WO2021068273A1 - 以砂纸表面微结构为模板的电容式应变传感器制作方法 - Google Patents

以砂纸表面微结构为模板的电容式应变传感器制作方法 Download PDF

Info

Publication number
WO2021068273A1
WO2021068273A1 PCT/CN2019/111383 CN2019111383W WO2021068273A1 WO 2021068273 A1 WO2021068273 A1 WO 2021068273A1 CN 2019111383 W CN2019111383 W CN 2019111383W WO 2021068273 A1 WO2021068273 A1 WO 2021068273A1
Authority
WO
WIPO (PCT)
Prior art keywords
sandpaper
polydimethylsiloxane
microstructure
strain sensor
capacitive strain
Prior art date
Application number
PCT/CN2019/111383
Other languages
English (en)
French (fr)
Inventor
陈达
刘金麟
王鸿飞
张小军
王鹏
王璟璟
张文斌
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2021068273A1 publication Critical patent/WO2021068273A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/22Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in capacitance

Definitions

  • the invention relates to the technical field of flexible strain sensors, in particular to a method for manufacturing a capacitive strain sensor using sandpaper surface microstructures as a template.
  • the flexible and stretchable flexible sensor can be well attached to human skin, joints, organs, inner walls of blood vessels and other parts for pulse, blood pressure, bone mechanics and physiological deformation. Detection provides valuable information for disease diagnosis and treatment. In addition, it has great application value in robot equipment such as manipulators and manipulator arms.
  • capacitive and resistive sensors are more suitable for applications in complex physiological environments due to their higher sensitivity and anti-interference.
  • how to design and manufacture a dielectric layer or a resistance layer with a micro-nano structure and reliably connect it with a metal electrode is a key technical issue for this type of sensor.
  • the invention patent with publication number CN106531733 A discloses a flexible pressure sensor and a preparation method thereof.
  • the specific steps include: the precursor solution of the flexible substrate is dropped on the surface of the plant leaf (or sandpaper), and the impression is cured to obtain the surface of the device with the convex microstructure; the carbon nanotube film extracted from the carbon nanotube array is spun on the copper foil On the surface of nickel foil, graphene is grown on the surface by chemical vapor deposition, and the generated graphene thin film sensitive layer is transferred to the flexible substrate; the upper flexible substrate and the lower flexible substrate are arranged face to face, and the upper flexible substrate is not crossed. The sensitive layer and the lower sensitive layer are in contact with each other through the protruding microstructure to achieve conduction.
  • the invention patent with publication number CN107664545A discloses a capacitive flexible pressure sensor using natural microstructure as a template.
  • the specific steps include: pouring polyurethane elastomer or cross-linked rubber on the surface of natural material as template (silicone rubber as template) to obtain a polyurethane elastomer substrate that replicates the microstructure; obtaining a polyurethane elastomer substrate
  • the upper and lower electrodes are obtained by spraying silver nanowires, and the middle interlayer is casted with elastic Ecoflex resin.
  • the main shortcomings of the existing technical solutions are: (1) Taking plant leaves or other natural materials as templates, different samples have great differences, and the manufactured sensors have low repeatability in size, strain tolerance range and sensitivity, and are not suitable for industrialization. (2) The cost of silicon-based microelectronics processing methods is relatively high, and the electrical connection between the electrodes using silver and carbon nanomaterials and the sensitive layer is unstable, and the electrode itself will change to a certain extent when subjected to force, which cannot be accurately measured. The stress distribution on the force surface. (3) The prior art has not yet provided an effective solution for manufacturing the sensor array.
  • the purpose of the present invention is to provide a method for manufacturing a capacitive strain sensor with simple process, low cost, and high reliability, specifically a capacitive strain sensor using sandpaper surface microstructure as a template Production Method.
  • a method for manufacturing a capacitive strain sensor using sandpaper surface microstructures as a template includes the following steps:
  • Step 1 Choose a hard substrate and clean the surface of the hard substrate
  • Step 2 Coating polyvinyl alcohol film on the hard substrate
  • Step 3 Coating the flexible base polydimethylsiloxane on the polyvinyl alcohol film, and conduct heating and low-temperature pretreatment on the side of the hard substrate to preliminarily cure the polydimethylsiloxane;
  • Step 4 Select the required type of sandpaper, clean the surface of the sandpaper, spray water or other release agents on the surface of the sandpaper to make the surface wet;
  • Step 5 Press the hard substrate coated with polydimethylsiloxane on the surface of the sandpaper, the polydimethylsiloxane side is attached to the surface of the sandpaper downward, and the roller is used to roll on the hard substrate, and at the same time Heat on the bottom side of the sandpaper to cure the polydimethylsiloxane again;
  • Step 6 stick a corner of the sandpaper on a corner of the roller, and pull the sandpaper from the surface of the polydimethylsiloxane by rolling the roller to obtain a polydimethylsiloxane with a micro-structured surface;
  • Step 7 Oxygen plasma treatment is performed on the surface of the polydimethylsiloxane microstructure
  • Step 8 selecting a polyimide film with electrodes made on the surface, and performing oxygen plasma treatment on the side with metal electrodes;
  • Step 9 bonding the polyimide film electrode to the surface of the microstructure, and the side with the metal electrode contacts the surface of the microstructure;
  • Step 10 Oxygen plasma etching is performed on the electrodeless side of the polyimide film
  • Step 11 separating the polydimethylsiloxane from the hard substrate in hot water to obtain a microstructure polydimethylsiloxane layer;
  • Step 12 Repeat steps 1 to 11 to obtain another microstructure layer
  • Step 13 Oxygen plasma treatment is performed on the plane side of the two microstructured polydimethylsiloxane layers, and they are aligned and laminated together, and a roller is used to roll on one side to obtain a capacitive strain sensor.
  • the hard substrate is a glass plate, a ceramic plate, a silicon wafer or a plastic plate.
  • the thickness of the polyvinyl alcohol film is 100 um to 200 um.
  • step 2 and step 3 the method of coating polyvinyl alcohol and polydimethylsiloxane includes spin coating, spray coating, brush coating and the like.
  • the thickness of the polydimethylsiloxane coating is 1-2.5 times the average size of the particle structure of the sandpaper selected subsequently.
  • step 3 the heating temperature on one side of the hard substrate is 40° C., and the heating time is 1 to 2 min.
  • step 4 the model number of the sandpaper is #600 to #180, and the surface particle size is 40um-140um.
  • step 5 the heating temperature on the bottom side of the sandpaper is 80° C., and the heating time is 30 min.
  • step 7 the processing power of the oxygen plasma treatment is 5-10 W/cm 2 , and the time is 10 min.
  • step 8 the power of the oxygen plasma treatment on the side of the metal electrode is 5-10 W/cm 2 , and the time is 10 min.
  • the thickness of the polyimide film is 20-50um; the thickness of the metal electrode made on the surface of the polyimide film is 200-500nm.
  • step 10 the power of oxygen plasma etching on the electrodeless side of the polyimide film is 30-60 W/cm 2 , and the time is 30 min.
  • step 11 the method of separating the polydimethylsiloxane from the hard substrate is specifically: soaking in hot water, lifting a polydimethylsiloxane film on one side or a corner, and sticking it on the roller On top, roll the roller along the plane of the base, pulling the polydimethylsiloxane film to peel off the hard substrate.
  • the sensitive layer and electrode structure on the hard substrate then separate it, which can obtain a lower sensor thickness, and has better flexibility, and it is easy to install the sensor on complex curved surfaces such as joints, skin, bones, etc.;
  • the mature flexible circuit board (FPCB) technology can be used to manufacture polyimide (PI) films with electrodes on the surface.
  • the electrode array is simple to prepare, has high repeatability, low resistance, and stable electrical connections in the stretched state;
  • Polyimide After the imide layer is etched, only the thinner metal electrode attached to the surface of the sensitive layer remains, and its microstructure has a more obvious effect;
  • the sensitive layer can realize the accumulation of multi-layer microstructures and increase the ability to withstand strain. , Improve sensitivity, suitable for wider detection range and application environment.
  • Figure 1 is a schematic diagram of the overall structure of a capacitive strain sensor with sandpaper surface microstructure (take #180 and #600 sandpaper as examples);
  • Figure 2 is a schematic diagram of the specific steps of making a capacitive strain sensor using the surface microstructure of sandpaper as a template;
  • Fig. 3 is an electron microscope photograph of the microstructure of polydimethylsiloxane obtained in Examples 1 to 4;
  • Figure 4 is a photomicrograph of the electrode array of the obtained capacitive strain sensor
  • Fig. 5 shows the capacitance change test results of the capacitive strain sensors obtained in Examples 1 to 4 to 1% strain.
  • 101 is a polydimethylsiloxane layer
  • 102 is a polydimethylsiloxane surface microstructure
  • 103 is an upper and lower electrode array
  • 201 is a glass plate
  • 202 is a polyvinyl alcohol film
  • 203 is a polydimethylsiloxane
  • 204 is sandpaper
  • 205 is a roller
  • 206 is a roller
  • 207 is a polyimide film
  • 208 is a metal electrode array.
  • the invention can be applied to manufacture capacitive strain sensors with sandpaper surface microstructures based on different sandpaper models.
  • Figure 1 shows the schematic diagrams of two typical capacitive strain sensors with sandpaper surface microstructures.
  • the rigid substrate is not limited to a glass plate, and can also be a ceramic plate, silicon wafer, or plastic plate.
  • the capacitive strain sensor to be manufactured has a sandwich structure, in which the material of the upper and lower electrodes 103 is gold with a thickness of 200 nm, the material of the dielectric layer is polydimethylsiloxane 101, and the thickness of a single layer is about 140 ⁇ m.
  • the manufacturing method includes the following steps:
  • Step 1 Use clean and dust-free glass plate 201 as a hard substrate, ultrasonically clean each in deionized water and absolute ethanol for 10 minutes, and then clean and blow dry;
  • Step 2 coating step:
  • a layer of 200um thick polyvinyl alcohol film 202 is coated on the surface of the glass plate 201 by spin coating.
  • the process parameters are: rotation speed 4000rad/min, time 60s, and then drying at 120°C for 90s;
  • Step 3 #180 sandpaper is used, and polydimethylsiloxane 203 (Sylgard184 purchased from Dow Corning) is coated by a spin coating method. The coating thickness is 140um.
  • the polydimethylsiloxane matrix (PDMS) and cross-linking agent are mixed uniformly at a mass ratio of 10:1, magnetically stirred for 30 minutes, and placed in a vacuum environment for 30 minutes to degas to eliminate bubbles.
  • the process parameters are: spin coating speed 700rad/min, time 10s; after spin coating is completed , Place the glass plate 201 on the surface of the hot plate, the bottom side of the glass plate 201 is in contact with the hot plate, set the heating temperature to 40 °C, the heating time is 1 to 2 min, and the polydimethylsiloxane 203 is initially cured until it comes into contact
  • the polydimethylsiloxane 203 (PDMS) of the glass plate 201 is solidified, and the upper layer is still in a gel state;
  • Step 4 Select #180 sandpaper 204, rinse the surface of the sandpaper 204 with deionized water, dry it with nitrogen, and spray deionized water on the surface of the sandpaper 204 to make the surface wet;
  • Step 5 press the glass plate 201 coated with polydimethylsiloxane 203 on the surface of the sandpaper 204, and the polydimethylsiloxane 203 side is attached to the surface of the sandpaper 204 downwards, and a roller 205 is used above the glass plate 201 Rolling, while placing the sandpaper 204 on the surface of the hot plate, the bottom surface of the sandpaper 204 is in contact with the hot plate, the heating temperature is set to 80°C, and the heating time is 30 minutes, so that the polydimethylsiloxane 203 (PDMS) is completely cured;
  • PDMS polydimethylsiloxane 203
  • Step 6 After the curing is completed, lift up the sandpaper on the bottom side or corner of the sandpaper 204, stick it on the roller 206, roll the roller 206 along the surface of the sandpaper 204, and pull the sandpaper 204 to peel off the side of the polydimethylsiloxane 203 to obtain Microstructure layer
  • Step 7 Oxygen plasma treatment is performed on the surface of the polydimethylsiloxane microstructure, the process parameters are: oxygen plasma treatment power 5-10W/cm 2 , time 10min;
  • Step 8 Select the polyimide film electrode manufactured by the existing commercial flexible FPCB technology.
  • the thickness of the polyimide film 207 is about 40um, and the thickness of the metal electrode 208 is 200nm.
  • Oxygen plasma treatment is performed on the side with the metal electrode 208 ,
  • the process parameters are: oxygen plasma treatment power 5-10W/cm 2 , time 10min;
  • Step 9 bonding the polyimide film electrode to the polydimethylsiloxane microstructure surface, and the side with the metal electrode contacts the microstructure surface;
  • Step 10 Oxygen plasma treatment is performed on the non-electrode side of the polyimide film electrode, and the polyimide film 207 is etched until the electrode is hollowed out to form a metal electrode array 208.
  • the process parameters are: oxygen plasma treatment power 30-60W /cm 2 , time 30min;
  • Step 11 soak in hot water, lift the polydimethylsiloxane film 203 on one side or one corner, stick it on the roller 206, roll the roller 206 along the plane of the substrate, and pull the polydimethylsiloxane film 203 from The glass plate 201 is peeled off to obtain a microstructure layer;
  • Step 12 Repeat steps 1-11 to obtain another microstructure layer
  • Step 13 Oxygen plasma treatment is performed on the two microstructure layers on the non-microstructure side, and after the treatment, they are aligned and laminated together, and the roller 205 is used to roll on one side to obtain a capacitive strain sensor.
  • the process parameters are: oxygen plasma treatment power 5-10W/cm 2 , time 10min.
  • the capacitive strain sensor to be manufactured has a sandwich structure, in which the material of the upper and lower electrodes 103 is gold and the thickness is 200nm, the material of the dielectric layer is polydimethylsiloxane 101, and the thickness of the single layer is about 300um.
  • the manufacturing method includes the following steps:
  • Step 1 Use clean and dust-free glass plate 201 as a hard substrate, ultrasonically clean each in deionized water and absolute ethanol for 10 minutes, and then clean and blow dry;
  • Step 2 coating step:
  • a layer of 200um polyvinyl alcohol film 202 is coated on the surface of the glass plate 201 by spin coating.
  • the process parameters are: speed 4000rad/min, time 60s, and then dry at 120°C for 90s;
  • Step 3 #180 sandpaper is used, and polydimethylsiloxane 203 (Sylgard184 purchased from Dow Corning) is coated by a spin coating method. The coating thickness is 300um.
  • the polydimethylsiloxane matrix (PDMS) and cross-linking agent are mixed uniformly at a mass ratio of 10:1, magnetically stirred for 30 minutes, and placed in a vacuum environment for 30 minutes to degas to eliminate bubbles.
  • the process parameters are: spin coating speed 500rad/min, time 10s; after spin coating is completed , Place the glass plate 201 on the surface of the hot plate, the bottom side of the glass plate 201 is in contact with the hot plate, set the heating temperature to 40 °C, the heating time is 1 to 2 min, and the polydimethylsiloxane 203 is initially cured until it comes into contact
  • the polydimethylsiloxane 203 (PDMS) of the glass plate 201 is solidified, and the upper layer is still in a gel state;
  • Step 4 Select #180 sandpaper 204, rinse the surface of the sandpaper 204 with deionized water, dry it with nitrogen, and spray deionized water on the surface of the sandpaper 204 to make the surface wet;
  • Step 5 press the glass plate 201 coated with polydimethylsiloxane 203 on the surface of the sandpaper 204, and the polydimethylsiloxane 203 side is attached to the surface of the sandpaper 204 downwards, and a roller 205 is used above the glass plate 201 During rolling, the sandpaper 204 is placed on the surface of the hot plate, the bottom surface of the sandpaper 204 is in contact with the hot plate, the heating temperature is set to 80°C, and the heating time is 30 minutes, so that the polydimethylsiloxane 203 (PDMS) is completely cured;
  • PDMS polydimethylsiloxane 203
  • Step 6 After the curing is completed, lift up the sandpaper on the bottom side or corner of the sandpaper 204, stick it on the roller 206, roll the roller 206 along the surface of the sandpaper 204, and pull the sandpaper 204 to peel off the side of the polydimethylsiloxane 203 to obtain Microstructure layer
  • Step 7 Oxygen plasma treatment is performed on the surface of the polydimethylsiloxane microstructure, the process parameters are: oxygen plasma treatment power 5-10W/cm 2 , time 10min;
  • Step 8 Select the polyimide film electrode manufactured by the existing commercial flexible FPCB technology.
  • the thickness of the polyimide film 207 is about 40um, and the thickness of the metal electrode 208 is 200nm.
  • Oxygen plasma treatment is performed on the side with the metal electrode 208 ,
  • the process parameters are: oxygen plasma treatment power 5-10W/cm 2 , time 10min;
  • Step 9 bonding the polyimide film electrode to the polydimethylsiloxane microstructure surface, and the side with the metal electrode contacts the microstructure surface;
  • Step 10 Oxygen plasma treatment is performed on the non-electrode side of the polyimide film electrode, and the polyimide film 207 is etched until the electrode is hollowed out to form a metal electrode array 208.
  • the process parameters are: oxygen plasma treatment power 30-60W /cm 2 , time 30min;
  • Step 11 soak in hot water, lift the polydimethylsiloxane film 203 on one side or one corner, stick it on the roller 206, roll the roller 206 along the plane of the substrate, and pull the polydimethylsiloxane film 203 from The glass plate 201 is peeled off to obtain a microstructure layer;
  • Step 12 Repeat steps 1-11 to obtain another microstructure layer
  • Step 13 Oxygen plasma treatment is performed on the two microstructure layers on the non-microstructure side, and after the treatment, they are aligned and laminated together, and the roller 205 is used to roll on one side to obtain a capacitive strain sensor.
  • the process parameters are: oxygen plasma treatment power 5-10W/cm 2 , time 10min.
  • the capacitive strain sensor to be manufactured has a sandwich structure, in which the material of the upper and lower electrodes 103 is gold with a thickness of 200 nm, the material of the dielectric layer is polydimethylsiloxane 101, and the thickness of a single layer is about 80 ⁇ m.
  • the production method includes the following steps:
  • a manufacturing method of capacitive strain sensor using sandpaper surface microstructure as template characterized in that it comprises the following steps:
  • Step 1 Use clean and dust-free glass plate 201 as a hard substrate, ultrasonically clean each in deionized water and absolute ethanol for 10 minutes, and then clean and blow dry;
  • Step 2 coating step:
  • a layer of 200um polyvinyl alcohol film 202 is coated on the surface of the glass plate 201 by spin coating.
  • the process parameters are: speed 4000rad/min, time 60s, and then dry at 120°C for 90s;
  • Step 3 In this embodiment, #600 sandpaper is used, and polydimethylsiloxane 203 (Sylgard184 purchased from Dow Corning) is coated by a spin coating method. The coating thickness is 80um.
  • the polydimethylsiloxane matrix (PDMS) and cross-linking agent are mixed uniformly at a mass ratio of 10:1, magnetically stirred for 30 minutes, and placed in a vacuum environment for 30 minutes to degas to eliminate bubbles.
  • PDMS polydimethylsiloxane matrix
  • cross-linking agent are mixed uniformly at a mass ratio of 10:1, magnetically stirred for 30 minutes, and placed in a vacuum environment for 30 minutes to degas to eliminate bubbles.
  • the process parameters are: spin coating speed 1300rad/min, time 60s; after spin coating is completed , Place the glass plate 201 on the surface of the hot plate, the bottom side of the glass plate 201 is in contact with the hot plate, set the heating temperature to 40°C, and the heating time is 1 ⁇ 2min, and the polydimethylsiloxane 203 is preliminarily cured until it touches The polydimethylsiloxane 203 (PDMS) of the glass plate 201 is solidified, and the upper layer is still in a gel state;
  • PDMS polydimethylsiloxane 203
  • Step 4 Choose #600 sandpaper, rinse the surface of the sandpaper with deionized water, dry it with nitrogen, and spray the surface of the sandpaper with deionized water to make the surface moist;
  • Step 5 press the glass plate 201 coated with polydimethylsiloxane 203 on the surface of the sandpaper 204, and the polydimethylsiloxane 203 side is attached to the surface of the sandpaper 204 downwards, and a roller 205 is used above the glass plate 201 Rolling, while placing the sandpaper 204 on the surface of the hot plate, the bottom surface of the sandpaper 204 is in contact with the hot plate, and the heating temperature is set to 80°C and the heating time is 30 minutes to completely cure the polydimethylsiloxane 203 (PDMS);
  • PDMS polydimethylsiloxane 203
  • Step 6 After the curing is completed, lift the sandpaper 204 on the bottom side or corner of the sandpaper, stick it on the roller 206, roll the roller 206 along the surface of the sandpaper 204, and pull the sandpaper to peel off the side of the polydimethylsiloxane 203 to obtain micro Structural layer
  • Step 7 Oxygen plasma treatment is performed on the surface of the polydimethylsiloxane microstructure, the process parameters are: oxygen plasma treatment power 5-10W/cm 2 , time 10min;
  • Step 8 Select the polyimide film electrode manufactured by the existing commercial flexible FPCB technology.
  • the thickness of the polyimide film 207 is about 40um, and the thickness of the metal electrode 208 is 200nm.
  • Oxygen plasma treatment is performed on the side with the metal electrode.
  • the process parameters are: oxygen plasma treatment power 5-10W/cm 2 , time 10min;
  • Step 9 bonding the polyimide film electrode to the polydimethylsiloxane microstructure surface, and the side with the metal electrode 208 contacts the microstructure surface;
  • Step 10 Oxygen plasma treatment is performed on the non-electrode side of the polyimide film electrode, and the polyimide film 207 is etched until the electrode is hollowed out to form an array of metal electrodes 208.
  • the process parameters are: oxygen plasma treatment power 30-60W /cm 2 , time 30min;
  • Step 11 soak in hot water, lift the polydimethylsiloxane film 203 on one side or one corner, stick it on the roller 206, roll the roller 206 along the plane of the substrate, and pull the polydimethylsiloxane film 203 from The glass plate 201 is peeled off to obtain a microstructure layer;
  • Step 12 Repeat steps 1-11 to obtain another microstructure layer
  • Step 13 Oxygen plasma treatment is performed on the two microstructure layers on the non-microstructure side, and after the treatment, they are aligned and laminated together, and the roller 205 is used to roll on one side to obtain a capacitive strain sensor.
  • the process parameters are: oxygen plasma treatment power 5-10W/cm 2 , time 10min.
  • the capacitive strain sensor to be manufactured has a sandwich structure, in which the material of the upper and lower electrodes 103 is gold with a thickness of 200 nm, the material of the dielectric layer is polydimethylsiloxane 101, and the thickness of a single layer is about 100 ⁇ m.
  • the production method includes the following steps:
  • a manufacturing method of capacitive strain sensor using sandpaper surface microstructure as template characterized in that it comprises the following steps:
  • Step 1 Use clean and dust-free glass plate 201 as a hard substrate, ultrasonically clean each in deionized water and absolute ethanol for 10 minutes, and then clean and blow dry;
  • Step 2 coating step:
  • a layer of 200um polyvinyl alcohol film 202 is coated on the surface of the glass plate 201 by spin coating.
  • the process parameters are: speed 4000rad/min, time 60s, and then dry at 120°C for 90s;
  • Step 3 #600 sandpaper is selected, and polydimethylsiloxane 203 (Sylgard 184 purchased from Dow Corning) is coated by a spin coating method, and the coating thickness is 100um.
  • the polydimethylsiloxane matrix (PDMS) and cross-linking agent are mixed uniformly at a mass ratio of 10:1, magnetically stirred for 30 minutes, and placed in a vacuum environment for 30 minutes to degas to eliminate bubbles.
  • the process parameters are: spin coating speed 1000rad/min, time 60s; after spin coating is completed , Place the glass plate 201 on the surface of the hot plate, the bottom side of the glass plate 201 is in contact with the hot plate, set the heating temperature to 40 °C, the heating time is 1 to 2 min, and the polydimethylsiloxane 203 is initially cured until it comes into contact
  • the polydimethylsiloxane 203 (PDMS) of the glass plate 201 is solidified, and the upper layer is still in a gel state;
  • Step 4 Choose #600 sandpaper, rinse the surface of the sandpaper with deionized water, dry it with nitrogen, and spray the surface of the sandpaper with deionized water to make the surface moist;
  • Step 5 press the glass plate 201 coated with polydimethylsiloxane 203 on the surface of the sandpaper 204, and the polydimethylsiloxane 203 side is attached to the surface of the sandpaper 204 downwards, and a roller 205 is used above the glass plate 201 Rolling, while placing the sandpaper 204 on the surface of the hot plate, the bottom surface of the sandpaper 204 is in contact with the hot plate, and the heating temperature is set to 80°C and the heating time is 30 minutes to completely cure the polydimethylsiloxane 203 (PDMS);
  • PDMS polydimethylsiloxane 203
  • Step 6 After the curing is completed, lift the sandpaper 204 on the bottom side or corner of the sandpaper, stick it on the roller 206, roll the roller 206 along the surface of the sandpaper 204, and pull the sandpaper to peel off the side of the polydimethylsiloxane 203 to obtain micro Structural layer
  • Step 7 Oxygen plasma treatment is performed on the surface of the polydimethylsiloxane microstructure, the process parameters are: oxygen plasma treatment power 5-10W/cm 2 , time 10min;
  • Step 8 Select the polyimide film electrode manufactured by the existing commercial flexible FPCB technology.
  • the thickness of the polyimide film 207 is about 40um, and the thickness of the metal electrode 208 is 200nm.
  • Oxygen plasma treatment is performed on the side with the metal electrode.
  • the process parameters are: oxygen plasma treatment power 5-10W/cm 2 , time 10min;
  • Step 9 bonding the polyimide film electrode to the polydimethylsiloxane microstructure surface, and the side with the metal electrode 208 contacts the microstructure surface;
  • Step 10 Oxygen plasma treatment is performed on the non-electrode side of the polyimide film electrode, and the polyimide film 207 is etched until the electrode is hollowed out to form an array of metal electrodes 208.
  • the process parameters are: oxygen plasma treatment power 30-60W /cm 2 , time 30min;
  • Step 11 soak in hot water, lift the polydimethylsiloxane film 203 on one side or one corner, stick it on the roller 206, roll the roller 206 along the plane of the substrate, and pull the polydimethylsiloxane film 203 from The glass plate 201 is peeled off to obtain a microstructure layer;
  • Step 12 Repeat steps 1-11 to obtain another microstructure layer
  • Step 13 Oxygen plasma treatment is performed on the two microstructure layers on the non-microstructure side, and after the treatment, they are aligned and laminated together, and the roller 205 is used to roll on one side to obtain a capacitive strain sensor.
  • the process parameters are: oxygen plasma treatment power 5-10W/cm 2 , time 10min.
  • Figure 4 is a microphotograph of the electrode array, combined with the actual product of the sensor, it can be seen that the electrode array is completely arranged in a large area, the edge of the pattern is good, the size is uniform, and the surface of the sensitive layer is closely attached, which is suitable for capacitance detection.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

提供了一种以砂纸表面微结构为模板的电容式应变传感器制作方法。该方法在硬质基板(201)上制造敏感层和电极结构后再进行分离,可以获得较低的传感器厚度,以及具有更好的柔性,易于将传感器安装在关节、皮肤、骨骼等复杂曲面。可采用成熟的柔性电路板技术制造表面有电极的聚酰亚胺薄膜(207)。电极阵列(208)制备简单,重复性高,电阻小,且拉伸状态电学连接稳定;聚酰亚胺层被刻蚀后,仅保留较薄的金属电极贴合于敏感层表面,其微结构化产生的效果更加明显;敏感层可实现多层微结构累加,适合更宽的检测范围和应用环境。

Description

以砂纸表面微结构为模板的电容式应变传感器制作方法 技术领域
本发明涉及柔性应变传感器技术领域,具体涉及一种以砂纸表面微结构为模板的电容式应变传感器制作方法。
背景技术
灵活和可拉伸的柔性传感器作为可穿戴健康监测系统的核心组件之一,可很好的附着在人体皮肤、关节、器官、血管内壁等部位,进行脉搏、血压、骨力学和生理形变等的检测,为疾病诊断和治疗提供有价值的信息。另外,在机械手、机械臂等机器人设备中具有很大的应用价值。
在各种柔性传感器的原理中,电容式和电阻式传感器由于具有更高的灵敏性和抗干扰性,更适合在复杂生理环境中应用。其中如何设计和制造具有微纳结构的介电层或电阻层并将其与金属电极可靠连接是该类传感器的关键技术问题。
例如2010年,学术期刊《Nature materials》9卷859-864页发表了题为“Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers”的论文,所提出的柔性电容式应变传感器以蒸镀了氧化铟锡的塑料薄膜为电极,聚二甲基硅氧烷为介电层。通过对聚二甲基硅氧烷表面进行微结构处理使其表面形成柱状或者金字塔形状,增加了敏感度。
2012年学术期刊《Nature materials》期刊第11卷第9期795-801页发表了题为“A flexible and highly sensitive strain gauge sensor using reversible interlocking of nanofibers”的论文,报道了一种纳米纤维制成的电阻式应力传感器。基于硅基微电子的沉积、光刻等技术,通过引入互锁微结构,极大提升了传感器的灵敏性。
近年来,利用具有微纳结构的模板进行大面积、高效率、低成本的柔性传感器制造成为一个新的发展方向。
例如,公布号为CN106531733 A的发明专利公开了一种柔性压力传感器及其制备方法。其具体步骤包括:柔性基底的前驱体溶液滴加在植物叶片(或砂纸) 的表面,印模固化得到凸起微结构的器件表面;由碳纳米管阵列抽出的碳纳米管薄膜纺在铜箔或镍箔表面,通过化学气相沉积在其表面生长石墨烯,将生成的石墨稀薄膜敏感层转移至柔性基底;将上柔性基底和下柔性基底面对面设置,在保证不交叉的前提下,使上敏感层和下敏层之间通过凸起微结构而接触,实现导通。
公布号为CN 107664545 A的发明专利公开了一种以天然微结构为模板的电容型柔性压力传感器。其具体步骤包括:在天然材料作为模板(硅橡胶作为模板)的表面,在模板内上浇筑聚氨酯弹性体或交联橡胶,得到复制微结构的聚氨酯性体衬底;在得到聚氨酯弹性体衬底喷涂银纳米线得到上下电极,中间夹层采用具有弹性的Ecoflex树脂浇筑而成。
现有技术方案的主要缺点在于,(1)从植物叶片或者其他天然材料取材做模板,不同样本差异性较大,制作的传感器在尺寸、应变承受范围和灵敏度上重复性不高,不适合工业化生产;(2)硅基微电子加工方法的成本较高,而使用银、碳纳米材料的电极,与敏感层的电学连接不稳定,在受力时电极本身会发生一定变化,不能准确测量受力面的应力分布。(3)现有技术尚未提供能制造传感器阵列的有效方案。
发明概述
技术问题
问题的解决方案
技术解决方案
针对现有技术中的缺陷,本发明的目的是提供一种工艺简单、成本低、可靠性高的电容式应变传感器的制作方法,具体为一种以砂纸表面微结构为模板的电容式应变传感器制作方法。
本发明采用以下的技术方案:
一种以砂纸表面微结构为模板的电容式应变传感器制作方法,包括以下步骤:
步骤1,选用硬质基板,对硬质基板表面进行清洗;
步骤2,在硬质基板上涂覆聚乙烯醇薄膜;
步骤3,在聚乙烯醇薄膜上涂覆柔性基底聚二甲基硅氧烷,在硬质基板一侧进 行加热低温预处理,对聚二甲基硅氧烷进行初步固化;
步骤4,选用所需型号砂纸,对砂纸表面进行清洗,将砂纸表面喷水或其他脱模剂,使其表面湿润;
步骤5,将涂覆聚二甲基硅氧烷的硬质基板压在砂纸表面,聚二甲基硅氧烷一侧向下贴合砂纸表面,使用滚轮在硬质基板上方进行滚压,同时在砂纸底面一侧进行加热,将聚二甲基硅氧烷进行再次固化;
步骤6,将砂纸一角贴在滚筒一角,通过滚动滚筒,将砂纸从聚二甲基硅氧烷表面拉动剥离,获得具有微结构表面的聚二甲基硅氧烷;
步骤7,对聚二甲基硅氧烷微结构表面进行氧等离子处理;
步骤8,选用表面制作有电极的聚酰亚胺薄膜,对有金属电极的一侧进行氧等离子处理;
步骤9,将聚酰亚胺薄膜电极与微结构表面进行贴合,有金属电极的一侧接触微结构表面;
步骤10,对聚酰亚胺薄膜无电极的一侧进行氧等离子刻蚀;
步骤11,在热水中将聚二甲基硅氧烷与硬质基板进行分离,获得微结构聚二甲基硅氧烷层;
步骤12,重复步骤1至11,获得另一微结构层;
步骤13,将两个微结构聚二甲基硅氧烷层的平面一侧进行氧等离子处理,并对齐层压到一起,用滚轮在一侧滚压,得到电容式应变传感器。
进一步地,步骤1中,硬质基板为玻璃板、陶瓷板、硅片或塑料板。
进一步地,步骤2中,聚乙烯醇薄膜的厚度为100um~200um。
进一步地,步骤2、步骤3中,聚乙烯醇和聚二甲基硅氧烷涂覆的方法包括旋涂、喷涂、刷涂等方法。
进一步地,步骤3中,聚二甲基硅氧烷涂覆的厚度为后续所选用砂纸的颗粒结构平均尺寸的1-2.5倍。
上述技术方案中,对颗粒度小的,如#600的砂纸,聚二甲基硅氧烷厚度可以为其颗粒尺寸的大倍数,如600#,颗粒尺寸约40um,厚度取40um*2.5或2,这样就等于100或80um;颗粒尺寸大的,可以倍数小一点,如#180,颗粒尺寸约140um ,厚度取140um*1=140um即可。
进一步地,步骤3中,硬质基板一侧加热的温度为40℃,加热时间为1~2min。
进一步地,步骤4中,砂纸的型号为#600到#180,表面颗粒尺寸为40um~140um。
进一步地,步骤5中,砂纸底面一侧加热的温度为80℃,加热时间为30min。
进一步地,步骤7中,氧等离子处理的处理功率为5-10W/cm 2,时间为10min。
进一步地,步骤8中,对金属电极一侧氧等离子处理的功率为5-10W/cm 2,时间为10min。
进一步地,步骤8中,聚酰亚胺薄膜的厚度为20-50um;聚酰亚胺薄膜表面制作的金属电极的材料厚度为200-500nm。
进一步地,步骤10中,对聚酰亚胺薄膜无电极的一侧进行氧等离子刻蚀的功率为30-60W/cm 2,时间为30min。
进一步地,步骤11中,将聚二甲基硅氧烷与硬质基板进行分离的方法具体为:在热水中浸泡,在一侧或一角掀起聚二甲基硅氧烷薄膜,贴在滚筒上,将滚筒沿基底平面滚动,拉动聚二甲基硅氧烷薄膜从硬质基板剥离。
发明的有益效果
有益效果
本发明具有的有益效果是:
(1)在硬质基板上制造敏感层和电极结构后再进行分离,可以获得较低的传感器厚度,以及具有更好的柔性,易于将传感器安装在关节、皮肤、骨骼等复杂曲面;(2)可采用成熟的柔性电路板(FPCB)技术制造表面有电极的聚酰亚胺(PI)薄膜,电极阵列制备简单,重复性高、电阻小,且拉伸状态电学连接稳定;(3)聚酰亚胺层被刻蚀后,仅保留较薄的金属电极贴合与敏感层表面,其微结构化产生的效果更加明显;(4)敏感层可实现多层微结构累加,增加承受应变能力,提高灵敏度,适合更宽的检测范围和应用环境。
对附图的简要说明
附图说明
图1为具有砂纸表面微结构电容式应变传感器的整体结构示意图(以#180和#60 0型号砂纸为例);
图2为以砂纸表面微结构为模板制作电容式应变传感器的具体步骤示意图;
图3为实施例1至4所获得的聚二甲基硅氧烷微结构电子显微镜照片;
图4为所获得电容式应变传感器的电极阵列显微照片;
图5为实施例1至4所获得的电容式应变传感器对1%应变的电容变化测试结果。
其中,101为聚二甲基硅氧烷层,102为聚二甲基硅氧烷表面微结构,103为上下电极阵列;201为玻璃板,202为聚乙烯醇薄膜,203为聚二甲基硅氧烷层,204为砂纸,205为滚轮,206为滚筒,207为聚酰亚胺薄膜,208为金属电极阵列。发明实施例
本发明的实施方式
本发明可应用于制造基于不同砂纸型号的具有砂纸表面微结构电容式应变传感器。
附图1给出了两种典型的具有砂纸表面微结构电容式应变传感器结构示意图。
以如附图2所示的在洁净玻璃板基底上制造具有砂纸表面微结构电容式应变传感器的主要步骤为例阐述本发明的使用方法。但需要说明的是,硬质基板不局限于玻璃板,还可以为陶瓷板、硅片或塑料板等。
下面结合附图和具体的实施例对本发明作进一步的详细说明,但本发明并不限于这些实施例。
实施例1
参阅附图2所示,选用#180型号砂纸,在洁净玻璃板基底上制造具有砂纸表面微结构电容式应变传感器的。所要制造的电容式应变传感器为三明治结构,其中上下电极103材料为金,厚度为200nm,介质层材料为聚二甲基硅氧烷101,单层厚度约为140um。
该制造方法包括以下步骤:
步骤1,选用洁净无尘玻璃板201作为硬质基板,在去离子水及无水乙醇中各超声清洗10min,清洗吹干;
步骤2,涂覆步骤:
采用旋涂方法在玻璃板201表面涂覆一层厚度为200um的聚乙烯醇薄膜202,工 艺参数为:转速4000rad/min,时间60s,之后在120℃下烘干90s;
步骤3,本实施例选用#180型号砂纸,采用旋涂方法进行聚二甲基硅氧烷203(Sylgard184购自Dow Corning)涂覆,涂覆厚度为140um,将聚二甲基硅氧烷基体(PDMS)和交联剂以10∶1的质量比混合均匀,磁力搅拌30min,置于真空环境中脱气30min消除气泡,工艺参数为:旋涂转速700rad/min,时间10s;旋涂完成后,将玻璃板201放置在热板表面,玻璃板201底面一侧与热板接触,设置加热温度为40℃,加热时间1~2min,对聚二甲基硅氧烷203进行初步固化,至接触玻璃板201的聚二甲基硅氧烷203(PDMS)凝固,上层仍处于胶状;
步骤4,选用#180型号砂纸204,使用去离子水对砂纸204表面进行冲洗、氮气吹干,将砂纸204表面喷雾去离子水,使其表面湿润;
步骤5,将涂覆聚二甲基硅氧烷203的玻璃板201压在砂纸204表面,聚二甲基硅氧烷203一侧向下贴合砂纸204表面,使用滚轮205在玻璃板201上方进行滚压,同时将砂纸204放置在热板表面,砂纸204底面与热板接触,设置加热温度为80℃,加热时间30min,使聚二甲基硅氧烷203(PDMS)完全固化;
步骤6,固化完成后,在砂纸204底面一侧或一角掀起砂纸,贴在滚筒206上,将滚筒206沿砂纸204平面滚动,拉动砂纸204从聚二甲基硅氧烷203一侧剥离,获得微结构层;
步骤7,对聚二甲基硅氧烷微结构表面进行氧等离子处理,工艺参数为:氧等离子处理功率5-10W/cm 2,时间10min;
步骤8,选用现有商用的柔性FPCB技术制造的聚酰亚胺薄膜电极,聚酰亚胺薄膜207厚度约为40um,金属电极208厚度为200nm,对有金属电极208的一侧进行氧等离子处理,工艺参数为:氧等离子处理功率5-10W/cm 2,时间10min;
步骤9,将聚酰亚胺薄膜电极与聚二甲基硅氧烷微结构表面进行贴合,有金属电极的一侧接触微结构表面;
步骤10,聚酰亚胺薄膜电极无电极的一侧进行氧等离子处理,将聚酰亚胺薄膜207刻蚀,直至电极镂空,形成金属电极阵列208,工艺参数为:氧等离子处理功率30-60W/cm 2,时间30min;
步骤11,在热水中浸泡,在一侧或一角掀起聚二甲基硅氧烷薄膜203,贴在滚 筒206上,将滚筒206沿基底平面滚动,拉动聚二甲基硅氧烷薄膜203从玻璃板201剥离,获得微结构层;
步骤12,重复1-11步骤,获得另一微结构层;
步骤13,将两个微结构层无微结构一侧进行氧等离子处理,处理后对齐层压到一起,用滚轮205在一侧滚压,得到电容式应变传感器。工艺参数为:氧等离子处理功率5-10W/cm 2,时间10min。
实施例2
参阅附图2所示,选用#180型号砂纸,在洁净玻璃板基底上制造具有砂纸表面微结构电容式应变传感器的。所要制造的电容式应变传感器为三明治结构,其中上下电极103材料为金,厚度为200nm,介质层材料为聚二甲基硅氧烷101,单层厚度约为300um。
该制造方法包括以下步骤:
步骤1,选用洁净无尘玻璃板201作为硬质基板,在去离子水及无水乙醇中各超声清洗10min,清洗吹干;
步骤2,涂覆步骤:
采用旋涂方法在玻璃板201表面涂覆一层厚度为200um的聚乙烯醇薄膜202,工艺参数为:转速4000rad/min,时间60s,之后在120℃下烘干90s;
步骤3,本实施例选用#180型号砂纸,采用旋涂方法进行聚二甲基硅氧烷203(Sylgard184购自Dow Corning)涂覆,涂覆厚度为300um,将聚二甲基硅氧烷基体(PDMS)和交联剂以10∶1的质量比混合均匀,磁力搅拌30min,置于真空环境中脱气30min消除气泡,工艺参数为:旋涂转速500rad/min,时间10s;旋涂完成后,将玻璃板201放置在热板表面,玻璃板201底面一侧与热板接触,设置加热温度为40℃,加热时间1~2min,对聚二甲基硅氧烷203进行初步固化,至接触玻璃板201的聚二甲基硅氧烷203(PDMS)凝固,上层仍处于胶状;
步骤4,选用#180型号砂纸204,使用去离子水对砂纸204表面进行冲洗、氮气吹干,将砂纸204表面喷雾去离子水,使其表面湿润;
步骤5,将涂覆聚二甲基硅氧烷203的玻璃板201压在砂纸204表面,聚二甲基硅氧烷203一侧向下贴合砂纸204表面,使用滚轮205在玻璃板201上方进行滚压, 同时将砂纸204放置在热板表面,砂纸204底面与热板接触,设置加热温度为80℃,加热时间30min,使聚二甲基硅氧烷203(PDMS)完全固化;
步骤6,固化完成后,在砂纸204底面一侧或一角掀起砂纸,贴在滚筒206上,将滚筒206沿砂纸204平面滚动,拉动砂纸204从聚二甲基硅氧烷203一侧剥离,获得微结构层;
步骤7,对聚二甲基硅氧烷微结构表面进行氧等离子处理,工艺参数为:氧等离子处理功率5-10W/cm 2,时间10min;
步骤8,选用现有商用的柔性FPCB技术制造的聚酰亚胺薄膜电极,聚酰亚胺薄膜207厚度约为40um,金属电极208厚度为200nm,对有金属电极208的一侧进行氧等离子处理,工艺参数为:氧等离子处理功率5-10W/cm 2,时间10min;
步骤9,将聚酰亚胺薄膜电极与聚二甲基硅氧烷微结构表面进行贴合,有金属电极的一侧接触微结构表面;
步骤10,聚酰亚胺薄膜电极无电极的一侧进行氧等离子处理,将聚酰亚胺薄膜207刻蚀,直至电极镂空,形成金属电极阵列208,工艺参数为:氧等离子处理功率30-60W/cm 2,时间30min;
步骤11,在热水中浸泡,在一侧或一角掀起聚二甲基硅氧烷薄膜203,贴在滚筒206上,将滚筒206沿基底平面滚动,拉动聚二甲基硅氧烷薄膜203从玻璃板201剥离,获得微结构层;
步骤12,重复1-11步骤,获得另一微结构层;
步骤13,将两个微结构层无微结构一侧进行氧等离子处理,处理后对齐层压到一起,用滚轮205在一侧滚压,得到电容式应变传感器。工艺参数为:氧等离子处理功率5-10W/cm 2,时间10min。
实施例3
参阅附图2所示,选用#600型号砂纸,在洁净玻璃板基底上制造具有砂纸表面微结构电容式应变传感器的。所要制造的电容式应变传感器为三明治结构,其中上下电极103材料为金,厚度为200nm,介质层材料为聚二甲基硅氧烷101,单层厚度约为80um。
该制作方法包括以下步骤:
1、一种以砂纸表面微结构为模板的电容式应变传感器制作方法,其特征在于,包括以下步骤:
步骤1,选用洁净无尘玻璃板201作为硬质基板,在去离子水及无水乙醇中各超声清洗10min,清洗吹干;
步骤2,涂覆步骤:
采用旋涂方法在玻璃板201表面涂覆一层厚度为200um的聚乙烯醇薄膜202,工艺参数为:转速4000rad/min,时间60s,之后在120℃下烘干90s;
步骤3,本实施例选用#600型号砂纸,采用旋涂方法进行聚二甲基硅氧烷203(Sylgard184购自Dow Corning)涂覆,涂覆厚度为80um,将聚二甲基硅氧烷基体(PDMS)和交联剂以10∶1的质量比混合均匀,磁力搅拌30min,置于真空环境中脱气30min消除气泡,工艺参数为:旋涂转速1300rad/min,时间60s;旋涂完成后,将玻璃板201放置在热板表面,玻璃板201底面一侧与热板接触,设置加热温度为40℃,加热时间1~2min,对聚二甲基硅氧烷203进行初步固化,至接触玻璃板201的聚二甲基硅氧烷203(PDMS)凝固,上层仍处于胶状;
步骤4,选用#600型号砂纸,使用去离子水对砂纸表面进行冲洗、氮气吹干,将砂纸表面喷雾去离子水,使其表面湿润;
步骤5,将涂覆聚二甲基硅氧烷203的玻璃板201压在砂纸204表面,聚二甲基硅氧烷203一侧向下贴合砂纸204表面,使用滚轮205在玻璃板201上方进行滚压,同时将砂纸204放置在热板表面,砂纸204底面与热板接触,设置加热温度为80℃,加热时间30min,使聚二甲基硅氧烷203(PDMS)完全固化;
步骤6,固化完成后,在砂纸底面一侧或一角掀起砂纸204,贴在滚筒206上,将滚筒206沿砂纸204平面滚动,拉动砂纸从聚二甲基硅氧烷203一侧剥离,获得微结构层;
步骤7,对聚二甲基硅氧烷微结构表面进行氧等离子处理,工艺参数为:氧等离子处理功率5-10W/cm 2,时间10min;
步骤8,选用现有商用的柔性FPCB技术制造的聚酰亚胺薄膜电极,聚酰亚胺薄膜207厚度约为40um,金属电极208厚度为200nm,对有金属电极的一侧进行氧等 离子处理,工艺参数为:氧等离子处理功率5-10W/cm 2,时间10min;
步骤9,将聚酰亚胺薄膜电极与聚二甲基硅氧烷微结构表面进行贴合,有金属电极208的一侧接触微结构表面;
步骤10,聚酰亚胺薄膜电极无电极的一侧进行氧等离子处理,将聚酰亚胺薄膜207刻蚀,直至电极镂空,形成金属电极208阵列,工艺参数为:氧等离子处理功率30-60W/cm 2,时间30min;
步骤11,在热水中浸泡,在一侧或一角掀起聚二甲基硅氧烷薄膜203,贴在滚筒206上,将滚筒206沿基底平面滚动,拉动聚二甲基硅氧烷薄膜203从玻璃板201剥离,获得微结构层;
步骤12,重复1-11步骤,获得另一微结构层;
步骤13,将两个微结构层无微结构一侧进行氧等离子处理,处理后对齐层压到一起,用滚轮205在一侧滚压,得到电容式应变传感器。工艺参数为:氧等离子处理功率5-10W/cm 2,时间10min。
实施例4
参阅附图2所示,选用#600型号砂纸,在洁净玻璃板基底上制造具有砂纸表面微结构电容式应变传感器的。所要制造的电容式应变传感器为三明治结构,其中上下电极103材料为金,厚度为200nm,介质层材料为聚二甲基硅氧烷101,单层厚度约为100um。
该制作方法包括以下步骤:
1、一种以砂纸表面微结构为模板的电容式应变传感器制作方法,其特征在于,包括以下步骤:
步骤1,选用洁净无尘玻璃板201作为硬质基板,在去离子水及无水乙醇中各超声清洗10min,清洗吹干;
步骤2,涂覆步骤:
采用旋涂方法在玻璃板201表面涂覆一层厚度为200um的聚乙烯醇薄膜202,工艺参数为:转速4000rad/min,时间60s,之后在120℃下烘干90s;
步骤3,本实施例选用#600型号砂纸,采用旋涂方法进行聚二甲基硅氧烷203(Sylgard184购自Dow Corning)涂覆,涂覆厚度为100um,将聚二甲基硅氧烷基体 (PDMS)和交联剂以10∶1的质量比混合均匀,磁力搅拌30min,置于真空环境中脱气30min消除气泡,工艺参数为:旋涂转速1000rad/min,时间60s;旋涂完成后,将玻璃板201放置在热板表面,玻璃板201底面一侧与热板接触,设置加热温度为40℃,加热时间1~2min,对聚二甲基硅氧烷203进行初步固化,至接触玻璃板201的聚二甲基硅氧烷203(PDMS)凝固,上层仍处于胶状;
步骤4,选用#600型号砂纸,使用去离子水对砂纸表面进行冲洗、氮气吹干,将砂纸表面喷雾去离子水,使其表面湿润;
步骤5,将涂覆聚二甲基硅氧烷203的玻璃板201压在砂纸204表面,聚二甲基硅氧烷203一侧向下贴合砂纸204表面,使用滚轮205在玻璃板201上方进行滚压,同时将砂纸204放置在热板表面,砂纸204底面与热板接触,设置加热温度为80℃,加热时间30min,使聚二甲基硅氧烷203(PDMS)完全固化;
步骤6,固化完成后,在砂纸底面一侧或一角掀起砂纸204,贴在滚筒206上,将滚筒206沿砂纸204平面滚动,拉动砂纸从聚二甲基硅氧烷203一侧剥离,获得微结构层;
步骤7,对聚二甲基硅氧烷微结构表面进行氧等离子处理,工艺参数为:氧等离子处理功率5-10W/cm 2,时间10min;
步骤8,选用现有商用的柔性FPCB技术制造的聚酰亚胺薄膜电极,聚酰亚胺薄膜207厚度约为40um,金属电极208厚度为200nm,对有金属电极的一侧进行氧等离子处理,工艺参数为:氧等离子处理功率5-10W/cm 2,时间10min;
步骤9,将聚酰亚胺薄膜电极与聚二甲基硅氧烷微结构表面进行贴合,有金属电极208的一侧接触微结构表面;
步骤10,聚酰亚胺薄膜电极无电极的一侧进行氧等离子处理,将聚酰亚胺薄膜207刻蚀,直至电极镂空,形成金属电极208阵列,工艺参数为:氧等离子处理功率30-60W/cm 2,时间30min;
步骤11,在热水中浸泡,在一侧或一角掀起聚二甲基硅氧烷薄膜203,贴在滚筒206上,将滚筒206沿基底平面滚动,拉动聚二甲基硅氧烷薄膜203从玻璃板201剥离,获得微结构层;
步骤12,重复1-11步骤,获得另一微结构层;
步骤13,将两个微结构层无微结构一侧进行氧等离子处理,处理后对齐层压到一起,用滚轮205在一侧滚压,得到电容式应变传感器。工艺参数为:氧等离子处理功率5-10W/cm 2,时间10min。
由图3所示实施例1-4所获得的聚二甲基硅氧烷微结构电子显微镜照片可见敏感层微结构明显均匀,说明该方法能够获得较好的效果。
图4为电极阵列显微照片,结合传感器成品实物,可以看出电极阵列在大面积内排布完整,图形边缘好,大小均匀,与敏感层表面贴合紧密,适于电容检测。
由图5实施例所获得的电容式应变传感器对连续0.3%应变的电容变化测试结果可见,该方法制造的传感器灵敏度、重复性较高,噪声较小。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (10)

  1. 一种以砂纸表面微结构为模板的电容式应变传感器制作方法,其特征在于,包括以下步骤:
    步骤1,选用硬质基板,对硬质基板表面进行清洗;
    步骤2,在硬质基板上涂覆聚乙烯醇薄膜;
    步骤3,在聚乙烯醇薄膜上涂覆柔性基底聚二甲基硅氧烷,在硬质基板一侧进行加热低温预处理,对聚二甲基硅氧烷进行初步固化;
    步骤4,选用所需型号砂纸,对砂纸表面进行清洗,将砂纸表面喷水或其他脱模剂,使其表面湿润;
    步骤5,将涂覆聚二甲基硅氧烷的硬质基板压在砂纸表面,聚二甲基硅氧烷一侧向下贴合砂纸表面,使用滚轮在硬质基板上方进行滚压,同时在砂纸底面一侧进行加热,将聚二甲基硅氧烷进行再次固化;
    步骤6,将砂纸一角贴在滚筒一角,通过滚动滚筒,将砂纸从聚二甲基硅氧烷表面拉动剥离,获得具有微结构表面的聚二甲基硅氧烷;
    步骤7,对聚二甲基硅氧烷微结构表面进行氧等离子处理;
    步骤8,选用表面制作有电极的聚酰亚胺薄膜,对有金属电极的一侧进行氧等离子处理;
    步骤9,将聚酰亚胺薄膜电极与微结构表面进行贴合,有金属电极的一侧接触微结构表面;
    步骤10,对聚酰亚胺薄膜无电极的一侧进行氧等离子刻蚀;
    步骤11,在热水中将聚二甲基硅氧烷与硬质基板进行分离,获得微结构聚二甲基硅氧烷层;
    步骤12,重复步骤1至11,获得另一微结构层;
    步骤13,将两个微结构聚二甲基硅氧烷层的平面一侧进行氧等离子处理,并对齐层压到一起,用滚轮在一侧滚压,得到电容式应 变传感器。
  2. 根据权利要求1所述的一种以砂纸表面微结构为模板的电容式应变传感器制作方法,其特征在于,步骤2中,聚乙烯醇薄膜的厚度为100um~200um。
  3. 根据权利要求1所述的一种以砂纸表面微结构为模板的电容式应变传感器制作方法,其特征在于,步骤3中,聚二甲基硅氧烷涂覆的厚度为后续所选用砂纸的颗粒结构平均尺寸的1-2.5倍。
  4. 根据权利要求1所述的一种以砂纸表面微结构为模板的电容式应变传感器制作方法,其特征在于,步骤3中,硬质基板一侧加热的温度为40℃,加热时间为1~2min。
  5. 根据权利要求1所述的一种以砂纸表面微结构为模板的电容式应变传感器制作方法,其特征在于,步骤4中,砂纸的型号为#600到#180,表面颗粒尺寸为40um~140um。
  6. 根据权利要求1所述的一种以砂纸表面微结构为模板的电容式应变传感器制作方法,其特征在于,步骤5中,砂纸底面一侧加热的温度为80℃,加热时间为30min。
  7. 根据权利要求1所述的一种以砂纸表面微结构为模板的电容式应变传感器制作方法,其特征在于,步骤7中,氧等离子处理的处理功率为5-10W/cm 2,时间为10min;步骤8中,对金属电极一侧氧等离子处理的功率为5-10W/cm 2,时间为10min。
  8. 根据权利要求1所述的一种以砂纸表面微结构为模板的电容式应变传感器制作方法,其特征在于,步骤8中,聚酰亚胺薄膜的厚度为20-50um;聚酰亚胺薄膜表面制作的金属电极的材料厚度为200-500nm。
  9. 根据权利要求1所述的一种以砂纸表面微结构为模板的电容式应变传感器制作方法,其特征在于,步骤10中,对聚酰亚胺薄膜无电极的一侧进行氧等离子刻蚀的功率为30-60W/cm 2,时间为30min。
  10. 根据权利要求1所述的一种以砂纸表面微结构为模板的电容式应变传感器制作方法,其特征在于,步骤11中,将聚二甲基硅氧烷与硬质基板进行分离的方法具体为:在热水中浸泡,在一侧或一角掀起聚二甲基硅氧烷薄膜,贴在滚筒上,将滚筒沿基底平面滚动,拉动聚二甲基硅氧烷薄膜从硬质基板剥离。
PCT/CN2019/111383 2019-10-10 2019-10-16 以砂纸表面微结构为模板的电容式应变传感器制作方法 WO2021068273A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910956935.X 2019-10-10
CN201910956935.XA CN110701992B (zh) 2019-10-10 2019-10-10 以砂纸表面微结构为模板的电容式应变传感器制作方法

Publications (1)

Publication Number Publication Date
WO2021068273A1 true WO2021068273A1 (zh) 2021-04-15

Family

ID=69198980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111383 WO2021068273A1 (zh) 2019-10-10 2019-10-16 以砂纸表面微结构为模板的电容式应变传感器制作方法

Country Status (2)

Country Link
CN (1) CN110701992B (zh)
WO (1) WO2021068273A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237581A (zh) * 2021-05-06 2021-08-10 复旦大学附属中山医院 一种皮肤硬度传感器及其制作方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112603286A (zh) * 2021-01-06 2021-04-06 嘉兴脉腾科技有限公司 在硅胶表面制作微结构的方法及摩擦传感器
CN112834089B (zh) * 2021-02-11 2021-11-30 福州大学 一种基于砂纸模板制备宽检测范围压阻式传感器的方法
CN114235234A (zh) * 2021-12-20 2022-03-25 哈尔滨工业大学 用于柔性充气展开结构测量的柔性压力传感器制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105865667A (zh) * 2016-05-19 2016-08-17 北京印刷学院 基于微结构化介电层的电容式柔性压力传感器及其制备方法
US20170350817A1 (en) * 2016-06-03 2017-12-07 Rmit University Flexible or stretchable sensor for use in detecting a substance and/or electromagnetic radiation, and a method for detecting thereof
CN206740283U (zh) * 2017-04-21 2017-12-12 清华大学深圳研究生院 压力敏感层、压阻式压力传感器及压阻式压力传感阵列
CN109445224A (zh) * 2018-12-24 2019-03-08 中山大学 提升穿戴舒适性的电子纸器件制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140037909A1 (en) * 2012-08-01 2014-02-06 Massachusetts Institute Of Technology Actuation and Control of Stamp Deformation in Microcontact Printing
CN106531733A (zh) * 2016-12-21 2017-03-22 清华大学 一种柔性压力传感器及其制备方法
CN108871629A (zh) * 2018-07-20 2018-11-23 浙江大学 一种柔性电阻式压力传感器阵列及其制备方法
CN109259891B (zh) * 2018-08-29 2020-02-14 华中科技大学 一种测量压力的电子皮肤及其制备方法
CN109724720B (zh) * 2018-11-20 2020-06-12 浙江大学 一种电容式柔性压力传感器及其制备方法
CN209131870U (zh) * 2018-12-10 2019-07-19 亿联线路板有限公司 压力传感器
CN110082010A (zh) * 2019-03-29 2019-08-02 中国科学院电子学研究所 柔性触觉传感器阵列及应用于其的阵列扫描系统
CN110061715B (zh) * 2019-03-29 2020-07-07 山东科技大学 一种在非硅基底上制造压电薄膜谐振器的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105865667A (zh) * 2016-05-19 2016-08-17 北京印刷学院 基于微结构化介电层的电容式柔性压力传感器及其制备方法
US20170350817A1 (en) * 2016-06-03 2017-12-07 Rmit University Flexible or stretchable sensor for use in detecting a substance and/or electromagnetic radiation, and a method for detecting thereof
CN206740283U (zh) * 2017-04-21 2017-12-12 清华大学深圳研究生院 压力敏感层、压阻式压力传感器及压阻式压力传感阵列
CN109445224A (zh) * 2018-12-24 2019-03-08 中山大学 提升穿戴舒适性的电子纸器件制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237581A (zh) * 2021-05-06 2021-08-10 复旦大学附属中山医院 一种皮肤硬度传感器及其制作方法
CN113237581B (zh) * 2021-05-06 2022-10-28 复旦大学附属中山医院 一种皮肤硬度传感器及其制作方法

Also Published As

Publication number Publication date
CN110701992B (zh) 2020-07-24
CN110701992A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2021068273A1 (zh) 以砂纸表面微结构为模板的电容式应变传感器制作方法
US10634482B2 (en) Flexible sensor apparatus
Wang et al. Silk‐molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals
Luo et al. Flexible capacitive pressure sensor enhanced by tilted micropillar arrays
CN108318161B (zh) 可穿戴压力传感器及其制造方法
Zhang et al. Flexible and highly sensitive pressure sensor based on microdome-patterned PDMS forming with assistance of colloid self-assembly and replica technique for wearable electronics
WO2019222969A1 (zh) 一种基于半球形微结构的柔性压力传感器及其制造方法
You et al. A wearable piezocapacitive pressure sensor with a single layer of silver nanowire-based elastomeric composite electrodes
Yang et al. Tactile sensing system based on arrays of graphene woven microfabrics: electromechanical behavior and electronic skin application
AU2018102177A4 (en) Flexible pressure sensor based on hemispheric microstructure and fabrication method therefor
CN105758562A (zh) 一种柔性压力传感器及其制备方法
CN110608825A (zh) 基于聚酰亚胺基底微结构的柔性压力传感器及其制备方法
CN108063183B (zh) 一种基于纳米压印制备封闭多孔压电驻极体俘能器的方法
WO2021253278A1 (zh) 一种触觉传感器、制备方法及包括触觉传感器的智能设备
Huang et al. Flexible capacitive pressure sensor based on laser–induced graphene and polydimethylsiloxane foam
CN113701926B (zh) 一种基于褶皱与裂纹结构的柔性压力传感器及其制备方法
CN110967131B (zh) 柔性导电复合膜及其制备方法、柔性压力传感器及其制备方法
CN110118623A (zh) 一种柔性压力传感器及制备方法
CN110526198B (zh) 一种基于半球形微结构的柔性压力传感器及其制造方法
Wang et al. High-sensitivity flexible pressure sensor with low working voltage based on sphenoid microstructure
CN110558968B (zh) 一种微凝胶可穿戴传感器及其制备方法
CN216284043U (zh) 一种灵敏度可调的高线性度柔性压力传感器
Wang et al. Composite flexible sensor based on bionic microstructure to simultaneously monitor pressure and strain
Liu et al. A stretchable pressure sensor with interlinked interfaces prepared by a template-free process
WO2016145775A1 (zh) 柔性导电振膜、柔性振动传感器及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948845

Country of ref document: EP

Kind code of ref document: A1