CN110078425B - 一种轻质隔热的莫来石纳米纤维气凝胶的制备方法 - Google Patents

一种轻质隔热的莫来石纳米纤维气凝胶的制备方法 Download PDF

Info

Publication number
CN110078425B
CN110078425B CN201910393603.5A CN201910393603A CN110078425B CN 110078425 B CN110078425 B CN 110078425B CN 201910393603 A CN201910393603 A CN 201910393603A CN 110078425 B CN110078425 B CN 110078425B
Authority
CN
China
Prior art keywords
mullite
preparation
nanofiber aerogel
nanofiber
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910393603.5A
Other languages
English (en)
Other versions
CN110078425A (zh
Inventor
郭安然
张莹
刘瑞丽
刘家臣
杜海燕
关星宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201910393603.5A priority Critical patent/CN110078425B/zh
Publication of CN110078425A publication Critical patent/CN110078425A/zh
Application granted granted Critical
Publication of CN110078425B publication Critical patent/CN110078425B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • C04B35/803
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Fibers (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

本发明提供一种超低固相含量的轻质隔热的莫来石纳米纤维气凝胶的制备方法,将纳米莫来石纤维膜分散获得莫来石单根纤维;将硅溶胶和丙烯酰胺体系凝胶注模预混液与分散好的莫来石单根纤维混合并制成凝胶;将凝胶经冷冻干燥制得气凝胶坯体,最后经高温煅烧获得莫来石纳米纤维气凝胶产品。本发明的产品轻质,高气孔率,热导率低,提供了可在1300℃使用的纳米纤维气凝胶的制备方法。

Description

一种轻质隔热的莫来石纳米纤维气凝胶的制备方法
技术领域
本发明涉及轻质隔热莫来石气凝胶的制备,具体涉及一种轻质隔热的莫来石纳米纤维气凝胶的制备方法,属于纳米纤维气凝胶制备技术领域。
背景技术
以超微颗粒相互聚集构成多孔网络结构的气凝胶,具有极低的密度和热导率,在各类飞行器、导弹的隔热系统及化工冶金行业热工设备的保温系统中起着至关重要的作用。但由于纳米颗粒的活性过高,气凝胶在高温时会发生结构性坍塌,其有效使用温度一般都在1200℃以下。随着飞行器和热工设备朝着轻质化、高效化和节能化的方向发展,特别是高马赫数、长航时、可反复往返大气层的空天战机逐渐成为各国军事竞争的焦点,研发可在1300℃以上有氧环境中长时间使用的超轻隔热气凝胶材料已成为高温隔热领域一项亟待解决的科学难题。
为解决这一问题,新型气凝胶—纤维气凝胶出现了。纤维气凝胶是指由纤维相互搭接成的具有三维网络结构的多孔固体材料。这种纤维气凝胶通常具有微米级孔隙结构,虽然不同于纳米颗粒气凝胶的纳米孔结构,但纤维气凝胶依然有极低的密度、极低的热导率和较高的孔隙率。与常规气凝胶不同的是,为达到纳米纤维气凝胶的高气孔率和低密度,通常浆料有较低的固相含量(纤维加入量在1wt%-5wt%)。在烧结过程中由于其低固相含量,如选择常规的凝胶注模等成型方法,样品会发生开裂。冷冻干燥可将含水物料冷冻到冰点以下,使水转变为冰,然后在较高真空下将冰转变为蒸气而除去。这一干燥方法使得坯体的收缩小,适用于制备轻质,高孔隙,低固相含量的样品。但冷冻干燥冰晶升华产生的宏孔不利于隔热性能提高。
发明内容
本发明的目的在于提供一种轻质,高气孔率,热导率低,可在1300℃以上使用的纳米纤维气凝胶的制备方法。
本发明轻质隔热的莫来石纳米纤维气凝胶的制备方法,包括下述步骤:
(1)将莫来石纳米纤维膜分散获得莫来石单根纤维;
(2)配置硅溶胶,并配置丙烯酰胺体系预混液;
(3)将硅溶胶与预混液和分散好的莫来石单根纤维混合,加入过硫酸铵水溶液与四甲基乙二胺,保温制成凝胶;
(4)将凝胶冷冻干燥获得莫来石纳米纤维气凝胶坯体,经高温煅烧获得莫来石纳米纤维气凝胶产品。
其中,所述步骤(1)中莫来石纤维膜可以市购,莫来石纳米纤维膜中纤维的直径在200~800nm。莫来石纳米纤维膜分散过程包括:将纤维膜剪切为5mm2~25mm2的小块,用分散器以2800r/min~8000r/min分散5~10min,分散溶剂为无水乙醇,分散后烘干可以获得莫来石单根纤维。
其中,所述步骤(2)硅溶胶的配置过程包括:正硅酸乙酯:水:乙醇:稀硝酸(0.1mol/L)=5:2:2.85:0.15,搅拌至溶液澄清透明后制得50%wt的硅溶胶,之后将其稀释为2wt%的硅溶胶;配置丙烯酰胺预混液的各原料质量比为水:丙烯酰胺:N,N-亚甲基双丙烯酰胺=100:5:0.25。
其中,所述步骤(3)中气凝胶的凝胶注模过程包括:过硫酸铵水溶液为10wt%,四甲基乙二胺水溶液为10wt%,各原料质量比为凝胶注模预混液:硅溶胶:纤维:过硫酸铵水溶液:四甲基乙二胺水溶液=20:1:(0.2-1):0.3:0.1,加入引发剂过硫酸铵后搅拌使其均匀分布,最后加入四甲基乙二胺作为凝胶注模中的催化剂,密封后静置,50℃下保温20min使其凝胶。
其中,所述步骤(4)中冷冻干燥的冷冻温度为-80℃,时间24h,干燥温度-40℃,干燥24h。
其中,所述步骤(4)中高温煅烧温度为为1200℃~1400℃,升温速率2~5℃/min,保温1~3h。
其中,所述步骤(1)中莫来石单根纤维中氧化铝与二氧化硅的摩尔比为3:1。
本案采用凝胶注模-冷冻干燥工艺,首先对纤维浆料进行凝胶注模反应,当坯体内部形成湿凝胶后,再将坯体进行冷冻干燥以排除坯体内部的残留溶剂。其中,先进行的凝胶注模工艺可在坯体内部形成有机网络结构,这种网络结构对纤维的迁移有一定的束缚作用。当进行冷冻干燥时,残留在坯体内部的溶剂变成冰晶并不断长大,由于有机网络的束缚,冰晶的生长以及其对纤维的推动作用都受到了限制,从而可防止内部形成竖直的通孔。通过控制莫来石纤维以及硅溶胶的用量比,使得硅溶胶在莫来石纤维之间实现均匀搭接并形成一定的微孔气孔,本案硅溶胶和预混液体系的双重控制还能够避免对莫来石纤维进行团聚包覆,有效提高了莫来石纤维网络的稳定性。使得莫来石纳米纤维制得的气凝胶,具有较高的气孔率和极低的热导率。其微观形貌好,具有多级孔结构,其中宏孔主要由冰晶升华产生,微孔为纳米纤维搭接而成。并且能够在1300℃的有氧环境中长时间使用,气孔率和热导率基本不发生变化。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1:莫来石纳米纤维气凝胶密度与气孔率图。
图2:莫来石纳米纤维气凝胶热导率图。
图3:莫来石纳米纤维气凝胶冷冻干燥后坯体SEM。
图4:莫来石纳米纤维气凝胶在1400℃烧结后的SEM。
图5:本发明方法获得的莫来石纳米纤维气凝胶实物图。
具体实施方式
为了更好的理解本发明,下面结合附图对本发明进行进一步详述。在不冲突的情况下,案例中的特征可以相互组合。以下实施例中所使用的原料均为市售的分析纯原料。
实施例1
(1)将莫来石纳米纤维膜用剪子剪为10mm2大小,称取0.2g纤维膜加入到50ml乙醇中,用高速分散机以3000r/min分散5min,将其上面的悬浮液取出烘干得到单根纤维。
(2)称取5g正硅酸乙酯,3g乙醇,2g去离子水,向其中滴入3滴0.1mol/L的稀硝酸,磁力搅拌使溶液澄清透明得到50wt%硅溶胶;称取0.08g硅溶胶到模具中,加入1.92g水,0.1g丙烯酰胺,0.005gN-N亚甲基双丙烯酰胺,充分搅拌使其溶解。
(3)向模具中加入0.05g纤维,搅拌使其均匀分散,以此加入3滴过硫酸铵水溶液,1滴四甲基乙二胺水溶液,密封后在50℃下保温20min,使其凝胶。
(4)将凝胶后的样品放入超低温冷冻箱在-80℃冷冻24h,取出在冷冻干燥机中干燥24h,得到莫来石纳米纤维气凝胶坯体。然后将坯体以2℃/min的速率升温至1400℃,并保温2h,得到热导率0.0435W/m·K的莫来石纳米纤维气凝胶。
实施例2
(1)将莫来石纳米纤维膜用剪子剪为10mm2大小,称取0.2g纤维膜加入到50ml乙醇中,用高速分散机以3000r/min分散5min,将其上面的悬浮液取出烘干得到单根纤维。
(2)称取5g正硅酸乙酯,3g乙醇,2g去离子水,向其中滴入3滴0.1mol/L的稀硝酸,磁力搅拌使溶液澄清透明得到50wt%硅溶胶;称取0.08g硅溶胶到模具中,加入1.92g水,0.1g丙烯酰胺,0.005gN-N亚甲基双丙烯酰胺,充分搅拌使其溶解。
(3)向模具中加入0.05g纤维,搅拌使其均匀分散,以此加入3滴过硫酸铵水溶液,1滴四甲基乙二胺水溶液,密封后在50℃下保温20min,使其凝胶。
(4)将凝胶后的样品放入超低温冷冻箱在-80℃冷冻24h,取出在冷冻干燥机中干燥24h,得到莫来石纳米纤维气凝胶坯体。然后将坯体以2℃/min的速率升温至1200℃,并保温2h,得到热导率0.0375W/m·K的莫来石纳米纤维气凝胶。
将制得的莫来石纳米纤维气凝胶在空气中1300℃下保温24h,取出降温后进行性能测试。图1显示了不同氧化铝与二氧化硅比的莫来石纤维气凝胶密度与气孔率,可见具有通常铝硅比的莫来石纤维均能够达到轻质、多孔的气凝胶材料,其中,莫来石纤维中氧化铝与二氧化硅以3:1为佳。
图2显示了莫来石纤维热导率,可以看出本发明产品在高温有氧环境下仍然维持较高的气孔率和极低的热导率。莫来石纤维中铝硅比越高获得的热导率越高,但从莫来石纤维自身的稳定性出发,氧化铝与二氧化硅仍然以3:1为佳。
图3可以看出纤维之间由硅溶胶搭接在一起。图4的SEM可以看出,莫来石纤维在高温隔热的同时,形成的骨架还能起到良好的支撑作用,防止产品在高温下发生塌陷,产品中存在由冰晶升华得到的数十微米的宏孔以及纤维搭接的几微米的细孔,对高温环境下热导率率的性能的发挥起到了重要作用。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种轻质隔热的莫来石纳米纤维气凝胶的制备方法,包括下述步骤:
(1)将莫来石纳米纤维膜分散获得莫来石单根纤维;
(2)配置硅溶胶,并配置丙烯酰胺体系预混液;
(3)将硅溶胶与预混液和分散好的莫来石单根纤维混合,加入过硫酸铵水溶液与四甲基乙二胺,保温制成凝胶;
(4)将凝胶冷冻干燥获得莫来石纳米纤维气凝胶坯体,经高温煅烧获得莫来石纳米纤维气凝胶产品。
2.根据权利要求1所述的轻质隔热的莫来石纳米纤维气凝胶的制备方法,其特征在于,所述步骤(1)莫来石纳米纤维膜中纤维的直径在200~800nm。
3.根据权利要求1所述的轻质隔热的莫来石纳米纤维气凝胶的制备方法,其特征在于,所述步骤(1)的分散过程包括:将纤维膜剪切为5mm2~25mm2的小块,用分散器以2800r/min~8000r/min分散5~10min,分散溶剂为无水乙醇,分散后烘干可以获得莫来石单根纤维。
4.根据权利要求1所述的轻质隔热的莫来石纳米纤维气凝胶的制备方法,其特征在于,所述步骤(2)硅溶胶的配置过程包括:正硅酸乙酯:水:乙醇:稀硝酸(0.1mol/L)=5:2:2.85:0.15,搅拌至溶液澄清透明后制得50%wt的硅溶胶。
5.根据权利要求1所述的轻质隔热的莫来石纳米纤维气凝胶的制备方法,其特征在于,所述步骤(2)中配置丙烯酰胺预混液的各原料质量比为水:丙烯酰胺:N,N-亚甲基双丙烯酰胺=100:5:0.25。
6.根据权利要求1所述的轻质隔热的莫来石纳米纤维气凝胶的制备方法,其特征在于,所述步骤(3)中过硫酸铵水溶液为10wt%,四甲基乙二胺水溶液为10wt%,各原料质量比为凝胶注模预混液:硅溶胶:纤维:过硫酸铵水溶液:四甲基乙二胺水溶液=20:1:(0.2-1):0.3:0.1;凝胶过程在50℃下保温20min的条件下进行。
7.根据权利要求6所述的轻质隔热的莫来石纳米纤维气凝胶的制备方法,其特征在于,纤维添加量为0.4。
8.根据权利要求1所述的轻质隔热的莫来石纳米纤维气凝胶的制备方法,其特征在于,所述步骤(4)中冷冻干燥的冷冻温度为-80℃,时间24h,干燥温度-40℃,干燥24h。
9.根据权利要求1所述的轻质隔热的莫来石纳米纤维气凝胶的制备方法,其特征在于,所述步骤(4)中高温煅烧温度为1200℃~1400℃,升温速率2~5℃/min,保温1~3h。
10.根据权利要求1所述的轻质隔热的莫来石纳米纤维气凝胶的制备方法,其特征在于,所述莫来石单根纤维中氧化铝与二氧化硅的摩尔比为3:1。
CN201910393603.5A 2019-05-13 2019-05-13 一种轻质隔热的莫来石纳米纤维气凝胶的制备方法 Active CN110078425B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910393603.5A CN110078425B (zh) 2019-05-13 2019-05-13 一种轻质隔热的莫来石纳米纤维气凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910393603.5A CN110078425B (zh) 2019-05-13 2019-05-13 一种轻质隔热的莫来石纳米纤维气凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN110078425A CN110078425A (zh) 2019-08-02
CN110078425B true CN110078425B (zh) 2021-07-13

Family

ID=67419751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910393603.5A Active CN110078425B (zh) 2019-05-13 2019-05-13 一种轻质隔热的莫来石纳米纤维气凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN110078425B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110846741B (zh) * 2019-10-09 2020-10-23 清华大学 柔性莫来石纤维气凝胶材料及其制备方法
CN111116221A (zh) * 2020-01-05 2020-05-08 天津大学 一种耐高温的莫来石纳米纤维气凝胶的制备方法
CN114870757B (zh) * 2022-06-02 2023-03-24 航天特种材料及工艺技术研究所 一种耐高温微纳米纤维复合气凝胶材料及其制备方法
CN117185793B (zh) * 2023-11-08 2024-01-02 天津南极星隔热材料有限公司 具有类松木结构的莫来石纳米纤维基多孔陶瓷的制备方法
CN117303927B (zh) * 2023-11-28 2024-03-01 上海南极星高科技股份有限公司 一种高强隔热的复合氧化铝纤维基多孔陶瓷的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101913835B (zh) * 2010-08-06 2012-12-26 华南理工大学 一种泡沫陶瓷增强纤维气凝胶隔热材料及其制备方法
CN106565224B (zh) * 2016-10-18 2019-04-26 深圳市华天启科技有限公司 一种莫来石纤维增强二氧化硅气凝胶的方法
CN108854872A (zh) * 2017-05-11 2018-11-23 北京化工大学 一种耐高温硅铝复合短切莫来石纤维气凝胶的制备方法

Also Published As

Publication number Publication date
CN110078425A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
CN110078425B (zh) 一种轻质隔热的莫来石纳米纤维气凝胶的制备方法
Hu et al. Control of pore channel size during freeze casting of porous YSZ ceramics with unidirectionally aligned channels using different freezing temperatures
CN108840656B (zh) 一种基于静电纺SiO2纳米纤维气凝胶隔热材料及其制备和应用
CN102584329B (zh) 一种高孔隙率多孔陶瓷的制备方法
Fukushima et al. Fabrication of highly porous silica thermal insulators prepared by gelation–freezing route
Jing et al. The controllable microstructure of porous Al2O3 ceramics prepared via a novel freeze casting route
CN101293783A (zh) 冷冻干燥法制备无机多孔复合材料的方法
CN111116221A (zh) 一种耐高温的莫来石纳米纤维气凝胶的制备方法
CN105237029B (zh) 碳化硅泡沫陶瓷及其制备方法
Liu et al. Fully interconnected porous Al2O3 scaffolds prepared by a fast cooling freeze casting method
CN112645729B (zh) 具有介孔结构的耐高温氧化锆复合隔热材料及其制备方法
Vijayan et al. A urea crystal templating method for the preparation of porous alumina ceramics with the aligned pores
CN111995422B (zh) 一种蜂窝状陶瓷材料的制备方法
CN105272223A (zh) 一种大尺寸氧化锆基隔热材料的制备方法
Xian et al. Microstructural evolution of mullite nanofibrous aerogels with different ice crystal growth inhibitors
CN104945005A (zh) 一种具有中心对称结构的多孔材料及其制备方法
CN101844934A (zh) 一种多孔Al2O3陶瓷的制备方法
CN104926355B (zh) 基于明胶溶液冷冻干燥技术制备定向多孔氮化硅陶瓷的方法
CN114394612B (zh) 一种耐高温、低密度氧化铝纳米棒气凝胶及其制备方法
CN112778017A (zh) 一种陶瓷纤维复合气凝胶隔热材料以及制备方法
Yang et al. Microtexture, microstructure evolution, and thermal insulation properties of Si 3 N 4/silica aerogel composites at high temperatures
CN102617182B (zh) 一种多级孔结构稀土锆酸盐多孔陶瓷及其制备方法
CN115894066B (zh) 一种高孔隙率多孔陶瓷材料及其制备方法和应用
CN110002863B (zh) 一种钇铝石榴石多孔陶瓷的制备方法
CN111908906A (zh) 一种高气孔率的具有定向孔结构的多孔熔融石英及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant