WO2021068737A1 - 柔性莫来石纤维气凝胶材料及其制备方法 - Google Patents

柔性莫来石纤维气凝胶材料及其制备方法 Download PDF

Info

Publication number
WO2021068737A1
WO2021068737A1 PCT/CN2020/116684 CN2020116684W WO2021068737A1 WO 2021068737 A1 WO2021068737 A1 WO 2021068737A1 CN 2020116684 W CN2020116684 W CN 2020116684W WO 2021068737 A1 WO2021068737 A1 WO 2021068737A1
Authority
WO
WIPO (PCT)
Prior art keywords
mullite
flexible
acid
fiber aerogel
aerogel material
Prior art date
Application number
PCT/CN2020/116684
Other languages
English (en)
French (fr)
Inventor
伍晖
贾超
王海杨
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2021068737A1 publication Critical patent/WO2021068737A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like

Definitions

  • the present disclosure relates to the field of refractory insulation technology. Specifically, the present disclosure relates to a method for preparing a flexible mullite fiber aerogel and a flexible mullite fiber aerogel material prepared by the method.
  • aerogel materials with porous three-dimensional network structure including carbon nanotube aerogel, biomass-derived aerogel, graphene aerogel, inorganic nanofiber aerogel and carbon fiber aerogel, etc.
  • High compressibility and large strain resilience have attracted more and more attention.
  • inorganic aerogel materials have the advantages of light weight, large specific surface area, low thermal conductivity, good chemical stability and thermal stability, etc., which have aroused great interest of scientific researchers. With these advantages, inorganic aerogel materials have been widely used in various fields, including thermal insulation, water treatment, catalyst carriers, energy absorption, high-temperature air filtration, etc.
  • inorganic aerogel materials are generally prepared from inorganic oxides, such as silica nanoparticles, alumina nanocrystals, boron nitride nanosheets, etc.
  • inorganic oxides such as silica nanoparticles, alumina nanocrystals, boron nitride nanosheets, etc.
  • the inherent brittleness of inorganic materials greatly limits their practicality. application. Therefore, it is of great significance to develop inorganic aerogel materials with good flexibility, high compressibility and high temperature resistance.
  • inorganic nanofibers are usually prepared by electrospinning. Due to direct spinning and deposition, the nanofibers obtained by electrospinning are usually randomly stacked into a non-woven fabric form.
  • inorganic nanofiber-based aerogels can be prepared by rationally designing the receiving device, it is still difficult to obtain true three-dimensional aerogels with regular shapes.
  • the aerogel obtained by direct electrospinning has a disordered structure and therefore has poor compression resistance.
  • Another method of preparing inorganic fiber aerogels is chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • SiC nanowire aerogel by CVD method which has high compressibility , Excellent resistance to compression fatigue, good resistance to high temperature oxidation and heat resistance, low thermal conductivity and high absorption capacity for organic solvents.
  • an objective of the present disclosure is to propose a method for preparing a flexible mullite fiber aerogel and a flexible mullite fiber aerogel material prepared by the method.
  • the flexible mullite fiber aerogel material has good flexibility, compressibility, fire resistance, high and low temperature resistance and thermal insulation performance, and there is no problem of powdering; at the same time, the aerogel material is made of mol
  • the comet precursor is prepared by the solution jet spinning method, the preparation process is simple and controllable, the cost is low, the efficiency is high, and the repeatability is good. It has a good industrial application prospect in the fields of fire protection clothing, aerospace, high temperature air filtration and so on.
  • the present disclosure proposes a method for preparing a flexible mullite fiber aerogel material.
  • the method includes: (1) mixing a polymer material with a solvent to obtain a polymer solution; (2) mixing the polymer solution with a mullite precursor and a catalyst to obtain a spinning precursor (3) subjecting the spinning precursor solution to a solution jet spinning process to obtain a composite fiber aerogel material containing a polymer material, a mullite precursor and a catalyst; and (4) the composite fiber aerogel material The fiber aerogel material is heat-treated to obtain the flexible mullite fiber aerogel material.
  • the method uses mullite precursors to prepare flexible mullite fiber aerogel materials through the solution jet spinning method, and the preparation process is simple and controllable, low cost, high efficiency, good repeatability, and easy industrial implementation.
  • the prepared mullite fiber aerogel material has good flexibility, compressibility, fire resistance, high and low temperature resistance and thermal insulation performance, and does not have the problem of powdering.
  • the method for preparing a flexible mullite fiber aerogel material according to the above-mentioned embodiments of the present disclosure may also have the following additional technical features:
  • the polymer material includes selected from polyvinyl alcohol, polyethylene oxide, polyacrylonitrile, polyvinyl chloride, polyethylene glycol, polyurethane, polyacrylic acid, polyvinylpyrrolidone, cellulose acetate , Methyl cellulose, carboxymethyl cellulose, polyvinylidene fluoride, polymethyl methacrylate, polyacrylamide, polylactic acid, polyamide, polycaprolactone, polyvinyl butyral, polyaniline, poly At least one of imide and polycarbonate.
  • the solvent includes selected from water, formic acid, tetrahydrofuran, acetone, butanone, n-hexane, cyclohexane, n-heptane, acetonitrile, N-methylpyrrolidone, 1,2-propanediol, chloroform , Dichloromethane, 1,2-dichloroethane, methanol, ethanol, isopropanol, tert-butanol, n-butanol, toluene, xylene, ethylene diamine, dimethyl sulfoxide, N,N-di At least one of methylformamide, N,N-dimethylacetamide, and carbon tetrachloride.
  • the mass ratio of the polymer material to the solvent is (2-30):100.
  • step (1) the mixing is completed at a temperature of 20-100° C. and a stirring speed of 50-1000 rpm for 0.2-10 hours.
  • the mullite precursor includes a silicon source and an aluminum source
  • the silicon source includes at least one selected from the group consisting of ethyl orthosilicate and methyl orthosilicate
  • the aluminum The source includes at least one selected from aluminum nitrate, aluminum sulfate, aluminum acetate, aluminum isopropoxide, aluminum chloride, and aluminum acetylacetonate.
  • the molar ratio of the silicon source to the aluminum source is 1:(3-4).
  • the catalyst includes selected from phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid, formic acid, acetic acid, hydrofluoric acid, perchloric acid, trifluoroacetic acid, citric acid, boric acid, oxalic acid, and maleic acid At least one of.
  • the mass ratio of the mullite precursor, the catalyst, and the polymer solution is (5 ⁇ 150): (0.01 ⁇ 5): (102 ⁇ 130).
  • the solution jet spinning treatment includes: using compressed air to eject the spinning precursor solution from the spinneret of the solution jet spinning equipment, so that the obtained fibers are deposited on the receiving device On; wherein, the extrusion speed of the spinning precursor solution is 0.5-12mL/h, the distance between the spinneret and the receiving device is 20-100cm, and the flow rate of the compressed air is 1 ⁇ 50m/s.
  • the heat treatment includes: heating the composite fiber aerogel material to 900 to 1800°C at a heating rate of 0.1 to 5°C/min, keeping the temperature for 0 to 24 hours, and then lowering the temperature to 20 to 20°C. 25°C.
  • the present disclosure proposes a flexible mullite fiber aerogel material.
  • the flexible mullite fiber aerogel material is prepared by the method for preparing a flexible mullite fiber aerogel of the foregoing embodiment. Therefore, the flexible mullite fiber aerogel material has good flexibility, compressibility, fire resistance, high and low temperature resistance and thermal insulation performance, and does not have the problem of chalking. It is used in fire protection clothing, aerospace , High-temperature air filtration and other fields have good industrial application prospects.
  • the flexible mullite fiber aerogel material according to the above-mentioned embodiments of the present disclosure may also have the following additional technical features:
  • the volume density of the flexible mullite fiber aerogel material is 2 ⁇ 150 mg/cm 3 .
  • the average diameter of mullite fibers in the flexible mullite fiber aerogel material is 0.1-5 ⁇ m.
  • Fig. 1 is a schematic flow chart of a method for preparing a flexible mullite fiber aerogel material according to an embodiment of the present disclosure
  • Example 2 is a physical view of the flexible mullite fiber aerogel material prepared in Example 1;
  • Example 3 is a SEM image of the flexible mullite fiber aerogel material prepared in Example 1;
  • Example 4 is an XRD pattern of the flexible mullite fiber aerogel material prepared in Example 1;
  • Figure 5 is a picture showing the compressibility of the flexible mullite fiber aerogel material prepared in Example 1;
  • FIG. 6 is a flexible display picture of the flexible mullite fiber aerogel material prepared in Example 1.
  • FIG. 6 is a flexible display picture of the flexible mullite fiber aerogel material prepared in Example 1.
  • the present disclosure proposes a method for preparing a flexible mullite fiber aerogel material.
  • the method includes: (1) mixing a polymer material with a solvent to obtain a polymer solution; (2) mixing a polymer solution with a mullite precursor and a catalyst to obtain a spinning precursor solution (3) Perform solution jet spinning treatment on the spinning precursor solution to obtain composite fiber aerogel materials containing polymer materials, mullite precursors and catalysts; and (4) perform composite fiber aerogel materials Heat treatment to obtain a flexible mullite fiber aerogel material.
  • the method uses mullite precursors to prepare flexible mullite fiber aerogel materials through the solution jet spinning method, and the preparation process is simple and controllable, low cost, high efficiency, good repeatability, and easy industrial implementation.
  • the prepared mullite fiber aerogel material has good flexibility, compressibility, fire resistance, high and low temperature resistance and thermal insulation performance, and does not have the problem of powdering.
  • the method includes:
  • the polymer material and the solvent are mixed to obtain a polymer solution.
  • the above-mentioned polymer material may include selected from polyvinyl alcohol, polyethylene oxide, polyacrylonitrile, polyvinyl chloride, polyethylene glycol, polyurethane, polyacrylic acid, polyvinylpyrrolidone, cellulose acetate, methyl acetate Base cellulose, carboxymethyl cellulose, polyvinylidene fluoride, polymethyl methacrylate, polyacrylamide, polylactic acid, polyamide, polycaprolactone, polyvinyl butyral, polyaniline, polyimide At least one of amine and polycarbonate.
  • the above-mentioned polymer materials have a wide range of sources, are cheap and easy to obtain, and have good compatibility with mullite materials, and are suitable for compounding with mullite materials to form high-performance flexible mullite fiber aerogel materials.
  • the specific type of the above-mentioned solvent is not particularly limited, as long as the polymer material, the mullite precursor, the catalyst and other components can be well dispersed.
  • the above-mentioned solvent may include selected from water, formic acid, tetrahydrofuran, acetone, butanone, n-hexane, cyclohexane, n-heptane, acetonitrile, N-methylpyrrolidone, 1,2-propanediol, chloroform , Dichloromethane, 1,2-dichloroethane, methanol, ethanol, isopropanol, tert-butanol, n-butanol, toluene, xylene, ethylene diamine, dimethyl sulfoxide, N,N-di At least one of methylformamide, N,N-dimethylacetamide, and carbon tet
  • the mass ratio of the polymer material to the solvent may be (2-30): 100, for example, 2:100, 5:10, 15:100, 20:100, 25:100, 30:100 Wait. If the amount of polymer material is too low, fibers cannot be obtained. If the amount of polymer material is too high, first, the polymer material is not easy to dissolve completely, and second, the viscosity of the polymer solution is too high, and it is difficult to spray from the jet spinning equipment. The filament spouts out to form fibers.
  • the above-mentioned mixing can be completed at a temperature of 20-100° C. and a stirring speed of 50-1000 rpm for 0.2-10 hours.
  • the mixing temperature can be 20°C, 40°C, 60°C, 80°C, 100°C, etc.
  • the stirring speed can be 50rpm, 100rpm, 200rpm, 400rpm, 600rpm, 800rpm, 1000rpm, etc.
  • the mixing time can be 0.2h, 1h. , 2h, 4h, 8h, 10h, etc.
  • the specific form of the aforementioned stirring is not particularly limited, and for example, mechanical stirring or magnetic stirring can be used.
  • the polymer solution is mixed with the mullite precursor and the catalyst to obtain a spinning precursor solution.
  • the mullite precursor and the catalyst can be added to the polymer solution separately, or the mullite precursor and the catalyst can be mixed and added to the polymer solution together.
  • the above-mentioned mullite precursor includes a silicon source and an aluminum source
  • the silicon source may include at least one selected from the group consisting of ethyl orthosilicate and methyl orthosilicate
  • the aluminum source may It includes at least one selected from aluminum nitrate, aluminum sulfate, aluminum acetate, aluminum isopropoxide, aluminum chloride, and aluminum acetylacetonate.
  • the molar ratio of the silicon source to the aluminum source may be 1:(3-4), for example, 1:3, 1:3.3, 1:3.5, 1:3.8 , 1:4, etc. If the amount of aluminum source is too low, mullite fibers cannot be obtained through heat treatment, and if the amount of aluminum source is too high, mullite fibers cannot be obtained.
  • the aforementioned catalyst may include at least one selected from phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid, formic acid, acetic acid, hydrofluoric acid, perchloric acid, trifluoroacetic acid, citric acid, boric acid, oxalic acid, and maleic acid.
  • the silicon source and the aluminum source can form high-quality mullite, and then high-quality mullite fibers can be obtained by solution jet spinning.
  • the above-mentioned catalysts can all be commercially available conventional products, and there is no need to adjust their concentration.
  • the mass ratio of the above-mentioned mullite precursor, catalyst, and polymer solution may be (5 to 150): (0.01 to 5): (102 to 130).
  • the mass parts of the mullite precursor can be 5, 20, 40, 80, 120, 150, etc.
  • the mass parts of the catalyst can be 0.01, 0.05, 0.1, 1, 3, 5, etc.
  • the mass of the polymer solution Servings can be 102, 105, 110, 120, 130, etc. If the amount of mullite precursor is too low, the amount of mullite fiber obtained is small and the yield is low. If the amount of mullite precursor is too high, the spinning effect will be poor.
  • the solution jet spinning treatment is performed on the spinning precursor solution to obtain a composite fiber aerogel material containing a polymer material, a mullite precursor and a catalyst.
  • the above-mentioned solution jet spinning treatment includes: using compressed air to eject the spinning precursor solution from the spinneret of the solution jet spinning device, so that the obtained fiber is deposited on the receiving device; wherein, the spinning
  • the extrusion speed of the silk precursor solution can be 0.5-12mL/h (for example, 0.5mL/h, 1mL/h, 3mL/h, 6mL/h, 9mL/h, 12mL/h, etc.), spinneret and receiving device The distance between them can be 20-100cm (such as 20cm, 30cm, 60cm, 80cm, 100cm, etc.), and the flow rate of compressed air can be 1-50m/s (such as 1m/s, 5m/s, 10m/s, 20m /s, 30m/s, 40m/s, 50m/s, etc.
  • the diameter of the mullite fiber in the composite fiber aerogel material obtained can be The performance of the prepared flexible mullite fiber aerogel material is better.
  • the specific types of the above-mentioned solution jet spinning equipment are not particularly limited, and common jet spinning equipment in the field can be used. .
  • the specific type of the above-mentioned receiving device is not particularly limited.
  • it may be one or a combination of a perforated metal mesh, a plastic mesh, and a non-woven fabric.
  • the composite fiber aerogel material is heat-treated to obtain a flexible mullite fiber aerogel material.
  • the above-mentioned heat treatment includes: heating the composite fiber aerogel material to 900-1800°C at a heating rate of 0.1-5°C/min, keeping the temperature for 0-24h, and then cooling to room temperature (about 20- 25°C).
  • the heating rate can be 0.1°C/min, 1°C/min, 3°C/min, 5°C/min, etc.
  • the heat treatment temperature can be 900°C, 1200°C, 1500°C, 1800°C, etc.
  • the holding time can be 0h , 1h, 6h, 12h, 24h, etc.
  • the polymer material By heat-treating the composite fiber aerogel material containing polymer material, mullite precursor and catalyst under the above conditions, the polymer material will be decomposed into small molecules such as carbon dioxide and water, and then the polymer material will be removed.
  • the mullite fiber aerogel material makes the mullite fiber aerogel material have excellent fire resistance, good high and low temperature resistance and thermal insulation performance.
  • the present disclosure proposes a flexible mullite fiber aerogel material.
  • the flexible mullite fiber aerogel material is prepared by the method for preparing a flexible mullite fiber aerogel of the foregoing embodiment.
  • the flexible mullite fiber aerogel material has good flexibility, compressibility, fire resistance, high and low temperature resistance (the material still has good flexibility and flexibility under the conditions of -196°C and 1300°C. Compressibility) and thermal insulation performance (thermal conductivity as low as 0.029W ⁇ m -1 ⁇ K -1 ), and there is no problem of pulverization. It is used in fire protection clothing, aerospace, high temperature industrial furnaces, building insulation, high temperature Air filtration, catalyst carrier and other fields have good industrial application prospects.
  • the volume density of the above-mentioned flexible mullite fiber aerogel material may be 2 to 150 mg/cm 3 , for example, 2 mg/cm 3 , 10 mg/cm 3 , 20 mg/cm 3 , 40 mg/cm 3 , 60mg/cm 3 , 80mg/cm 3 , 100mg/cm 3 , 120mg/cm 3 , 150mg/cm 3, etc.
  • the average diameter of mullite fibers in the above-mentioned flexible mullite fiber aerogel material may be 0.1-5 ⁇ m, for example, 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 5 ⁇ m, and the like.
  • the flexible mullite fiber aerogel material is prepared according to the following method:
  • Solution jet spinning uses compressed air with a flow rate of 15 m ⁇ s -1 to spray the spinning precursor solution from the spinneret at a speed of 5 mL ⁇ h -1 to obtain fiber deposition.
  • the resulting flexible mullite fiber aerogel material product has a bulk density of 22 mg ⁇ cm -3 , a room temperature thermal conductivity of 0.032 W ⁇ m -1 ⁇ K -1 , and an average fiber diameter of 0.6 ⁇ m.
  • the physical diagram of the prepared flexible mullite fiber aerogel material product is shown in FIG. 2.
  • the product was characterized by SEM and XRD, and the results are shown in Figure 3 and Figure 4, respectively.
  • Test the flexibility and compressibility of the product refer to Figures 5 and 6, after 10,000 cycles of compression under 50% strain, the plastic deformation is only about 5%, and the product compresses 80% of the strain and can fully recover, the maximum compression The strain can reach 90%, showing good compression fatigue resistance.
  • the flexible mullite fiber aerogel material is prepared according to the following method:
  • Solution jet spinning uses compressed air with a flow rate of 15 m ⁇ s -1 to spray the spinning precursor solution from the spinneret at a speed of 5 mL ⁇ h -1 to obtain fiber deposition.
  • the obtained flexible mullite fiber aerogel material product has a bulk density of 19 mg ⁇ cm -3 , a room temperature thermal conductivity of 0.030 W ⁇ m -1 ⁇ K -1 , and an average fiber diameter of 0.7 ⁇ m.
  • the flexible mullite fiber aerogel material is prepared according to the following method:
  • Preparation of polymer solution add 7g of polyvinyl alcohol to 100g of deionized water, stir and dissolve at 800rpm at 90°C for 1h to obtain a polyvinyl alcohol solution with a polymer material to solvent mass ratio of 7:100 ;
  • Solution jet spinning uses compressed air with a flow rate of 15 m ⁇ s -1 to spray the spinning precursor solution from the spinneret at a speed of 5 mL ⁇ h -1 to obtain fiber deposition.
  • the obtained flexible mullite fiber aerogel material product has a bulk density of 20 mg ⁇ cm -3 , a room temperature thermal conductivity of 0.031 W ⁇ m -1 ⁇ K -1 , and an average fiber diameter of 0.8 ⁇ m.
  • the flexible mullite fiber aerogel material is prepared according to the following method:
  • Solution jet spinning uses compressed air with a flow rate of 15 m ⁇ s -1 to spray the spinning precursor solution from the spinneret at a speed of 5 mL ⁇ h -1 to obtain fiber deposition.
  • the volume density of the obtained flexible mullite fiber aerogel material product is 18 mg ⁇ cm -3 , the room temperature thermal conductivity is 0.029 W ⁇ m -1 ⁇ K -1 , and the average fiber diameter is 0.7 ⁇ m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Fibers (AREA)

Abstract

本公开提供了柔性莫来石纤维气凝胶材料及其制备方法。制备柔性莫来石纤维气凝胶材料的方法包括:将聚合物材料与溶剂混合,得到聚合物溶液;将聚合物溶液与莫来石前驱体和催化剂混合,得到纺丝前驱体溶液;对纺丝前驱体溶液进行溶液喷射纺丝处理,得到含有聚合物材料、莫来石前驱体和催化剂的复合纤维气凝胶材料;对复合纤维气凝胶材料进行热处理,得到柔性莫来石纤维气凝胶材料。

Description

柔性莫来石纤维气凝胶材料及其制备方法
优先权信息
本公开请求于2019年10月09日向中国国家知识产权局提交的、专利申请号为201910954101.5、申请名称为“柔性莫来石纤维气凝胶材料及其制备方法”的中国专利申请的优先权,并且其全部内容通过引用结合在本公开中。
技术领域
本公开涉及耐火材料隔热技术领域,具体而言,本公开涉及制备柔性莫来石纤维气凝胶的方法以及通过该方法制备得到柔性莫来石纤维气凝胶材料。
背景技术
近年来,具有多孔三维网络结构的气凝胶材料,包括碳纳米管气凝胶、生物质来源的气凝胶、石墨烯气凝胶、无机纳米纤维气凝胶和碳纤维气凝胶等由于具有高的可压缩性和大应变回弹性而受到越来越多的关注。其中,无机气凝胶材料具有轻量、比表面积大、热导率低、化学稳定性和热稳定性好等优点,引起了科研人员的极大兴趣。凭借这些优势,无机气凝胶材料已经被广泛应用于各种各样的领域,包括热绝缘、水处理、催化剂载体、能量吸收、高温空气过滤等。然而,传统的无机气凝胶材料一般都是由无机氧化物,如氧化硅纳米颗粒、氧化铝纳米晶、氮化硼纳米片等制备而得,无机材料固有的脆性极大地限制了它们的实际应用。因此,开发具有良好柔韧性、高可压缩性和耐高温性能的无机气凝胶材料具有重要的意义。
目前,科研人员已经通过一些方法得到了高度可压缩的无机纤维气凝胶材料。一种有效的方法是直接将无机纳米纤维组装成柔性的无机纤维气凝胶材料[Si,Y.;Wang,X.;Dou,L.;Yu,J.;Ding,B.Ultralight and Fire-Resistant Ceramic Nanofibrous Aerogels with Temperature-Invariant Superelasticity.Sci.Adv.,2018,4,eaas8925.]。无机纳米纤维通常采用静电纺丝的方法制备,由于直接纺丝沉积的原因,静电纺丝得到的纳米纤维通常随机堆积成无纺布形式。尽管通过合理设计接收装置可以制备得到无机纳米纤维基气凝胶,但获得具有规则形状的真正的三维气凝胶仍然很困难。此外,直接静电纺丝得到的气凝胶具有无序的结构,因而抗压缩性能很差。另一种制备无机纤维气凝胶的方法是化学气相沉积(CVD)。Su等[Ultralight,Recoverable,and High-Temperature-Resistant SiC Nanowire Aerogel.ACS  Nano,2018,12,3103-3111.]采用CVD法制备了SiC纳米线气凝胶,该气凝胶具有高的压缩性、优异的抗压缩疲劳性能、良好的耐高温氧化和耐热性能、低的热导率和对有机溶剂的高吸收能力。Xu等[Double-Negative-Index Ceramic Aerogels for Thermal Superinsulation.Science,2019,363,723-727.]采用CVD法制备了一种具有双曲结构的三维氮化硼无机气凝胶,该气凝胶具有负的线性热膨胀系数(-1.8×10 -6/℃)和负的泊松比(-0.25),并且具备超轻、高力学强度和超级隔热的优点。虽然研究人员已经取得了一些研究成果,但当前这些制备柔性无机气凝胶的方法效率低、成本高、工艺复杂,不能大规模应用,因而急需开发一种大规模制备高可压缩、耐高温柔性无机气凝胶的简便、高效的方法。
公开内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的一个目的在于提出制备柔性莫来石纤维气凝胶的方法以及通过该方法制备得到柔性莫来石纤维气凝胶材料。该柔性莫来石纤维气凝胶材料具有良好的柔韧性、可压缩性、耐火性、耐高低温性和隔热保温性能,并且不存在粉化的问题;同时,该气凝胶材料由莫来石前驱体通过溶液喷射纺丝法制备而得,制备过程简单可控,成本低,效率高,可重复性好,在防火服、航空航天、高温空气过滤等领域具有良好的工业化应用前景。
在本公开的一个方面,本公开提出了一种制备柔性莫来石纤维气凝胶材料的方法。根据本公开的实施例,该方法包括:(1)将聚合物材料与溶剂混合,得到聚合物溶液;(2)将所述聚合物溶液与莫来石前驱体和催化剂混合,得到纺丝前驱体溶液;(3)对所述纺丝前驱体溶液进行溶液喷射纺丝处理,得到含有聚合物材料、莫来石前驱体和催化剂的复合纤维气凝胶材料;以及(4)对所述复合纤维气凝胶材料进行热处理,得到所述柔性莫来石纤维气凝胶材料。由此,该方法利用莫来石前驱体通过溶液喷射纺丝方法制备得到柔性莫来石纤维气凝胶材料,制备过程简单可控,成本低,效率高,可重复性好,易于工业化实施,且制备得到的莫来石纤维气凝胶材料具有良好的柔韧性、可压缩性、耐火性、耐高低温性和隔热保温性能,并且不存在粉化的问题。
另外,根据本公开上述实施例的制备柔性莫来石纤维气凝胶材料的方法还可以具有如下附加的技术特征:
在本公开的一些实施例中,所述聚合物材料包括选自聚乙烯醇、聚氧化乙烯、聚丙烯腈、聚氯乙烯、聚乙二醇、聚氨酯、聚丙烯酸、聚乙烯吡咯烷酮、醋酸纤维素、甲基纤维素、羧甲基纤维素、聚偏氟乙烯、聚甲基丙烯酸甲酯、聚丙烯酰胺、聚乳酸、聚酰胺、聚 己内酯、聚乙烯醇缩丁醛、聚苯胺、聚酰亚胺和聚碳酸酯中的至少之一。
在本公开的一些实施例中,溶剂包括选自水、甲酸、四氢呋喃、丙酮、丁酮、正己烷、环己烷、正庚烷、乙腈、N-甲基吡咯烷酮、1,2-丙二醇、氯仿、二氯甲烷、1,2-二氯乙烷、甲醇、乙醇、异丙醇、叔丁醇、正丁醇、甲苯、二甲苯、乙二胺、二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺和四氯化碳中的至少之一。
在本公开的一些实施例中,所述聚合物材料与所述溶剂的质量比为(2~30):100。
在本公开的一些实施例中,步骤(1)中,所述混合在20~100℃的温度、50~1000rpm的搅拌转速下进行0.2~10h完成。
在本公开的一些实施例中,所述莫来石前驱体包括硅源和铝源,所述硅源包括选自正硅酸乙酯、正硅酸甲酯中的至少之一,所述铝源包括选自硝酸铝、硫酸铝、乙酸铝、异丙醇铝、氯化铝、乙酰丙酮铝中的至少之一。
在本公开的一些实施例中,所述莫来石前驱体中,所述硅源与所述铝源的摩尔比为1:(3~4)。
在本公开的一些实施例中,所述催化剂包括选自磷酸、硫酸、盐酸、硝酸、甲酸、醋酸、氢氟酸、高氯酸、三氟乙酸、柠檬酸、硼酸、草酸和马来酸中的至少之一。
在本公开的一些实施例中,所述莫来石前驱体、所述催化剂、所述聚合物溶液的质量比为(5~150):(0.01~5):(102~130)。
在本公开的一些实施例中,所述溶液喷射纺丝处理包括:利用压缩空气将所述纺丝前驱体溶液从溶液喷射纺丝设备的喷丝口喷出,使得到的纤维沉积在接收装置上;其中,所述纺丝前驱体溶液的挤出速度为0.5~12mL/h,所述喷丝口与所述接收装置之间的距离为20~100cm,所述压缩空气的气流流速为1~50m/s。
在本公开的一些实施例中,所述热处理包括:以0.1~5℃/min的升温速度将所述复合纤维气凝胶材料升温至900~1800℃,保温0~24h,然后降温至20~25℃。
在本公开的另一方面,本公开提出了一种柔性莫来石纤维气凝胶材料。根据本公开的实施例,该柔性莫来石纤维气凝胶材料是由上述实施例的制备柔性莫来石纤维气凝胶的方法制备得到的。由此,该柔性莫来石纤维气凝胶材料具有良好的柔韧性、可压缩性、耐火性、耐高低温性和隔热保温性能,并且不存在粉化的问题,在防火服、航空航天、高温空气过滤等领域具有良好的工业化应用前景。
另外,根据本公开上述实施例的柔性莫来石纤维气凝胶材料还可以具有如下附加的技术特征:
在本公开的一些实施例中,所述柔性莫来石纤维气凝胶材料的体积密度为2~150mg/cm 3
在本公开的一些实施例中,所述柔性莫来石纤维气凝胶材料中莫来石纤维的平均直径为0.1~5μm。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本公开一个实施例的制备柔性莫来石纤维气凝胶材料的方法流程示意图;
图2是实施例1中制备得到的柔性莫来石纤维气凝胶材料的实物图;
图3是实施例1中制备得到的柔性莫来石纤维气凝胶材料的SEM图;
图4是实施例1中制备得到的柔性莫来石纤维气凝胶材料的XRD图谱;
图5是实施例1中制备得到的柔性莫来石纤维气凝胶材料的压缩性展示图片;
图6是实施例1中制备得到的柔性莫来石纤维气凝胶材料的柔性展示图片。
具体实施方式
下面详细描述本公开的实施例。下面描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
在本公开的一个方面,本公开提出了一种制备柔性莫来石纤维气凝胶材料的方法。根据本公开的实施例,该方法包括:(1)将聚合物材料与溶剂混合,得到聚合物溶液;(2)将聚合物溶液与莫来石前驱体和催化剂混合,得到纺丝前驱体溶液;(3)对纺丝前驱体溶液进行溶液喷射纺丝处理,得到含有聚合物材料、莫来石前驱体和催化剂的复合纤维气凝胶材料;以及(4)对复合纤维气凝胶材料进行热处理,得到柔性莫来石纤维气凝胶材料。由此,该方法利用莫来石前驱体通过溶液喷射纺丝方法制备得到柔性莫来石纤维气凝胶材料,制备过程简单可控,成本低,效率高,可重复性好,易于工业化实施,且制备得到的莫来石纤维气凝胶材料具有良好的柔韧性、可压缩性、耐火性、耐高低温性和隔热保温性 能,并且不存在粉化的问题。
下面进一步对根据本公开实施例的制备柔性莫来石纤维气凝胶材料的方法进行详细描述。参考图1,根据本公开的实施例,该方法包括:
S100:获得聚合物溶液
该步骤中,将聚合物材料与溶剂混合,得到聚合物溶液。
根据本公开的实施例,上述聚合物材料可以包括选自聚乙烯醇、聚氧化乙烯、聚丙烯腈、聚氯乙烯、聚乙二醇、聚氨酯、聚丙烯酸、聚乙烯吡咯烷酮、醋酸纤维素、甲基纤维素、羧甲基纤维素、聚偏氟乙烯、聚甲基丙烯酸甲酯、聚丙烯酰胺、聚乳酸、聚酰胺、聚己内酯、聚乙烯醇缩丁醛、聚苯胺、聚酰亚胺和聚碳酸酯中的至少之一。上述聚合物材料的来源广泛、廉价易得,且与莫来石材料具有良好的相容性,适于与莫来石材料复合形成高性能的柔性莫来石纤维气凝胶材料。
根据本公开的实施例,上述溶剂的具体种类并不受特别限制,只要能够使聚合物材料、莫来石前驱体和催化剂等组分良好地分散即可。根据本公开的具体示例,上述溶剂可以包括选自水、甲酸、四氢呋喃、丙酮、丁酮、正己烷、环己烷、正庚烷、乙腈、N-甲基吡咯烷酮、1,2-丙二醇、氯仿、二氯甲烷、1,2-二氯乙烷、甲醇、乙醇、异丙醇、叔丁醇、正丁醇、甲苯、二甲苯、乙二胺、二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺和四氯化碳中的至少之一。上述溶剂的来源广泛、廉价易得,且可以为聚合物材料、莫来石前驱体和催化剂等组分提供良好的分散性能。
根据本公开的实施例,上述聚合物材料与溶剂的质量比可以为(2~30):100,例如2:100、5:10、15:100、20:100、25:100、30:100等。如果聚合物材料的用量过低,则无法得到纤维,如果聚合物材料的用量过高,一则聚合物材料不易于全部溶解,二则聚合物溶液粘度过高,难以从喷射纺丝设备的喷丝口喷出形成纤维。
根据本公开的实施例,上述混合可以在20~100℃的温度、50~1000rpm的搅拌转速下进行0.2~10h完成。具体的,混合温度可以为20℃、40℃、60℃、80℃、100℃等,搅拌转速可以为50rpm、100rpm、200rpm、400rpm、600rpm、800rpm、1000rpm等,混合时间可以为0.2h、1h、2h、4h、8h、10h等。上述搅拌的具体形式并不受特别限制,例如可以采用机械搅拌或磁力搅拌等。通过在以上条件下将聚合物材料与溶剂混合,聚合物材料的分散效果更佳,制备得到的柔性莫来石纤维气凝胶材料性能更佳。
S200:获得纺丝前驱体溶液
该步骤中,将聚合物溶液与莫来石前驱体和催化剂混合,得到纺丝前驱体溶液。具体 的,可以将莫来石前驱体与催化剂分别加入到聚合物溶液中,也可以将莫来石前驱体与催化剂混合后一同加入到聚合物溶液中。
根据本公开的实施例,上述莫来石前驱体包括硅源和铝源,所述硅源可以包括选自正硅酸乙酯、正硅酸甲酯中的至少之一,所述铝源可以包括选自硝酸铝、硫酸铝、乙酸铝、异丙醇铝、氯化铝、乙酰丙酮铝中的至少之一。通过采用上述硅源和铝源,可以制备得到高品质的莫来石纤维。
根据本公开的实施例,在上述莫来石前驱体中,硅源与铝源的摩尔比可以为1:(3~4),例如1:3、1:3.3、1:3.5、1:3.8、1:4等。如果铝源的用量过低,则通过热处理无法得到莫来石纤维,如铝源的用量过高,则也无法得到莫来石纤维。
根据本公开的实施例,上述催化剂可以包括选自磷酸、硫酸、盐酸、硝酸、甲酸、醋酸、氢氟酸、高氯酸、三氟乙酸、柠檬酸、硼酸、草酸和马来酸中的至少之一。在上述催化剂的作用下,硅源与铝源可以形成高品质的莫来石,进而通过溶液喷射纺丝获得高品质的莫来石纤维。另外,上述催化剂均可采用市售的常规产品,不必对其浓度进行调整。
根据本公开的实施例,上述莫来石前驱体、催化剂、聚合物溶液的质量比可以为(5~150):(0.01~5):(102~130)。具体的,莫来石前驱体的质量份可以为5、20、40、80、120、150等,催化剂的质量份可以为0.01、0.05、0.1、1、3、5等,聚合物溶液的质量份可以为102、105、110、120、130等。如果莫来石前驱体的用量过低,则得到的莫来石纤维量小,产率低,如果莫来石前驱体的用量过高,则纺丝效果变差。
S300:溶液喷射纺丝处理
该步骤中,对纺丝前驱体溶液进行溶液喷射纺丝处理,得到含有聚合物材料、莫来石前驱体和催化剂的复合纤维气凝胶材料。
根据本公开的实施例,上述溶液喷射纺丝处理包括:利用压缩空气将纺丝前驱体溶液从溶液喷射纺丝设备的喷丝口喷出,使得到的纤维沉积在接收装置上;其中,纺丝前驱体溶液的挤出速度可以为0.5~12mL/h(例如0.5mL/h、1mL/h、3mL/h、6mL/h、9mL/h、12mL/h等),喷丝口与接收装置之间的距离可以为20~100cm(例如20cm、30cm、60cm、80cm、100cm等),压缩空气的气流流速可以为1~50m/s(例如1m/s、5m/s、10m/s、20m/s、30m/s、40m/s、50m/s等。通过在以上条件下利用纺丝前驱体溶液进行溶液喷射纺丝,获得的复合纤维气凝胶材料中的莫来石纤维的直径可控,制备得到的柔性莫来石纤维气凝胶材料性能更佳。另外,需要说明的是,上述溶液喷射纺丝设备的具体种类并不受特别限制,可以采用本领域常见的喷射纺丝设备。
根据本公开的实施例,上述接收装置的具体种类并不受特别限制,例如可以为有孔的金属网、塑料网和无纺布中的一种或多种的组合。
S400:热处理
该步骤中,对上述复合纤维气凝胶材料进行热处理,得到柔性莫来石纤维气凝胶材料。
根据本公开的实施例,上述热处理包括:以0.1~5℃/min的升温速度将所述复合纤维气凝胶材料升温至900~1800℃,保温0~24h,然后降温至室温(约20~25℃)。具体的,升温速度可以为0.1℃/min、1℃/min、3℃/min、5℃/min等,热处理温度可以为900℃、1200℃、1500℃、1800℃等,保温时间可以为0h、1h、6h、12h、24h等。通过在上述条件下对含有聚合物材料、莫来石前驱体和催化剂的复合纤维气凝胶材料进行热处理,聚合物材料会被分解成二氧化碳、水等小分子,进而将聚合物材料除去,得到莫来石纤维气凝胶材料,使得莫来石纤维气凝胶材料具有优异的耐火性能、良好的耐高低温性能和热绝缘性能。
在本公开的另一方面,本公开提出了一种柔性莫来石纤维气凝胶材料。根据本公开的实施例,该柔性莫来石纤维气凝胶材料是由上述实施例的制备柔性莫来石纤维气凝胶的方法制备得到的。由此,该柔性莫来石纤维气凝胶材料具有良好的柔韧性、可压缩性、耐火性、耐高低温性(材料在-196℃和1300℃的条件下仍具有良好的柔韧性和可压缩性)和隔热保温性能(热导率低至0.029W·m -1·K -1),并且不存在粉化的问题,在防火服、航空航天、高温工业窑炉、建筑保温、高温空气过滤、催化剂载体等领域具有良好的工业化应用前景。
根据本公开的实施例,上述柔性莫来石纤维气凝胶材料的体积密度可以为2~150mg/cm 3,例如2mg/cm 3、10mg/cm 3、20mg/cm 3、40mg/cm 3、60mg/cm 3、80mg/cm 3、100mg/cm 3、120mg/cm 3、150mg/cm 3等。
根据本公开的实施例,上述柔性莫来石纤维气凝胶材料中莫来石纤维的平均直径可以为0.1~5μm,例如0.1μm、0.5μm、1μm、2μm、3μm、5μm等。
另外,需要说明的是,前文针对“制备柔性莫来石纤维气凝胶材料的方法”所描述的全部特征和优点同样适用于该“柔性莫来石纤维气凝胶材料”,在此不再一一赘述。
下面参考具体实施例,对本公开进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本公开。
实施例1
按照以下方法制备柔性莫来石纤维气凝胶材料:
(1)聚合物溶液配制:将15g聚氧化乙烯添加到100g去离子水中,在室温条件(约25℃)下以800rpm的转速搅拌溶解4h,得到聚合物材料与溶剂质量比为15:100的聚氧化乙烯溶液;
(2)纺丝前驱体溶液配制:将43g异丙醇铝、36g硝酸铝、21g正硅酸乙酯和0.2g磷酸添加到上述聚氧化乙烯溶液中,通过搅拌得到具有一定粘度的纺丝前驱体混合溶液;
(3)溶液喷射纺丝:采用溶液喷射纺丝法用流速为15m·s -1的压缩空气将纺丝前驱体溶液以5mL·h -1的速度从喷丝口喷出,得到的纤维沉积在距离喷丝口80cm的金属网接收装置上,得到复合纤维气凝胶;
(4)热处理:将得到的复合纤维气凝胶以1℃/min的速度从室温升高到1100℃,保温1h,降至室温后得到柔性莫来石纤维气凝胶材料。
所得柔性莫来石纤维气凝胶材料产品的体积密度为22mg·cm -3,室温热导率为0.032W·m -1·K -1,纤维的平均直径为0.6μm。
制备得到的柔性莫来石纤维气凝胶材料产品实物图如图2所示。对该产品进行SEM、XRD表征,结果分别如图3和图4所示。对该产品的柔性和压缩性进行测试,参考图5和6,在50%的应变条件下压缩10000个循环后,塑性变形只有约5%,产品压缩80%的应变并能够完全回复,最大压缩应变能够达到90%,表现出良好的抗压缩疲劳性能。
实施例2
按照以下方法制备柔性莫来石纤维气凝胶材料:
(1)聚合物溶液配制:将8g聚乙烯吡咯烷酮添加到100g去离子水中,在60℃条件下以800rpm的转速搅拌溶解0.5h,得到聚合物材料与溶剂质量比为8:100的聚乙烯吡咯烷酮溶液;
(2)纺丝前驱体溶液配制:将46g异丙醇铝、41g硝酸铝、23g正硅酸乙酯和0.2g磷酸添加到上述聚乙烯吡咯烷酮溶液中,通过搅拌得到具有一定粘度的纺丝前驱体混合溶液;
(3)溶液喷射纺丝:采用溶液喷射纺丝法用流速为15m·s -1的压缩空气将纺丝前驱体溶液以5mL·h -1的速度从喷丝口喷出,得到的纤维沉积在距离喷丝口80cm的金属网接收装置上,得到复合纤维气凝胶;
(4)热处理:将得到的复合纤维气凝胶以1℃/min的速度从室温升高到1100℃,保温1h,降至室温后得到柔性莫来石纤维气凝胶材料。
所得柔性莫来石纤维气凝胶材料产品的体积密度为19mg·cm -3,室温热导率为0.030 W·m -1·K -1,纤维的平均直径为0.7μm。
实施例3
按照以下方法制备柔性莫来石纤维气凝胶材料:
(1)聚合物溶液配制:将7g聚乙烯醇添加到100g去离子水中,在90℃条件下以800rpm的转速搅拌溶解1h,得到聚合物材料与溶剂质量比为7:100的聚乙烯醇溶液;
(2)纺丝前驱体溶液配制:将36g异丙醇铝、32g硝酸铝、18g正硅酸乙酯和0.2g磷酸添加到上述聚乙烯醇溶液中,通过搅拌得到具有一定粘度的纺丝前驱体混合溶液;
(3)溶液喷射纺丝:采用溶液喷射纺丝法用流速为15m·s -1的压缩空气将纺丝前驱体溶液以5mL·h -1的速度从喷丝口喷出,得到的纤维沉积在距离喷丝口80cm的金属网接收装置上,得到复合纤维气凝胶;
(4)热处理:将得到的复合纤维气凝胶以0.5℃/min的速度从室温升高到1000℃,保温1h,降至室温后得到柔性莫来石纤维气凝胶材料。
所得柔性莫来石纤维气凝胶材料产品的体积密度为20mg·cm -3,室温热导率为0.031W·m -1·K -1,纤维的平均直径为0.8μm。
实施例4
按照以下方法制备柔性莫来石纤维气凝胶材料:
(1)聚合物溶液配制:将4g聚氧化乙烯和3g聚乙烯醇添加到100g去离子水中,在90℃条件下以800rpm的转速搅拌溶解0.5h,得到聚合物材料与溶剂质量比为7:100的聚合物溶液;
(2)纺丝前驱体溶液配制:将35g异丙醇铝、40g硝酸铝、19g正硅酸乙酯和0.2g磷酸添加到上述聚合物溶液中,通过搅拌得到具有一定粘度的纺丝前驱体混合溶液;
(3)溶液喷射纺丝:采用溶液喷射纺丝法用流速为15m·s -1的压缩空气将纺丝前驱体溶液以5mL·h -1的速度从喷丝口喷出,得到的纤维沉积在距离喷丝口80cm的金属网接收装置上,得到复合纤维气凝胶;
(4)热处理:将得到的复合纤维气凝胶以1℃/min的速度从室温升高到1200℃,保温1h,降至室温后得到柔性莫来石纤维气凝胶材料。
所得柔性莫来石纤维气凝胶材料产品的体积密度为18mg·cm -3,室温热导率为0.029W·m -1·K -1,纤维的平均直径为0.7μm。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、 或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (14)

  1. 一种制备柔性莫来石纤维气凝胶材料的方法,其特征在于,包括:
    (1)将聚合物材料与溶剂混合,得到聚合物溶液;
    (2)将所述聚合物溶液与莫来石前驱体和催化剂混合,得到纺丝前驱体溶液;
    (3)对所述纺丝前驱体溶液进行溶液喷射纺丝处理,得到含有聚合物材料、莫来石前驱体和催化剂的复合纤维气凝胶材料;
    (4)对所述复合纤维气凝胶材料进行热处理,得到所述柔性莫来石纤维气凝胶材料。
  2. 根据权利要求1所述的方法,其特征在于,所述聚合物材料包括选自聚乙烯醇、聚氧化乙烯、聚丙烯腈、聚氯乙烯、聚乙二醇、聚氨酯、聚丙烯酸、聚乙烯吡咯烷酮、醋酸纤维素、甲基纤维素、羧甲基纤维素、聚偏氟乙烯、聚甲基丙烯酸甲酯、聚丙烯酰胺、聚乳酸、聚酰胺、聚己内酯、聚乙烯醇缩丁醛、聚苯胺、聚酰亚胺和聚碳酸酯中的至少之一。
  3. 根据权利要求1或2所述的方法,其特征在于,所述溶剂包括选自水、甲酸、四氢呋喃、丙酮、丁酮、正己烷、环己烷、正庚烷、乙腈、N-甲基吡咯烷酮、1,2-丙二醇、氯仿、二氯甲烷、1,2-二氯乙烷、甲醇、乙醇、异丙醇、叔丁醇、正丁醇、甲苯、二甲苯、乙二胺、二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺和四氯化碳中的至少之一。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述聚合物材料与所述溶剂的质量比为(2~30):100。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,步骤(1)中,所述混合在20~100℃的温度、50~1000rpm的搅拌转速下进行0.2~10h完成。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,所述莫来石前驱体包括硅源和铝源,所述硅源包括选自正硅酸乙酯、正硅酸甲酯中的至少之一,所述铝源包括选自硝酸铝、硫酸铝、乙酸铝、异丙醇铝、氯化铝、乙酰丙酮铝中的至少之一。
  7. 根据权利要求1~6任一项所述的方法,其特征在于,所述莫来石前驱体中,所述硅源与所述铝源的摩尔比为1:(3~4)。
  8. 根据权利要求1~7任一项所述的方法,其特征在于,所述催化剂包括选自磷酸、硫酸、盐酸、硝酸、甲酸、醋酸、氢氟酸、高氯酸、三氟乙酸、柠檬酸、硼酸、草酸和马来酸中的至少之一。
  9. 根据权利要求1~8任一项所述的方法,其特征在于,所述莫来石前驱体、所述催化剂、所述聚合物溶液的质量比为(5~150):(0.01~5):(102~130)。
  10. 根据权利要求1~9任一项所述的方法,其特征在于,所述溶液喷射纺丝处理包括:利用压缩空气将所述纺丝前驱体溶液从溶液喷射纺丝设备的喷丝口喷出,使得到的纤维沉积在接收装置上;其中,所述纺丝前驱体溶液的挤出速度为0.5~12mL/h,所述喷丝口与所述接收装置之间的距离为20~100cm,所述压缩空气的气流流速为1~50m/s。
  11. 根据权利要求1~10任一项所述的方法,其特征在于,所述热处理包括:以0.1~5℃/min的升温速度将所述复合纤维气凝胶材料升温至900~1800℃,保温0~24h,然后降温至20~25℃。
  12. 一种柔性莫来石纤维气凝胶材料,其特征在于,所述柔性莫来石纤维气凝胶材料是由权利要求1~11任一项所述的方法制备得到的。
  13. 根据权利要求12所述的柔性莫来石纤维气凝胶材料,其特征在于,所述柔性莫来石纤维气凝胶材料的体积密度为2~150mg/cm 3
  14. 根据权利要求12或13所述的方法,其特征在于,所述柔性莫来石纤维气凝胶材料中莫来石纤维的平均直径为0.1~5μm。
PCT/CN2020/116684 2019-10-09 2020-09-22 柔性莫来石纤维气凝胶材料及其制备方法 WO2021068737A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910954101.5 2019-10-09
CN201910954101.5A CN110846741B (zh) 2019-10-09 2019-10-09 柔性莫来石纤维气凝胶材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2021068737A1 true WO2021068737A1 (zh) 2021-04-15

Family

ID=69596498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116684 WO2021068737A1 (zh) 2019-10-09 2020-09-22 柔性莫来石纤维气凝胶材料及其制备方法

Country Status (2)

Country Link
CN (1) CN110846741B (zh)
WO (1) WO2021068737A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110846741B (zh) * 2019-10-09 2020-10-23 清华大学 柔性莫来石纤维气凝胶材料及其制备方法
CN111235644B (zh) * 2020-03-18 2022-03-04 山东鲁阳浩特高技术纤维有限公司 一种用于制备莫来石纤维的纺丝原液及其应用
CN111646816A (zh) * 2020-05-11 2020-09-11 昆山柔维环境科技有限公司 一种氧化锆-氧化铝复合纤维气凝胶材料及其制备方法
CN112635731B (zh) * 2020-12-17 2021-11-02 浙江锂宸新材料科技有限公司 一种基于导电碳气凝胶复合纳米硅负极材料的制备方法及其产品
CN113149616A (zh) * 2021-02-03 2021-07-23 清华大学深圳国际研究生院 一种中空陶瓷微纳米纤维及其制备方法和隔热保温材料
CN113648940B (zh) * 2021-09-23 2023-05-05 航天特种材料及工艺技术研究所 一种超轻质高弹性抗辐射纳米纤维气凝胶材料及其制备方法
CN113896536B (zh) * 2021-10-27 2023-03-21 武汉纺织大学 一种Si-Zr-O-C基陶瓷纤维材料的制备方法、产品及应用
CN114214756A (zh) * 2022-01-11 2022-03-22 惠通北工生物科技(北京)有限公司 一种聚乳酸气凝胶复合功能性纤维的制备方法
CN114377187B (zh) * 2022-01-24 2022-12-20 石家庄铁道大学 一种弹性气凝胶及其制备方法
CN114751738B (zh) * 2022-03-08 2023-05-02 东华大学 一种带状陶瓷纤维及其制备方法与应用
CN114975921A (zh) * 2022-05-13 2022-08-30 武汉科技大学 碳包覆一维柔性钨铌三元氮化物材料及其制备方法以及在锂硫电池中的应用
CN115259845A (zh) * 2022-06-27 2022-11-01 东华大学 一种柔性连续莫来石长丝的制备方法
CN115417620B (zh) * 2022-08-24 2023-09-15 南通大学 一种连续SiO2气凝胶复合纤维及其制备方法与应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416506A (ja) * 1990-05-07 1992-01-21 Natl Inst For Res In Inorg Mater ムライト繊維又は膜状物の製造法
WO1992009541A1 (en) * 1990-12-03 1992-06-11 Manville Corporation Method of producing mullite materials
CN103225130A (zh) * 2012-12-30 2013-07-31 河北联合大学 非水解溶胶-凝胶法结合静电纺丝制备莫来石纳米纤维的方法
CN104073918A (zh) * 2014-07-01 2014-10-01 华东理工大学 一种低温条件下合成多晶莫来石纤维的方法
CN104086200A (zh) * 2014-07-22 2014-10-08 南京理工大学 一种莫来石纤维的制备方法
CN109851336A (zh) * 2019-01-23 2019-06-07 中南大学 一种高模量致密连续莫来石纳米陶瓷纤维及其制备方法
CN110143827A (zh) * 2019-06-28 2019-08-20 东北大学 一种超轻弹性无机氧化物纤维气凝胶及其制备方法
CN110170282A (zh) * 2019-05-07 2019-08-27 清华大学 一种各向异性层状无机纤维气凝胶材料及其制备方法
CN110184683A (zh) * 2019-05-07 2019-08-30 清华大学 一种各向异性层状碳纤维基气凝胶材料及其制备方法
CN110846741A (zh) * 2019-10-09 2020-02-28 清华大学 柔性莫来石纤维气凝胶材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW591147B (en) * 2001-07-23 2004-06-11 Mitsubishi Kagaku Sanshi Corp Alumina fiber aggregate and its production method
CN110078425B (zh) * 2019-05-13 2021-07-13 天津大学 一种轻质隔热的莫来石纳米纤维气凝胶的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416506A (ja) * 1990-05-07 1992-01-21 Natl Inst For Res In Inorg Mater ムライト繊維又は膜状物の製造法
WO1992009541A1 (en) * 1990-12-03 1992-06-11 Manville Corporation Method of producing mullite materials
CN103225130A (zh) * 2012-12-30 2013-07-31 河北联合大学 非水解溶胶-凝胶法结合静电纺丝制备莫来石纳米纤维的方法
CN104073918A (zh) * 2014-07-01 2014-10-01 华东理工大学 一种低温条件下合成多晶莫来石纤维的方法
CN104086200A (zh) * 2014-07-22 2014-10-08 南京理工大学 一种莫来石纤维的制备方法
CN109851336A (zh) * 2019-01-23 2019-06-07 中南大学 一种高模量致密连续莫来石纳米陶瓷纤维及其制备方法
CN110170282A (zh) * 2019-05-07 2019-08-27 清华大学 一种各向异性层状无机纤维气凝胶材料及其制备方法
CN110184683A (zh) * 2019-05-07 2019-08-30 清华大学 一种各向异性层状碳纤维基气凝胶材料及其制备方法
CN110143827A (zh) * 2019-06-28 2019-08-20 东北大学 一种超轻弹性无机氧化物纤维气凝胶及其制备方法
CN110846741A (zh) * 2019-10-09 2020-02-28 清华大学 柔性莫来石纤维气凝胶材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FARIAS ROSIANE MARIA DA COSTA; MENEZES ROMUALDO RODRIGUES; OLIVEIRA JULIANO ELVIS; DE MEDEIROS ELITON SOUTO: "Production of submicrometric fibers of mullite by solution blow spinning (SBS)", MATERIALS LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 149, 1 January 1900 (1900-01-01), AMSTERDAM, NL, pages 47 - 49, XP029150502, ISSN: 0167-577X, DOI: 10.1016/j.matlet.2015.02.111 *

Also Published As

Publication number Publication date
CN110846741B (zh) 2020-10-23
CN110846741A (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
WO2021068737A1 (zh) 柔性莫来石纤维气凝胶材料及其制备方法
CN110170282B (zh) 一种各向异性层状无机纤维气凝胶材料及其制备方法
Liu et al. Ultralight, thermal insulating, and high-temperature-resistant mullite-based nanofibrous aerogels
Jia et al. Flexible ceramic fibers: Recent development in preparation and application
CN107653518B (zh) 一种高取向度连续超细/纳米氧化铝基陶瓷纤维束材料及其制备方法
CN106930004B (zh) 静电纺丝制备柔性碳化硅/碳纳米管复合纤维膜的方法
CN103966701B (zh) 一种多孔碳化硅纳米纤维的制备方法
CN110184683B (zh) 一种各向异性层状碳纤维基气凝胶材料及其制备方法
CN110424067A (zh) 一种柔性二氧化硅纤维气凝胶材料及其制备方法
CN102352548A (zh) 一种静电纺丝制备SiC/C纳米纤维膜的方法
CN102943319A (zh) 一种碳化硅先驱体复合纤维的制备方法
CN109023590A (zh) 一种碳化硅中空纤维及其制备方法
CN104988658A (zh) 一种SiC纳米纤维非织造材料的制备方法
CN115124363B (zh) 一种耐高温超轻质陶瓷纤维多孔弹性体材料及其制备方法和应用
CN113663611A (zh) 一种耐高温复合纳米纤维气凝胶材料及其制备方法
CN113831581A (zh) 一种高弹性抗辐射纳米纤维气凝胶材料及其制备方法
KR100895631B1 (ko) 전기방사를 이용한 폴리카르보실란계 고분자 섬유의제조방법
Zhu et al. Low-cost and temperature-resistant mullite fiber sponges with superior thermal insulation and high-temperature PM filtration
CN110611965A (zh) 一种远红外辐射发热织物及其制备方法
CN107955998B (zh) 一种轻质高柔莫来石超细/纳米陶瓷纤维及其制备方法
CN101428813A (zh) 一种超细氮化硼连续纳米纤维的制备方法
CN106757483A (zh) 一种静电纺制备的驻极聚醚酰亚胺‑勃姆石复合纤维过滤材料及其制备方法
CN110983620B (zh) 一种柔性碳化硅纳米纤维/碳纳米纤维复合毡材料及其制备方法
CN112779631A (zh) 柔性碳化硅纤维及其制备方法
CN107217334B (zh) 碳纳米纤维及其制备方法和器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20874992

Country of ref document: EP

Kind code of ref document: A1