WO2021065817A1 - 内燃機関のオイル供給装置 - Google Patents

内燃機関のオイル供給装置 Download PDF

Info

Publication number
WO2021065817A1
WO2021065817A1 PCT/JP2020/036670 JP2020036670W WO2021065817A1 WO 2021065817 A1 WO2021065817 A1 WO 2021065817A1 JP 2020036670 W JP2020036670 W JP 2020036670W WO 2021065817 A1 WO2021065817 A1 WO 2021065817A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
internal combustion
combustion engine
control unit
threshold value
Prior art date
Application number
PCT/JP2020/036670
Other languages
English (en)
French (fr)
Inventor
務 朝倉
剛史 鎌田
理郎 福岡
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN202080067208.9A priority Critical patent/CN114514362B/zh
Priority to DE112020004704.0T priority patent/DE112020004704T5/de
Publication of WO2021065817A1 publication Critical patent/WO2021065817A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • F01M2001/0207Pressure lubrication using lubricating pumps characterised by the type of pump
    • F01M2001/0238Rotary pumps

Definitions

  • This disclosure relates to an oil supply device for an internal combustion engine.
  • Patent Document 1 discloses an oil supply device that is driven based on the rotation of a crankshaft connected to an internal combustion engine and pumps oil discharged from a discharge port to a component of the internal combustion engine.
  • An object of the present disclosure is to provide an oil supply device for an internal combustion engine capable of reducing drive loss in an oil pump and improving the fuel efficiency performance of the internal combustion engine.
  • the oil supply device for an internal combustion engine is The pump section that supplies oil to the internal combustion engine and When the internal combustion engine is in a low load state and the rotation speed of the internal combustion engine is equal to or higher than the threshold value, a control unit for supplying oil to the pump unit is provided. The control unit determines the threshold value of the rotation speed of the internal combustion engine based on the temperature of the oil.
  • the oil supply device for an internal combustion engine is A pump unit that discharges oil based on the power of an internal combustion engine, and a variable unit that has a control hydraulic chamber and operates based on the oil pressure of the oil supplied to the control hydraulic chamber to reduce the discharge amount of the pump unit.
  • a variable control unit for supplying oil to the control hydraulic chamber is provided.
  • the variable control unit sets the value of the rotation speed threshold value as the first rotation speed when the oil corresponds to the low temperature state, and sets the rotation speed threshold value to the second rotation speed higher than the first rotation speed when the oil corresponds to the non-low temperature state. Let it be a number.
  • an oil supply device for an internal combustion engine capable of reducing the drive loss in the oil pump and improving the fuel efficiency performance of the internal combustion engine.
  • FIG. 1 is a diagram schematically showing an oil supply device for an internal combustion engine according to an embodiment.
  • FIG. 2 is a flowchart for explaining the operation of the oil supply device of the internal combustion engine according to the embodiment.
  • FIG. 3A is a diagram showing the relationship between the rotation speed of the internal combustion engine and the oil pressure of the oil supply device according to the reference example.
  • FIG. 3B is a diagram showing an example of the relationship between the rotation speed of the internal combustion engine and the oil pressure of the oil supply device according to the embodiment.
  • FIG. 3C is a diagram showing an example of the relationship between the rotation speed of the internal combustion engine and the oil pressure of the oil supply device according to the embodiment.
  • FIG. 3D is a diagram showing an example of the relationship between the rotation speed of the internal combustion engine and the oil pressure of the oil supply device according to the embodiment.
  • the oil supply device for the internal combustion engine according to the embodiment described later is an example of the oil supply device for the internal combustion engine according to the present disclosure, and the present disclosure is not limited to the embodiment described later.
  • FIG. 1 is a schematic diagram for explaining the configuration of the oil supply device 1.
  • the structure of the oil supply device 1 only the structure necessary for explaining the characteristic portion of the oil supply device 1 will be described.
  • Other structures in the oil supply device 1 may be the same as the structures of various conventionally known oil supply devices.
  • the oil supply device 1 is applied to the internal combustion engine E, and supplies oil for lubrication or cooling to a component (for example, a piston) of the internal combustion engine E.
  • the internal combustion engine E is, for example, a diesel engine mounted on a truck or the like, or a gasoline engine mounted on a passenger car or the like. Since the structure of the internal combustion engine E is the same as that of various conventionally known internal combustion engines, detailed description thereof will be omitted.
  • the oil supply device 1 has a variable oil pump device 2, a variable control unit 3, and an oil pan 4. Each element 2 to 4 of such an oil supply device 1 is connected by an oil passage L1.
  • the structure of the oil supply device 1 is not limited to the structure shown in the figure.
  • the oil supply device 1 includes, for example, a main gallery which is a passage for oil discharged from an oil pump device 2, an oil filter for filtering oil, an oil cooler for cooling oil, and an internal combustion engine. It may have a supply unit (nozzle, etc.) for supplying oil to the constituent members of the engine.
  • the oil in the oil pan 4 flows into the oil pump device 2 through the oil passage element L11 of the oil passage L1.
  • the oil flowing into the oil pump device 2 is boosted by the oil pump device 2 and discharged from the oil pump device 2 to the oil passage element L12 of the oil passage L1.
  • the oil discharged from the oil pump device 2 to the oil passage element L12 is pressure-fed to a component (for example, a piston) of the internal combustion engine E.
  • variable control unit 3 a part of the oil discharged from the oil pump device 2 to the oil passage element L12 branches from the oil passage element L12 and flows into the oil passage element L13.
  • closed state the oil that has flowed into the oil passage element L13 is the variable control unit 3 (specifically, the solenoid valve 31). Is stopped by.
  • the oil pump device 2 is, for example, a variable vane pump capable of changing the discharge amount.
  • the oil pump device 2 is driven based on the power of the internal combustion engine E. Specifically, the oil pump device 2 is connected to a crankshaft (not shown) connected to the internal combustion engine E, and is driven by the rotation of the crankshaft.
  • the discharge amount of the oil pump device 2 is the capacity of the oil discharged from the oil pump device 2 when the drive shaft 212 (described later) of the oil pump device 2 makes one rotation.
  • the oil pump device 2 of the present embodiment can switch the discharge amount between the first discharge amount and the second discharge amount smaller than the first discharge amount.
  • Such an oil pump device 2 has a pump unit 21 and a variable unit 22.
  • the pump unit 21 includes a housing 211, a drive shaft 212, a rotor 213, a plurality of vanes 214, and a cam ring 215.
  • the housing 211 has a tubular accommodating portion 211a.
  • the accommodating portion 211a accommodates elements 212 to 215 and the like constituting the pump portion 21.
  • the housing 211 has a suction port 211b, a discharge port 211c, and an introduction port 211d.
  • the suction port 211b is an inlet for oil supplied to the pump chamber 216 (described later).
  • An oil passage element L11 is connected to the suction port 211b.
  • the first end (upstream end) of the oil passage element L11 is connected to the oil pan 4, and the second end (downstream end) is connected to the suction port 211b.
  • the discharge port 211c is an outlet for oil discharged from the pump chamber 216.
  • a first end portion (downstream end portion) of the oil passage element L12 is connected to the discharge port 211c.
  • the introduction port 211d is an inlet for oil supplied to the control hydraulic chamber 221 (described later).
  • An oil passage element L14 is connected to the introduction port 211d.
  • the first end (upstream end) of the oil passage element L14 is connected to the second port 312 of the solenoid valve 31 (described later).
  • the second end (downstream end) of the oil passage element L14 is connected to the introduction port 211d.
  • the drive shaft 212 is rotatably supported by a shaft support portion (not shown) of the housing 211.
  • the drive shaft 212 is connected to the crankshaft and rotates by the rotation of the crankshaft.
  • the rotor 213 is fixed to the outer peripheral surface of the drive shaft 212.
  • the rotor 213 rotates together with the drive shaft 212.
  • the rotor 213 is a tubular member having a central hole (not shown).
  • a drive shaft 212 is inserted through the stop hole of the rotor 213.
  • the rotor 213 has slits 213a provided at equal intervals in the circumferential direction on the outer peripheral surface. Each of the slits 213a extends in the axial direction of the rotor 213. Each such slit 213a supports vane 214.
  • Each of the vanes 214 is a plate-shaped member, and is supported by the slit 213a of the rotor 213 in a state of being movable in the radial direction of the rotor 213. That is, each vane 214 is configured so that the amount of protrusion from the outer peripheral surface of the rotor 213 can be changed.
  • the cam ring 215 is a tubular member and is provided so as to surround the outer peripheral surface of the rotor 213.
  • the cam ring 215 is supported by the housing 211 in a state where it can be eccentric with respect to the central axis of the rotor 213.
  • the amount of eccentricity of the cam ring 215 with respect to the rotor 213 changes based on the oil pressure of the oil supplied to the control hydraulic chamber 221.
  • the cam ring 215 has a plate-shaped flange portion 215a on a part of the outer peripheral surface.
  • a plurality of pump chambers 216 separated by vanes 214 are provided between the inner peripheral surface of the cam ring 215 and the outer peripheral surface of the rotor 213.
  • each pump chamber 216 changes according to the amount of eccentricity of the cam ring 215 with respect to the rotor 213.
  • the discharge amount of the pump unit 21 changes.
  • the oil sucked up from the oil pan 4 is supplied to the pump chamber 216 through the suction port 211b. Further, the oil in the pump chamber 216 is discharged to the oil passage element L12 through the discharge port 211c.
  • variable unit 22 changes the discharge amount of the pump unit 21 under the control of the variable control unit 3 (described later).
  • the variable portion 22 has a control hydraulic chamber 221 and a spring 222.
  • the control hydraulic chamber 221 is a space surrounded by the inner surface of the housing 211 and the outer peripheral surface of the cam ring 215.
  • the oil discharged from the second port 312 of the solenoid valve 31 is supplied to the control hydraulic chamber 221 through the oil passage element L14 and the introduction port 211d.
  • the spring 222 is a coil spring and is provided between the inner surface of the housing 211 and the flange portion 215a of the cam ring 215.
  • the spring 222 constantly urges the cam ring 215 in the first direction. Such a spring 222 contracts when the oil pressure of the oil supplied to the control hydraulic chamber 221 is equal to or higher than the oil pressure threshold value.
  • the structure of the oil pump device is not limited to the above-mentioned structure.
  • the oil pump device may be various conventionally known variable oil pump devices.
  • variable control unit 3 controls the supply state of oil to the variable unit 22 (specifically, the control hydraulic chamber 221).
  • the variable control unit 3 has a solenoid valve 31 and a control unit 32.
  • the solenoid valve 31 switches between a closed state and an open state under the control of the control unit 32 (described later).
  • the solenoid valve 31 connects the first port 311 and the second port 312 in a state in which oil can flow in a state of being energized (hereinafter, referred to as an “energized state”).
  • the energized state of the solenoid valve 31 (in other words, the state in which the first port 311 and the second port 312 are connected) corresponds to the open state of the solenoid valve 31.
  • the solenoid valve 31 shuts off the first port 311 and the second port 312 in a state where it is not energized (hereinafter, referred to as "non-energized state").
  • the non-energized state of the solenoid valve 31 corresponds to the closed state of the solenoid valve 31.
  • Such a solenoid valve 31 is provided in an oil passage connecting the discharge port 211c of the oil pump device 2 and the introduction port 211d of the oil pump device 2.
  • the solenoid valve 31 is provided between the oil passage element L13 and the oil passage element L14.
  • the first end (upstream end) of the oil passage element L13 is connected to the oil passage element L12.
  • the second end (downstream end) of the oil passage element L13 is connected to the first port 311 of the solenoid valve 31.
  • the first end (upstream end) of the oil passage element L14 is connected to the second port 312 of the solenoid valve 31.
  • the second end (downstream end) of the oil passage element L14 is connected to the introduction port 211d of the oil pump device 2.
  • the structure of the solenoid valve is not limited to the above-mentioned structure.
  • As the solenoid valve various conventionally known solenoid valves can be adopted.
  • the control unit 32 controls the oil supply device 1, and includes a known CPU, ROM, RAM, input port, output port, and the like.
  • the control unit 32 is connected to the solenoid valve 31 via a transmission line 5.
  • the control unit 32 may be a control device that controls various types of vehicles, or may be a control device provided exclusively for the oil supply device 1.
  • control unit 32 switches the open / closed state of the solenoid valve 31 by controlling the energized state of the solenoid valve 31.
  • the specific function of the control unit 32 will be described in detail in the description of the variable control of the oil pump device.
  • FIG. 2 is a flowchart showing variable control of the oil pump carried out by the oil supply device 1. The operation shown in FIG. 2 is performed by the control unit 32.
  • variable control of the oil pump device shown in FIG. 2 is repeatedly performed in the operating state of the internal combustion engine E.
  • the crankshaft connected to the internal combustion engine E rotates.
  • the oil pump device 2 is driven based on the rotation of the crankshaft.
  • the oil discharged from the oil pump device 2 is pressure-fed to a component (for example, a piston) of the internal combustion engine E.
  • the discharge amount of oil discharged from the oil pump device 2 is the first discharge amount.
  • the state in which the variable portion 22 is not operating that is, the state in which the oil pump device 2 is not variable
  • a non-variable state of the oil pump device 2 is also referred to as a non-variable state of the oil pump device 2.
  • the discharge amount of oil discharged from the oil pump device 2 is a second discharge amount smaller than the first discharge amount.
  • the state in which the variable portion 22 is operating that is, the state in which the oil pump device 2 is variable
  • a variable state of the oil pump device 2 is also referred to as a variable state of the oil pump device 2.
  • the control unit 32 controls the variable unit 22 based on the information regarding the load of the internal combustion engine E and the information regarding the oil temperature of the oil.
  • the above-mentioned control performed by the control unit 32 is variable control of the oil supply device.
  • specific processing of variable control of the oil pump device will be described with reference to FIG.
  • step S101 of FIG. 2 the control unit 32 acquires information on the load of the internal combustion engine E in order to determine the load state of the internal combustion engine E.
  • the information regarding the load of the internal combustion engine E may be a detection value of a sensor provided in the vehicle.
  • the information regarding the load of the internal combustion engine E is, for example, information regarding the injection amount of a fuel injection device (not shown) that injects fuel into the combustion chamber of the internal combustion engine E (hereinafter, referred to as “information regarding the fuel injection amount”). It's okay. Further, the information regarding the load of the internal combustion engine E may be, for example, information regarding the opening degree of the throttle valve of the internal combustion engine E or information regarding the opening degree of the accelerator.
  • step S102 the control unit 32 determines whether or not the internal combustion engine E is in a low load state based on the acquired information regarding the load of the internal combustion engine E.
  • the control unit 32 determines in step S102 whether or not the fuel injection amount is equal to or less than the injection amount threshold.
  • the control unit 32 determines that the internal combustion engine E is in a low load state. On the other hand, when the fuel injection amount is larger than the injection amount threshold value, the control unit 32 determines that the internal combustion engine E is not in the low load state. A state in which the fuel injection amount is larger than the injection amount threshold value is also referred to as a high load state of the internal combustion engine E.
  • step S102 When the internal combustion engine E is in a low load state (“YES” in step S102), the control unit 32 shifts the control process to step S103.
  • step S102 when the internal combustion engine E is not in the low load state (“NO” in step S102), the control unit 32 shifts the control process to step S110.
  • step S103 the control unit 32 acquires information regarding the temperature of the oil.
  • the information about the temperature of the oil may be the detection value of the sensor provided in the vehicle. That is, the control unit 32 acquires information on the temperature of the oil from the sensor.
  • the information on the oil temperature is not limited to the oil temperature, but may be any information that correlates with the oil temperature.
  • the temperature information may be the temperature of the cooling water for cooling the engine, which is acquired by the water temperature sensor.
  • the information regarding the temperature may be the temperature of the oil obtained by converting the temperature of the cooling water.
  • step S104 the control unit 32 determines whether or not the oil is in a low temperature state based on the acquired information on the temperature of the oil.
  • step S104 the control unit 32 determines whether or not the temperature indicated by the information regarding the oil temperature (for example, the temperature of the oil and the temperature of the cooling water) is equal to or less than the temperature threshold value.
  • control unit 32 determines that the oil is in a low temperature state.
  • the control unit 32 determines that the oil is not in a low temperature state.
  • the state in which the temperature indicated by the information on the temperature of the oil is larger than the temperature threshold value is also referred to as a non-low temperature state of the oil.
  • the non-low temperature state may be divided into a first high temperature state higher than the first temperature (temperature threshold) and corresponding to the second temperature or lower, and a second high temperature state higher than the second temperature.
  • step S104 When the oil is in a low temperature state (“YES” in step S104), the control unit 32 shifts the control process to step S105.
  • step S104 when the oil is not in a low temperature state (“NO” in step S104), the control unit 32 shifts the control process to step S106.
  • step S105 the control unit 32 sets the rotation speed threshold value as the first rotation speed. As described above, when the internal combustion engine E is in the low load state and the oil is in the low temperature state, the control unit 32 sets the value of the rotation speed threshold value as the first rotation speed.
  • step S106 the control unit 32 sets the rotation speed threshold value as the second rotation speed.
  • the second rotation speed is larger than the first rotation speed.
  • the control unit 32 may set the second rotation speed in advance in the rotation speed threshold value when the internal combustion engine E is started.
  • control unit 32 sets the rotation speed threshold value as the second rotation speed when the internal combustion engine E is in the low load state and the oil is in the non-low temperature state. Then, the control unit 32 shifts the control process to step S107.
  • the control unit 32 may perform a process of determining whether or not the oil state corresponds to the second high temperature state before performing step S106. Then, when the oil state corresponds to the second high temperature state, the control unit 32 may shift the control process to step S110. That is, the control unit 32 controls the oil pump device 2 so as not to change when the oil state corresponds to the second high temperature state. When the oil state does not correspond to the second high temperature state (that is, when the oil state corresponds to the first high temperature state), the control unit 32 may shift the control process to step S106.
  • step S107 the control unit 32 acquires information regarding the rotation speed of the internal combustion engine E (for example, the rotation speed of the crankshaft).
  • the information regarding the rotation speed of the internal combustion engine E may be a detection value of a sensor provided in the vehicle. That is, the control unit 32 acquires information on the rotation speed of the internal combustion engine E from the sensor.
  • step S108 the control unit 32 determines whether or not the rotation speed of the internal combustion engine E is equal to or higher than the rotation speed threshold value based on the acquired information on the rotation speed of the internal combustion engine E.
  • step S108 When the rotation speed of the internal combustion engine E is equal to or higher than the rotation speed threshold value (“YES” in step S108), the control unit 32 shifts the control process to step S109.
  • step S108 when the rotation speed of the internal combustion engine E is smaller than the rotation speed threshold value (“NO” in step S108), the control unit 32 shifts the control process to step S110.
  • step S109 the control unit 32 energizes the solenoid valve 31 to open the solenoid valve 31.
  • the solenoid valve 31 In the open state of the solenoid valve 31, a part of the oil discharged from the pump unit 21 flows into the control hydraulic chamber 221 through the solenoid valve 31 and the introduction port 211d.
  • variable unit 22 When the oil pressure of the oil flowing into the control hydraulic chamber 221 is equal to or higher than the oil pressure threshold value, the variable unit 22 operates. When the variable portion 22 operates, the spring 222 contracts and the amount of eccentricity of the cam ring 215 with respect to the rotor 213 changes.
  • the volume of the pump chamber 216 is reduced, and the amount of oil discharged from the pump unit 21 is reduced. That is, the oil pump device 2 is in a variable state. In the variable state of the oil pump device 2, the discharge amount of oil discharged from the pump unit 21 is the second discharge amount.
  • the variable unit 22 does not operate. As a result, the volume of the pump chamber 216 does not change, and the amount of oil discharged from the pump unit 21 does not change. That is, the oil pump device 2 is in a non-variable state. In the non-variable state of the oil pump device 2, the discharge amount of oil discharged from the pump unit 21 is the first discharge amount.
  • step S109 If the solenoid valve 31 is already in the open state in step S109, the control unit 32 maintains the solenoid valve 31 in the open state. On the other hand, in step S109, when the solenoid valve 31 is in the closed state, the control unit 32 energizes the solenoid valve 31 to open the solenoid valve 31.
  • step S110 the control unit 32 does not energize the solenoid valve 31, and closes the solenoid valve 31. If the solenoid valve 31 is already in the closed state in step S110, the control unit 32 keeps the solenoid valve 31 in the closed state. On the other hand, in step S110, when the solenoid valve 31 is in the open state, the control unit 32 stops the energization of the solenoid valve 31 to close the solenoid valve 31.
  • the discharge amount of the oil discharged from the pump unit 21 is the first discharge amount.
  • variable control of the oil supply device In the case of variable control of the oil supply device according to the present embodiment, the solenoid valve 31 is not opened in the high load state of the internal combustion engine E. In other words, the variable portion 22 does not operate in the high load state of the internal combustion engine E. Therefore, the oil pump device 2 does not become a variable state in the high load state of the internal combustion engine E.
  • the rotation speed of the internal combustion engine E is the rotation speed threshold (first rotation speed or second rotation speed) even when the internal combustion engine E is in a low load state. If it is smaller than that, the solenoid valve 31 is not opened. That is, when the internal combustion engine E is in a low load state and the rotation speed of the internal combustion engine E is smaller than the rotation speed threshold value (first rotation speed or second rotation speed), the oil pump device 2 may be in a variable state. Absent.
  • the oil pump device 2 is set to the variable state at an appropriate timing in the low load state of the internal combustion engine E in which the amount of oil required by the internal combustion engine E is small. By doing so, the discharge amount of the oil pump device 2 can be reduced. As a result, the drive loss in the oil pump device 2 is reduced, and the fuel efficiency performance of the internal combustion engine is improved.
  • variable portion 22 when the oil is in a low temperature state, the variable portion 22 can be operated at an appropriate timing. As a result, the torque shock of the internal combustion engine E generated based on the operation of the variable portion 22 can be reduced.
  • FIG. 3A shows the rotation speed of the internal combustion engine E and the discharge from the pump unit 21 when the variable portion operates in a low load state of the internal combustion engine E and a low temperature state of the oil with respect to the oil supply device according to the reference example. It is a diagram which shows the relationship with the oil pressure of oil.
  • the oil supply device according to the reference example may be regarded as an oil supply device in which the variable control of the oil pump device of the present embodiment is not performed.
  • 3B to 3D are diagrams showing the relationship between the rotation speed of the internal combustion engine E and the oil pressure of the oil discharged from the pump unit 21 with respect to the oil supply device 1 according to the present embodiment.
  • FIG. 3B shows the rotation speed of the internal combustion engine E when the variable portion 22 is operated in a low load state of the internal combustion engine E in which the amount of oil required by the internal combustion engine E is small and a low temperature state of the oil.
  • FIG. 3C shows the rotation speed of the internal combustion engine E when the variable portion 22 does not operate in a high load state of the internal combustion engine E in which the amount of oil required by the internal combustion engine E is large and in a non-low temperature state of the oil. It is a diagram which shows the relationship with the oil pressure of the oil discharged from a pump part 21.
  • FIG. 3D shows the rotation speed of the internal combustion engine E and the pump unit when the variable portion 22 is operated in a low load state of the internal combustion engine E with a large amount of oil required by the internal combustion engine E and a non-low temperature state of the oil. It is a diagram which shows the relationship with the oil pressure of the oil discharged from 21.
  • variable unit 22 operates when the oil pressure in the control hydraulic chamber 221 becomes P1 or higher.
  • the oil pressure in the control hydraulic chamber 221 is equal to the oil pressure of the oil discharged from the pump unit 21. Further, in the case of the oil supply device according to the reference example, the rotation speed threshold value at which the solenoid valve 31 is opened is the first rotation speed (that is, the rotation speed N1).
  • the rotation speed threshold value at which the solenoid valve 31 is opened in the low load state of the internal combustion engine E and the low temperature state of the oil is the second rotation speed (that is, the rotation speed). N2).
  • the rotation speed threshold value at which the solenoid valve 31 is opened in the low load state of the internal combustion engine E and the non-low temperature state of the oil is the first rotation speed (that is, rotation). The number N1).
  • the rising speed of the oil in the low temperature state is faster than the rising speed of the oil in the high temperature state (see FIG. 3D).
  • the oil pressure in the control hydraulic chamber 221 is P1 at the rotation speed N2.
  • the oil pressure in the control hydraulic chamber 221 is P1
  • the oil is not supplied to the control hydraulic chamber 221 because the solenoid valve 31 is in the closed state. Therefore, the variable portion 22 does not operate at the rotation speed N2.
  • the oil pressure in the control hydraulic chamber 221 is changed at the rotation speed N2. It becomes P1 and the solenoid valve 31 is opened. As a result, the variable portion 22 operates at the rotation speed N2. As shown in FIG. 3B, the oil pressure does not fluctuate significantly from P1 even if the discharge amount of the pump unit 21 decreases. Therefore, the occurrence of torque shock in the internal combustion engine E due to the fluctuation of the oil pressure is suppressed.
  • the oil pressure in the control hydraulic chamber 221 is changed at the rotation speed N1. It becomes P1 and the solenoid valve 31 is opened. As a result, the variable portion 22 operates at the rotation speed N1. As shown in FIG. 3C, the oil pressure does not fluctuate significantly from P1 even if the discharge amount of the pump unit 21 decreases. Therefore, the occurrence of torque shock in the internal combustion engine E due to the fluctuation of the oil pressure is suppressed.
  • the oil supply device can be applied not only to a diesel engine but also to various internal combustion engines such as a gasoline engine.
  • Oil supply device Oil pump device 21
  • Pump section 211 Housing 211a Storage section 211b Suction port 211c Discharge port 211d Introduction port 212 Drive shaft 213 Rotor 213a Slit 214 Vane 215 Cam ring 215a Flange section 216 Pump room 22 Variable section 221 Control hydraulic chamber 222 Spring 3 Variable control unit 31 Solvent valve 311 1st port 312 2nd port 32 Control unit 4 Oil pan 5 Transmission line L1 Oil passage L11, L12, L13, L14 Oil passage element E Internal engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

オイルポンプにおける駆動ロスを小さくして、内燃機関の燃費性能を向上できる内燃機関のオイル供給装置を提供する。内燃機関のオイル供給装置は、内燃機関へのオイルを供給するポンプ部と、内燃機関が低負荷状態であり且つ内燃機関の回転数が閾値以上の場合、ポンプ部にオイルを供給する制御部と、を備え、制御部は、オイルの温度に基づいて、内燃機関の回転数の閾値を決定する。

Description

内燃機関のオイル供給装置
 本開示は、内燃機関のオイル供給装置に関する。
 従来、オイルの吐出量を変えることができるオイルポンプを備えた内燃機関のオイル供給装置が知られている。特許文献1には、内燃機関に接続されたクランクシャフトの回転に基づいて駆動し、吐出口から吐出したオイルを内燃機関の構成部材に圧送するオイル供給装置が開示されている。
日本国特開平10-73084号公報
 上述のようなオイル供給装置の場合、内燃機関が要求するオイルの油量及び油圧(以下、単に「内燃機関の要求油圧」と称する。)以上のオイルを内燃機関に供給すると、オイルポンプにおける駆動ロスが大きくなり、内燃機関の燃費性能を悪化させてしまう。
 本開示の目的は、オイルポンプにおける駆動ロスを小さくして、内燃機関の燃費性能を向上できる内燃機関のオイル供給装置を提供することである。
 本開示の一態様に係る内燃機関のオイル供給装置は、
 内燃機関へのオイルを供給するポンプ部と、
 内燃機関が低負荷状態であり且つ内燃機関の回転数が閾値以上の場合、ポンプ部にオイルを供給する制御部と、を備え、
 制御部は、オイルの温度に基づいて、内燃機関の回転数の閾値を決定する。
 本開示の一態様に係る内燃機関のオイル供給装置は、
 内燃機関の動力に基づいてオイルを吐出するポンプ部と、制御油圧室を有し、制御油圧室に供給されるオイルの油圧に基づいて作動して、ポンプ部の吐出量を少なくする可変部と、を有するオイルポンプ装置と、
 内燃機関が低負荷状態であり且つ内燃機関の回転数が回転数閾値以上の場合、制御油圧室にオイルを供給する可変制御部と、を備え、
 可変制御部は、オイルが低温状態に該当する場合、回転数閾値の値を第一回転数とし、オイルが非低温状態に該当する場合、回転数閾値を第一回転数よりも高い第二回転数とする。
 本開示によれば、オイルポンプにおける駆動ロスを小さくして、内燃機関の燃費性能を向上できる内燃機関のオイル供給装置を提供できる。
図1は、実施形態に係る内燃機関のオイル供給装置を模式的に示す図である。 図2は、実施形態に係る内燃機関のオイル供給装置の動作を説明するためのフローチャートである。 図3Aは、参考例に係るオイル供給装置に関する、内燃機関の回転数とオイルの油圧との関係を示す線図である。 図3Bは、実施形態に係るオイル供給装置に関する、内燃機関の回転数とオイルの油圧との関係の一例を示す線図である。 図3Cは、実施形態に係るオイル供給装置に関する、内燃機関の回転数とオイルの油圧との関係の一例を示す線図である。 図3Dは、実施形態に係るオイル供給装置に関する、内燃機関の回転数とオイルの油圧との関係の一例を示す線図である。
 以下、本開示に係る実施形態の一例を図面に基づいて詳細に説明する。尚、後述の実施形態に係る内燃機関のオイル供給装置は、本開示に係る内燃機関のオイル供給装置の一例であり、本開示は後述の実施形態により限定されない。
 [実施形態]
 図1及び図2を参照して、本実施形態に係る内燃機関のオイル供給装置1について説明する。
 図1は、オイル供給装置1の構成を説明するための模式図である。以下、オイル供給装置1の構造については、オイル供給装置1の特徴部分の説明に必要な構造のみを説明する。オイル供給装置1におけるその他の構造については、従来から知られている種々のオイル供給装置の構造と同様であってよい。
 <オイル供給装置>
 オイル供給装置1は、内燃機関Eに適用され、内燃機関Eの構成部材(例えば、ピストン)に潤滑又は冷却のためのオイルを供給する。
 内燃機関Eは、例えば、トラック等に搭載されたディーゼルエンジン、又は、乗用車等に搭載されたガソリンエンジンである。内燃機関Eの構造は、従来から知られている種々の内燃機関の構造と同様であるため、詳しい説明は省略する。
 オイル供給装置1は、可変式のオイルポンプ装置2、可変制御部3、及びオイルパン4を有する。このようなオイル供給装置1の各エレメント2~4は、油路L1により接続されている。
 尚、オイル供給装置1の構造は、図示の構造に限定されない。図示は省略するが、オイル供給装置1は、例えば、オイルポンプ装置2から吐出されたオイルの通路であるメインギャラリ、オイルをろ過するためのオイルフィルタ、オイルを冷却するためのオイルクーラ、及び内燃機関の構成部材にオイルを供給するための供給部(ノズル等)を有してよい。
 先ず、オイル供給装置1におけるオイルの流れについて簡単に説明する。オイルパン4内のオイルは、油路L1の油路要素L11を通って、オイルポンプ装置2に流入する。オイルポンプ装置2に流入したオイルは、オイルポンプ装置2で昇圧され、オイルポンプ装置2から油路L1の油路要素L12に吐出される。
 オイルポンプ装置2から油路要素L12に吐出されたオイルは、内燃機関Eの構成部材(例えば、ピストン)に圧送される。
 又、オイルポンプ装置2から油路要素L12に吐出されたオイルの一部は、油路要素L12から分岐して油路要素L13に流入する。可変制御部3のソレノイドバルブ31が閉じた状態(以下、単に「閉状態」と称する。)において、油路要素L13に流入したオイルは、可変制御部3(具体的には、ソレノイドバルブ31)により止められる。
 一方、ソレノイドバルブ31が開いた状態(以下、単に「開状態」と称する。)において、油路要素L13に流入したオイルは、ソレノイドバルブ31を通って、油路L1の油路要素L14に流入する。そして、油路要素L14に流入したオイルは、オイルポンプ装置2の可変部22(後述)の制御油圧室221に流入する。オイルポンプ装置2は、制御油圧室221内のオイルの油圧に基づいて作動し、オイルポンプ装置2から吐出されるオイルの吐出量を変える。以下、オイル供給装置1の具体的構成について説明する。
 <オイルポンプ装置>
 オイルポンプ装置2は、例えば、吐出量を変えることができる可変式のベーンポンプである。オイルポンプ装置2は、内燃機関Eの動力に基づいて駆動する。具体的には、オイルポンプ装置2は、内燃機関Eに接続されたクランクシャフト(不図示)に接続され、クランクシャフトの回転によって駆動される。
 オイルポンプ装置2の吐出量は、オイルポンプ装置2の駆動軸212(後述)が1回転した場合に、オイルポンプ装置2から吐出されるオイルの容量である。本実施形態のオイルポンプ装置2は、吐出量を、第一吐出量と、この第一吐出量よりも小さい第二吐出量との間で切り換えることができる。
 このようなオイルポンプ装置2は、ポンプ部21と、可変部22と、を有する。
 <ポンプ部>
 ポンプ部21は、ハウジング211と、駆動軸212と、ロータ213と、複数のベーン214と、カムリング215と、を有する。
 ハウジング211は、筒状の収容部211aを有する。収容部211aには、ポンプ部21を構成する各エレメント212~215等が収容されている。
 ハウジング211は、吸入口211b、吐出口211c、及び導入口211dを有する。
 吸入口211bは、ポンプ室216(後述)に供給されるオイルの入り口である。吸入口211bには、油路要素L11が接続されている。油路要素L11は、第一端部(上流側の端部)がオイルパン4に接続され、第二端部(下流側の端部)が吸入口211bに接続されている。
 吐出口211cは、ポンプ室216から吐出されるオイルの出口である。吐出口211cには、油路要素L12の第一端部(下流側の端部)が接続されている。
 導入口211dは、制御油圧室221(後述)に供給されるオイルの入り口である。導入口211dには、油路要素L14が接続されている。油路要素L14の第一端部(上流側の端部)は、ソレノイドバルブ31(後述)の第二ポート312に接続されている。油路要素L14の第二端部(下流側の端部)は、導入口211dに接続されている。
 駆動軸212は、ハウジング211の軸支持部(不図示)により、回転自在に支持されている。駆動軸212は、クランクシャフトに接続されており、クランクシャフトの回転によって、回転する。
 ロータ213は、駆動軸212の外周面に固定されている。ロータ213は、駆動軸212とともに回転する。具体的には、ロータ213は、中心孔(不図示)を有する筒状部材である。ロータ213の中止孔には、駆動軸212が挿通されている。
 又、ロータ213は、外周面に、円周方向において等間隔に設けられたスリット213aを有する。スリット213aはそれぞれ、ロータ213の軸方向に延在している。このようなスリット213aはそれぞれ、ベーン214を支持している。
 ベーン214はそれぞれ、板状部材であり、ロータ213のスリット213aに対して、ロータ213の径方向に移動可能な状態で支持されている。つまり、ベーン214はそれぞれ、ロータ213の外周面からの突出量が変更可能に構成されている。
 カムリング215は、筒状部材であり、ロータ213の外周面を囲むように設けられている。カムリング215は、ロータ213の中心軸に対して偏心可能な状態で、ハウジング211に支持されている。カムリング215のロータ213に対する偏心量は、制御油圧室221に供給されるオイルの油圧に基づいて変わる。
 カムリング215は、外周面の一部に、板状のフランジ部215aを有する。カムリング215の内周面とロータ213の外周面との間には、ベーン214により区切られた複数のポンプ室216が設けられている。
 ポンプ室216はそれぞれ、カムリング215のロータ213に対する偏心量に応じて、容積が変わる。ポンプ室216の容積が変わると、ポンプ部21の吐出量が変わる。
 オイルパン4から吸い上げられたオイルは、吸入口211bを通って、ポンプ室216に供給される。又、ポンプ室216内のオイルは、吐出口211cを通って、油路要素L12に吐出される。
 <可変部>
 可変部22は、可変制御部3(後述)の制御下で、ポンプ部21の吐出量を変える。可変部22は、制御油圧室221及びスプリング222を有する。
 制御油圧室221は、ハウジング211の内面とカムリング215の外周面とにより囲まれた空間である。ソレノイドバルブ31の第二ポート312から吐出されたオイルは、油路要素L14及び導入口211dを通って、制御油圧室221に供給される。
 スプリング222は、コイルスプリングであり、ハウジング211の内面とカムリング215のフランジ部215aとの間に設けられている。
 スプリング222は、カムリング215を第一方向に常時付勢している。このようなスプリング222は、制御油圧室221に供給されたオイルの油圧が、油圧閾値以上の場合に収縮する。
 スプリング222が収縮すると、カムリング215のロータ213に対する偏心量が変わって、ポンプ室216の容積が変わる。本実施形態の場合、スプリング222が収縮すると、ポンプ室216の容積が小さくなる。この結果、ポンプ部21の吐出量が少なくなる。
 尚、オイルポンプ装置の構造は、上述の構造に限定されない。オイルポンプ装置は、従来から知られている種々の可変式のオイルポンプ装置であってよい。
 <可変制御部>
 可変制御部3は、可変部22(具体的には、制御油圧室221)へのオイルの供給状態を制御する。可変制御部3は、ソレノイドバルブ31及び制御部32を有する。
 <ソレノイドバルブ>
 ソレノイドバルブ31は、制御部32(後述)の制御下で、閉状態と開状態とを切り換える。ソレノイドバルブ31は、通電された状態(以下、「通電状態」と称する。)において、第一ポート311と第二ポート312とを、オイルの流通を可能な状態に接続する。ソレノイドバルブ31の通電状態(換言すれば、第一ポート311と第二ポート312とが接続された状態)は、ソレノイドバルブ31の開状態に対応する。
 又、ソレノイドバルブ31は、通電されていない状態(以下、「非通電状態」と称する。)において、第一ポート311と第二ポート312とを遮断する。ソレノイドバルブ31の非通電状態(第一ポート311と第二ポート312とが遮断された状態)は、ソレノイドバルブ31の閉状態に対応する。
 このようなソレノイドバルブ31は、オイルポンプ装置2の吐出口211cとオイルポンプ装置2の導入口211dとを接続する油路に設けられている。
 具体的には、ソレノイドバルブ31は、油路要素L13と油路要素L14との間に設けられている。油路要素L13の第一端部(上流側の端部)は、油路要素L12に接続されている。油路要素L13の第二端部(下流側の端部)は、ソレノイドバルブ31の第一ポート311に接続されている。
 油路要素L14の第一端部(上流側の端部)は、ソレノイドバルブ31の第二ポート312に接続されている。油路要素L14の第二端部(下流側の端部)は、オイルポンプ装置2の導入口211dに接続されている。
 尚、ソレノイドバルブの構造は、上述の構造に限定されない。ソレノイドバルブとして、従来から知られている種々のソレノイドバルブを採用できる。
 <制御部>
 制御部32は、オイル供給装置1の制御を行うもので、公知のCPU、ROM、RAM、入力ポート、及び出力ポート等を備えている。制御部32は、電送線5を介して、ソレノイドバルブ31に接続されている。尚、制御部32は、車両の各種制御を行う制御装置であってもよいし、オイル供給装置1専用に設けられた制御装置であってもよい。
 具体的には、制御部32は、ソレノイドバルブ31への通電状態を制御することにより、ソレノイドバルブ31の開閉状態を切り換える。制御部32の具体的な機能については、オイルポンプ装置の可変制御の説明において詳述する。
 <オイルポンプ装置の可変制御について>
 以下、図2を参照して、本実施形態に係るオイル供給装置1が実施するオイルポンプ装置の可変制御について説明する。図2は、オイル供給装置1が実施するオイルポンプの可変制御を示すフローチャートである。図2に示す動作は、制御部32により実施される。
 先ず、本実施形態に係るオイルポンプ装置の可変制御の概要について説明する。図2に示すオイルポンプ装置の可変制御は、内燃機関Eの稼働状態において、繰り返し実施される。内燃機関Eが始動すると、内燃機関Eに接続されたクランクシャフトが回転する。そして、クランクシャフトの回転に基づいて、オイルポンプ装置2が駆動する。
 オイルポンプ装置2の駆動状態において、オイルポンプ装置2から吐出されたオイルは、内燃機関Eの構成部材(例えば、ピストン)に圧送される。
 オイルポンプ装置2の駆動状態において、可変部22が作動していない場合、オイルポンプ装置2から吐出されるオイルの吐出量は、第一吐出量である。オイルポンプ装置2において、可変部22が作動していない状態(つまり、オイルポンプ装置2が可変してない状態)を、オイルポンプ装置2の非可変状態とも称する。
 一方、オイルポンプ装置2の駆動状態において、可変部22が作動している場合、オイルポンプ装置2から吐出されるオイルの吐出量は、第一吐出量よりも少ない第二吐出量である。オイルポンプ装置2において、可変部22が作動している状態(つまり、オイルポンプ装置2が可変している状態)を、オイルポンプ装置2の可変状態とも称する。
 制御部32は、内燃機関Eの負荷に関する情報、及び、オイルの油温に関する情報に基づいて、可変部22を制御する。制御部32により実施される上述の制御が、オイル供給装置の可変制御である。以下、図2を参照して、オイルポンプ装置の可変制御の具体的な処理を説明する。
 図2のステップS101において、制御部32は、内燃機関Eの負荷状態を判定するために、内燃機関Eの負荷に関する情報を取得する。内燃機関Eの負荷に関する情報は、車両に設けられたセンサの検出値であってよい。
 内燃機関Eの負荷に関する情報は、例えば、内燃機関Eの燃焼室に燃料を噴射する燃料噴射装置(不図示)の噴射量に関する情報(以下、「燃料噴射量に関する情報」と称する。)であってよい。又、内燃機関Eの負荷に関する情報は、例えば、内燃機関Eのスロットルバルブの開度に関する情報、又は、アクセル開度に関する情報であってもよい。
 ステップS102において、制御部32は、取得した内燃機関Eの負荷に関する情報に基づいて、内燃機関Eが、低負荷状態であるか否かを判定する。
 具体的には、内燃機関Eの負荷に関する情報が燃料噴射量に関する情報の場合、制御部32は、ステップS102において、燃料噴射量が、噴射量閾値以下であるか否かを判定する。
 燃料噴射量が噴射量閾値以下の場合、制御部32は、内燃機関Eが、低負荷状態であると判定する。一方、燃料噴射量が噴射量閾値より大きい場合、制御部32は、内燃機関Eが、低負荷状態ではないと判定する。尚、燃料噴射量が噴射量閾値より大きい状態を、内燃機関Eの高負荷状態とも称する。
 内燃機関Eが低負荷状態である場合(ステップS102において“YES”)、制御部32は、制御処理をステップS103に移行する。
 一方、内燃機関Eが低負荷状態ではない場合(ステップS102において“NO”)、制御部32は、制御処理をステップS110に移行する。
 ステップS103において、制御部32は、オイルの温度に関する情報を取得する。オイルの温度に関する情報は、車両に設けられたセンサの検出値であってよい。つまり、制御部32は、センサから、オイルの温度に関する情報を取得する。
 オイルの温度に関する情報は、オイルの温度に限らず、オイルの温度と相関関係がある情報であればよい。例えば、温度に関する情報は、水温センサにより取得した、エンジンを冷却するための冷却水の温度であってよい。又、温度に関する情報は、冷却水の温度を換算して得たオイルの温度であってもよい。
 ステップS104において、制御部32は、取得したオイルの温度に関する情報に基づいて、オイルが、低温状態であるか否かを判定する。
 具体的には、制御部32は、ステップS104において、オイルの温度に関する情報が示す温度(例えば、オイルの温度、冷却水の温度)が、温度閾値以下であるか否かを判定する。
 オイルの温度に関する情報が示す温度が温度閾値以下の場合、制御部32は、オイルが低温状態であると判定する。
 一方、オイルの温度に関する情報が示す温度が温度閾値より大きい場合、制御部32は、オイルが、低温状態ではないと判定する。尚、オイルの温度に関する情報が示す温度が温度閾値より大きい状態を、オイルの非低温状態とも称する。非低温状態は、第一温度(温度閾値)より高く且つ第二温度以下に対応する第一高温状態と、第二温度より高い第二高温状態と、に区分けされてよい。
 オイルが低温状態である場合(ステップS104において“YES”)、制御部32は、制御処理をステップS105に移行する。
 一方、オイルが低温状態ではない場合(ステップS104において“NO”)、制御部32は、制御処理をステップS106に移行する。
 ステップS105において、制御部32は、回転数閾値を第一回転数とする。このように制御部32は、内燃機関Eが低負荷状態であり且つオイルが低温状態である場合、回転数閾値の値を第一回転数とする。
 一方、ステップS106において、制御部32は、回転数閾値を第二回転数とする。第二回転数は、第一回転数よりも大きい。尚、制御部32は、内燃機関Eが始動した時点で、回転数閾値に予め第二回転数を設定してもよい。
 このように制御部32は、内燃機関Eが低負荷状態であり且つオイルが非低温状態の場合に、回転数閾値を第二回転数とする。そして、制御部32は、制御処理を、ステップS107に移行する。尚、図示は省略するが、ステップS106を実施する前に、制御部32は、オイルの状態が第二高温状態に該当するか否かを判定する処理を実施してもよい。そして、制御部32は、オイルの状態が第二高温状態に該当する場合、制御処理をステップS110に移行してよい。つまり、制御部32は、オイルの状態が第二高温状態に該当する場合、オイルポンプ装置2を可変させないように制御する。制御部32は、オイルの状態が第二高温状態に該当しない場合(つまり、オイルの状態が第一高温状態に該当する場合)、制御処理をステップS106に移行してよい。
 ステップS107において、制御部32は、内燃機関Eの回転数(例えば、クランクシャフトの回転数)に関する情報を取得する。内燃機関Eの回転数に関する情報は、車両に設けられたセンサの検出値であってよい。つまり、制御部32は、センサから、内燃機関Eの回転数に関する情報を取得する。
 ステップS108において、制御部32は、取得した内燃機関Eの回転数に関する情報に基づいて、内燃機関Eの回転数が、回転数閾値以上であるか否かを判定する。
 内燃機関Eの回転数が回転数閾値以上である場合(ステップS108において“YES”)、制御部32は、制御処理をステップS109に移行する。
 一方、内燃機関Eの回転数が回転数閾値より小さい場合(ステップS108において“NO”)、制御部32は、制御処理をステップS110に移行する。
 ステップS109において、制御部32は、ソレノイドバルブ31に通電して、ソレノイドバルブ31を開状態とする。ソレノイドバルブ31の開状態において、ポンプ部21から吐出されたオイルの一部は、ソレノイドバルブ31及び導入口211dを通って、制御油圧室221に流入する。
 制御油圧室221に流入したオイルの油圧が、油圧閾値以上の場合、可変部22が作動する。可変部22が作動すると、スプリング222が収縮してカムリング215のロータ213に対する偏心量が変わる。
 この結果、ポンプ室216の容積が小さくなり、ポンプ部21から吐出されるオイルの吐出量が少なくなる。つまり、オイルポンプ装置2は、可変状態である。オイルポンプ装置2の可変状態において、ポンプ部21から吐出されるオイルの吐出量は、第二吐出量である。
 一方、制御油圧室221に流入したオイルの油圧が、油圧閾値未満の場合、可変部22は作動しない。この結果、ポンプ室216の容積は変わらず、ポンプ部21から吐出されるオイルの吐出量も変わらない。つまり、オイルポンプ装置2は、非可変状態である。オイルポンプ装置2の非可変状態において、ポンプ部21から吐出されるオイルの吐出量は、第一吐出量である。
 尚、ステップS109において、既にソレノイドバルブ31が開状態である場合には、制御部32は、ソレノイドバルブ31の開状態を維持する。一方、ステップS109において、ソレノイドバルブ31が閉状態である場合には、制御部32は、ソレノイドバルブ31に通電して、ソレノイドバルブ31を開状態とする。
 ステップS110において、制御部32は、ソレノイドバルブ31に通電せず、ソレノイドバルブ31を閉状態とする。尚、ステップS110において、既にソレノイドバルブ31が閉状態である場合には、制御部32は、ソレノイドバルブ31の閉状態を維持する。一方、ステップS110において、ソレノイドバルブ31が開状態である場合には、制御部32は、ソレノイドバルブ31への通電を停止して、ソレノイドバルブ31を閉状態とする。
 ソレノイドバルブ31の閉状態において、ポンプ部21から吐出されたオイルは、制御油圧室221に流入しないため、可変部22は作動しない。よって、ポンプ部21から吐出されるオイルの吐出量は、第一吐出量である。
 本実施形態に係るオイル供給装置の可変制御の場合、内燃機関Eの高負荷状態において、ソレノイドバルブ31を開状態とすることはない。換言すれば、内燃機関Eの高負荷状態において、可変部22は作動しない。よって、内燃機関Eの高負荷状態において、オイルポンプ装置2が可変状態となることはない。
 又、本実施形態に係るオイル供給装置の可変制御の場合、内燃機関Eが低負荷状態であっても、内燃機関Eの回転数が、回転数閾値(第一回転数又は第二回転数)より小さい場合、ソレノイドバルブ31を開状態とすることはない。つまり、内燃機関Eが低負荷状態であり且つ内燃機関Eの回転数が、回転数閾値(第一回転数又は第二回転数)より小さい場合に、オイルポンプ装置2が可変状態となることはない。
 <本実施形態の作用・効果>
 以上のように、本実施形態に係るオイル供給装置の場合、内燃機関Eが要求するオイルの油量が少ない内燃機関Eの低負荷状態において、適切なタイミングで、オイルポンプ装置2を可変状態とすることにより、オイルポンプ装置2の吐出量を少なくできる。この結果、オイルポンプ装置2における駆動ロスが小さくなり、内燃機関の燃費性能が向上する。
 又、オイルが低温状態の場合に、適切なタイミングで可変部22を作動させることができる。この結果、可変部22の作動に基づいて生じる内燃機関Eのトルクショックを軽減できる。
 この理由について、図3A~図3Dを参照して説明する。図3Aは、参考例に係るオイル供給装置に関して、内燃機関Eの低負荷状態且つオイルの低温状態において、可変部が作動した場合の、内燃機関Eの回転数と、ポンプ部21から吐出されるオイルの油圧との関係を示す線図である。尚、参考例に係るオイル供給装置は、本実施形態のオイルポンプ装置の可変制御が実施されないオイル供給装置と捉えてよい。
 図3B~図3Dは、本実施形態に係るオイル供給装置1に関する、内燃機関Eの回転数と、ポンプ部21から吐出されるオイルの油圧との関係を示す線図である。
 具体的には、図3Bは、内燃機関Eが要求するオイルの油量が少ない内燃機関Eの低負荷状態且つオイルの低温状態において、可変部22が作動した場合の、内燃機関Eの回転数と、ポンプ部21から吐出されるオイルの油圧との関係を示す線図である。
 図3Cは、内燃機関Eが要求するオイルの油量が多い内燃機関Eの高負荷状態、且つ、オイルの非低温状態において、可変部22が作動しない場合の、内燃機関Eの回転数と、ポンプ部21から吐出されるオイルの油圧との関係を示す線図である。
 図3Dは、内燃機関Eが要求するオイルの油量が多い内燃機関Eの低負荷状態且つオイルの非低温状態において、可変部22が作動した場合の、内燃機関Eの回転数と、ポンプ部21から吐出されるオイルの油圧との関係を示す線図である。
 ここで、本実施形態に係るオイル供給装置1及び参考例に係るオイル供給装置は何れも、可変部22は、制御油圧室221内のオイルの油圧がP1以上になると作動する。
 又、制御油圧室221内のオイルの油圧は、ポンプ部21から吐出されるオイルの油圧と等しい。又、参考例に係るオイル供給装置の場合、ソレノイドバルブ31が開状態となる回転数閾値は、第一回転数(つまり、回転数N1)である。
 一方、本実施形態に係るオイル供給装置1の場合、内燃機関Eの低負荷状態且つオイルの低温状態において、ソレノイドバルブ31が開状態となる回転数閾値は、第二回転数(つまり、回転数N2)である。
 又、本実施形態に係るオイル供給装置1の場合、内燃機関Eの低負荷状態且つオイルの非低温状態において、ソレノイドバルブ31が開状態となる回転数閾値は、第一回転数(つまり、回転数N1)である。
 低温状態におけるオイルの粘度は、高温状態におけるオイルの粘度よりも高いため、低温状態における油圧の立ち上がり速度(図3A参照)は、高温状態における油圧の立ち上がり速度(図3D参照)よりも早い。
 図3Aの場合、回転数N2において、制御油圧室221内のオイルの油圧がP1となる。ただし、制御油圧室221内のオイルの油圧がP1であっても、ソレノイドバルブ31が閉状態であるため、オイルは、制御油圧室221に供給されない。このため、回転数N2において、可変部22は作動しない。
 図3Aの場合、内燃機関Eの回転数N1において、ソレノイドバルブ31が開状態となり、オイルが、制御油圧室221に供給される。この結果、可変部22が作動して、オイルポンプ装置2の吐出量が減る。その結果、図3Aに示すように、オイルの油圧がP2からP1まで減少する。このようなオイルの油圧の変動に起因して、内燃機関Eにトルクショックが発生する。
 一方、本実施形態に係るオイル供給装置1の場合、内燃機関Eの低負荷状態且つオイルの低温状態において、図3Bに示すように、回転数N2において、制御油圧室221内のオイルの油圧がP1となり、且つ、ソレノイドバルブ31が開状態となる。この結果、回転数N2において、可変部22が作動する。図3Bに示すように、ポンプ部21の吐出量が減っても、オイルの油圧がP1から大きく変動しない。よって、オイルの油圧の変動に起因する、内燃機関Eのトルクショックの発生が抑えられる。
 又、本実施形態に係るオイル供給装置1の場合、内燃機関Eの低負荷状態且つオイルの高温状態において、図3Dに示すように、回転数N1において、制御油圧室221内のオイルの油圧がP1となり、且つ、ソレノイドバルブ31が開状態となる。この結果、回転数N1において、可変部22が作動する。図3Cに示すように、ポンプ部21の吐出量が減っても、オイルの油圧がP1から大きく変動しない。よって、オイルの油圧の変動に起因する、内燃機関Eのトルクショックの発生が抑えられる。
 本出願は、2019年9月30日付で出願された日本国特許出願(特願2019-178973)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示に係るオイルの供給装置は、ディーゼルエンジンに限らず、ガソリンエンジンなど種々の内燃機関に適用できる。
 1 オイル供給装置
 2 オイルポンプ装置
 21 ポンプ部
 211 ハウジング
 211a 収容部
 211b 吸入口
 211c 吐出口
 211d 導入口
 212 駆動軸
 213 ロータ
 213a スリット
 214 ベーン
 215 カムリング
 215a フランジ部
 216 ポンプ室
 22 可変部
 221 制御油圧室
 222 スプリング
 3 可変制御部
 31 ソレノイドバルブ
 311 第一ポート
 312 第二ポート
 32 制御部
 4 オイルパン
 5 電送線
 L1 油路
 L11、L12、L13、L14 油路要素
 E 内燃機関

Claims (5)

  1.  内燃機関へのオイルを供給するポンプ部と、
     前記内燃機関が低負荷状態であり且つ前記内燃機関の回転数が閾値以上の場合、前記ポンプ部に前記オイルを供給する制御部と、を備え、
     前記制御部は、前記オイルの温度に基づいて、前記内燃機関の回転数の閾値を決定する、
     内燃機関のオイル供給装置。
  2.  前記制御部は、前記オイルの温度が閾値以下の場合、前記回転数の閾値を第一閾値とし、前記オイルの温度が閾値より大きい場合、前記回転数の閾値を前記第一閾値より大きい第二閾値とする、請求項1に記載の内燃機関のオイル供給装置。
  3.  前記制御部は、前記内燃機関における燃料の噴射量が閾値以下である場合に、前記低負荷状態であると判定する、請求項1に記載の内燃機関のオイル供給装置。
  4.  前記ポンプ部は、制御油圧室と、可変部とを有し、
     前記制御部が前記オイルを供給するのは、前記ポンプ部の前記制御油圧室であり、
     前記可変部は、前記制御油圧室内の前記オイルの油圧が閾値以上の場合に作動し、前記ポンプのオイルの供給量を少なくする、請求項1に記載の内燃機関のオイル供給装置。
  5.  前記制御部は、前記ポンプ部の吐出口と前記制御油圧室とを接続する油路に設けられ、通電に基づいて開状態と閉状態とのうちの何れか一方の状態となるソレノイドバルブを有し、
     前記制御部は、前記回転数が前記閾値以上の場合、前記ソレノイドバルブに通電して前記ソレノイドバルブを開状態とすることにより、前記制御油圧室に前記オイルを供給する、請求項4に記載の内燃機関のオイル供給装置。
PCT/JP2020/036670 2019-09-30 2020-09-28 内燃機関のオイル供給装置 WO2021065817A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080067208.9A CN114514362B (zh) 2019-09-30 2020-09-28 内燃机的供油装置
DE112020004704.0T DE112020004704T5 (de) 2019-09-30 2020-09-28 Ölversorgungsvorrichtung für verbrennungsmotoren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019178973A JP2021055601A (ja) 2019-09-30 2019-09-30 内燃機関のオイル供給装置
JP2019-178973 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021065817A1 true WO2021065817A1 (ja) 2021-04-08

Family

ID=75272383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036670 WO2021065817A1 (ja) 2019-09-30 2020-09-28 内燃機関のオイル供給装置

Country Status (4)

Country Link
JP (1) JP2021055601A (ja)
CN (1) CN114514362B (ja)
DE (1) DE112020004704T5 (ja)
WO (1) WO2021065817A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117407U (ja) * 1984-07-09 1986-01-31 本田技研工業株式会社 エンジンの潤滑装置
JPH038609U (ja) * 1989-06-15 1991-01-28
JPH0526023A (ja) * 1991-07-19 1993-02-02 Mazda Motor Corp エンジンの潤滑装置
JPH1073084A (ja) * 1996-08-29 1998-03-17 Aisin Seiki Co Ltd オイルポンプ装置
JP2004060612A (ja) * 2002-07-31 2004-02-26 Toyota Motor Corp 内燃機関の潤滑装置
JP2009264241A (ja) * 2008-04-25 2009-11-12 Mazda Motor Corp エンジンの給油制御装置
WO2010143265A1 (ja) * 2009-06-09 2010-12-16 トヨタ自動車株式会社 内燃機関の制御装置
JP2019157835A (ja) * 2018-03-16 2019-09-19 日立オートモティブシステムズ株式会社 可変容量オイルポンプの制御装置及び制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3892236B2 (ja) * 2001-02-20 2007-03-14 本田技研工業株式会社 ハイブリッド車両の制御装置
JP4911020B2 (ja) * 2007-12-27 2012-04-04 トヨタ自動車株式会社 内燃機関の潤滑装置
JP5293617B2 (ja) * 2010-01-13 2013-09-18 三菱自動車工業株式会社 オイル供給装置
JP2013083194A (ja) * 2011-10-07 2013-05-09 Honda Motor Co Ltd 内燃機関の潤滑油供給装置
JP6156182B2 (ja) * 2014-02-19 2017-07-05 マツダ株式会社 多気筒エンジンの制御装置
JP6496061B1 (ja) 2018-03-30 2019-04-03 オークマ株式会社 転がり軸受の異常診断方法及び異常診断装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117407U (ja) * 1984-07-09 1986-01-31 本田技研工業株式会社 エンジンの潤滑装置
JPH038609U (ja) * 1989-06-15 1991-01-28
JPH0526023A (ja) * 1991-07-19 1993-02-02 Mazda Motor Corp エンジンの潤滑装置
JPH1073084A (ja) * 1996-08-29 1998-03-17 Aisin Seiki Co Ltd オイルポンプ装置
JP2004060612A (ja) * 2002-07-31 2004-02-26 Toyota Motor Corp 内燃機関の潤滑装置
JP2009264241A (ja) * 2008-04-25 2009-11-12 Mazda Motor Corp エンジンの給油制御装置
WO2010143265A1 (ja) * 2009-06-09 2010-12-16 トヨタ自動車株式会社 内燃機関の制御装置
JP2019157835A (ja) * 2018-03-16 2019-09-19 日立オートモティブシステムズ株式会社 可変容量オイルポンプの制御装置及び制御方法

Also Published As

Publication number Publication date
JP2021055601A (ja) 2021-04-08
CN114514362B (zh) 2024-05-24
DE112020004704T5 (de) 2022-06-30
CN114514362A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
US6739305B2 (en) Oil pump for internal combustion engine and method of operating the same
US5547349A (en) Oil pump system
US9494153B2 (en) Variable displacement oil pump
EP1921317B1 (en) Oil supplying apparatus for engine
US20110194967A1 (en) Variable displacement pump, oil jet and lublicating system using variable displacement pump
US9903468B2 (en) Hydraulic pressure supply system of automatic transmission
KR20140045183A (ko) 차량용 자동변속기의 유압공급시스템
US11891926B2 (en) Valve timing adjustment device
US11867098B2 (en) Valve timing adjusting device
JP2012172516A (ja) オイルポンプ
US20110229361A1 (en) Rotary pump
JP2014159758A (ja) エンジンの油圧制御装置
WO2021065817A1 (ja) 内燃機関のオイル供給装置
JPH11280667A (ja) オイルポンプ装置
CN114761674A (zh) 阀正时调整装置
WO2021066009A1 (ja) 内燃機関のオイル供給装置
CN103912487A (zh) 用于车辆的油泵
CN108302036B (zh) 叶片泵以及高压燃油泵
JP2016011595A (ja) 油圧制御装置
US20220099016A1 (en) Switchable mechanical motor vehicle coolant pump
JP3608688B2 (ja) オイルポンプ装置
US10161319B2 (en) Method and system to provide engine torque
JP2836427B2 (ja) 可変バルブタイミング装置
WO2024190001A1 (ja) 可変容量形オイルポンプ
JP2010242529A (ja) 内燃機関の油圧制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872941

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20872941

Country of ref document: EP

Kind code of ref document: A1