次電池は放電容量およびサイクル特性が高く、安全性が高い。そのため以下に示すような電子機器に好適に用いることができる。特に耐久性が求められる電子機器に好適に用いることができる。
図18Aに、腕時計型の携帯情報端末(スマートウォッチとも呼ぶ)700の斜視図を示す。携帯情報端末700は、筐体701、表示パネル702、留め金703、バンド705A、705B、操作ボタン711、712を有する。
ベゼル部を兼ねる筐体701に搭載された表示パネル702は、矩形状の表示領域を有している。また、該表示領域は曲面を構成している。表示パネル702は可撓性を有すると好ましい。なお、表示領域は非矩形状であってもよい。
バンド705Aおよびバンド705Bは、筐体701と接続される。留め金703は、バンド705Aと接続される。バンド705Aと筐体701とは、例えばピンを介して接続部が回転できるように接続される。バンド705Bと筐体701、ならびにバンド705Aと留め金703の接続についても同様である。
図18B、図18Cにそれぞれ、バンド705Aおよび二次電池750の斜視図を示す。バンド705Aは二次電池750を有する。二次電池750には、例えば先の実施の形態で説明した二次電池を用いることができる。二次電池750はバンド705Aの内部に埋め込まれ、正極リード751および負極リード752はそれぞれ一部がバンド705Aから突出している(図18B参照)。正極リード751および負極リード752は、表示パネル702と電気的に接続される。また二次電池750の表面は外装体753で覆われている(図18C参照)。なお、上記のピンが電極の機能を有していてもよい。具体的には、正極リード751および表示パネル702、ならびに負極リード752および表示パネル702が、それぞれバンド705Aと筐体701とを接続するピンを介して電気的に接続されていてもよい。このようにすることで、バンド705Aおよび筐体701の接続部における構成を簡略化できる。
二次電池750は可撓性を有する。そのためバンド705Aは、二次電池750と一体形成することで作製できる。例えば、バンド705Aの外形に対応する金型に二次電池750をセットし、バンド705Aの材料を該金型に流し込み、該材料を硬化させることで図18Bに示すバンド705Aを作製できる。
バンド705Aの材料としてゴム材料を用いる場合、加熱処理によってゴムを硬化させる。例えばゴム材料としてフッ素ゴムを用いる場合、170℃、10分の加熱処理によって硬化させる。また、ゴム材料としてシリコーンゴムを用いる場合、150℃、10分の加熱処理によって硬化させる。
バンド705Aに用いる材料としては、フッ素ゴム、シリコーンゴムのほか、フロロシリコーンゴム、ウレタンゴムが挙げられる。
なお、図18Aに示す携帯情報端末700は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示領域に表示する機能、タッチパネル機能、カレンダー、日付又は時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信又は受信を行う機能、記録媒体に記録されているプログラム又はデータを読み出して表示領域に表示する機能、等を有することができる。
また、筐体701の内部に、スピーカ、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン等を有することができる。なお、携帯情報端末700は、発光素子をその表示パネル702に用いることにより作製することができる。
なお、図18Aでは二次電池750がバンド705Aに含まれる例を示したが、二次電池750がバンド705Bに含まれていてもよい。バンド705Bとしてはバンド705Aと同様の材料を用いることができる。
図19Aは、掃除ロボットの一例を示している。掃除ロボット6300は、筐体6301の上面に配置された表示部6302、側面に配置された複数のカメラ6303、ブラシ6304、操作ボタン6305、各種センサなどを有する。図示されていないが、掃除ロボット6300には、タイヤ、吸い込み口等が備えられている。掃除ロボット6300は自走し、ゴミ6310を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
例えば、掃除ロボット6300は、カメラ6303が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ6304に絡まりそうな物体を検知した場合は、ブラシ6304の回転を止めることができる。掃除ロボット6300は、その内部に本発明の一態様に係る二次電池と、半導体装置または電子部品を備える。本発明の一態様に係る二次電池を掃除ロボット6300に用いることで、掃除ロボット6300を稼働時間が長く信頼性の高い電子機器とすることができる。
図19Bは、ロボットの一例を示している。図19Bに示すロボット6400は、二次電池6409、照度センサ6401、マイクロフォン6402、上部カメラ6403、スピーカ6404、表示部6405、下部カメラ6406および障害物センサ6407、移動機構6408、演算装置等を備える。
マイクロフォン6402は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ6404は、音声を発する機能を有する。ロボット6400は、マイクロフォン6402およびスピーカ6404を用いて、使用者とコミュニケーションをとることが可能である。
表示部6405は、種々の情報の表示を行う機能を有する。ロボット6400は、使用者の望みの情報を表示部6405に表示することが可能である。表示部6405は、タッチパネルを搭載していてもよい。また、表示部6405は取り外しのできる情報端末であっても良く、ロボット6400の定位置に設置することで、充電およびデータの受け渡しを可能とする。
上部カメラ6403および下部カメラ6406は、ロボット6400の周囲を撮像する機能を有する。また、障害物センサ6407は、移動機構6408を用いてロボット6400が前進する際の進行方向における障害物の有無を察知することができる。ロボット6400は、上部カメラ6403、下部カメラ6406および障害物センサ6407を用いて、周囲の環境を認識し、安全に移動することが可能である。
ロボット6400は、その内部に本発明の一態様に係る二次電池6409と、半導体装置または電子部品を備える。本発明の一態様に係る二次電池をロボット6400に用いることで、ロボット6400を稼働時間が長く信頼性の高い電子機器とすることができる。
図19Cは、飛行体の一例を示している。図19Cに示す飛行体6500は、プロペラ6501、カメラ6502、および二次電池6503などを有し、自律して飛行する機能を有する。
例えば、カメラ6502で撮影した画像データは、電子部品6504に記憶される。電子部品6504は、画像データを解析し、移動する際の障害物の有無などを察知することができる。また、電子部品6504によって二次電池6503の蓄電容量の変化から、バッテリ残量を推定することができる。飛行体6500は、その内部に本発明の一態様に係る二次電池6503を備える。本発明の一態様に係る二次電池を飛行体6500に用いることで、飛行体6500を稼働時間が長く信頼性の高い電子機器とすることができる。
図19Dは、自動車の一例を示している。自動車7160は、二次電池7161、エンジン、タイヤ、ブレーキ、操舵装置、カメラなどを有する。また後述するシステム1000を有することが好ましい。自動車7160は、その内部に本発明の一態様に係る二次電池7161を備える。本発明の一態様に係る二次電池を自動車7160に用いることで、自動車7160を航続距離が長く、安全性が高く、信頼性が高い自動車とすることができる。
また本発明の一態様は、先の実施の形態で説明した薄膜電池と、他の二次電池と、を有する電子機器またはシステムであってもよい。他の二次電池は特に限定されないが、たとえば正極と、負極と、電解液と、セパレータとを有するリチウムイオン二次電池、またはバルク全固体二次電池を用いることができる。なお本明細書等においてシステムとは、個々の要素が組み合わされた系をいうこととする。要素の一つとして二次電池を有する。
図20Aに、先の実施の形態で説明した薄膜電池1001と、正極と、負極と、電解液と、セパレータとを有するリチウムイオン二次電池1002を有するシステム1000を示す。このような電子機器またはシステムとすることで、より大きな放電容量を有する二次電池と、薄く軽くすることが容易な先の実施の形態で説明した薄膜電池の両方の利点を生かすことができる。システム1000は、ワイヤレス給電装置を有することが好ましい。ワイヤレス給電装置を有すると、リチウムイオン二次電池1002から薄膜電池1001へ簡便に給電することができる。
図20Bに、システム1000を有する場合の自動車7160の内部を示す。自動車7160は、駆動用の二次電池、ワイヤレス給電装置7162および鍵7163を有する。ワイヤレス給電装置7162上に鍵7163を配置することで、駆動用の二次電池7161から鍵7163に給電することができる。なお図20Bではワイヤレス給電装置7162がダッシュボード上に設置されている例を示したがこれに限らない。運転席周辺の他の場所に鍵7163の収納場所を設け、該収納場所にワイヤレス給電装置7162を設けてもよい。
このとき鍵7163が先の実施の形態で説明した薄膜電池を有すると、より薄く軽い鍵とすることができ好ましい。また自動車7160の駆動用の二次電池には、たとえば正極と、負極と、電解液と、セパレータとを有するリチウムイオン二次電池、またはバルク全固体二次電池といった、より大きな放電容量を得やすい二次電池を用いることが好ましい。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態9)
本実施の形態で説明するデバイスは、バイオセンサと、バイオセンサに電力を供給する固体二次電池を少なくとも有し、赤外光と可視光を用いて様々な生体情報を取得し、メモリに記憶させることができる。このような生体情報は、ユーザーの個人認証の用途と、ヘルスケアの用途の両方に用いることができる。本発明の一態様の二次電池は放電容量及びサイクル特性が高く、さらに安全性が高い。そのため該デバイスは安全性が高く、長時間使用可能である。
バイオセンサは、生体情報を取得するセンサであり、ヘルスケアの用途に用いることのできる生体情報を取得する。生体情報としては、脈波、血糖値、酸素飽和度、中性脂肪濃度などがある。データはメモリに記憶させる。
さらに本実施の形態で説明するデバイスに、他の生体情報を取得する手段を設けることが好ましい。例えば、心電図、血圧、体温などの体内の生体情報のほか、表情、顔色、瞳孔などの表面的な生体情報などがある。また、歩数や運動強度、移動の高低差、食事(摂取カロリーや栄養素など)の情報も、ヘルスケアには重要な情報となる。複数の生体情報等を用いることで、複合的な体調管理が可能となり、日常的な健康管理だけでなく、傷病の早期発見にもつながる。
例えば、血圧は、心電図と、脈波の2つの拍動のタイミングのずれ(脈波伝搬時間の長さ)から算出することができる。血圧が高いと脈波伝搬時間が短く、逆に血圧が低いと脈波伝搬時間が長くなる。また、心電図及び脈波から算出される心拍数と血圧の関係から、ユーザーの身体状態を推定することもできる。例えば心拍数と血圧がいずれも高いと、緊張や興奮状態であると推定でき、その逆に心拍数と血圧がいずれも低いと、リラックス状態であると推定することができる。また、低血圧で且つ心拍数が高い状態が継続する場合には、心臓疾患などの可能性がある。
ユーザーは、電子機器で測定された生体情報や、その情報をもとに推定された自己の身体状況などを随時確認できるため、健康意識が向上する。その結果、暴飲暴食を避ける、適度な運動に気を付ける、または体調管理を行うなど、日々の習慣の見直しを行うことや、必要に応じて医療機関による診察を受けるきっかけにもなりうる。
それぞれのデータは、複数のバイオセンサ間で共有されてもよい。図21Aはユーザーの体内にバイオセンサ80aを埋め込んだ例と、手首にバイオセンサ80bを装着させた例である。図21Aは、例えば心電図の計測が行えるバイオセンサ80aを有するデバイスと、ユーザーの腕の脈を光学式でモニタする心拍計測などが行えるバイオセンサ80bを有するデバイスである。なお、図21Aに示す時計やリストバンドタイプの装着型のデバイスは心拍計測に限定されず、様々なバイオセンサを用いることができる。
図21Aに示す埋め込むタイプのデバイスの場合は小型であること、且つ、発熱がほとんどないこと、皮膚に接触してもアレルギー反応などが生じないこと、などが前提となる。本発明の一態様のデバイスに用いる二次電池は、小型であり、発熱がほとんどなく、アレルギー反応などが生じないため、好適である。また、埋め込むタイプのデバイスは無線充電可能とするためにアンテナを内蔵することが好ましい。
図21Aに示す生体内に埋め込むタイプのデバイスは、心電図の計測が行えるバイオセンサに限定されず、他の生体データを取得可能なバイオセンサを用いることができる。
デバイスに内蔵されたバイオセンサ80bは、取得したデータをそのデバイスに内蔵されている一時メモリに記憶させる機能を有していてもよい。もしくは、バイオセンサで取得したそれぞれのデータが図21Bの携帯データ端末85に無線又は有線で送られ、携帯データ端末85にて波形を検出する機能を有していてもよい。携帯データ端末85は、スマートフォンなどであり、それぞれのバイオセンサで取得したデータから不整脈などの問題が発生していないかを検出することができる。携帯データ端末85に複数のバイオセンサで取得したデータを有線で送る場合は、有線で接続するまでに取得したデータをまとめて転送することが好ましい。なお、検出されるそれぞれのデータには、自動で日が付与されて携帯データ端末85のメモリに保存され、個人的に管理してもよい。もしくは、図21Bに示すようにネットワーク(Network)(インターネット(Internet)を含む)を介して病院などの医療機関87に送信してもよい。当該データは、病院のデータサーバに管理され、治療時の検査データとして利用することができる。医療データは膨大となる場合があるため、バイオセンサ80bから携帯データ端末85まではBluetooth(登録商標)や2.4GHzから2.4835GHzの周波数帯を含むネットワークを用い、携帯データ端末85から携帯データ端末85までは第5世代無線方式を用いて高速通信を行ってもよい。第5世代無線方式は、3.7GHz帯、4.5GHz帯、28GHz帯の周波数を用いる。第5世代無線方式を用いることで自宅だけでなく、外出時においてもデータの取得及び医療機関87へのデータ送信が可能となり、ユーザーの体調異常時のデータを的確に取得し、その後の処理または治療に役立てることができる。なお、携帯データ端末85としては、図21Cに示す構成を利用することができる。
図21Cは、携帯データ端末の他の一例を示している。携帯データ端末89は、二次電池に加えて、スピーカ、一対の電極83、カメラ84、及びマイク86を有している。
一対の電極83は、筐体82の一部に、表示部81aを挟んで設けられている。表示部81bは曲面を有している領域である。電極83は、生体情報を取得するための電極として機能する。
図21Cに示すように、一対の電極83を筐体82の長手方向に配置することで、横長の画面で携帯データ端末89を使用する際に、ユーザーが意識することなく生体情報の取得を実行することができる。
携帯データ端末89の使用状態の例を示している。表示部81aには、一対の電極83で取得した心電図の情報88aと、心拍数の情報88bなどが表示できる。
図21Aのようにユーザーの体内にバイオセンサ80aを埋め込んだ場合は、この機能は不要といえるが、埋め込んでいない場合、ユーザーは一対の電極83を両手で把持することにより、心電図を取得することができる。ユーザーの体内にバイオセンサ80aを埋め込んだ場合であっても、バイオセンサ80aが正常に機能しているかどうか確かめるために、図21Cに示す携帯データ端末89を使用できる。また複数のユーザー間で心電図のデータを比較する場合にも、図21Cに示す携帯データ端末89を使用できる。
カメラ84は、ユーザーの顔などを撮像することができる。ユーザーの顔の画像から、表情、瞳孔、顔色などの生体情報を取得することができる。
マイク86は、ユーザーの声を取得することができる。取得した声の情報から、声紋認証に用いることのできる声紋情報を取得することができる。また、声の情報を定期的に取得し、その声質の変化をモニタすることにより、健康管理にも利用することもできる。勿論、マイク86、カメラ84、スピーカを用いて医療機関87にいる医師とテレビ電話で通話も可能である。
図21Aに示すデバイス及び図21Cに示す携帯データ端末89を用いることで、遠隔地から病院の医師へ情報を送り、医師の診療を受けるというような遠隔医療支援システムを実現することもできる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
[実施例1]
本実施例では、本発明の一態様である下地膜およびキャップ層を有する二次電池と、比較例として下地膜またはキャップ層を有さない二次電池を作製し、充放電特性およびサイクル特性を評価した。
<二次電池の作製>
本発明の一態様であるサンプル1を以下のように作製した。まず基板および正極集電体層を兼ねるものとしてチタンシートを用いた。チタンシートは、圧延箔で、厚さ0.1mm、純度99.5%、エッチング加工、非鏡面のものを12mmφに加工して用いた。
チタンシート上に、下地膜として窒化チタン(TiN)を20nmスパッタ法により成膜した。スパッタ条件は下記の通りとした。
ターゲット:チタンターゲット、直径100mm
スパッタ電源、出力:DC電源、500W
雰囲気:アルゴン流量12.0sccm、窒素流量28sccm、圧力0.4Pa
成膜時間:8分
成膜温度:600℃に設定
成膜レート:2.5nm/分
次に、正極活物質層としてコバルト酸リチウム(LiCoO)をスパッタ法により1000nm成膜した。スパッタ条件は下記の通りとした。
ターゲット:コバルト酸リチウムターゲット、直径100mm
スパッタ電源、出力:RF電源、500W
雰囲気:アルゴン流量40sccm、酸素流量10sccm、圧力0.4Pa
成膜時間:461分
成膜温度:600℃に設定
成膜レート:2.2nm/分
次に、キャップ層として酸化チタン(TiO)をスパッタ法により約20nm成膜した。スパッタ条件は下記の通りとした。
ターゲット:チタンターゲット、直径100mm
スパッタ電源、出力:DC電源、500W
雰囲気:アルゴン流量24sccm、酸素流量16sccm、圧力0.4Pa
成膜時間:27.7分
成膜温度:600℃に設定(実際の基板温度は400℃程度)
成膜レート:0.72nm/分
また下地膜を有さないサンプル2、および下地膜として酸化チタン(TiO)を成膜したサンプル3を作製した。これらは下地膜の他は、サンプル1と同様に作製した。
さらに比較例として、キャップ層を有さないサンプル4乃至サンプル6を作製した。これらはキャップ層を成膜しなかった他は、サンプル1乃至3と同様に作製した。
各サンプルの作製条件を表2に示す。
Figure JPOXMLDOC01-appb-T000002
<電池セルの作製>
次に、各サンプルを正極として用いて、CR2032タイプ(直径20mm高さ3.2mm)のコイン型の電池セルを作製した。
対極にはリチウム金属を用いた。
電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用い、電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)がEC:DEC=3:7(体積比)、で混合されたものを用いた。なお、充放電効率の評価を行った二次電池については、電解液にビニレンカーボネート(VC)を2wt%添加した。
セパレータには厚さ25μmのポリプロピレンを用いた。
正極缶及び負極缶には、ステンレス(SUS)で形成されているものを用いた。
<充放電効率の測定>
初期特性の測定は、充電をCCCV、0.2C、4.2V、カットオフ電流0.1Cで行った。放電をCC、0.2C、カットオフ電圧2.5Vで行った。なおここでの1Cは正極活物質重量あたりの電流値で137mA/gとした。測定温度は25℃とした。初期特性を測定した結果を表3及び図22Aおよび図22Bに示す。図22Aはサンプル1乃至サンプル3、図22Bはサンプル4乃至サンプル6のグラフである。
Figure JPOXMLDOC01-appb-T000003
表3、図22Aおよび図22Bより、いずれのサンプルも良好な充放電特性を示すことが分かった。
<充放電サイクル特性>
次に、これらの電池セルについて充放電サイクル特性を評価した。サイクル特性の測定における充放電は初期特性の測定と同様に行った。サイクル特性の結果を図23Aおよび図23Bに示す。図23Aはサンプル1乃至サンプル3、図23Bはサンプル4乃至サンプル6のグラフである。
図23Aおよび図23Bより、キャップ層を有するサンプル1乃至サンプル3は、キャップ層を有さないサンプル4乃至サンプル6よりも大幅に良好なサイクル特性を示した。下地膜として窒化チタンを有するサンプル1は最も良好な特性を示し、25サイクル経過後の放電容量は115mAh/g、放電容量維持率は93%であった。下地膜として酸化チタンを有するサンプル3はサンプル1に次ぐ特性を示し、25サイクル経過後の放電容量は113mAh/g、放電容量維持率は93%であった。下地膜を有さないサンプル2は、25サイクル経過後の放電容量は111mAh/g、放電容量維持率は92%であった。
よって、キャップ層を設けることで、充放電サイクル特性の良好な二次電池を作製できることが明らかとなった。また下地膜がない場合より、下地膜を有する場合の方が、充放電サイクル特性が良好であり、特に窒化チタンが好ましいことが明らかとなった。
[実施例2]
本実施例では、本発明の一態様であるキャップ層を有する二次電池と、比較例としてキャップ層を有さない二次電池を作製し、TEM、電子エネルギー損失分光法(EELS)、極微電子線回折、インピーダンス測定等で特徴を分析し、サイクル特性を評価した。
<二次電池の作製>
本発明の一態様であるサンプル11を以下のように作製した。まず基板および正極集電体層を兼ねるものとして100μmのチタンシートを用いた。
チタンシート上に、下地膜として窒化チタン(TiN)を20nmスパッタ法により成膜した。スパッタ条件は下記の通りとした。
ターゲット:チタンターゲット、直径2インチ
スパッタ電源、出力:RF電源、100W
雰囲気:アルゴン流量3.0sccm、窒素流量7sccm、圧力0.5Pa
成膜時間:15分
成膜温度:600℃に設定
ターゲット−基板距離:75mm
次に、正極活物質層としてコバルト酸リチウム(LiCoO)をスパッタ法により900nm成膜した。スパッタ条件は下記の通りとした。
ターゲット:コバルト酸リチウムターゲット、直径2インチ
スパッタ電源、出力:RF電源、200W
雰囲気:アルゴン流量10sccm、圧力0.5Pa
成膜時間:109分
成膜温度:600℃に設定
ターゲット−基板距離:75mm
成膜レート:9.2nm/分
次に、キャップ層として酸化チタン(TiO)をスパッタ法により20nm成膜した。スパッタ条件は下記の通りとした。
ターゲット:チタンターゲット、直径100mm
スパッタ電源、出力:DC電源、500W
雰囲気:アルゴン流量24sccm、酸素流量16sccm、圧力0.4Pa
成膜時間:27.7分
成膜温度:600℃に設定(実際の基板温度は400℃程度)
成膜レート:0.72nm/分
また比較例としてキャップ層を有さないサンプル12を作製した。サンプル12はキャップ層の他はサンプル11と同様に作製した。
各サンプルの作製条件を表4に示す。
Figure JPOXMLDOC01-appb-T000004
<TEM>
TEM像の撮影条件は下記の通りとした。
試料前処理:FIB法(μ−サンプリング法)による薄片化
透過電子顕微鏡:日本電子製 JEM−ARM200F
観察条件 加速電圧:200kV
倍率精度:±3%
図24に充放電前のサンプル11の断面TEM像を示す。表層部に酸化チタンのキャップ層1102が観察された。図27に充放電後のサンプル11の断面TEM像を示す。表層部に酸化チタンのキャップ層1102が観察された。図30に充放電後のサンプル12の断面TEM像を示す。いずれのサンプルも、コバルト酸リチウムの正極活物質層1101が多結晶であり、結晶子が縦に長い柱状である様子が観察された。
<EELS>
次に充放電後のサンプルについて、EELSを用いてコバルトの電子状態を分析し、非特許文献1を参照してL/L比から価数を算出した。EELSの測定条件は下記の通りとした。
元素分析(点分析)
走査透過電子顕微鏡:日本電子製 JEM−ARM200F
加速電圧:200kV
ビーム径:約0.1nmφ
元素分析装置:Gatan製Quantum ER
電子分光器:MOSディテクターアレイ
取込時間:30秒
充放電後のサンプル11のEELS分析箇所を図28A中の*1および*2、図28B中の*3、*4および*5で示す。*1および*2はコバルト酸リチウム層の最表面から基板に向かって100nm程度の深さである。*3乃至*5は同じく30nm程度の深さである。いずれの分析箇所も粒界およびその付近であるが、*2、*4および*5は、*1および*3よりも結晶粒の内部である。なお図28Bは、図27中に白線で囲ったphoto.3−14部分の拡大像である。
サンプル11の*1乃至*5に示した箇所のEELSスペクトルを図29に示す。Co−Ledgeよりも低結合エネルギー側から算出されるバックグラウンドを差し引いたEELスペクトラム(Background subtracted EEL spectrum)と、Co−LedgeとCo−Ledge間のエネルギー帯から算出されるバックグラウンドをさらに差し引いた、コバルトのL準位とL準位連続体のスペクトル(Co−L continuum subtracted spectrum)を図中に示す。なおBackground subtracted EEL spectrumは、元のデータからべき乗則(power law)のモデルにてフィッティングしてバックグラウンドを差し引いた。またCo−L continuum subtracted spectrumは、上記べき乗則フィッティングでバックグラウンド除去したデータからさらに、コバルトの散乱断面積のモデル(Hartree−slatercross sectionモデル)をバックグラウンド関数として用いて差し引いて求めた。またL/Lの面積強度比と、算出したコバルトの価数を表5に示す。
Figure JPOXMLDOC01-appb-T000005
図31Aおよび図31Bは充放電後のサンプル12の断面TEM像である。EELS分析箇所を図31A中の*1および*2、図18B中の*3、*4および*5で示す。いずれの分析箇所も粒界およびその付近であるが、*2、*4および*5は、*1および*3よりも結晶粒の内部である。なお図31Bは、図30中に白線で囲ったphoto.2−16部分の拡大像である。
充放電後のサンプル12の*1乃至*5箇所のEELSスペクトルを同様に図32に示す。L/Lの面積強度比と、算出したコバルトの価数を表6に示す。
Figure JPOXMLDOC01-appb-T000006
表5および表6より、キャップ層のあるサンプル11の方が、結晶粒の内部のコバルトの還元が抑制されている傾向が明らかとなった。そのためキャップ層を設けることで層状岩塩型の結晶構造の劣化を抑制できることが示唆された。
<極微電子線回折>
次に極微電子線回折を用いてコバルト酸リチウムの粒界およびその付近の結晶構造を分析した。
図25Aは充放電前のサンプル11の断面TEM像である。極微電子線回折の分析箇所を、図25A中の*point1−1、*point1−2、*point1−3で示す。なお図25Aは、図24中に黒線で囲ったphoto.1−7部分の拡大像である。
図25Bに*point1−1部分の極微電子線回折像を示す。透過光をO、回折スポットの一部を1、2、3とし、図中に示した。*point1−1部分について解析したところ、1の面間隔が0.137nm、2の面間隔が0.143nm、3の面間隔が0.464nmと算出された。また面角度は∠1O2=17°、∠1O3=107°、∠2O3=90°であった。このとき、電子線入射方向は[120]であり、面間隔と面角度から、1は層状岩塩型結晶の−213であり、2は同様に−210であり、3は同様に00−3であり、層状岩塩型の結晶構造を有すると考えられた。これらのd値から*point1−1部分の格子定数を算出すると、a=2.86(Å)、c=13.9(Å)であった。
図26Aに、*point1−2部分の極微電子線回折像を示す。透過光をO、回折スポットの一部を1、2、3とし、図中に示した。*point1−2部分について解析したところ、1の面間隔が0.137nm、2の面間隔が0.143nm、3の面間隔が0.464nmと算出された。また面角度は∠1O2=17°、∠1O3=107°、∠2O3=90°であった。このとき電子線入射方向は[120]であり、面間隔と面角度から、1は層状岩塩型結晶の−213であり、2は同様に−210であり、3は同様に00−3であり、層状岩塩型の結晶構造を有すると考えられた。これらのd値から*point1−2部分の格子定数を算出すると、a=2.86(Å)、c=13.9(Å)であった。
図26Bに、*point1−3部分の極微電子線回折像を示す。透過光をO、回折スポットの一部を1、2、3とし、図中に示した。*point1−3部分について解析したところ、1の面間隔が0.146nm、2の面間隔が0.139nm、3の面間隔が0.463nmと算出された。また面角度は∠1O2=17°、∠1O3=90°、∠2O3=72°であった。このとき電子線入射方向は[120]であり、面間隔と面角度から、1は層状岩塩型結晶の−210であり、2は同様に−21−3であり、3は同様に00−3あり、層状岩塩型の結晶構造を有すると考えられた。これらのd値から*point1−3部分の格子定数を算出すると、a=2.92(Å)、c=13.9(Å)であった。
図33Aは充放電後のサンプル11の断面TEM像である。極微電子線回折の分析箇所を、図33A中の*point3−1、*point3−2、*point3−3で示す。
図33Bに*point3−1部分の極微電子線回折像を示す。透過光をO、回折スポットの一部を1、2、3とし、図中に示した。*point3−1部分について解析したところ、1の面間隔が0.227nm、2の面間隔が0.183nm、3の面間隔が0.475nmと算出された。また面角度は∠1O2=21°、∠1O3=71°、∠2O3=50°であった。このとき電子線入射方向は[0−10]であり、面間隔と面角度から、1は層状岩塩型結晶の10−2であり、2は同様に10−5であり、3は同様に00−3であり、層状岩塩型の結晶構造を有すると考えられた。これらのd値から*point3−1部分の格子定数を算出すると、a=2.76(Å)、c=14.2(Å)であった。
図34Aに*point3−2部分の極微電子線回折像を示す。透過光をO、回折スポットの一部を1、2、3とし、図中に示した。*point3−2部分について解析したところ、1の面間隔が0.226nm、2の面間隔が0.181nm、3の面間隔が0.468nmと算出された。また面角度は∠1O2=22°、∠1O3=71°、∠2O3=49°であった。このとき電子線入射方向は[0−10]であり、1は層状岩塩型結晶の−102であり、2は同様に−105であり、3は同様に003であり、層状岩塩型の結晶構造を有すると考えられた。これらのd値から*point3−2部分の格子定数を算出すると、a=2.74(Å)、c=14.1(Å)であった。
図34Bに*point3−3部分の極微電子線回折像を示す。透過光をO、回折スポットの一部を1とし、図中に示した。*point3−3部分を解析したところ、1の面間隔が0.470nmと算出された。このとき電子線入射方向は[003]であり、1は層状岩塩型結晶の003であり、層状岩塩型の結晶構造を有すると考えられた。このd値から、*point3−3部分の格子定数を算出すると、c=14.0(Å)であった。a軸は該当のd値が無いため算出しなかった。
図35Aは充放電後のサンプル12の断面TEM像である。極微電子線回折の分析箇所を、図35A中の*point2−1、*point2−2、*point2−3で示す。
図35Bに*point2−1部分の極微電子線回折像を示す。透過光をO、回折スポットの一部を1、2、3とし、図中に示した。*point2−1部分について解析したところ、1の面間隔が0.125nm、2の面間隔が0.115nm、3の面間隔が0.234nmと算出された。また面角度は∠1O2=29°、∠1O3=96°、∠2O3=66°であった。このとき電子線入射方向は[010]であり、1は層状岩塩型結晶の20−1であり、2は同様に205であり、3は同様に006であり、層状岩塩型の結晶構造を有すると考えられた。これらのd値から、*point2−1部分の格子定数を算出すると、a=2.91(Å)、c=14.1(Å)であった。
図36Aに*point2−2部分の極微電子線回折像を示す。透過光をO、回折スポットの一部を1、2、3とし、図中に示した。*point2−2部分について解析したところ、1の面間隔が0.126nm、2の面間隔が0.115nm、3の面間隔が0.234nmと算出された。また面角度は∠1O2=29°、∠1O3=95°、∠2O3=66°であった。このとき電子線入射方向は[010]であり、1は層状岩塩型結晶の20−1であり、2は同様に205であり、3は同様に006であり層状岩塩型の結晶構造を有すると考えられた。これらのd値から、*point2−2部分の格子定数を算出すると、a=2.91(Å)、c=14.1(Å)であった。
図36Bに*point2−3部分の極微電子線回折像を示す。透過光をO、回折スポットの一部を1とし、図中に示した。*point2−3部分について解析したところ、1の面間隔が0.474nmと算出された。このとき電子線入射方向は[003]であり、1は層状岩塩型結晶の003であり、層状岩塩型の結晶構造を有すると考えられた。このd値から、*point2−3部分の格子定数を算出すると、c=14.21(Å)であった。a軸は該当のd値が無いため算出しなかった。
上記のように、充放電後のキャップ層のないサンプル11の格子定数は、充放電前のコバルト酸リチウムの格子定数よりも大きくなる傾向があった。これはコバルトの還元が起きたためと推測される。
一方、キャップ層を有するサンプル12では充放電後でも平均的にa軸が小さい傾向があった。これはコバルトの価数が大きく、コバルトの還元が抑制されていることを示している。
<充放電サイクル>
次にサンプル11およびサンプル12を用いた二次電池を作製し、充放電サイクル特性を評価した。
サンプル11およびサンプル12を正極、リチウム金属を対極として、CR2032タイプ(直径20mm高さ3.2mm)のコイン型の電池セルを作製した。
電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用い、電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)をEC:DEC=3:7(体積比)で混合したものに、添加材としてビニレンカーボネート(VC)を2wt%加えたものを用いた。
セパレータには厚さ25μmのポリプロピレンを用いた。
正極缶及び負極缶には、ステンレス(SUS)で形成されているものを用いた。
サイクル試験は以下の条件で行った。充電電圧は4.2Vとした。測定温度は25℃とした。充電はCC/CV(0.2C,0.1Ccut)、放電はCC(0.1C,2.5Vcut)とし、次の充電の前に10分休止時間を設けた。なお本実施例等において1Cは137mA/gとした。
図37に充放電サイクル試験の結果を示す。キャップ層のないサンプル12と比較して、キャップ層を有するサンプル11の正極は極めて良好な充放電サイクル特性を示した。
<インピーダンス>
上記充放電サイクル試験中に、二次電池のインピーダンスを測定した。
本実施例では、本発明の一態様の二次電池で生じる電気化学的現象を、図38Aのような等価回路に置き換えて解析する。
ここでRsは電極の電気抵抗および電解液の抵抗である。ここで電極の電気抵抗とは、コインセルに含まれる単純な電気抵抗を全て含むこととする。また電解液の抵抗とは、溶液中のイオン拡散抵抗をいう。
R1はRfまたはRsurfaceと表記される場合があり、二次電池のインピーダンスの高周波成分である。R1には正極と電解液界面でのリチウムイオン拡散の抵抗が含まれる。
CPE1(constant phase element,電気二重層容量)は多孔質な電極での挙動を再現する容量である。
R2はRctと表記される場合があり、低周波成分である。R2にはLiイオンが正極活物質層(本実施例ではLiCoO)に脱挿入する過程(charge transfer)の抵抗が含まれる。
Ws1は固体中でのリチウム拡散に伴う抵抗である。
インピーダンスは典型的には図38Bに示すようなグラフとなる。図中に、各成分が影響する範囲を示した。
サンプル11のインピーダンスを図39に、サンプル12のインピーダンスを図40に示す。それぞれ2サイクル目と50サイクル目のグラフを示す。測定装置はソーラトロン社製 CELLTEST マルチチャンネル電気化学測定システムを使用し、交流電圧10mVを、0.001Hzから1MHzまで掃引した。測定温度は25℃とした。インピーダンス測定前に0.2Cで4.2Vまで充電を行い、2時間放置した。この時のOCVはそれぞれ、サンプル11の2サイクル後は4.1308V、50サイクル後は4.0607Vであった。サンプル12の2サイクル後は4.1162V、50サイクル後は4.0005Vであった。
図40に示すように、サンプル12では2サイクル目と50サイクル目のインピーダンスを比較するとR1(高周波成分)が特に増加している。そのためリチウムの拡散経路、たとえば正極活物質層と電解液の界面、および一部の結晶粒界等で劣化が生じ、これが図37に示すような充放電サイクル特性の悪化の原因であることが推測される。
一方、図39に示すようにサンプル11では2サイクル目と50サイクル目のインピーダンスを比較したときのR1の増加は比較的小さい。そのためキャップ層の効果で被膜の生成を抑制できていることが推測される。またR2(低周波成分)が大きく増加している。そのためLiCoOの結晶構造に劣化が生じていることが推測される。
100:正極、101:正極活物質層、102:キャップ層、103:正極集電体、104:下地膜、110:基板、111:基板、200:二次電池、201:二次電池、202:二次電池、203:固体電解質層、204:負極活物質層、205:負極集電体、206:保護層、209:キャップ層、210:負極、211:負極、212:負極、213:固体電解質層、214:下地膜、215:正極集電体、220:セパレータ、221:電解液、222:外装体、223a:リード電極、223b:リード電極、230:二次電池、231:二次電池

Claims (6)

  1.  二次電池用正極であって、
     下地膜と、正極活物質層と、キャップ層と、を有し、
     前記下地膜および前記キャップ層の少なくとも一方は、酸化窒化チタンを有し、
     前記正極活物質層はコバルト酸リチウムを有する、二次電池用正極。
  2.  請求項1において、
     前記下地膜の有する結晶構造と前記正極活物質層の有する結晶構造はいずれも、陰イオンのみが配列する面を有する、二次電池用正極。
  3.  請求項1または請求項2において、
     前記下地膜と、前記正極活物質層はいずれも、陽イオンと陰イオンが交互に配列している結晶構造を有する、二次電池用正極。
  4.  請求項1乃至請求項3のいずれか一に記載の二次電池用正極と、固体電解質と、負極と、を有する二次電池。
  5.  請求項4に記載の二次電池を有する電子機器。
  6.  請求項4に記載の二次電池と、
     正極と、負極と、電解液と、セパレータとを有するリチウムイオン二次電池と、
     を有するシステム。
PCT/IB2020/059076 2019-10-11 2020-09-29 二次電池用正極、二次電池および電子機器 WO2021070002A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080071374.6A CN114586192A (zh) 2019-10-11 2020-09-29 二次电池用正极、二次电池及电子设备
JP2021550722A JPWO2021070002A5 (ja) 2020-09-29 二次電池用正極、二次電池、電子機器およびシステム
KR1020227015415A KR20220079932A (ko) 2019-10-11 2020-09-29 이차 전지용 양극, 이차 전지, 및 전자 기기
US17/766,336 US20230246198A1 (en) 2019-10-11 2020-09-29 Positive electrode for secondary battery, secondary battery, and electronic device and system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019-187370 2019-10-11
JP2019187370 2019-10-11
JP2019-199752 2019-11-01
JP2019199752 2019-11-01
JP2020-127004 2020-07-28
JP2020127004 2020-07-28

Publications (1)

Publication Number Publication Date
WO2021070002A1 true WO2021070002A1 (ja) 2021-04-15

Family

ID=75438031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/059076 WO2021070002A1 (ja) 2019-10-11 2020-09-29 二次電池用正極、二次電池および電子機器

Country Status (4)

Country Link
US (1) US20230246198A1 (ja)
KR (1) KR20220079932A (ja)
CN (1) CN114586192A (ja)
WO (1) WO2021070002A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198550A (ja) * 2010-03-18 2011-10-06 Daihatsu Motor Co Ltd 二次電池用電極および二次電池
WO2011122671A1 (ja) * 2010-03-30 2011-10-06 大日本印刷株式会社 リチウムイオン二次電池用負極板、リチウムイオン二次電池、及び電池パック、並びにリチウムイオン二次電池の製造方法
JP2015213079A (ja) * 2010-03-26 2015-11-26 株式会社半導体エネルギー研究所 蓄電装置
JP2017208325A (ja) * 2015-12-11 2017-11-24 株式会社半導体エネルギー研究所 蓄電装置用負極、蓄電装置、および電気機器
CN109473656A (zh) * 2018-11-27 2019-03-15 深圳大学 一种氮化钛酸锂/氮化二氧化钛复合电极材料及其制备方法
US20190097227A1 (en) * 2016-05-31 2019-03-28 Industry-University Cooperation Foundation Hanyang University Erica Campus Annealing method and nitrogen-doped metal oxide structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799914B2 (en) 2009-01-29 2017-10-24 Corning Incorporated Barrier layer for thin film battery
DE202017007594U1 (de) 2016-07-05 2023-09-11 Semiconductor Energy Laboratory Co., Ltd. Positivelektrodenaktivmaterial und Sekundärbatterie

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198550A (ja) * 2010-03-18 2011-10-06 Daihatsu Motor Co Ltd 二次電池用電極および二次電池
JP2015213079A (ja) * 2010-03-26 2015-11-26 株式会社半導体エネルギー研究所 蓄電装置
WO2011122671A1 (ja) * 2010-03-30 2011-10-06 大日本印刷株式会社 リチウムイオン二次電池用負極板、リチウムイオン二次電池、及び電池パック、並びにリチウムイオン二次電池の製造方法
JP2017208325A (ja) * 2015-12-11 2017-11-24 株式会社半導体エネルギー研究所 蓄電装置用負極、蓄電装置、および電気機器
US20190097227A1 (en) * 2016-05-31 2019-03-28 Industry-University Cooperation Foundation Hanyang University Erica Campus Annealing method and nitrogen-doped metal oxide structure
CN109473656A (zh) * 2018-11-27 2019-03-15 深圳大学 一种氮化钛酸锂/氮化二氧化钛复合电极材料及其制备方法

Also Published As

Publication number Publication date
US20230246198A1 (en) 2023-08-03
JPWO2021070002A1 (ja) 2021-04-15
CN114586192A (zh) 2022-06-03
KR20220079932A (ko) 2022-06-14

Similar Documents

Publication Publication Date Title
Donders et al. Atomic layer deposition of LiCoO2 thin-film electrodes for all-solid-state Li-ion micro-batteries
US10340549B2 (en) Electrolyte and battery, and electronic device and vehicle
JP7151839B2 (ja) 電解質、電池、電子機器、電解質および電池の製造方法
JP2018055865A (ja) イオン伝導体、イオン伝導体の製造方法、電池及び電子機器
US20230052866A1 (en) Positive electrode active material, secondary battery, and electronic device
US11322775B2 (en) Secondary battery, method for producing secondary battery, and electronic apparatus
WO2021074741A1 (ja) 二次電池及びその作製方法
US20190386302A1 (en) Lithium-ion rechargeable battery and positive electrode active material
WO2020250078A1 (ja) 固体二次電池
CN111326800A (zh) 电解质、电池、电子设备、电解质以及电池的制造方法
WO2021070002A1 (ja) 二次電池用正極、二次電池および電子機器
US20230014507A1 (en) Method of forming positive electrode active material, kiln, and heating furnace
JP2018041536A (ja) 二次電池、二次電池の製造方法、電子機器
JP7081719B2 (ja) ガーネット型固体電解質の前駆体溶液、ガーネット型固体電解質の前駆体溶液の製造方法およびガーネット型固体電解質
JP7310118B2 (ja) 正極材の製造方法
WO2021028759A1 (ja) 負極、二次電池及び固体二次電池
WO2021053448A1 (ja) 二次電池用正極、二次電池および電子機器
US20230207800A1 (en) Positive electrode, secondary battery, and electronic device
WO2020222067A1 (ja) 固体二次電池
JP7283122B2 (ja) ガーネット型の固体電解質、ガーネット型の固体電解質の製造方法、二次電池、電子機器
JP7000675B2 (ja) 複合体の製造方法、電池および電池の製造方法、電子機器
JP7572949B2 (ja) 固体二次電池の製造装置
WO2020222065A1 (ja) 固体二次電池の製造装置及び固体二次電池の作製方法
US20240097194A1 (en) Ionic liquid, secondary battery, electronic device, and vehicle
US20230343947A1 (en) Method for forming electrode, secondary battery, electronic device, and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873477

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021550722

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227015415

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20873477

Country of ref document: EP

Kind code of ref document: A1