WO2021065695A1 - コンデンサ - Google Patents

コンデンサ Download PDF

Info

Publication number
WO2021065695A1
WO2021065695A1 PCT/JP2020/036174 JP2020036174W WO2021065695A1 WO 2021065695 A1 WO2021065695 A1 WO 2021065695A1 JP 2020036174 W JP2020036174 W JP 2020036174W WO 2021065695 A1 WO2021065695 A1 WO 2021065695A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
capacitor
insulating member
positive electrode
hole
Prior art date
Application number
PCT/JP2020/036174
Other languages
English (en)
French (fr)
Inventor
祐樹 小川
浩晶 伊美
耕之 村上
Original Assignee
株式会社デンソー
ニチコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, ニチコン株式会社 filed Critical 株式会社デンソー
Priority to CN202080069654.3A priority Critical patent/CN114616639B/zh
Publication of WO2021065695A1 publication Critical patent/WO2021065695A1/ja
Priority to US17/712,357 priority patent/US20220230808A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/10Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations

Definitions

  • This disclosure relates to capacitors.
  • Patent Document 1 discloses a capacitor in which a plurality of capacitor elements are arranged in two rows while facing their negative electrode surfaces. By arranging a plurality of capacitor elements in this way, the thickness of the capacitor as a whole can be reduced, and it is easy to reduce the height.
  • the positive electrode bus bar connected to the positive electrode surfaces of the plurality of capacitor elements is formed so as to pass near the negative electrode surfaces of the plurality of capacitor elements facing each other.
  • the positive electrode bus bar is bent so that the portion of the positive electrode bus bar passing near the negative electrode surface is separated from the negative electrode surface in order to ensure electrical insulation with the negative electrode surface. As a result, an attempt is made to secure an insulating space distance between the positive electrode bus bar and the negative electrode surface.
  • This disclosure is intended to provide a capacitor that can be easily reduced in height.
  • One aspect of the present disclosure is a capacitor element having a pair of electrode surfaces and a capacitor element.
  • a specific bus bar, which is the bus bar having one polarity, and a plate-shaped insulating member arranged between the electrode surface or the bus bar having the other polarity are provided.
  • a part of the insulating member is a capacitor inserted in a bus bar through hole provided in the specific bus bar.
  • the insulating member can be positioned with respect to the specific bus bar by inserting a part of the insulating member into the bus bar through hole of the specific bus bar, and the positioning structure can be simplified. Along with this, it is possible to position the insulating member while preventing the capacitor from becoming large.
  • FIG. 1 is a plan view of the capacitor according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
  • FIG. 3 is an enlarged view of the periphery of the insulating member of FIG.
  • FIG. 4 is a view in FIG. 1 excluding the sealing material.
  • FIG. 5 is an exploded perspective view of the capacitor in the first embodiment.
  • FIG. 6 is a plan view of the positive electrode bus bar and the insulating member in the first embodiment.
  • FIG. 7 is a schematic cross-sectional view showing a state in which the insulating member is inserted into the bus bar through hole of the positive electrode bus bar and positioned in the positive electrode bus bar according to the first embodiment.
  • the capacitor 1 of this embodiment includes a capacitor element 2, a pair of bus bars, and an insulating member 4.
  • the capacitor element 2 includes a positive electrode surface 2P and a negative electrode surface 2N as a pair of electrode surfaces.
  • the pair of bus bars includes a positive electrode bus bar 3P connected to the positive electrode surface 2P of the capacitor element 2 and a negative electrode bus bar 3N connected to the negative electrode surface 2N.
  • the insulating member 4 is arranged between the positive electrode bus bar 3P and the negative electrode surface 2N, and has a plate shape. As shown in FIGS. 6 and 7, a part of the insulating member 4 is inserted into the bus bar through hole 30 provided in the positive electrode bus bar 3P.
  • this form will be described in detail.
  • the capacitor 1 can form, for example, a part of a power conversion device.
  • the power conversion device can be an in-vehicle power conversion device mounted on a vehicle such as an electric vehicle or a hybrid vehicle.
  • the power conversion device is arranged between a DC power supply (not shown) and a three-phase AC motor.
  • the capacitor 1 smoothes the DC voltage applied from the DC power supply side, and outputs the smoothed DC voltage to the switching circuit side.
  • a switching circuit converts DC voltage to AC voltage.
  • the power conversion device applies the AC voltage thus obtained to the three-phase AC motor.
  • the capacitor element 2 can be, for example, a film capacitor formed by winding a metallized film and having electrode surfaces formed by metallikons at both ends in the winding axis direction.
  • the capacitor 1 of the present embodiment includes a plurality of capacitor elements 2.
  • the capacitor 1 of the present embodiment is a capacitor in which the arrangement of a plurality of capacitor elements 2 is devised to reduce the overall height of the capacitor 1 (that is, to reduce the thickness).
  • the plurality of capacitor elements 2 are arranged in two rows along the longitudinal direction of the capacitor 1 while facing the negative electrode surfaces 2N in the lateral direction of the capacitor 1. It is arranged. Since the capacitor element 2 tends to be long in the direction opposite to the pair of electrode surfaces, the height of the capacitor 1 can be reduced by adopting such an arrangement.
  • the thickness direction of the capacitor 1 is referred to as the Z direction
  • the longitudinal direction of the capacitor 1 is referred to as the X direction
  • the lateral direction of the capacitor 1 is referred to as the Y direction.
  • the X, Y, and Z directions are orthogonal to each other.
  • the plurality of capacitor elements 2 are housed in the capacitor case 5.
  • the capacitor case 5 is formed in a box shape that opens on one side in the Z direction.
  • the capacitor case 5 is made of, for example, a thermoplastic resin having electrical insulation.
  • the capacitor case 5 has a bottom wall 51 and a side wall 52 erected from the bottom wall 51, and has an opening 53 on the side wall 52 opposite to the bottom wall 51.
  • the opening side of the capacitor case 5 in the Z direction is referred to as the Z1 side, and the opposite side thereof is referred to as the Z2 side.
  • the bottom wall 51 has a rectangular plate shape with the longitudinal direction in the X direction and the lateral direction in the Y direction.
  • the side wall 52 is erected on the Z1 side from the peripheral edge of the bottom wall 51, and is formed so that the cross-sectional shape orthogonal to the Z direction is rectangular.
  • the side wall 52 is provided with a fixed portion 54 projecting to the outside of the capacitor case 5.
  • the fixed portion 54 has a role of attaching the capacitor case 5 to another member.
  • the capacitor 1 is bolted to a device case (not shown) that constitutes the outer shell of the power conversion device at the fixed portion 54.
  • a positive electrode bus bar 3P, an insulating member 4, a capacitor element 2, and a negative electrode bus bar 3N are arranged in the capacitor case 5, and these are sealed by a sealing material 6 as shown in FIGS. 1 and 2.
  • the sealing material 6 is made of, for example, a thermosetting resin having an electrically insulating property.
  • the sealing material 6 is filled in the capacitor case 5 in a fluid low temperature state and then solidified by being heated.
  • the end portion of the sealing material 6 on the Z1 side is formed at a position equivalent to the opening 53 of the capacitor case 5.
  • the sealing material 6 seals a plurality of capacitor elements 2 to ensure the moisture resistance of each capacitor element 2.
  • the positive electrode bus bar 3P extends from the end edge of the bus bar bottom surface portion 31P formed along the bottom wall 51 of the capacitor case 5 in the Y direction to the Z1 side. It is provided with a bus bar side surface portion 32P.
  • the bottom surface portion 31P of the bus bar faces the bottom wall 51 of the capacitor case 5, and the side surface portion 32P of the bus bar faces the side wall 52 of the capacitor case 5.
  • the bottom surface portion 31P of the bus bar has a rectangular plate shape that is long in the X direction and short in the Y direction. As shown in FIGS. 2 and 3, the bottom surface portion 31P of the bus bar faces the bottom wall 51 of the capacitor case 5 and forms a minute gap between the bottom wall 51 and the bottom wall 51.
  • the sealing material 6 is also arranged in a minute region between the bottom surface portion 31P of the bus bar and the bottom wall 51 of the capacitor case 5.
  • a plurality of bus bar through holes 30 penetrating the bus bar bottom surface portion 31P in the Z direction are formed in the bus bar bottom surface portion 31P.
  • the bus bar through hole 30 has a role of passing the sealing material 6 having fluidity when filling the sealing material 6 into the capacitor case 5. That is, by forming the bus bar through hole 30, the sealing material 6 can be easily distributed throughout the inside of the capacitor case 5.
  • the plurality of bus bar through holes 30 are arranged at the center position in the Y direction on the bottom surface portion 31P of the bus bar, and are formed at positions overlapping in the Z direction in the space between the capacitor elements 2 facing in the Y direction.
  • a plurality of central through holes 300 are included.
  • a plurality of central through holes 300 are arranged in the X direction.
  • a pair of bus bar side surface portions 32P are formed so as to stand from both end edges of the bus bar bottom wall 51 in the Y direction toward the Z1 side. As shown in FIG. 2, each bus bar side surface portion 32P is close to the side wall 52 of the capacitor case 5.
  • the bus bar side surface portion 32P on one side in the Y direction is connected to the positive electrode surface 2P of each of the capacitor elements 2 forming one row of the capacitor elements 2 arranged in two rows.
  • the bus bar side surface 32P on the other side in the Y direction is connected to the positive electrode surface 2P of each of the capacitor elements 2 forming the other row of the capacitor elements 2 arranged in two rows.
  • a bus bar terminal portion 33P for electrically connecting the positive electrode bus bar 3P to the switching element of the switching circuit in the power conversion device extends from one bus bar side surface portion 32P. .. As shown in FIG. 1, the bus bar terminal 33P is arranged outside the capacitor case 5 and is formed so as to project outward from the capacitor case 5 in the Y direction.
  • the insulating member 4 is fixed to the Z1 side surface of the bottom surface portion 31P of the positive electrode bus bar 3P.
  • the insulating member 4 has a role of ensuring electrical insulation between the negative electrode surface 2N of each capacitor element 2 and the positive electrode bus bar 3P.
  • the insulating member 4 is interposed between the negative electrode surfaces 2N of the two rows of capacitor elements 2 facing each other and the bottom surface portion 31P of the positive electrode bus bar 3P to ensure electrical insulation between them.
  • the insulating member 4 is formed over the entire X direction on the bottom surface portion 31P of the bus bar.
  • the length of the insulating member 4 in the X direction is longer than the length of the bottom surface portion 31P of the bus bar in the X direction, and the insulating member 4 is arranged so as to project from the bottom surface portion 31P of the bus bar to both sides in the X direction.
  • the insulating member 4 is elastically deformable and has a plate shape. That is, when an external force is applied and the insulating member 4 is deformed (bent) from the free state, the insulating member 4 is elastically deformed so as to return to a substantially original state when the external force is released.
  • the insulating member 4 is made of a PET sheet.
  • the plate shape is a concept that includes a shape having a small thickness such as a film shape or a sheet shape.
  • the entire insulating member 4 is embedded in the capacitor case 5 by a sealing material 6.
  • the insulating member 4 extends from the main body 41 arranged on the Z1 side of the bottom 31P of the positive electrode bus bar 3P and the bus bar through hole 30 from the main body 41.
  • the extension portion 42 is provided.
  • the extended side end 43 of each extending portion 42 is arranged so as to face the Z2 side surface of the bus bar bottom surface portion 31P.
  • the insulating member 4 is engaged with the bottom surface portion 31P of the positive electrode bus bar 3P.
  • the insulating member 4 is restricted from moving to the side where the extension portion 42 extends with respect to the bottom surface portion 31P of the bus bar. That is, when the insulating member 4 moves to the side where the extending portion 42 extends (for example, the left side of the paper surface in FIG. 7) with respect to the bottom surface portion 31P of the bus bar, the extending portion 42 interferes with the bus bar through hole 30 and the insulating member The movement of 4 is restricted. As a result, the insulating member 4 is positioned with respect to the bottom surface portion 31P of the bus bar so that the extending portion 42 does not easily move to the extending side.
  • the insulating member 4 has two extension portions 42 (hereinafter, may be referred to as a pair of extension portions 421) in a region on one side in the X direction and a region on the other side in the X direction. It has two extension portions 42 (hereinafter, may be referred to as a second pair extension portion 422), for a total of four extension portions 42.
  • One of the pair of extending portions 421 protrudes from the main body 41 of the insulating member 4 to one side in the X direction, and the other protrudes from the main body 41 of the insulating member 4 to one side in the Y direction.
  • the insulating member 4 is positioned with respect to the positive electrode bus bar 3P in both the X direction and the Y direction orthogonal to each other in the spreading direction of the bus bar bottom surface portion 31P.
  • one of the second pair extending portions 422 protrudes from the main body portion 41 of the insulating member 4 to one side in the X direction, and the other protrudes from the main body portion 41 of the insulating member 4 to one side in the Y direction. It is protruding.
  • the extension direction of the extension portion 42 protruding in the X direction in the first pair of extension portions 421 and the extension direction of the extension portion 42 protruding in the X direction in the second pair extension portion 422 are opposite to each other. In this embodiment, they face each other.
  • extension direction of the extension portion 42 protruding in the Y direction in the first pair of extension portions 421 and the extension direction of the extension portion 42 protruding in the Y direction in the second pair extension portion 422 are mutually exclusive. They are facing in opposite directions, and in this embodiment, they are facing away from each other. As a result, the insulating member 4 is more firmly positioned with respect to the positive electrode bus bar 3P in both the X direction and the Y direction.
  • the insulating member 4 is arranged on the Z1 side surface of the bus bar bottom surface portion 31P so as to cover the entire central through hole 300 of the bus bar bottom surface portion 31P from the Z1 side.
  • the insulating member 4 is formed with an insulating through hole 420 formed at a position overlapping the central through hole 300 in the Z direction.
  • the insulating through hole 420 is located in the region between the plurality of capacitor elements 2 when viewed from the Z direction, which is the opening direction of the capacitor case 5.
  • the sealing material 6 passes through the insulating through hole 420 and the central through hole 300, and the bottom wall portion 31P of the bus bar and the bottom wall 51 of the capacitor case 5 Can penetrate between.
  • a plurality of insulating through holes 420 are formed so as to line up in a row in the X direction. Further, the insulating through hole 420 is formed to be smaller than the bus bar through hole 30 (central through hole 300) overlapping in the Z direction and to be accommodated inside the outer shell of the bus bar through hole 30. As a result, the creepage distance between the negative electrode surface 2N of the capacitor element 2 and the bus bar bottom surface 31P of the positive electrode bus bar 3P is secured, and the electrical insulation between them is secured.
  • a negative electrode bus bar 3N is connected to the negative electrode surface 2N of each capacitor element 2.
  • the negative electrode bus bar 3N connected to each negative electrode surface 2N of one row of capacitor elements 2 of the two rows of capacitor elements 2 and the negative electrode surface 2N of each of the capacitor elements 2 in the other row
  • the two negative electrode bus bars 3N are arranged so as to overlap each other in the Z direction at the position on the Z1 side of the capacitor elements 2 in one row.
  • the negative electrode bus bar 3N is also formed with a plurality of bus bar through holes 30 penetrating the negative electrode bus bar 3N in the Z direction.
  • a part of the plurality of bus bar through holes 30 is formed at a position overlapping the region between the capacitor elements 2 facing in the Y direction and the Z direction, thereby sealing the region. Penetration into the stopper 6 is less likely to be hindered.
  • each negative electrode bus bar 3N On the opposite side of each negative electrode bus bar 3N to the side connected to the capacitor element 2, a bus bar terminal portion 33N for electrically connecting each negative electrode bus bar 3N to the switching element is formed. As shown in FIGS. 1, 2, and 4, the bus bar terminal 33N is arranged outside the capacitor case 5 and is formed so as to project outward from the capacitor case 5 in the Y direction.
  • Each negative electrode bus bar 3N includes two bus bar terminal portions 33N, and the bus bar terminal portions 33N of each negative electrode bus bar 3N are arranged so as to overlap each other in the Z direction.
  • the insulating member 4 is inserted into the bus bar through hole 30 provided in the positive electrode bus bar 3P. Therefore, by inserting a part of the insulating member 4 into the bus bar through hole 30 of the positive electrode bus bar 3P, the insulating member 4 can be positioned with respect to the positive electrode bus bar 3P, and the positioning structure can be simplified. Along with this, the insulating member 4 can be positioned while preventing the capacitor 1 from becoming large in size.
  • the insulating member 4 when the insulating member 4 is arranged in the capacitor case 5 to secure the electrical insulation between the parts in the capacitor case 5, the insulating member 4 is positioned (fixed) in the capacitor case 5. This is a technically difficult point. If the insulating member 4 is misaligned in the capacitor case 5, it is possible that the desired electrical insulation cannot be ensured. Here, it is also conceivable to simply fix the insulating member 4 in the capacitor case 5 using an adhesive or double-sided tape. However, in this case, the material of the adhesive, the double-sided tape, and the sealing material 6 should be selected in consideration of the fact that a separate member is required and the reactivity with the sealing material 6 filled in the capacitor case 5. The problem is that the thickness of the capacitor 1 as a whole tends to increase.
  • a member for positioning the insulating member 4 by inserting a part of the insulating member 4 into the bus bar through hole 30 of the positive electrode bus bar 3P to position the insulating member 4 with respect to the positive electrode bus bar 3P. It is not necessary to use the above, it is not necessary to consider the reactivity with the sealing material 6, and the increase in thickness can be suppressed.
  • the insulating member 4 includes a main body 41 arranged on one side of the positive electrode bus bar 3P and an extension 42 extending from the main body 41 so as to pass through the bus bar through hole 30. Is arranged so as to face the other surface side of the positive electrode bus bar 3P. As a result, the insulating member 4 is positioned with respect to the positive electrode bus bar 3P in both Z directions. Therefore, it is easier to prevent the insulating member 4 from being displaced from the positive electrode bus bar 3P.
  • the insulating member 4 is attached to the positive electrode bus bar 3P in both the X direction, which is the vertical direction orthogonal to each other, and the Y direction, which is the horizontal direction, in the spreading direction of the surface portion on which the insulating member 4 is arranged in the positive electrode bus bar 3P. It is positioned against it. Therefore, it is possible to prevent the insulating member 4 from being displaced with respect to the positive electrode bus bar 3P in the direction orthogonal to the Z direction.
  • the capacitor case 5 is filled with a sealing material 6 for sealing the capacitor element 2, and the insulating member 4 is arranged on the Z1 side where the capacitor case 5 opens with respect to the positive electrode bus bar 3P. There is. Therefore, it is easy to prevent the insulating member 4 from falling off from the positive electrode bus bar 3P.
  • the insulating member 4 is arranged on the Z2 side of the positive electrode bus bar 3P, the insulating member 4 is pushed toward the side away from the positive electrode bus bar 3P by the sealing material 6 flowing into the capacitor case 5. Therefore, there is a concern that the insulating member 4 may fall off from the positive electrode bus bar 3P.
  • the liquid sealing material 6 having fluidity is placed in the capacitor case 5. Since the insulating member 4 is pressed against the positive electrode bus bar 3P by the sealing material 6 flowing into the capacitor case 5, the concern that the insulating member 4 may fall off is eliminated.
  • the plurality of capacitor elements 2 are arranged in a plurality of rows along the arrangement direction (X direction) orthogonal to the facing direction (Y direction) while facing the negative electrode surfaces 2N.
  • the overall height of the capacitor 1 can be reduced.
  • the negative electrode surface 2N and the positive electrode bus bar 3P are close to each other, and it is required to secure electrical insulation between them. Therefore, by arranging the insulating member 4 between the negative electrode surfaces 2N facing each other in the plurality of capacitor elements 2 and the positive electrode bus bar 3P, the electrical insulation property in the capacitor 1 is ensured while reducing the height. can do.
  • the insulating member 4 is formed over the entire arrangement direction (X direction) on the surface portion on which the insulating member 4 of the positive electrode bus bar 3P is arranged. Therefore, it is easier to secure the electrical insulation between the positive electrode bus bar 3P and the negative electrode surface 2N.
  • the insulating member 4 has an insulating through hole 420 that opens toward the bus bar through hole 30 of the positive electrode bus bar 3P. Therefore, the sealing material 6 flowing into the capacitor case 5 easily crawls around the entire inside of the capacitor case 5 by passing through the insulating through hole 420.
  • the insulating through hole 420 is located in the region between the plurality of capacitor elements 2 when viewed from the opening direction (Z direction) of the capacitor case 5. Since the region between the capacitor elements 2 is a region through which the sealing material 6 flowing into the capacitor case 5 passes, by arranging the insulating through hole 420 in such a region, the sealing material in the entire inside of the capacitor case 5 is provided. It is possible to prevent the penetration of 6 from being inhibited.
  • the present disclosure is not limited to each of the above embodiments, and can be applied to various embodiments without departing from the gist thereof.
  • a part of the insulating member is inserted into a bus bar through hole provided in the positive electrode bus bar to ensure electrical insulation between the positive electrode bus bar and the negative electrode surface of the capacitor element.
  • a part of the insulating member may be inserted into a bus bar through hole provided in the negative electrode bus bar to ensure electrical insulation between the negative electrode bus bar and the positive electrode bus bar or the positive electrode surface.
  • the insulating member may be positioned with respect to the bus bar by forming an extension portion projecting in a columnar shape in a part of the insulating member and press-fitting the extension portion into the bus bar through hole.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

コンデンサは、コンデンサ素子(2)と一対のバスバと絶縁部材(4)とを備える。コンデンサ素子(2)は、正極面(2P)と負極面(2N)とを備える。一対のバスバは、コンデンサ素子(2)の正極面(2P)に接続される正極バスバ(3P)と、負極面(2N)に接続される負極バスバとを備える。絶縁部材(4)は、正極バスバ(3P)と負極面(2N)との間に配されており、板状を呈している。絶縁部材(4)の一部は、正極バスバ(3P)に設けられたバスバ貫通孔(30)に挿入されている。

Description

コンデンサ 関連出願の相互参照
 本出願は2019年10月2日に出願された日本出願番号2019-181860号に基づくもので、ここにその記載内容を援用する。
 本開示は、コンデンサに関する。
 特許文献1には、複数のコンデンサ素子が、それらの負極面を対面させつつ、2列に並ぶよう配されたコンデンサが開示されている。複数のコンデンサ素子をこのように配置することで、コンデンサ全体として厚みを小さくでき、低背化を図りやすい。
 特許文献1に記載のコンデンサにおいて、複数のコンデンサ素子の正極面に接続された正極バスバは、互いに対向する複数のコンデンサ素子の負極面近傍を通るよう形成されている。特許文献1に記載のコンデンサにおいて、正極バスバは、負極面との間の電気的絶縁性を確保するため、正極バスバにおける負極面近傍を通る部位が、当該負極面から離れるよう折り曲げられている。これにより、正極バスバと負極面との間の絶縁空間距離を確保しようとしている。
国際公開第2012/098622号
 特許文献1に記載されたコンデンサにおいては、正極バスバにおける負極面近傍の部位が、負極面から遠ざかるよう折り曲げられているため、コンデンサ全体としての低背化を阻害しやすい。近年のコンデンサの低背化の要請から、コンデンサは例えばコンマ数ミリ単位でも低背化することが好ましい。
 そこで、単に正極バスバと負極面との間に絶縁部材を介在させ、正極バスバと負極面との間の電気的絶縁性を確保することが考えられる。この場合、正極バスバを負極面から離れるよう折り曲げる必要がなく、コンデンサの低背化を図りやすい。しかしながら、この場合、絶縁部材が正極バスバと負極面との間に位置した状態を維持するべく、絶縁部材を位置決めする必要があるが、固定手段を工夫しなければコンデンサの大型化につながるおそれが考えられる。
 本開示は、低背化を図りやすいコンデンサを提供しようとするものである。
 本開示の一態様は、一対の電極面を備えたコンデンサ素子と、
 前記コンデンサ素子の一対の前記電極面のそれぞれに接続された一対のバスバと、
 一方の極性となる前記バスバである特定バスバと、他方の極性となる前記電極面又は前記バスバとの間に配された板状の絶縁部材と、を備え、
 前記絶縁部材の一部は、前記特定バスバに設けられたバスバ貫通孔に挿入されている、コンデンサにある。
 前記態様のコンデンサにおいて、絶縁部材の一部は、特定バスバに設けられたバスバ貫通孔に挿入されている。それゆえ、特定バスバのバスバ貫通孔に絶縁部材の一部を挿入することで特定バスバに対する絶縁部材の位置決めが可能であり、位置決め構造を簡素にすることができる。これに伴い、コンデンサが大型化することを防止しつつ、絶縁部材の位置決めをすることができる。
 以上のごとく、前記態様によれば、低背化を図りやすいコンデンサを提供することができる。
 なお、請求の範囲に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本開示の技術的範囲を限定するものではない。
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1における、コンデンサの平面図であり、 図2は、図1の、II-II線矢視断面図であり、 図3は、図2の、絶縁部材周辺の拡大図であり、 図4は、図1において、封止材を除いた図であり、 図5は、実施形態1における、コンデンサの分解斜視図であり、 図6は、実施形態1における、正極バスバ及び絶縁部材の平面図であり、 図7は、実施形態1における、絶縁部材が正極バスバのバスバ貫通孔に挿入されて、正極バスバに位置決めされている様子を示す模式的な断面図である。
(実施形態1)
 コンデンサ1の実施形態につき、図1~図7を用いて説明する。
 本形態のコンデンサ1は、図5に示すごとく、コンデンサ素子2と一対のバスバと絶縁部材4とを備える。
 図2に示すごとく、コンデンサ素子2は、一対の電極面として正極面2Pと負極面2Nとを備える。一対のバスバは、コンデンサ素子2の正極面2Pに接続される正極バスバ3Pと、負極面2Nに接続される負極バスバ3Nとを備える。図2、図3、図6に示すごとく、絶縁部材4は、正極バスバ3Pと負極面2Nとの間に配されており、板状を呈している。図6、図7に示すごとく、絶縁部材4の一部は、正極バスバ3Pに設けられたバスバ貫通孔30に挿入されている。
 以後、本形態につき詳説する。
 コンデンサ1は、例えば電力変換装置の一部を構成するものとすることができる。電力変換装置は、電気自動車やハイブリッド車等の車両に搭載される車載用電力変換装置とすることができる。電力変換装置は、図示しない直流電源と三相交流モータとの間に配される。コンデンサ1は、直流電源側から印加される直流電圧を平滑化し、平滑後の直流電圧をスイッチング回路側へ出力する。スイッチング回路によって直流電圧を交流電圧に変換する。電力変換装置は、このようにして得られた交流電圧を、三相交流モータに印加する。
 コンデンサ素子2は、例えば、金属化フィルムを巻回してなり、その巻回軸方向の両端部にメタリコンにより形成された電極面を備えるフィルムコンデンサとすることができる。図1、図4、図5に示すごとく、本形態のコンデンサ1は、複数のコンデンサ素子2を備える。そして、本形態のコンデンサ1は、複数のコンデンサ素子2の配置を工夫し、コンデンサ1全体の低背化を図った(すなわち厚みを薄くした)コンデンサである。
 図4、図5に示すごとく、本形態のコンデンサ1において、複数のコンデンサ素子2は、負極面2N同士をコンデンサ1の短手方向に対面させつつ、コンデンサ1の長手方向に沿って2列に配列されている。コンデンサ素子2は、その一対の電極面の対向方向に長尺になりやすいため、このような配置を採用することで、コンデンサ1の低背化を図ることができる。なお、以後、コンデンサ1の厚み方向をZ方向といい、コンデンサ1の長手方向をX方向、コンデンサ1の短手方向をY方向という。X方向、Y方向、Z方向は、互いに直交する方向である。図1、図2に示すごとく、複数のコンデンサ素子2は、コンデンサケース5内に収容されている。
 図5に示すごとく、コンデンサケース5は、Z方向の一方側に開口する箱状に形成されている。コンデンサケース5は、例えば、電気的絶縁性を有する熱可塑性の樹脂からなる。コンデンサケース5は、底壁51と、底壁51から立設した側壁52とを有し、側壁52における底壁51と反対側に開口部53を備える。以後、適宜、Z方向におけるコンデンサケース5の開口側をZ1側といい、その反対側をZ2側という。
 底壁51は、長手方向をX方向、短手方向をY方向とした長方形板状を呈している。側壁52は、底壁51の周縁からZ1側に立設しており、Z方向に直交する断面形状が長方形状となるよう形成されている。側壁52には、コンデンサケース5の外側に突出する被固定部54が設けられている。被固定部54は、コンデンサケース5を他の部材に取り付ける役割を有する。例えば、コンデンサ1は、被固定部54において、電力変換装置の外郭を構成する図示しない装置ケースにボルト締結される。
 コンデンサケース5内に、正極バスバ3P、絶縁部材4、コンデンサ素子2、及び負極バスバ3Nが配されており、図1、図2に示すごとく、これらは封止材6によって封止されている。封止材6は、例えば電気的絶縁性を有する熱硬化性樹脂からなる。封止材6は、流動性を有する低温状態においてコンデンサケース5内に充填された後、加熱されることで固化する。封止材6におけるZ1側の端部は、コンデンサケース5の開口部53と同等の位置に形成されている。封止材6は、複数のコンデンサ素子2を封止し、各コンデンサ素子2の耐湿性を確保している。
 図2、図5に示すごとく、正極バスバ3Pは、コンデンサケース5の底壁51に沿うよう形成されたバスバ底面部31Pと、バスバ底面部31PのY方向の端縁からZ1側に延設されたバスバ側面部32Pとを備える。バスバ底面部31Pは、コンデンサケース5の底壁51に対向しており、バスバ側面部32Pは、コンデンサケース5の側壁52に対向している。
 図5、図6に示すごとく、バスバ底面部31Pは、X方向に長尺で、Y方向に短尺な長方形板状を呈している。図2、図3に示すごとく、バスバ底面部31Pは、コンデンサケース5の底壁51に対向しているとともに、底壁51との間に微小な隙間を形成している。そして、バスバ底面部31Pとコンデンサケース5の底壁51との間の微小領域にも封止材6が配されている。
 図5、図6に示すごとく、バスバ底面部31Pには、バスバ底面部31PをZ方向に貫通するバスバ貫通孔30が複数形成されている。バスバ貫通孔30は、コンデンサケース5内に封止材6を充填する際の流動性を有する封止材6を通過させる役割を有する。すなわち、バスバ貫通孔30を形成することで、コンデンサケース5内の全体に封止材6を行き渡らせやすくなる。
 図6に示すごとく、複数のバスバ貫通孔30には、バスバ底面部31PにおけるY方向の中央位置に配され、Y方向に対向するコンデンサ素子2間の空間にZ方向に重なる位置に形成された複数の中央貫通孔300が含まれる。複数の中央貫通孔300は、X方向に複数並んでいる。コンデンサケース5の開口部53から流動性を有する封止材6を充填させる際、封止材6は、Y方向に対するコンデンサ素子2間、及び中央貫通孔300を通り、バスバ底面部31Pとコンデンサケース5との間に浸透する。
 図5、図6に示すごとく、バスバ側面部32Pは、バスバ底壁51部のY方向の両端縁からZ1側に向かって立設するよう、一対形成されている。図2に示すごとく、各バスバ側面部32Pは、コンデンサケース5の側壁52に近接対向している。Y方向の一方側のバスバ側面部32Pは、2列に配列されたコンデンサ素子2のうちの一方側の列を構成するコンデンサ素子2のそれぞれの正極面2Pに接続されている。Y方向の他方側のバスバ側面部32Pは、2列に配列されたコンデンサ素子2のうちの他方側の列を構成するコンデンサ素子2のそれぞれの正極面2Pに接続されている。
 図5、図6に示すごとく、1つのバスバ側面部32Pからは、正極バスバ3Pを電力変換装置内のスイッチング回路のスイッチング素子に電気的に接続するためのバスバ端子部33Pが延設されている。図1に示すごとく、バスバ端子部33Pは、コンデンサケース5の外部に配されるとともに、コンデンサケース5よりもY方向の外側に突出するよう形成されている。
 図2、図3、図5~図7に示すごとく、正極バスバ3Pのバスバ底面部31PのZ1側の面には、絶縁部材4が固定されている。絶縁部材4は、各コンデンサ素子2の負極面2Nと、正極バスバ3Pとの間の電気的絶縁性を確保する役割を有する。絶縁部材4は、2列のコンデンサ素子2の互いに対面する負極面2Nと、正極バスバ3Pのバスバ底面部31Pとの間に介在し、これらの間の電気的絶縁性を確保している。
 図6に示すごとく、絶縁部材4は、バスバ底面部31PにおけるX方向の全体にわたって形成されている。本形態においては、絶縁部材4のX方向の長さは、バスバ底面部31PのX方向の長さよりも長く、絶縁部材4は、バスバ底面部31PからX方向の両側に突出するよう配されている。
 例えば、絶縁部材4は、弾性変形可能であり、板状を呈している。すなわち、絶縁部材4は、外力が付加されて自由状態から変形している(撓んでいる)場合、当該外力が開放されると、略元の状態に戻るよう弾性変形する。例えば、絶縁部材4は、PETシートからなる。なお、板状とは、フィルム状、シート状等のような厚みの小さい形状を含む概念とする。絶縁部材4の全体は、コンデンサケース5内に封止材6により埋設されている。
 そして、図5、図6に示すごとく、絶縁部材4は、正極バスバ3Pのバスバ底面部31PのZ1側に配された本体部41と、本体部41から、バスバ貫通孔30を通るよう延設された延設部42とを備える。そして、図7に示すごとく、各延設部42における延設された側の端部43は、バスバ底面部31PのZ2側の面に対向するよう配されている。これにより、絶縁部材4は、正極バスバ3Pのバスバ底面部31Pに係合されている。
 また、絶縁部材4は、バスバ底面部31Pに対して、延設部42が延設する側に移動することが制限される。すなわち、絶縁部材4は、バスバ底面部31Pに対して延設部42が延設する側(例えば図7における紙面左側)に移動すると、延設部42がバスバ貫通孔30に干渉し、絶縁部材4の移動が制限される。これにより、絶縁部材4は、バスバ底面部31Pに対して、延設部42が延設する側に移動し難いよう位置決めされている。
 図6に示すごとく、絶縁部材4は、X方向の一方側の領域に2つの延設部42(以後、第一対延設部421ということもある。)、X方向の他方側の領域に2つの延設部42(以後、第二対延設部422ということもある。)、合計4つの延設部42を有する。
 第一対延設部421のうちの一方は、絶縁部材4の本体部41からX方向の一方側に突出しており、他方は、絶縁部材4の本体部41からY方向の一方側に突出している。これにより、絶縁部材4は、バスバ底面部31Pの広がり方向のうちの互いに直交するX方向とY方向との双方において、正極バスバ3Pに対して位置決めされている。
 また、第二対延設部422のうちの一方は、絶縁部材4の本体部41からX方向の一方側に突出しており、他方は、絶縁部材4の本体部41からY方向の一方側に突出している。第一対延設部421においてX方向に突出する延設部42の延設方向と、第二対延設部422においてX方向に突出する延設部42の延設方向とは、互いに反対向きであり、本形態においては互いに向かい合う向きである。また、第一対延設部421においてY方向に突出する延設部42の延設方向と、第二対延設部422においてY方向に突出する延設部42の延設方向とは、互いに反対向きであり、本形態においては互いに遠ざかる側を向いている。これにより、絶縁部材4は、より強固に、X方向とY方向との双方において、正極バスバ3Pに対して位置決めされている。
 図6に示すごとく、絶縁部材4は、バスバ底面部31Pの中央貫通孔300の全体をZ1側から覆うよう、バスバ底面部31PのZ1側の面に配されている。絶縁部材4には、中央貫通孔300とZ方向に重なる位置に形成された絶縁貫通孔420が形成されている。これにより、絶縁貫通孔420は、コンデンサケース5の開口方向であるZ方向から見たとき、複数のコンデンサ素子2間の領域に位置する。そのため、コンデンサケース5に流動性を有する封止材6を充填させる際、封止材6は、絶縁貫通孔420及び中央貫通孔300を通り、バスバ底面部31Pとコンデンサケース5の底壁51との間に浸透することができる。
 絶縁貫通孔420は、X方向に一列に並ぶよう複数形成されている。また、絶縁貫通孔420は、Z方向に重なるバスバ貫通孔30(中央貫通孔300)よりも小さく、かつ、当該バスバ貫通孔30の外郭よりも内側に収まるよう形成されている。これにより、コンデンサ素子2の負極面2Nと正極バスバ3Pのバスバ底面部31Pとの間の沿面距離が確保され、これらの間の電気的絶縁性が確保される。
 図2~図4に示すごとく、各コンデンサ素子2の負極面2Nには、負極バスバ3Nが接続されている。本形態においては、2列のコンデンサ素子2のうちの1列のコンデンサ素子2のそれぞれの負極面2Nに接続される負極バスバ3Nと、もう一方の列のコンデンサ素子2のそれぞれの負極面2Nに接続される負極バスバ3Nと、の2つの負極バスバ3Nがある。
 2つの負極バスバ3Nは、一方の列のコンデンサ素子2のZ1側の位置において、互いにZ方向に重なり合うよう配されている。図4、図5に示すごとく、負極バスバ3Nにも、負極バスバ3NをZ方向に貫通する複数のバスバ貫通孔30が形成されている。図4に示すごとく、複数のバスバ貫通孔30のうちの一部は、Y方向に対向するコンデンサ素子2間の領域とZ方向に重なる位置に形成されており、これにより、前記領域への封止材6への浸透が阻害され難くなっている。
 各負極バスバ3Nにおけるコンデンサ素子2に接続された側の反対側には、各負極バスバ3Nをスイッチング素子に電気的に接続するためのバスバ端子部33Nが形成されている。図1、図2、図4に示すごとく、バスバ端子部33Nは、コンデンサケース5の外部に配されるとともに、コンデンサケース5よりもY方向の外側に突出するよう形成されている。各負極バスバ3Nは、2つのバスバ端子部33Nを備え、各負極バスバ3Nのバスバ端子部33Nは、互いにZ方向に重なるよう配されている。
 次に、本形態の作用効果につき説明する。
 本形態のコンデンサ1において、絶縁部材4の一部は、正極バスバ3Pに設けられたバスバ貫通孔30に挿入されている。それゆえ、正極バスバ3Pのバスバ貫通孔30に絶縁部材4の一部を挿入することで正極バスバ3Pに対する絶縁部材4の位置決めが可能であり、位置決め構造を簡素にすることができる。これに伴い、コンデンサ1が大型化することを防止しつつ、絶縁部材4の位置決めをすることができる。
 ここで、コンデンサケース5内に絶縁部材4を配してコンデンサケース5内の部品間の電気的絶縁性を確保する場合、コンデンサケース5内に絶縁部材4を位置決めする(固定する)ことが、技術的に難しいポイントとなる。絶縁部材4がコンデンサケース5内で位置ずれした場合は、所望の電気的絶縁性を確保できないおそれが考えられる。ここで、単に絶縁部材4を、接着材や両面テープを用いてコンデンサケース5内に固定することも考えられる。しかしながら、この場合は、別部材が必要になる点、コンデンサケース5内に充填される封止材6との反応性を考慮して接着材、両面テープ、封止材6の材料を選択することが必要になる点、コンデンサ1全体として厚みが増加しやすい点が課題となる。
 そこで、本願のように、絶縁部材4の一部を正極バスバ3Pのバスバ貫通孔30に挿入することで正極バスバ3Pに対する絶縁部材4の位置決めをすることにより、絶縁部材4を位置決めするための部材を使用する必要がなく、封止材6との反応性を考慮する必要もなく、また、厚み増加も抑制することができる。
 また、絶縁部材4は、正極バスバ3Pの一方面側に配された本体部41と、本体部41からバスバ貫通孔30を通るよう延設された延設部42とを備え、延設部42の一部は、正極バスバ3Pの他方面側に対向するよう配されている。これにより、絶縁部材4の正極バスバ3Pに対する位置決めが、Z方向の両方向においてなされる。そのため、絶縁部材4が正極バスバ3Pから位置ずれすることを一層防止しやすい。
 また、絶縁部材4は、正極バスバ3Pにおける絶縁部材4が配された面部の広がり方向のうちの互いに直交する縦方向であるX方向と横方向であるY方向との双方において、正極バスバ3Pに対して位置決めされている。それゆえ、Z方向に直交方向する方向において、絶縁部材4が正極バスバ3Pに対して位置ずれすることを防止することができる。
 また、コンデンサケース5内には、コンデンサ素子2を封止する封止材6が充填されており、絶縁部材4は、正極バスバ3Pに対して、コンデンサケース5が開口するZ1側に配されている。それゆえ、正極バスバ3Pからの絶縁部材4の脱落を防止しやすい。ここで、仮に、絶縁部材4が正極バスバ3PのZ2側に配された場合は、絶縁部材4がコンデンサケース5内に流入される封止材6によって、正極バスバ3Pから離れる側に向かって押されるため、正極バスバ3Pからの絶縁部材4の脱落が懸念される。一方、本形態のように、絶縁部材4を、正極バスバ3Pに対してコンデンサケース5が開口する側(Z1側)に配すれば、流動性を有する液状の封止材6をコンデンサケース5内に充填する際、絶縁部材4は、コンデンサケース5内に流入される封止材6によって正極バスバ3Pに押し付けられるため、絶縁部材4の脱落の懸念が解消される。
 また、複数のコンデンサ素子2は、負極面2N同士を対面させつつ、当該対面の方向(Y方向)に直交する並び方向(X方向)に沿って複数列に配列されている。これにより、コンデンサ1全体の低背化を図ることができる。一方で、負極面2Nと正極バスバ3Pとが近接し、これらの間の電気的絶縁性の確保が求められる。そこで、絶縁部材4を、複数のコンデンサ素子2における互いに対面する負極面2Nと、正極バスバ3Pとの間に配することで、低背化を図りつつ、コンデンサ1内の電気的絶縁性を確保することができる。
 また、絶縁部材4は、正極バスバ3Pの絶縁部材4が配された面部における、並び方向(X方向)の全体にわたって形成されている。それゆえ、正極バスバ3Pと負極面2Nとの間の電気的絶縁性を一層確保しやすい。
 また、絶縁部材4は、正極バスバ3Pのバスバ貫通孔30に向かって開口する絶縁貫通孔420を有する。それゆえ、コンデンサケース5内に流入される封止材6は、絶縁貫通孔420を通過することによって、コンデンサケース5内の全体に這いまわりやすい。
 また、絶縁貫通孔420は、コンデンサケース5の開口方向(Z方向)から見たとき、複数のコンデンサ素子2間の領域に位置している。コンデンサ素子2間の領域は、コンデンサケース5内に流入される封止材6が通る領域であるため、かかる領域に絶縁貫通孔420を配置することにより、コンデンサケース5内全体への封止材6の浸透が阻害されることを防止することができる。
 以上のごとく、本形態によれば、低背化を図りやすいコンデンサを提供することができる。
 本開示は、前記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。例えば、前記形態においては、絶縁部材の一部を正極バスバに設けられたバスバ貫通孔に挿入し、正極バスバとコンデンサ素子の負極面との間の電気的絶縁性を確保した例を示したが、これに限られない。例えば、絶縁部材は、その一部を負極バスバに設けられたバスバ貫通孔に挿入し、負極バスバと正極バスバ又は正極面との間の電気的絶縁性を確保するために用いられてもよい。また、例えば絶縁部材の一部に柱状に突出する延設部を形成し、当該延設部をバスバ貫通孔に圧入することで、絶縁部材をバスバに対して位置決めしてもよい。
 本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形形態や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (8)

  1.  一対の電極面(2P、2N)を備えたコンデンサ素子(2)と、
     前記コンデンサ素子の一対の前記電極面のそれぞれに接続された一対のバスバ(3P、3N)と、
     一方の極性となる前記バスバである特定バスバと、他方の極性となる前記電極面又は前記バスバとの間に配された板状の絶縁部材(4)と、を備え、
     前記絶縁部材の一部は、前記特定バスバに設けられたバスバ貫通孔(30)に挿入されている、コンデンサ(1)。
  2.  前記絶縁部材は、前記特定バスバの一方面側に配された本体部(41)と、前記本体部から前記バスバ貫通孔を通るよう延設された延設部(42)とを備え、前記延設部の一部(43)は、前記特定バスバの他方面側に対向するよう配されている、請求項1に記載のコンデンサ。
  3.  前記絶縁部材は、前記特定バスバにおける前記絶縁部材が配された面部(31P)の広がり方向のうちの互いに直交する縦方向(X)と横方向(Y)との双方において、前記特定バスバに対して位置決めされている、請求項1又は2に記載のコンデンサ。
  4.  前記コンデンサ素子を収容するとともに、開口部を有するコンデンサケース(5)を備え、
     前記コンデンサケース内には、前記コンデンサ素子を封止する封止材(6)が充填されており、
     前記絶縁部材は、前記特定バスバに対して、前記コンデンサケースが開口する側に配されている、請求項1~3のいずれか一項に記載のコンデンサ。
  5.  複数の前記コンデンサ素子を備え、
     複数の前記コンデンサ素子は、同極の前記電極面同士を対面させつつ、当該対面の方向に直交する並び方向(X)に沿って複数列に配列されており、
     前記絶縁部材は、複数の前記コンデンサ素子における互いに対面する同極の前記電極面と、当該電極面と反対の極性となる前記特定バスバとの間に配されている、請求項1~4のいずれか一項に記載のコンデンサ。
  6.  前記絶縁部材は、前記特定バスバの前記絶縁部材が配された面部(31P)における、前記並び方向の全体にわたって形成されている、請求項5に記載のコンデンサ。
  7.  前記コンデンサ素子を収容するとともに、開口部を有するコンデンサケース(5)を備え、
     前記コンデンサケース内には、前記コンデンサ素子を封止する封止材(6)が充填されており、
     前記絶縁部材は、前記特定バスバの前記バスバ貫通孔に向かって開口する絶縁貫通孔(420)を有する、請求項1~6のいずれか一項に記載のコンデンサ。
  8.  前記絶縁貫通孔は、前記コンデンサケースの開口方向(Z)から見たとき、複数の前記コンデンサ素子間の領域に位置している、請求項7に記載のコンデンサ。
PCT/JP2020/036174 2019-10-02 2020-09-25 コンデンサ WO2021065695A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080069654.3A CN114616639B (zh) 2019-10-02 2020-09-25 电容器
US17/712,357 US20220230808A1 (en) 2019-10-02 2022-04-04 Capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-181860 2019-10-02
JP2019181860A JP7118939B2 (ja) 2019-10-02 2019-10-02 コンデンサ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/712,357 Continuation US20220230808A1 (en) 2019-10-02 2022-04-04 Capacitor

Publications (1)

Publication Number Publication Date
WO2021065695A1 true WO2021065695A1 (ja) 2021-04-08

Family

ID=75272775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036174 WO2021065695A1 (ja) 2019-10-02 2020-09-25 コンデンサ

Country Status (4)

Country Link
US (1) US20220230808A1 (ja)
JP (1) JP7118939B2 (ja)
CN (1) CN114616639B (ja)
WO (1) WO2021065695A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251400A (ja) * 2009-04-13 2010-11-04 Panasonic Corp ケースモールド型コンデンサ
JP2010258343A (ja) * 2009-04-28 2010-11-11 Shizuki Electric Co Inc コンデンサ
JP2018037433A (ja) * 2016-08-29 2018-03-08 パナソニックIpマネジメント株式会社 コンデンサおよびコンデンサの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3864938B2 (ja) * 2003-07-28 2007-01-10 松下電器産業株式会社 金属化フィルムコンデンサ、およびそれを用いた車載駆動用インバータ回路、ならびにその車載駆動用インバータ回路を搭載した自動車。
JP5668555B2 (ja) * 2011-03-18 2015-02-12 株式会社オートネットワーク技術研究所 電池モジュール
KR101256347B1 (ko) * 2012-08-14 2013-05-02 주식회사 뉴인텍 케이스 탑재형 병렬형 커패시터
JP6355099B2 (ja) 2014-06-02 2018-07-11 ルビコン電子株式会社 コンデンサーモジュール
JP6895610B2 (ja) * 2015-11-10 2021-06-30 パナソニックIpマネジメント株式会社 フィルムコンデンサ
DE112017001005T5 (de) * 2016-02-25 2018-11-15 Panasonic Intellectual Property Management Co., Ltd. Kondensator
JP6890233B2 (ja) * 2016-02-25 2021-06-18 パナソニックIpマネジメント株式会社 フィルムコンデンサ
JP6693348B2 (ja) * 2016-09-05 2020-05-13 トヨタ自動車株式会社 電力変換装置
JP7213407B2 (ja) * 2017-04-26 2023-01-27 パナソニックIpマネジメント株式会社 コンデンサ
CN112136193B (zh) * 2018-05-24 2022-05-03 松下知识产权经营株式会社 电容器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251400A (ja) * 2009-04-13 2010-11-04 Panasonic Corp ケースモールド型コンデンサ
JP2010258343A (ja) * 2009-04-28 2010-11-11 Shizuki Electric Co Inc コンデンサ
JP2018037433A (ja) * 2016-08-29 2018-03-08 パナソニックIpマネジメント株式会社 コンデンサおよびコンデンサの製造方法

Also Published As

Publication number Publication date
CN114616639A (zh) 2022-06-10
JP7118939B2 (ja) 2022-08-16
JP2021057539A (ja) 2021-04-08
CN114616639B (zh) 2023-09-26
US20220230808A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
JP6895610B2 (ja) フィルムコンデンサ
JP6053643B2 (ja) 電池パックの電池内配線モジュール
JP6425024B2 (ja) コンデンサおよびインバータ
JP5858074B2 (ja) 蓄電装置
JP6522052B2 (ja) ノイズ低減ユニット
JP7122657B2 (ja) コンデンサ
JP5747812B2 (ja) 電力変換装置
JP6225734B2 (ja) 蓄電装置
KR20150002219U (ko) 버스바 절연 결합 장치 어셈블리
WO2016190075A1 (ja) 蓄電モジュール
JP7390531B2 (ja) コンデンサ
JP2014038801A (ja) 蓄電装置
JP6481974B2 (ja) コンデンサおよびインバータ
WO2021065695A1 (ja) コンデンサ
JP5029293B2 (ja) ケース入りコンデンサ
JP6133630B2 (ja) コンデンサ
JP7496556B2 (ja) コンデンサ
JP7097341B2 (ja) コンデンサ
JP5989533B2 (ja) コンデンサ
JP5516982B2 (ja) 端子ボックス
JP2011114968A (ja) 電力変換装置
JPWO2019225188A1 (ja) コンデンサ
WO2023062917A1 (ja) ケースレスコンデンサ及びインバータ
WO2021085107A1 (ja) コンデンサ
JP7031452B2 (ja) コンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870517

Country of ref document: EP

Kind code of ref document: A1