WO2021065414A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2021065414A1
WO2021065414A1 PCT/JP2020/034321 JP2020034321W WO2021065414A1 WO 2021065414 A1 WO2021065414 A1 WO 2021065414A1 JP 2020034321 W JP2020034321 W JP 2020034321W WO 2021065414 A1 WO2021065414 A1 WO 2021065414A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
irradiation
cooling operation
unit
control unit
Prior art date
Application number
PCT/JP2020/034321
Other languages
English (en)
French (fr)
Inventor
隼人 布
伊藤 裕
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202080066018.5A priority Critical patent/CN114521223B/zh
Priority to EP20872653.9A priority patent/EP4023956B1/en
Publication of WO2021065414A1 publication Critical patent/WO2021065414A1/ja
Priority to US17/706,014 priority patent/US20220214069A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/22Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/11Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/14Means for controlling sterilisation processes, data processing, presentation and storage means, e.g. sensors, controllers, programs
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/326Lamp control systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F2013/228Treatment of condensate, e.g. sterilising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/30Condensation of water from cooled air

Definitions

  • This disclosure relates to an air conditioner.
  • Patent Document 1 when it is determined that the cooling operation is in progress, irradiation with deep ultraviolet rays is started. Therefore, deep ultraviolet rays are irradiated throughout the cooling operation. As a result, the irradiation of deep ultraviolet rays takes a long time, so that there is a problem that the life of the irradiated portion for irradiating deep ultraviolet rays is shortened.
  • An object of the present disclosure is to provide an air conditioner that prolongs the life of the irradiation unit.
  • the air conditioner according to one aspect of the present disclosure is The heat exchanger installed in the indoor unit and A drain pan that receives the drain water generated by the heat exchanger, and An irradiation unit that irradiates the drain pan with ultraviolet rays, A control unit for controlling the ultraviolet illuminance of the irradiation unit is provided.
  • the control unit is characterized in that the irradiation unit is controlled so that the ultraviolet illuminance after the cooling operation becomes larger than the ultraviolet illuminance during the cooling operation.
  • the ultraviolet illuminance after the cooling operation is larger than the ultraviolet illuminance during the cooling operation, in other words, the ultraviolet illuminance during the cooling operation is larger than the ultraviolet illuminance after the cooling operation. Since the ultraviolet rays are irradiated so as to be smaller, the life of the irradiated portion can be extended.
  • a detection unit for detecting the water level of the drain water is provided.
  • the control unit irradiates the drain pan with the ultraviolet rays when the state in which the water level of the drain water detected by the detection unit is equal to or lower than a predetermined level is accumulated and continues for a predetermined time or longer.
  • the irradiation unit is controlled.
  • the drain water stays on the drain pan for a long time, so that fungi and molds easily propagate in the drain water.
  • the air conditioner having the above configuration, since the drain water is irradiated with ultraviolet rays, the growth of fungi and molds in the drain water is suppressed.
  • a temperature sensor for detecting the temperature of the heat exchanger is provided.
  • the control unit irradiates the drain pan with the ultraviolet rays when the temperature of the heat exchanger detected by the temperature sensor is integrated to be equal to or higher than the dew point temperature and continues for a predetermined time or longer. As described above, the irradiation unit is controlled.
  • the drain water stays on the drain pan for a long time, so that fungi and molds easily propagate in the drain water. ..
  • the air conditioner having the above configuration, since the drain water is irradiated with ultraviolet rays, the growth of fungi and molds in the drain water is suppressed.
  • the control unit irradiates the ultraviolet rays so as to irradiate the ultraviolet rays. Control the part.
  • the air conditioner having the above configuration Even during cooling operation, if the temperature difference between the room temperature and the set temperature is less than or equal to the predetermined temperature, the operation of cooling the heat exchanger is stopped, so that the generation of drain water is suppressed. Therefore, according to the air conditioner having the above configuration, the irradiation time of ultraviolet rays during the cooling operation is shortened, so that the life of the irradiated portion can be extended.
  • the control unit controls the irradiation time of the irradiation unit.
  • the control unit controls the irradiation unit so that the irradiation time during the cooling operation is longer than the irradiation time after the cooling operation.
  • the air conditioner having the above configuration, even if the ultraviolet illuminance during the cooling operation is smaller than the ultraviolet illuminance after the cooling operation, the irradiation time during the cooling operation is longer than the irradiation time after the cooling operation. It can enhance the bactericidal effect of fungi and mold in water.
  • the control unit controls the irradiation unit so that the irradiation amount obtained by multiplying the ultraviolet illuminance during the cooling operation by the irradiation time becomes equal to the irradiation amount obtained by multiplying the ultraviolet illuminance after the cooling operation by the irradiation time. To do.
  • the irradiation amount during the cooling operation and the irradiation amount after the cooling operation are equal, so that the degree of sterilization during the cooling operation and after the cooling operation is the same.
  • the drain pan has a structure in which the drain water is discharged by its own weight.
  • the drain water discharge structure and discharge control can be simplified.
  • the heat exchanger installed in the indoor unit and A drain pan that receives the drain water generated by the heat exchanger, and An irradiation unit that irradiates the drain pan with ultraviolet rays, A control unit that controls the irradiation unit is provided.
  • the control unit controls the irradiation unit so as to intermittently irradiate or non-irradiate the ultraviolet rays during the cooling operation.
  • the irradiation time of ultraviolet rays during the cooling operation is shortened, so that the life of the irradiated portion can be extended.
  • a detection unit for detecting the water level of the drain water is provided.
  • the control unit irradiates the drain pan with the ultraviolet rays when the state in which the water level of the drain water detected by the detection unit is equal to or lower than a predetermined level is accumulated and continues for a predetermined time or longer.
  • the irradiation unit is controlled.
  • the drain water stays on the drain pan for a long time, so that fungi and molds easily propagate in the drain water.
  • the air conditioner having the above configuration, since the drain water is irradiated with ultraviolet rays, the growth of fungi and molds in the drain water is suppressed.
  • a temperature sensor for detecting the temperature of the heat exchanger is provided.
  • the control unit irradiates the drain pan with the ultraviolet rays when the temperature of the heat exchanger detected by the temperature sensor is integrated to be equal to or higher than the dew point temperature and continues for a predetermined time or longer. As described above, the irradiation unit is controlled.
  • the drain water stays on the drain pan for a long time, so that fungi and molds easily propagate in the drain water. ..
  • the air conditioner having the above configuration, since the drain water is irradiated with ultraviolet rays, the growth of fungi and molds in the drain water is suppressed.
  • the control unit irradiates the ultraviolet rays so as to irradiate the ultraviolet rays. Control the part.
  • the air conditioner having the above configuration Even during cooling operation, if the temperature difference between the room temperature and the set temperature is less than or equal to the predetermined temperature, the operation of cooling the heat exchanger is stopped, so that the generation of drain water is suppressed. Therefore, according to the air conditioner having the above configuration, the irradiation time of ultraviolet rays during the cooling operation is shortened, so that the life of the irradiated portion can be extended.
  • the drain pan has a structure in which the drain water is discharged by its own weight.
  • the drain water discharge structure and discharge control can be simplified.
  • FIG. 3 The refrigerant circuit diagram in the air conditioner which concerns on one Embodiment.
  • the control block diagram of the air conditioner shown in FIG. FIG. 3 is a schematic cross-sectional view of the indoor unit constituting the air conditioner shown in FIG. 1 when the operation is stopped.
  • FIG. 5 is a flow chart for controlling ultraviolet irradiation according to another embodiment in an air conditioner.
  • FIG. 1 is a refrigerant circuit diagram of the air conditioner 1 according to the embodiment of the present disclosure.
  • the air conditioner 1 is configured by connecting an indoor unit 2 installed indoors and an outdoor unit 3 installed outdoors by connecting pipes L1 and L2.
  • the air conditioner 1 is a pair-type air conditioner in which the indoor unit 2 and the outdoor unit 3 are one-to-one.
  • the indoor unit 2 is equipped with an indoor heat exchanger 4 and an indoor fan 5. Further, the outdoor unit 3 includes a compressor 6, a four-way switching valve 7, an outdoor heat exchanger 8, an outdoor fan 9, an electric expansion valve (hereinafter referred to as an expansion valve) 10 as an example of the pressure reducing mechanism, and an accumulator. 11 is installed. Further, the outdoor unit 3 is provided with a liquid side closing valve 12 and a gas side closing valve 13.
  • the compressor 6, the four-way switching valve 7, the outdoor heat exchanger 8, the expansion valve 10, the indoor heat exchanger 4, the accumulator 11, and the compressor 6 are arranged in this order. It is connected by a refrigerant pipe and connecting pipes L1 and L2 to form a refrigerant circuit. Further, the liquid side closing valve 12 is interposed between the expansion valve 10 and the connecting pipe L1, while the gas side closing valve 12 is interposed between the four-way switching valve 7 and the connecting pipe L2. 13 is installed.
  • the outdoor heat exchanger 8 is connected to the discharge port of the compressor 6 via the four-way switching valve 7, while the indoor heat exchanger 4 is connected to the four-way switching valve 7. And the suction port of the compressor 6 is connected via the accumulator 11.
  • the cooling operation, the dehumidifying operation, and the heating operation can be set by the remote controller 17 (hereinafter referred to as "remote controller 17"). Further, the remote controller 17 can switch the operation, stop the operation, set the indoor temperature, set the rotation speed of the indoor fan 5, and the like.
  • the refrigerant discharged from the compressor 6 is discharged from the four-way switching valve 7, the outdoor heat exchanger 8, the expansion valve 10, and the expansion valve 10.
  • a cooling cycle is executed in which the air flows sequentially to the indoor heat exchanger 4 and returns to the compressor 6 through the four-way switching valve 7 and the accumulator 11. That is, the outdoor heat exchanger 8 functions as a coagulator, while the indoor heat exchanger 4 functions as an evaporator.
  • the predetermined dehumidification operation although the drive of the indoor fan 5 is suppressed as compared with the cooling operation, the refrigerant passing through the indoor heat exchanger 4 exchanges heat with the indoor air and evaporates.
  • the moisture in the air is collected by condensing on the surface of the indoor heat exchanger 4, and the room is dehumidified. Therefore, in the present application, the operation in which condensed water is generated on the surface of the indoor heat exchanger 4, such as the cooling operation and the predetermined dehumidifying operation, is referred to as a cooling operation.
  • the four-way switching valve 7 is switched, and as shown by the broken line arrow, the refrigerant discharged from the compressor 6 exchanges heat with the room from the four-way switching valve 7.
  • a heating cycle is executed in which the heater 4, the expansion valve 10, and the outdoor heat exchanger 8 flow in this order, and return to the compressor 6 through the four-way switching valve 7 and the accumulator 11. That is, the indoor heat exchanger 4 functions as a coagulator, while the outdoor heat exchanger 8 functions as an evaporator.
  • the indoor unit 2 is equipped with a control device (control unit) 14 on the indoor unit side that controls various operations of the indoor unit 2, and the outdoor unit 3 is equipped with the above-mentioned outdoor unit 3.
  • a control device (control unit) 15 on the outdoor unit side that controls various operations of the outdoor unit 3 is mounted.
  • the entire control of the air conditioner 1 is performed by the control device (control unit) 14 on the indoor unit side, the control device (control unit) 15 on the outdoor unit side, or the control device (control unit) 14 on the indoor unit side. This is performed in collaboration with the control device (control unit) 15 on the outdoor unit side. Therefore, at least one of the control device 14 on the indoor unit side and the control device 15 on the outdoor unit side functions as a control unit 16 that controls various operations of the air conditioner 1.
  • the compressor 6, the four-way switching valve 7, the expansion valve 10, the indoor fan 5, and the outdoor fan 9 are connected to the control unit 16.
  • various drive units for example, a motor and a solenoid
  • An outdoor heat exchanger temperature sensor T1, an outside air temperature sensor T2, an indoor heat exchanger temperature sensor T3, and an indoor temperature sensor T4 are connected to the control unit 16.
  • an irradiation unit 40 is connected to the control unit 16.
  • the outdoor heat exchanger temperature sensor T1 is installed in the outdoor heat exchanger 8 and detects the temperature of the outdoor heat exchanger 8.
  • the outside air temperature sensor T2 is installed inside the outdoor unit 3 to detect the outdoor temperature.
  • the indoor heat exchanger temperature sensor T3 is installed in the indoor heat exchanger 4 and detects the temperature of the indoor heat exchanger 4.
  • the indoor temperature sensor T4 is installed in the indoor unit 2 and detects the indoor temperature.
  • the control unit 16 includes a microprocessor, an input / output circuit, and the like.
  • the control unit 16 includes commands from the remote control 17 (operation start command, indoor temperature setting command, etc.), the outdoor heat exchanger temperature sensor T1, the outside air temperature sensor T2, the indoor heat exchanger temperature sensor T3, and the above. Based on various temperatures detected by the indoor temperature sensor T4, arithmetic processing, judgment processing, and the like are performed to control the operation of the air conditioner 1.
  • FIG. 3 is a schematic cross-sectional view of the indoor unit 2 constituting the air conditioner 1 when the operation is stopped.
  • the indoor unit 2 shown in FIG. 3 is a wall-mounted type.
  • the indoor unit 2 includes a casing 30 including a casing main body 31 and a front panel 32.
  • the casing 30 is attached to the wall surface W facing the indoor space, and houses the indoor fan 5, the indoor heat exchanger 4, the drain pan 33, and the like.
  • the casing main body 31 is composed of a plurality of members, and has a front surface portion 31a, an upper surface portion 31b, a rear surface portion 31c, and a lower surface portion 31d.
  • the front panel 32 is attached to the front surface portion 31a so as to be openable and closable. Further, a suction port (not shown) is provided from the front surface portion 31a to the upper surface portion 31b.
  • the front panel 32 constitutes the front portion 31a of the indoor unit 2, and has, for example, a flat shape without a suction port. Further, the upper end portion of the front panel 32 is rotatably supported by the upper surface portion 31b of the casing main body 31 so that the front panel 32 can be operated in a hinged manner.
  • the indoor fan 5 and the indoor heat exchanger 4 are attached to the casing main body 31.
  • the indoor heat exchanger 4 exchanges heat with the indoor air sucked into the casing 30 through the suction port. Further, the indoor heat exchanger 4 has an inverted V shape in which both ends face downward and the bent portion is located on the upper side in a side view.
  • the indoor heat exchanger 4 includes a plurality of heat transfer tubes and a large number of fins.
  • the indoor fan 5 is located below the bent portion of the indoor heat exchanger 4.
  • the indoor fan 5 is, for example, a cross flow fan.
  • the indoor fan 5 sends the indoor air that has passed through the indoor heat exchanger 4 to the air outlet 34 of the lower surface portion 31d of the casing main body 31.
  • the casing main body 31 is provided with a first partition wall 35 and a second partition wall 36.
  • the space sandwiched between the first partition wall 35 and the second partition wall 36 forms an outlet flow path 37 connecting the indoor fan 5 and the outlet 34.
  • the drain pan 33 is arranged below the indoor heat exchanger 4 and receives the condensed water generated by condensing with the indoor heat exchanger 4.
  • the drain pan 33 has an upper receiving portion 33a, a lower receiving portion 33b, and a communicating portion (not shown) that communicates the upper receiving portion 33a and the lower receiving portion 33b.
  • the condensed water is dropped from the indoor heat exchanger 4 onto the upper receiving portion 33a and the lower receiving portion 33b, respectively.
  • the condensed water dropped on the upper receiving portion 33a flows down to the lower receiving portion 33b via the connecting portion.
  • the condensed water that has flowed down from the upper receiving portion 33a to the lower receiving portion 33b and the condensed water that has dropped onto the lower receiving portion 33b are retained in the lower receiving portion 33b as drain water.
  • the drain water staying in the lower receiving portion 33b is discharged to the outside of the room through the drain hose 39 from the drain port 38 provided in the lower receiving portion 33b by its own weight. Therefore, the drain pan 33 has a structure for discharging drain water by its own weight.
  • Drain water is generated by controlling the cooling operation by the control unit 16 so that the temperature of the indoor heat exchanger 4 measured by the indoor heat exchanger temperature sensor T3 becomes lower than the dew point. ..
  • the control unit 16 can estimate the water level of the drain water staying in the lower receiving portion 33b of the drain pan 33 based on the operating condition of the cooling operation. Therefore, the control unit 16 functions as a detection unit that detects the water level of the drain water staying in the drain pan 33.
  • the water level is used as a detection unit for detecting the water level of the drain water staying in the drain pan 33.
  • a sensor can also be arranged.
  • the irradiation unit 40 (shown in FIG. 2 but not shown in FIG. 3) is provided above the drain pan 33.
  • the irradiation unit 40 emits deep ultraviolet rays (hereinafter, referred to as “ultraviolet rays”) having a relatively short wavelength among ultraviolet rays, and irradiates the ultraviolet rays toward the upper surface of the drain pan 33.
  • the irradiation unit 40 is, for example, an ultraviolet LED (light emitting diode).
  • the wavelength of the ultraviolet rays irradiated by the irradiation unit 40 is, for example, 255 nm to 350 nm.
  • the irradiation amount of ultraviolet rays is defined by multiplying the illuminance of ultraviolet rays by the irradiation time, that is, by multiplying the illuminance of ultraviolet rays by the irradiation time.
  • the irradiation unit 40 When a certain predetermined irradiation amount is obtained, when the irradiation unit 40 is lit at half of the rating as the pattern B with respect to the ultraviolet illuminance and the irradiation time when the irradiation unit 40 is lit with the rating as the pattern A, The irradiation time is doubled as the ultraviolet illuminance is halved.
  • the ultraviolet illuminance and irradiation time of the irradiation unit 40 are controlled by the control unit 16.
  • the irradiation unit 40 irradiates the drain pan 33 with ultraviolet rays at a predetermined irradiation amount, the drain water staying in the drain pan 33 is sterilized, and fungi and molds in the drain water staying in the drain pan 33 are sterilized. Propagation such as is suppressed.
  • the indoor unit 2 includes a first horizontal flap 41 and a second horizontal flap 51 arranged on the rear side (wall surface W side) of the first horizontal flap 41.
  • the first horizontal flap 41 and the second horizontal flap 51 adjust the vertical wind direction of the blown air (air flowing through the blowout flow path 37) blown out from the outlet 34.
  • the first horizontal flap 41 is rotatably attached to the lower surface portion 31d of the casing main body 31.
  • the indoor fan 5 is stopped, the front panel 32, the first horizontal flap 41, and the second horizontal flap 51 are closed, and the air conditioning operation by the indoor unit 2 is performed. It is stopped.
  • the first horizontal flap 41 is an example of the first horizontal blade.
  • the second horizontal flap 51 is an example of the second horizontal blade.
  • the indoor unit 2 is provided with a plurality of vertical flaps (not shown) for adjusting the wind direction of the blown air in the left-right direction.
  • the plurality of vertical flaps are arranged in the outlet flow path 37 at predetermined intervals along the longitudinal direction of the outlet 34 (the direction perpendicular to the paper surface of FIG. 3).
  • the vertical flap is an example of a vertical blade.
  • FIG. 4 shows a control flowchart of ultraviolet irradiation in the air conditioner 1.
  • the control unit 16 executes the cooling operation desired by the user and is in the cooling operation for a predetermined time.
  • the air conditioner 1 is controlled as described above (step S1).
  • step S2 the control unit 16 determines whether or not drain water is generated. Specifically, drain water is generated in the normal cooling operation (when YES in step S2), and the process proceeds to step S3.
  • step S3 the control unit 16 determines whether or not the cooling operation is stopped. When the cooling operation is not stopped (NO in step S3), it waits until the cooling operation is stopped. When the cooling operation is stopped (YES in step S3), the process proceeds to step S4.
  • step S4 the control unit 16 controls the irradiation unit 40 so that the irradiation unit 40 lights up. Specifically, the control unit 16 applies a rated current value and a rated voltage value to the irradiation unit 40 as a pattern A so that the irradiation unit 40 irradiates with the rated total radiant flux. 40 is controlled. As a result, ultraviolet rays are applied to the drain water staying in the drain pan 33.
  • step S5 the control unit 16 determines whether or not the irradiation time of the irradiation unit 40 has passed the predetermined first time t1 required for sterilization.
  • the predetermined first time t1 is, for example, one hour.
  • the patient waits until the predetermined first time t1 elapses. As a result, the drain water staying in the drain pan 33 is sterilized, and the growth of fungi and molds in the drain water staying in the drain pan 33 is suppressed.
  • the irradiation time has passed the predetermined first time t1 (YES in step S5), the process proceeds to step S6.
  • step S2 when drain water is not generated (NO in step S2), the process proceeds to step S11.
  • step S11 the control unit 16 accumulates the non-generation time of the drain water starting from the start of the cooling operation and determines whether or not it continues for the predetermined second time t2 or more. Even during the cooling operation, if the state where the water level of the drain water is equal to or lower than the predetermined level is accumulated and continues for the predetermined second time t2 or more, fungi and molds are likely to grow. That is, if the humidity of the indoor space is lowered by the cooling operation for a long time and the state where the drain water is low continues for a predetermined time (second time t2), the old drain water will not be replaced with the new drain water. Fungi and molds are more likely to grow.
  • the predetermined second time t2 is, for example, 10 hours to 12 hours, although it depends on the breeding conditions of fungi and molds.
  • step S12 the control unit 16 controls the irradiation unit 40 so that the irradiation unit 40 irradiates with a total radiant flux less than the rating as pattern B during the cooling operation.
  • the control unit 16 controls the irradiation unit 40 so as to be 50% of the rated total radiant flux, for example, as pattern B.
  • the ultraviolet illuminance after the cooling operation is larger than the ultraviolet illuminance during the cooling operation (pattern B).
  • step S13 the control unit 16 determines whether or not the irradiation time of the irradiation unit 40 has passed the predetermined third time t3 required for sterilization.
  • the irradiation time does not elapse the predetermined third time t3 (NO in step S13)
  • the patient waits until the predetermined third time t3 elapses.
  • the amount of UV irradiation required for sterilization is defined by the UV illuminance x irradiation time.
  • the irradiation time (third hour t3) during the cooling operation (pattern B) is set after the cooling operation (pattern A). It becomes longer than the irradiation time of pattern A) (first time t1).
  • the irradiation time (third time t3) during the cooling operation (pattern B) is after the cooling operation (3rd hour t3). It is twice the irradiation time of pattern A) (first time t1).
  • step B By lengthening the irradiation time during the cooling operation (pattern B), the drain water staying in the drain pan 33 is sterilized, and the growth of fungi and molds in the drain water staying in the drain pan 33 is suppressed.
  • the irradiation time has passed the predetermined third time t3 (YES in step S13)
  • the process proceeds to step S6.
  • step S6 the control unit 16 controls the irradiation unit 40 so that the irradiation unit 40 is turned off.
  • the control of ultraviolet irradiation is completed.
  • the ultraviolet illuminance after the cooling operation is larger than the ultraviolet illuminance during the cooling operation, in other words, the ultraviolet illuminance during the cooling operation is smaller than the ultraviolet illuminance after the cooling operation.
  • the irradiation unit 40 is controlled so as to be. As a result, fungi and molds can be effectively sterilized after the cooling operation that requires a large ultraviolet illuminance, and the life of the irradiation unit 40 can be extended by the amount that the ultraviolet illuminance during the cooling operation is lowered.
  • FIG. 5 shows a control flowchart of ultraviolet irradiation according to another embodiment of the air conditioner 1.
  • the control unit 16 executes the cooling operation desired by the user and is in the cooling operation for a predetermined time.
  • the air conditioner 1 is controlled as described above (step S21).
  • step S22 the control unit 16 controls the irradiation unit 40 so that the irradiation unit 40 is turned off or intermittently lit during the cooling operation.
  • the extinguished state means that the ultraviolet illuminance by the irradiation unit 40 is set to zero from the start of the cooling operation, and the intermittent lighting means that the lighting and extinguishing are repeated at least once at a predetermined timing during the cooling operation. Is.
  • step S23 the control unit 16 determines whether or not the cooling operation is stopped. When the cooling operation is not stopped (NO in step S23), it waits until the cooling operation is stopped. When the cooling operation is stopped (YES in step S23), the process proceeds to step S24.
  • step S24 the control unit 16 controls the irradiation unit 40 so that the irradiation unit 40 lights up. Specifically, the control unit 16 applies a rated current value and a rated voltage value to the irradiation unit 40 as a pattern A so that the irradiation unit 40 irradiates with the rated total radiant flux. 40 is controlled. As a result, ultraviolet rays are applied to the drain water staying in the drain pan 33.
  • step S25 the control unit 16 determines whether or not the irradiation time of the irradiation unit 40 has passed the predetermined first time t1 required for sterilization.
  • the patient waits until the predetermined first time t1 elapses.
  • the drain water staying in the drain pan 33 is sterilized, and the growth of fungi and molds in the drain water staying in the drain pan 33 is suppressed.
  • the irradiation time has passed the predetermined first time t1 (YES in step S25)
  • the process proceeds to step S26.
  • step S26 the control unit 16 controls the irradiation unit 40 so that the irradiation unit 40 is turned off.
  • the control of ultraviolet irradiation is completed.
  • the irradiation time of ultraviolet rays during the cooling operation is shortened, so that the life of the irradiation unit 40 can be extended by the non-irradiation time of the ultraviolet rays during the cooling operation.
  • the irradiation unit 40 is controlled so as to irradiate the drain water staying in the drain pan 33 with ultraviolet rays.
  • the irradiation time of the irradiation unit 40 is shorter than that in the case of irradiating the ultraviolet rays during the cooling operation, and fungi and molds in the drain water can be effectively sterilized.
  • the air conditioner 1 is A detection unit 16 for detecting the water level of drain water is provided. During the cooling operation, the control unit 16 irradiates the drain pan 33 with ultraviolet rays when the state in which the water level of the drain water detected by the detection unit 16 is equal to or lower than a predetermined level is accumulated and continues for a predetermined time or longer.
  • the unit 40 can be controlled.
  • the drain water stays on the drain pan 33 for a long time, so that fungi and molds easily propagate in the drain water. ..
  • the air conditioner having the above configuration, since the drain water is irradiated with ultraviolet rays, the growth of fungi and molds in the drain water is suppressed.
  • the air conditioner 1 according to the above-described embodiment and the other embodiment is Equipped with an indoor heat exchanger temperature sensor T3 that detects the temperature of the indoor heat exchanger 4.
  • the control unit 16 accumulates the states in which the temperature of the indoor heat exchanger 4 detected by the indoor heat exchanger temperature sensor T3 is equal to or higher than the dew point temperature) and continues for a predetermined time of t2 or more, the ultraviolet rays are drained.
  • the irradiation unit 40 can be controlled so that the irradiation unit 33 is irradiated.
  • the dew point temperature is, for example, the indoor temperature detected by the indoor temperature sensor T4, the amount of moisture in the room (for example, relative humidity) detected by the humidity sensor T5, and the dew point temperature calculation stored in the storage unit of the control unit 16. Calculated based on the table.
  • the drain water stays on the drain pan 33 for a long time, so that fungi and molds become the drain water. It becomes easier to breed.
  • the air conditioner 1 having the above configuration, since the drain water is irradiated with ultraviolet rays, the growth of fungi and molds in the drain water is suppressed.
  • the air conditioner 1 according to the above-described embodiment and the other embodiment is Equipped with an indoor temperature sensor T4 that detects the indoor temperature, During the cooling operation, the control unit 16 causes the irradiation unit 40 to irradiate ultraviolet rays when the temperature difference between the indoor temperature detected by the indoor temperature sensor T4 and the set temperature is equal to or less than a predetermined temperature. Can be controlled.
  • the room temperature approaches the set temperature and is stably maintained, so that it is not necessary to cool the room heat exchanger 4. Therefore, even during the cooling operation, if the temperature difference between the indoor temperature and the set temperature is equal to or less than a predetermined temperature, the operation of cooling the indoor heat exchanger 4 is stopped (that is, the thermo-off is performed), so that drain water is generated. Is suppressed. Therefore, according to the air conditioner 1 having the above configuration, the irradiation time of ultraviolet rays during the cooling operation is shortened, so that the life of the irradiation unit 40 can be extended.
  • the set temperature is set by the user or set by the control unit 16.
  • the irradiation of ultraviolet rays is performed continuously or intermittently.
  • the continuous irradiation of ultraviolet rays when the temperature difference becomes equal to or lower than a predetermined temperature acts as intermittent irradiation of ultraviolet rays during the cooling operation.
  • Drain hose 40 Irradiation section 41 ... 1st horizontal flap 51 ... 2nd horizontal flap L1, L2 ... Communication piping T1 ... Outdoor heat exchanger temperature sensor T2 ... Outdoor air temperature sensor T3 ... Indoor heat exchanger temperature sensor (Temperature sensor) T4 ... Indoor temperature sensor T5 ... Humidity sensor W ... Wall surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

空気調和機は、室内機に設けられた熱交換器と、熱交換器で生成されたドレン水を受けるドレンパンと、ドレンパンに向けて紫外線を照射する照射部(40)と、照射部(40)の紫外線照度を制御する制御部(16)とを備える。制御部(16)は、冷房運転後の紫外線照度が、冷房運転中の紫外線照度よりも大きくなるように、照射部(40)を制御する。

Description

空気調和機
 本開示は、空気調和機に関する。
 空気調和機としては、ドレン水が貯留されたドレンパンに対して、紫外線の中でも比較的波長が短い深紫外線を照射するものがある(例えば、特許文献1を参照)。深紫外線の照射により、ドレン水に含まれる菌類やカビなどが、変性または不活化(以下、「殺菌」という)される。
特開2017-133700号公報
 特許文献1では、冷房運転中と判定されると、深紫外線の照射が開始される。このため、冷房運転の間ずっと、深紫外線の照射が行われる。その結果、深紫外線の照射が長時間になるので、深紫外線の照射を行う照射部の寿命が短くなるという問題がある。
 本開示の課題は、照射部を長寿命化する空気調和機を提供することである。
 本開示の一態様に係る空気調和機は、
 室内機に設けられた熱交換器と、
 前記熱交換器で生成されたドレン水を受けるドレンパンと、
 前記ドレンパンに向けて紫外線を照射する照射部と、
 前記照射部の紫外線照度を制御する制御部とを備え、
 前記制御部は、冷房運転後の前記紫外線照度が、前記冷房運転中の前記紫外線照度よりも大きくなるように、前記照射部を制御することを特徴とする。
 上記構成の空気調和機によれば、冷房運転後の紫外線照度が、冷房運転中の紫外線照度よりも大きくなるように、言い換えると、冷房運転中の紫外線照度が、冷房運転後の紫外線照度よりも小さくなるように、紫外線が照射されるので、照射部を長寿命化できる。
 一実施形態の空気調和機では、
 前記ドレン水の水位を検出する検出部を備え、
 前記制御部は、前記冷房運転中において、前記検出部によって検出された前記ドレン水の水位が所定レベル以下である状態が積算して所定時間以上継続すると、前記紫外線が前記ドレンパンに照射されるように、前記照射部を制御する。
 冷房運転中でも、ドレン水の水位が所定レベル以下である状態が積算して所定時間以上継続すると、ドレン水がドレンパン上に長時間滞留するため、菌類やカビなどがドレン水に繁殖しやすくなる。
 上記構成の空気調和機によれば、紫外線がドレン水に照射されるので、ドレン水における菌類やカビなどの繁殖が抑制される。
 一実施形態の空気調和機では、
 前記熱交換器の温度を検出する温度センサを備え、
 前記制御部は、前記冷房運転中において、前記温度センサによって検出される前記熱交換器の温度が露点温度以上である状態が積算して所定時間以上継続すると、前記紫外線が前記ドレンパンに照射されるように、前記照射部を制御する。
 冷房運転中でも、熱交換器の温度が露点温度以上である状態が積算して所定時間以上継続すると、ドレン水がドレンパン上に長時間滞留するため、菌類やカビなどがドレン水に繁殖しやすくなる。
 上記構成の空気調和機によれば、紫外線がドレン水に照射されるので、ドレン水における菌類やカビなどの繁殖が抑制される。
 一実施形態の空気調和機では、
 室内温度を検出する室内温度センサを備え、
 前記制御部は、前記冷房運転中において、前記室内温度センサによって検出される室内温度と、設定温度との間の温度差が、所定温度以下であると、前記紫外線を照射するように、前記照射部を制御する。
 冷房運転中でも、室内温度と設定温度との間の温度差が所定温度以下であると、熱交換器を冷却する動作を停止するので、ドレン水の生成が抑制される。そのため、上記構成の空気調和機によれば、冷房運転中における紫外線の照射時間が短くなるので、照射部を長寿命化できる。
 また、一実施形態の空気調和機では、
 前記制御部は、前記照射部の照射時間を制御し、
 前記制御部は、前記冷房運転中の前記照射時間が、前記冷房運転後の前記照射時間よりも長くなるように、前記照射部を制御する。
 上記構成の空気調和機によれば、冷房運転中の紫外線照度が、冷房運転後の紫外線照度よりも小さくても、冷房運転中の照射時間を冷房運転後の照射時間よりも長くするので、ドレン水における菌類やカビなどの殺菌効果を高めることができる。
 また、一実施形態の空気調和機では、
 前記制御部は、前記冷房運転中における前記紫外線照度に照射時間を乗じた照射量が、前記冷房運転後における前記紫外線照度に照射時間を乗じた照射量と等しくなるように、前記照射部を制御する。
 上記構成の空気調和機によれば、冷房運転中の照射量と冷房運転後の照射量とが等しいので、冷房運転中および冷房運転後での殺菌度合いが、同じになる。
 また、一実施形態の空気調和機では、
 前記ドレンパンは、前記ドレン水を自重で排出する構造である。
 上記構成の空気調和機によれば、ドレン水の排出構造および排出制御を簡略化できる。
 また、本開示の他の態様に係る空気調和機では、
 室内機に設けられた熱交換器と、
 前記熱交換器で生成されたドレン水を受けるドレンパンと、
 前記ドレンパンに向けて紫外線を照射する照射部と、
 前記照射部を制御する制御部とを備え、
 前記制御部は、冷房運転中において、前記紫外線を間欠で照射するかまたは非照射にするように、前記照射部を制御する。
 上記構成の空気調和機によれば、冷房運転中における紫外線の照射時間が短くなるので、照射部を長寿命化できる。
 また、一実施形態の空気調和機では、
 前記ドレン水の水位を検出する検出部を備え、
 前記制御部は、前記冷房運転中において、前記検出部によって検出された前記ドレン水の水位が所定レベル以下である状態が積算して所定時間以上継続すると、前記紫外線が前記ドレンパンに照射されるように、前記照射部を制御する。
 冷房運転中でも、ドレン水の水位が所定レベル以下である状態が積算して所定時間以上継続すると、ドレン水がドレンパン上に長時間滞留するため、菌類やカビなどがドレン水に繁殖しやすくなる。
 上記構成の空気調和機によれば、紫外線がドレン水に照射されるので、ドレン水における菌類やカビなどの繁殖が抑制される。
 また、一実施形態の空気調和機では、
 前記熱交換器の温度を検出する温度センサを備え、
 前記制御部は、前記冷房運転中において、前記温度センサによって検出される前記熱交換器の温度が露点温度以上である状態が積算して所定時間以上継続すると、前記紫外線が前記ドレンパンに照射されるように、前記照射部を制御する。
 冷房運転中でも、熱交換器の温度が露点温度以上である状態が積算して所定時間以上継続すると、ドレン水がドレンパン上に長時間滞留するため、菌類やカビなどがドレン水に繁殖しやすくなる。
 上記構成の空気調和機によれば、紫外線がドレン水に照射されるので、ドレン水における菌類やカビなどの繁殖が抑制される。
 また、一実施形態の空気調和機では、
 室内温度を検出する室内温度センサを備え、
 前記制御部は、前記冷房運転中において、前記室内温度センサによって検出される室内温度と、設定温度との間の温度差が、所定温度以下であると、前記紫外線を照射するように、前記照射部を制御する。
 冷房運転中でも、室内温度と設定温度との間の温度差が所定温度以下であると、熱交換器を冷却する動作を停止するので、ドレン水の生成が抑制される。そのため、上記構成の空気調和機によれば、冷房運転中における紫外線の照射時間が短くなるので、照射部を長寿命化できる。
 また、一実施形態の空気調和機では、
 前記ドレンパンは、前記ドレン水を自重で排出する構造である。
 上記構成の空気調和機によれば、ドレン水の排出構造および排出制御を簡略化できる。
一実施形態に係る空気調和機における冷媒回路図。 図1に示した空気調和機の制御ブロック図。 図1に示した空気調和機を構成する室内機の運転停止時の概略断面図。 空気調和機における紫外線照射の制御フローチャート。 空気調和機における他の実施形態に係る紫外線照射の制御フローチャート。
 以下、本開示の一実施形態に係る空気調和機について図面を参照しながら説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
[空気調和機1の全体構成]
 図1は、本開示の一実施形態の空気調和機1の冷媒回路図である。上記空気調和機1は、図1に示すように、室内に設置される室内機2と、室外に設置される室外機3とが、連絡配管L1,L2によって接続されて構成されている。空気調和機1は、室内機2と室外機3とが一対一のペア型の空気調和機である。
 上記室内機2には、室内熱交換器4および室内ファン5が搭載されている。また、上記室外機3には、圧縮機6、四路切換弁7、室外熱交換器8、室外ファン9、上記減圧機構の一例としての電動膨張弁(以下、膨張弁と言う)10およびアキュムレータ11が搭載されている。さらに、上記室外機3には、液側閉鎖弁12およびガス側閉鎖弁13が配置されている。
 上記圧縮機6と、上記四路切換弁7と、上記室外熱交換器8と、上記膨張弁10と、上記室内熱交換器4と、上記アキュムレータ11と、上記圧縮機6とが、この順序で冷媒管および連絡配管L1,L2によって接続されて冷媒回路を構成している。また、上記膨張弁10と上記連絡配管L1との間には上記液側閉鎖弁12が介設される一方、上記四路切換弁7と上記連絡配管L2との間には上記ガス側閉鎖弁13が介設されている。
 上記冷媒回路において、上記圧縮機6の吐出口には、上記四路切換弁7を介して上記室外熱交換器8が接続される一方、上記室内熱交換器4には上記四路切換弁7および上記アキュムレータ11を介して上記圧縮機6の吸込口が接続されている。
 上記構成の空気調和機1では、冷房運転、除湿運転および暖房運転が、リモートコントローラ17(以下、「リモコン17」という)によって設定可能になっている。さらに、上記リモコン17は、上記運転の切換や運転停止や室内温度設定や室内ファン5の回転数設定等を行うことができる。
 上記冷房運転および所定の上記除湿運転では、実線の矢印で示すように、上記圧縮機6から吐出された冷媒が、上記四路切換弁7から上記室外熱交換器8、上記膨張弁10および上記室内熱交換器4に順次に流れ、上記四路切換弁7および上記アキュムレータ11を通って上記圧縮機6に戻る冷房サイクルが実行される。すなわち、上記室外熱交換器8が凝結器として機能する一方、上記室内熱交換器4が蒸発器として機能する。なお、上記所定の除湿運転では、上記室内ファン5の駆動が冷房運転のよりも抑制されているものの、上記室内熱交換器4を通過する冷媒は室内空気と熱交換を行って蒸発する。これにより、空気中の水分が上記室内熱交換器4の表面において凝結することで回収され、室内の除湿が行われる。したがって、本願においては、上記冷房運転および所定の上記除湿運転のように、上記室内熱交換器4の表面に凝結水が生成される運転を、冷房運転という。
 これに対し、上記暖房運転では、上記四路切換弁7が切り換わって、破線の矢印で示すように、上記圧縮機6から吐出された冷媒が、上記四路切換弁7から上記室内熱交換器4、上記膨張弁10および上記室外熱交換器8へと順に流れ、上記四路切換弁7および上記アキュムレータ11を通って上記圧縮機6に戻る暖房サイクルが実行される。すなわち、上記室内熱交換器4が凝結器として機能する一方、上記室外熱交換器8が蒸発器として機能する。
 図1に示すように、上記室内機2には、上記室内機2の各種動作を制御する室内機側の制御装置(制御部)14が搭載されているとともに、上記室外機3には、上記室外機3の各種動作を制御する室外機側の制御装置(制御部)15が搭載されている。空気調和機1の全体の制御は、室内機側の制御装置(制御部)14により、室外機側の制御装置(制御部)15により、あるいは、室内機側の制御装置(制御部)14および室外機側の制御装置(制御部)15の協働により、行われる。したがって、室内機側の制御装置14および室外機側の制御装置15の少なくとも一方は、空気調和機1の各種動作を制御する制御部16として働く。
 図2に示すように、上記制御部16には、上記圧縮機6、上記四路切換弁7、上記膨張弁10、上記室内ファン5および上記室外ファン9が接続されている。但し、実際には、これらの構成要素をそれぞれ駆動するための各種駆動部(例えば、モータやソレノイド)が、上記制御部16に接続されている。上記制御部16には、室外熱交換器温度センサT1、外気温度センサT2、室内熱交換器温度センサT3および室内温度センサT4が接続されている。さらに、上記制御部16には、照射部40が接続されている。
 上記室外熱交換器温度センサT1は、上記室外熱交換器8に設置されて、上記室外熱交換器8の温度を検出する。上記外気温度センサT2は、上記室外機3内に設置されて、室外温度を検知する。上記室内熱交換器温度センサT3は、上記室内熱交換器4に設置されて、上記室内熱交換器4の温度を検出する。上記室内温度センサT4は、上記室内機2内に設置されて、室内温度を検知する。
 上記制御部16は、マイクロコンピュータや入出力回路などを含む。上記制御部16は、上記リモコン17からの指令(運転開始指令や室内温度設定指令等)や、上記室外熱交換器温度センサT1や上記外気温度センサT2や上記室内熱交換器温度センサT3や上記室内温度センサT4で検知された各種の温度に基づいて、演算処理や判断処理等を行って、上記空気調和機1の運転を制御する。
[室内機の構成]
 図3は、上記空気調和機1を構成する上記室内機2の運転停止時の概略断面図である。図3に示した上記室内機2は、壁掛けタイプである。
 上記室内機2は、ケーシング本体31および前面パネル32からなるケーシング30を備えている。このケーシング30は、室内空間に面する壁面Wに取り付けられると共に、上記室内ファン5、上記室内熱交換器4、上記ドレンパン33などを収容する。
 上記ケーシング本体31は、複数の部材で構成され、前面部31a、上面部31b、後面部31cおよび下面部31dを有する。この前面部31aには、上記前面パネル32が開閉可能に取り付けられている。また、上記前面部31aから上記上面部31bにかけて吸込口(図示せず)が設けられている。
 上記前面パネル32は、上記室内機2の前面部31aを構成しており、例えば、吸込口がないフラットな形状を有している。また、上記前面パネル32の上端部は、上記ケーシング本体31の上面部31bに回動可能に支持され、ヒンジ式に動作することが可能となっている。
 上記室内ファン5および上記室内熱交換器4は、上記ケーシング本体31に取り付けられている。上記室内熱交換器4は、上記吸込口を介して上記ケーシング30内に吸い込まれた室内空気との間で熱交換を行う。また、上記室内熱交換器4は、側面視で、両端が下方に向いて屈曲部が上側に位置する逆V字形状をしている。上記室内熱交換器4は、複数の伝熱管および多数枚のフィンを備えている。
 上記室内ファン5は、上記室内熱交換器4の屈曲部の下方に位置する。上記室内ファン5は、例えばクロスフローファンである。上記室内ファン5は、上記室内熱交換器4を通過した室内空気を、上記ケーシング本体31の上記下面部31dの吹出口34に送る。
 また、上記ケーシング本体31には、第1隔壁35および第2隔壁36が設けられている。上記第1隔壁35および上記第2隔壁36で挟まれた空間が、上記室内ファン5と上記吹出口34とを繋ぐ吹出流路37を形成する。
 上記ドレンパン33は、上記室内熱交換器4の下方に配置され、上記室内熱交換器4で凝結することによって生成された凝結水を受ける。上記ドレンパン33は、上受け部33aと、下受け部33bと、上受け部33aおよび下受け部33bを連通する連通部(図示せず)を有する。凝結水は、上記室内熱交換器4から上受け部33aおよび下受け部33bのそれぞれに滴下する。上記上受け部33aに滴下した凝結水は、連結部を介して下受け部33bに流下する。上記上受け部33aから上記下受け部33bに流下した凝結水と、上記下受け部33bに滴下した凝結水とは、ドレン水として、上記下受け部33bに滞留する。上記下受け部33bに滞留したドレン水は、自重で上記下受け部33bに設けられた排水口38から、ドレンホース39を介して室外に排出される。したがって、上記ドレンパン33は、ドレン水を自重で排出する構造である。
 上記室内熱交換器温度センサT3によって測定された上記室内熱交換器4の温度が、露点よりも低い温度になるように、上記制御部16が冷房運転を制御することで、ドレン水が発生する。上記制御部16は、上記ドレンパン33の下受け部33bに滞留するドレン水の水位を、冷房運転の運転状況に基づいて推定できる。したがって、上記制御部16は、上記ドレンパン33に滞留するドレン水の水位を検出する検出部として機能する。なお、一部の空気調和機、例えば、天井埋込型、天井吊型などの高所設置型の空気調和機においては、上記ドレンパン33に滞留するドレン水の水位を検出する検出部として、水位センサを配設することもできる。
 上記ドレンパン33の上方には、上記照射部40(図2に図示するが図3には図示せず)が設けられている。上記照射部40は、紫外線の中でも比較的波長が短い深紫外線(以下、「紫外線」という)を発光して、紫外線を上記ドレンパン33の上面に向けて照射する。上記照射部40は、例えば、紫外線LED(発光ダイオード)である。上記照射部40が照射する紫外線の波長は、例えば、255nm~350nmである。
 ドレン水に含まれる菌類やカビなどを変性または不活化(以下、「殺菌」という)させるには、紫外線を所定の照射量で照射することが必要である。紫外線の照射量は、紫外線照度に照射時間を乗じることによって、すなわち紫外線照度×照射時間によって規定される。或る所定の照射量を得る場合、パターンAとして上記照射部40を定格点灯させたときの紫外線照度および照射時間に対して、パターンBとして上記照射部40を定格の半分で点灯させたとき、紫外線照度が半分になるとともに照射時間が2倍になる。冷房運転中の照射量と冷房運転後の照射量とを等しくすることにより、殺菌度合いが同じになる。上記照射部40の紫外線照度および照射時間は、上記制御部16によって制御される。
 上記照射部40が、上記ドレンパン33に向けて紫外線を所定の照射量で照射することにより、上記ドレンパン33に滞留するドレン水の殺菌が行われ、上記ドレンパン33に滞留するドレン水における菌類やカビなどの繁殖が抑制される。
 上記室内機2は、第1水平フラップ41と、この第1水平フラップ41よりも後側(壁面W側)に配置される第2水平フラップ51とを備えている。上記第1水平フラップ41および上記第2水平フラップ51は、上記吹出口34から吹き出される吹出空気(吹出流路37を流れる空気)の上下方向の風向を調整する。上記第1水平フラップ41は、上記ケーシング本体31の上記下面部31dに回動可能に取り付けられている。図3に示す状態では、上記室内ファン5は停止し、かつ、上記前面パネル32と、上記第1水平フラップ41および上記第2水平フラップ51とは閉じられて、上記室内機2による空調運転は停止している。なお、上記第1水平フラップ41は、第1水平羽根の一例である。また、上記第2水平フラップ51は、第2水平羽根の一例である。
 また、上記室内機2は、吹出空気の左右方向の風向を調整する複数の垂直フラップ(図示せず)を備える。この複数の垂直フラップは、上記吹出口34の長手方向(図3の紙面に対して垂直な方向)に沿って所定間隔をあけて、上記吹出流路37に配置されている。なお、垂直フラップは、垂直羽根の一例である。
[紫外線照射の制御]
 次に、図4を参照しながら、上記空気調和機1における紫外線照射の制御について説明する。図4は、上記空気調和機1における紫外線照射の制御フローチャートを示す。
 上記空気調和機1において、ユーザによる上記リモコン17の操作によって冷房運転が選択されると、上記制御部16は、ユーザが所望とする冷房運転を実行して、所定の時間にわたって冷房運転中となるように上記空気調和機1を制御する(ステップS1)。
 ステップS2では、上記制御部16は、ドレン水が発生しているか否かを判断する。具体的には、通常の冷房運転ではドレン水が発生しており(ステップS2のYESの場合)、ステップS3に移行する。
 ステップS3では、上記制御部16は、冷房運転が停止しているか否かを判断する。冷房運転が停止していないとき(ステップS3のNOの場合)、冷房運転が停止するまで待機する。冷房運転が停止しているとき(ステップS3のYESの場合)、ステップS4に移行する。
 ステップS4では、上記制御部16は、上記照射部40が点灯するように上記照射部40を制御する。具体的には、上記制御部16は、パターンAとして、上記照射部40に定格電流値および定格電圧値を印加して、上記照射部40が定格の全放射束で照射するように上記照射部40を制御する。これにより、紫外線が、上記ドレンパン33に滞留するドレン水に照射される。
 ステップS5では、上記制御部16は、上記照射部40の照射時間が、殺菌に必要な所定の第1時間t1を経過しているか否かを判断する。上記照射部40の照度によって異なるが、所定の第1時間t1は、例えば、1時間である。照射時間が所定の第1時間t1を経過していないとき(ステップS5のNOの場合)、所定の第1時間t1を経過するまで待機する。これにより、上記ドレンパン33に滞留するドレン水の殺菌が行われ、上記ドレンパン33に滞留するドレン水における菌類やカビなどの繁殖が抑制される。照射時間が所定の第1時間t1を経過しているとき(ステップS5のYESの場合)、ステップS6に移行する。
 ステップS2において、ドレン水が発生していないとき(ステップS2のNOの場合)、ステップS11に移行する。
 ステップS11では、上記制御部16は、冷房運転開始時を起点とするドレン水の非発生時間が、積算して、所定の第2時間t2以上継続しているか否かを判断する。冷房運転中でも、ドレン水の水位が所定レベル以下である状態が積算して所定の第2時間t2以上継続すると、菌類やカビなどが繁殖しやすくなる。すなわち、長時間の冷房運転によって室内空間の湿度が低下することにより、ドレン水の少ない状態が所定時間(第2時間t2)継続すると、古いドレン水が新しいドレン水に入れ替わることが起こらなくなるので、菌類やカビなどが繁殖しやすくなる。菌類やカビなどの繁殖条件によって異なるが、所定の第2時間t2は、例えば、10時間から12時間である。ドレン水の非発生時間が、積算して、所定の第2時間t2以上継続していないとき(ステップS11のNOの場合)、冷房運転を継続する。ドレン水の非発生時間が、積算して所定の第2時間t2以上継続しているとき(ステップS11のYESの場合)、ステップS12に移行する。
 ステップS12では、上記制御部16は、冷房運転中において、パターンBとして、上記照射部40が定格よりも少ない全放射束で照射するように上記照射部40を制御する。これにより、紫外線が、上記ドレンパン33に滞留するドレン水に照射される。上記制御部16は、例えば、パターンBとして、定格の全放射束に対して50%となるように上記照射部40を制御する。これにより、冷房運転後(パターンA)の紫外線照度が、冷房運転中(パターンB)の紫外線照度よりも大きい。
 ステップS13では、上記制御部16は、上記照射部40の照射時間が、殺菌に必要な所定の第3時間t3を経過しているか否かを判断する。照射時間が所定の第3時間t3を経過していないとき(ステップS13のNOの場合)、所定の第3時間t3を経過するまで待機する。殺菌に必要な紫外線の照射量は、紫外線照度×照射時間によって規定される。冷房運転中(パターンB)の紫外線照度が、冷房運転後(パターンA)の紫外線照度よりも小さくなるため、冷房運転中(パターンB)の照射時間(第3時間t3)が、冷房運転後(パターンA)の照射時間(第1時間t1)よりも長くなる。例えば、パターンBとして、定格の全放射束に対して50%となるように照射部40を制御するとき、冷房運転中(パターンB)の照射時間(第3時間t3)は、冷房運転後(パターンA)の照射時間(第1時間t1)の2倍になる。冷房運転中(パターンB)の照射時間を長くすることにより、上記ドレンパン33に滞留するドレン水の殺菌が行われ、上記ドレンパン33に滞留するドレン水における菌類やカビなどの繁殖が抑制される。照射時間が所定の第3時間t3を経過しているとき(ステップS13のYESの場合)、ステップS6に移行する。
 ステップS6では、上記制御部16は、上記照射部40が消灯するように上記照射部40を制御する。上記照射部40が消灯することで、紫外線照射の制御が終了する。
 上記空気調和機1によれば、冷房運転後の紫外線照度が、冷房運転中の紫外線照度よりも大きくなるように、言い換えると、冷房運転中の紫外線照度が、冷房運転後の紫外線照度よりも小さくなるように、上記照射部40が制御される。これにより、大きな紫外線照度を必要とする冷房運転後において、菌類やカビなどを効果的に殺菌でき、冷房運転中での紫外線照度を低くする分だけ、上記照射部40を長寿命化できる。
[他の実施形態]
 次に、図5を参照しながら、上記空気調和機1における他の実施形態に係る紫外線照射の制御について説明する。図5は、上記空気調和機1における他の実施形態に係る紫外線照射の制御フローチャートを示す。
 上記空気調和機1において、ユーザによる上記リモコン17の操作によって冷房運転が選択されると、上記制御部16は、ユーザが所望とする冷房運転を実行して、所定の時間にわたって冷房運転中となるように上記空気調和機1を制御する(ステップS21)。
 ステップS22では、上記制御部16は、冷房運転中において、上記照射部40が消灯状態であるかまたは間欠点灯するように上記照射部40を制御する。具体的には、消灯状態は、冷房運転開始時から上記照射部40による紫外線照度をゼロにすることであり、間欠点灯は、冷房運転中において所定のタイミングで点灯および消灯を少なくとも1回繰り返すことである。
 ステップS23では、上記制御部16は、冷房運転が停止しているか否かを判断する。冷房運転が停止していないとき(ステップS23のNOの場合)、冷房運転が停止するまで待機する。冷房運転が停止しているとき(ステップS23のYESの場合)、ステップS24に移行する。
 ステップS24は、上記制御部16は、上記照射部40が点灯するように上記照射部40を制御する。具体的には、上記制御部16は、パターンAとして、上記照射部40に定格電流値および定格電圧値を印加して、上記照射部40が定格の全放射束で照射するように上記照射部40を制御する。これにより、紫外線が、上記ドレンパン33に滞留するドレン水に照射される。
 ステップS25では、上記制御部16は、上記照射部40の照射時間が、殺菌に必要な所定の第1時間t1を経過しているか否かを判断する。照射時間が所定の第1時間t1を経過していないとき(ステップS25のNOの場合)、所定の第1時間t1を経過するまで待機する。これにより、上記ドレンパン33に滞留するドレン水の殺菌が行われ、上記ドレンパン33に滞留するドレン水における菌類やカビなどの繁殖が抑制される。照射時間が所定の第1時間t1を経過しているとき(ステップS25のYESの場合)、ステップS26に移行する。
 ステップS26では、上記制御部16は、上記照射部40が消灯するように上記照射部40を制御する。上記照射部40が消灯することで、紫外線照射の制御が終了する。
 上記空気調和機1によれば、冷房運転中における紫外線の照射時間が短くなるので、冷房運転中での紫外線の非照射時間の分だけ、上記照射部40を長寿命化できる。
 以上、本開示の実施形態について説明したが、本開示の具体的な構成は、上記実施形態に限定されるものでないと考えられるべきである。本開示の範囲は、上記実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 ドレンパン33にドレン水が滞留しない状態で紫外線照射を行っても、紫外線照射が無駄になる。そこで、前記空気調和機1では、ドレンパン33に滞留するドレン水に対して紫外線を照射するように照射部40が制御されている。これにより、冷房運転の間ずっと紫外線を照射する場合よりも、照射部40の照射時間が短くなり、ドレン水における菌類やカビなどを効果的に殺菌できる。
 上述した一実施形態および他の実施形態に係る空気調和機1は、
 ドレン水の水位を検出する検出部16を備え、
 制御部16は、冷房運転中において、検出部16によって検出されたドレン水の水位が所定レベル以下である状態が積算して所定時間以上継続すると、紫外線がドレンパン33に照射されるように、照射部40を制御することができる。
 冷房運転中でも、ドレン水の水位が所定レベル以下である状態が積算して所定時間以上継続すると、ドレン水がドレンパン33上に長時間滞留するため、菌類やカビなどがドレン水に繁殖しやすくなる。
 上記構成の空気調和機によれば、紫外線がドレン水に照射されるので、ドレン水における菌類やカビなどの繁殖が抑制される。
 上述した一実施形態および他の実施形態に係る空気調和機1は、
 室内熱交換器4の温度を検出する室内熱交換器温度センサT3を備え、
 制御部16は、冷房運転中において、室内熱交換器温度センサT3によって検出される室内熱交換器4の温度が露点温度)以上である状態が積算して所定時間t2以上継続すると、紫外線がドレンパン33に照射されるように、照射部40を制御することができる。
 露点温度は、例えば、室内温度センサT4によって検出される室内温度と、湿度センサT5によって検出される室内の水分量(例えば、相対湿度)と、制御部16の記憶部に保存された露点温度算出テーブルとに基づいて算出される。
 冷房運転中でも、室内熱交換器4の温度が露点温度以上である状態が積算して所定時間t2以上継続すると、ドレン水がドレンパン33上に長時間滞留するため、菌類やカビなどがドレン水に繁殖しやすくなる。
 上記構成の空気調和機1によれば、紫外線がドレン水に照射されるので、ドレン水における菌類やカビなどの繁殖が抑制される。
 上述した一実施形態および他の実施形態に係る空気調和機1は、
 室内温度を検出する室内温度センサT4を備え、
 制御部16は、冷房運転中において、室内温度センサT4によって検出される室内温度と、設定温度との間の温度差が、所定温度以下であると、紫外線を照射するように、照射部40を制御することができる。
 冷房運転中に、室内温度が、設定温度に近づいて安定的に維持されることによって、室内熱交換器4を冷却する必要性がなくなる。したがって、冷房運転中でも、室内温度と設定温度との間の温度差が所定温度以下であると、室内熱交換器4を冷却する動作を停止する(すなわち、サーモオフになる)ので、ドレン水の生成が抑制される。そのため、上記構成の空気調和機1によれば、冷房運転中における紫外線の照射時間が短くなるので、照射部40を長寿命化できる。なお、設定温度は、ユーザによって設定されるかまたは制御部16によって設定される。また、室内温度と設定温度との間の温度差が所定温度以下になったときの紫外線の照射は、連続で行われるかまたは間欠で行われる。温度差が所定温度以下になったときにおける紫外線の連続照射は、冷房運転中における紫外線の間欠照射として働く。
  1…空気調和機
  2…室内機
  3…室外機
  4…室内熱交換器(熱交換器)
  6…圧縮機
  7…四路切換弁
  8…室外熱交換器(熱交換器)
 10…膨張弁
 11…アキュムレータ
 14…室内機側の制御装置(制御部)
 15…室外機側の制御装置(制御部)
 16…制御部
 17…リモートコントローラ(リモコン)
 30…ケーシング
 31…ケーシング本体
 31a…前面部
 31b…上面部
 31c…後面部
 31d…下面部
 32…前面パネル
 33…ドレンパン
 34…吹出口
 35…第1隔壁
 36…第2隔壁
 37…吹出流路
 38…排水口
 39…ドレンホース
 40…照射部
 41…第1水平フラップ
 51…第2水平フラップ
 L1,L2…連絡配管
 T1…室外熱交換器温度センサ
 T2…外気温度センサ
 T3…室内熱交換器温度センサ(温度センサ)
 T4…室内温度センサ
 T5…湿度センサ
  W…壁面

Claims (12)

  1.  室内機(2)に設けられた熱交換器(4)と、
     前記熱交換器(4)で生成されたドレン水を受けるドレンパン(33)と、
     前記ドレンパン(33)に向けて紫外線を照射する照射部(40)と、
     前記照射部(40)の紫外線照度を制御する制御部(16)とを備え、
     前記制御部(16)は、冷房運転後の前記紫外線照度が、前記冷房運転中の前記紫外線照度よりも大きくなるように、前記照射部(40)を制御することを特徴とする空気調和機(1)。
  2.  請求項1に記載の空気調和機において、
     前記ドレン水の水位を検出する検出部(16)を備え、
     前記制御部(16)は、前記冷房運転中において、前記検出部(16)によって検出された前記ドレン水の水位が所定レベル以下である状態が積算して所定時間以上継続すると、前記紫外線が前記ドレンパン(33)に照射されるように、前記照射部(40)を制御することを特徴とする空気調和機(1)。
  3.  請求項1に記載の空気調和機において、
     前記熱交換器(4)の温度を検出する温度センサ(T3)を備え、
     前記制御部(16)は、前記冷房運転中において、前記温度センサ(T3)によって検出される前記熱交換器の温度が露点温度以上である状態が積算して所定時間以上継続すると、前記紫外線が前記ドレンパン(33)に照射されるように、前記照射部(40)を制御することを特徴とする空気調和機(1)。
  4.  請求項1に記載の空気調和機において、
     室内温度を検出する室内温度センサ(T4)を備え、
     前記制御部(16)は、前記冷房運転中において、前記室内温度センサ(T4)によって検出される室内温度と、設定温度との間の温度差が、所定温度以下であると、前記紫外線を照射するように、前記照射部(40)を制御することを特徴とする空気調和機(1)。
  5.  請求項1に記載の空気調和機において、
     前記制御部(16)は、前記照射部(40)の照射時間を制御し、
     前記制御部(16)は、前記冷房運転中の前記照射時間が、前記冷房運転後の前記照射時間よりも長くなるように、前記照射部(40)を制御することを特徴とする空気調和機(1)。
  6.  請求項1から請求項5のいずれか1項に記載の空気調和機において、
     前記制御部(16)は、前記冷房運転中における前記紫外線照度に照射時間を乗じた照射量が、前記冷房運転後における前記紫外線照度に照射時間を乗じた照射量と等しくなるように、前記照射部(40)を制御することを特徴とする空気調和機(1)。
  7.  請求項1から請求項6のいずれか1項に記載の空気調和機において、
     前記ドレンパン(33)は、前記ドレン水を自重で排出する構造であることを特徴とする空気調和機(1)。
  8.  室内機(2)に設けられた熱交換器(4)と、
     前記熱交換器(4)で生成されたドレン水を受けるドレンパン(33)と、
     前記ドレンパン(33)に向けて紫外線を照射する照射部(40)と、
     前記照射部(40)を制御する制御部(16)とを備え、
     前記制御部(16)は、冷房運転中において、前記紫外線を間欠で照射するかまたは非照射にするように、前記照射部(40)を制御することを特徴とする空気調和機(1)。
  9.  請求項8に記載の空気調和機において、
     前記ドレン水の水位を検出する検出部(16)を備え、
     前記制御部(16)は、前記冷房運転中において、前記検出部(16)によって検出された前記ドレン水の水位が所定レベル以下である状態が積算して所定時間以上継続すると、前記紫外線が前記ドレンパンに照射されるように、前記照射部(40)を制御することを特徴とする空気調和機(1)。
  10.  請求項8に記載の空気調和機において、
     前記熱交換器(4)の温度を検出する温度センサ(T3)を備え、
     前記制御部(16)は、前記冷房運転中において、前記温度センサ(T3)によって検出される前記熱交換器の温度が露点温度以上である状態が積算して所定時間以上継続すると、前記紫外線が前記ドレンパンに照射されるように、前記照射部(40)を制御することを特徴とする空気調和機(1)。
  11.  請求項8に記載の空気調和機において、
     室内温度を検出する室内温度センサ(T4)を備え、
     前記制御部(16)は、前記冷房運転中において、前記室内温度センサ(T4)によって検出される室内温度と、設定温度との間の温度差が、所定温度以下であると、前記紫外線を照射するように、前記照射部(40)を制御することを特徴とする空気調和機(1)。
  12.  請求項8から請求項11のいずれか1項に記載の空気調和機において、
     前記ドレンパン(33)は、前記ドレン水を自重で排出する構造であることを特徴とする空気調和機(1)。
PCT/JP2020/034321 2019-09-30 2020-09-10 空気調和機 WO2021065414A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080066018.5A CN114521223B (zh) 2019-09-30 2020-09-10 空调机
EP20872653.9A EP4023956B1 (en) 2019-09-30 2020-09-10 Air conditioner
US17/706,014 US20220214069A1 (en) 2019-09-30 2022-03-28 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019180008A JP7421064B2 (ja) 2019-09-30 2019-09-30 空気調和機
JP2019-180008 2019-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/706,014 Continuation US20220214069A1 (en) 2019-09-30 2022-03-28 Air conditioner

Publications (1)

Publication Number Publication Date
WO2021065414A1 true WO2021065414A1 (ja) 2021-04-08

Family

ID=75270444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034321 WO2021065414A1 (ja) 2019-09-30 2020-09-10 空気調和機

Country Status (5)

Country Link
US (1) US20220214069A1 (ja)
EP (1) EP4023956B1 (ja)
JP (1) JP7421064B2 (ja)
CN (1) CN114521223B (ja)
WO (1) WO2021065414A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210259451A1 (en) * 2020-02-20 2021-08-26 Soulnano Limited Food and beverage processor comprising ultraviolet disinfection apparatus
US11723993B2 (en) * 2020-02-20 2023-08-15 Soulnano Limited Ultraviolet disinfection apparatus
CN114110947B (zh) * 2021-11-17 2023-04-07 海信空调有限公司 控制空调杀菌的方法、空调和计算机可读存储介质
JP7367895B1 (ja) 2022-11-30 2023-10-24 三菱電機株式会社 殺菌及び不活化装置、殺菌及び不活化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153419U (ja) * 1988-04-16 1989-10-23
JP2000111076A (ja) * 1998-10-02 2000-04-18 Daikin Ind Ltd 空気調和装置
JP2001324195A (ja) * 2000-05-18 2001-11-22 Daikin Ind Ltd 空気調和装置
JP2017133700A (ja) 2016-01-25 2017-08-03 トーキン工業株式会社 空気調和機の除菌装置
JP2018189254A (ja) * 2017-04-28 2018-11-29 日立ジョンソンコントロールズ空調株式会社 空気調和機
JP2019120431A (ja) * 2017-12-28 2019-07-22 三菱電機株式会社 空気調和装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121109A (ja) * 1998-10-19 2000-04-28 Konica Corp 空調器
WO2002089278A1 (fr) * 2001-04-20 2002-11-07 Sharp Kabushiki Kaisha Generateur d'ions et conditionneur d'air
JP2003269745A (ja) * 2002-03-19 2003-09-25 Sanyo Electric Co Ltd 空気調和機
US20040151617A1 (en) * 2003-01-31 2004-08-05 Zanakis Michael F. Methods and apparatus for air sterilization
JP2004261308A (ja) * 2003-02-28 2004-09-24 Hiromine Suzuki 源泉地より運ばれ濃縮された源泉を還元し、温泉浴槽に汲み入れ当該源泉の効能と新鮮さを保つシステム及び方法
JP2005095400A (ja) * 2003-09-25 2005-04-14 Matsushita Electric Works Ltd 紫外線ランプ点灯装置
CA2443044C (en) * 2003-09-26 2011-10-04 Tso3 Inc. Method of humidification and apparatus
CN1308041C (zh) * 2003-10-23 2007-04-04 张重光 两级空气净化消毒机
JP2005265399A (ja) * 2004-02-20 2005-09-29 Sanyo Electric Co Ltd 空気調和機
CN1752643A (zh) * 2004-09-23 2006-03-29 陈勇 一种单体/中央空调空气保湿净化的方法及装置
US20060130663A1 (en) * 2004-12-20 2006-06-22 General Electric Company System and method of air quality control for air-conditioning devices
JP2009297648A (ja) * 2008-06-12 2009-12-24 Yamaha Motor Co Ltd 水消毒装置
JP4722165B2 (ja) * 2008-06-25 2011-07-13 三菱電機株式会社 空気調和機
CN201652648U (zh) * 2010-02-08 2010-11-24 艾美特电器(深圳)有限公司 一种具有紫外线杀菌功能的空调扇
WO2012012834A1 (en) * 2010-07-29 2012-02-02 Chris Prause A method and a system for managing a reservoir of water requiring recirculation at time intervals
CN201892269U (zh) * 2010-09-01 2011-07-06 刘启航 一种空气环境优化装置
CN102125701B (zh) * 2010-11-30 2011-12-21 深圳市怀德科技发展有限公司 空气消毒机的控制方法
CN202719739U (zh) * 2012-07-30 2013-02-06 上海安悦节能技术有限公司 冷辐射板油雾过滤型空气处理机
WO2014123346A1 (en) * 2013-02-06 2014-08-14 Halla Visteon Climate Control Corp. Smell generation time predicting device and smell generation time predicting method using the same
KR102200385B1 (ko) * 2013-12-26 2021-01-08 엘지전자 주식회사 가습기
JP2016200290A (ja) 2015-04-07 2016-12-01 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機
CN204739697U (zh) * 2015-06-24 2015-11-04 戎天伟 一种智能空调加湿一体机
JP6178392B2 (ja) * 2015-12-14 2017-08-09 株式会社トクヤマ 自動車用空気調和装置
CN106051650A (zh) * 2016-06-02 2016-10-26 深圳市云硕灯业有限公司 一种用于uv固化设备的冷水机
KR102414268B1 (ko) * 2016-07-22 2022-06-29 엘지전자 주식회사 공기조화기
CN206683199U (zh) * 2017-04-21 2017-11-28 李雨茗 一种空调冷凝水回收装置
EP3617609A4 (en) * 2017-04-28 2021-03-24 Hitachi-Johnson Controls Air Conditioning, Inc. AIR CONDITIONER
CN207635551U (zh) * 2017-12-21 2018-07-20 珠海格力电器股份有限公司 空调控制系统及空调
CN108645002B (zh) * 2018-05-21 2020-09-01 广东美的暖通设备有限公司 杀菌控制方法及系统、空调器
CN109771678B (zh) * 2019-02-01 2021-04-09 苏州智货电子科技有限公司 杀菌装置和杀菌方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153419U (ja) * 1988-04-16 1989-10-23
JP2000111076A (ja) * 1998-10-02 2000-04-18 Daikin Ind Ltd 空気調和装置
JP2001324195A (ja) * 2000-05-18 2001-11-22 Daikin Ind Ltd 空気調和装置
JP2017133700A (ja) 2016-01-25 2017-08-03 トーキン工業株式会社 空気調和機の除菌装置
JP2018189254A (ja) * 2017-04-28 2018-11-29 日立ジョンソンコントロールズ空調株式会社 空気調和機
JP2019120431A (ja) * 2017-12-28 2019-07-22 三菱電機株式会社 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4023956A4

Also Published As

Publication number Publication date
EP4023956A1 (en) 2022-07-06
JP7421064B2 (ja) 2024-01-24
EP4023956A4 (en) 2022-10-19
EP4023956B1 (en) 2024-04-03
CN114521223B (zh) 2023-12-12
CN114521223A (zh) 2022-05-20
US20220214069A1 (en) 2022-07-07
JP2021055925A (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
WO2021065414A1 (ja) 空気調和機
WO2021065403A1 (ja) 空気調和機
JP4396688B2 (ja) 空気調和装置およびその運転方法
JP4297625B2 (ja) 空気調和機
JP6079802B2 (ja) 栽培室用空調システム
KR101858806B1 (ko) 공기조화기
KR20080101118A (ko) 공기 조화기 및 그 살균 운전 방법
JP4476514B2 (ja) 空気調和機
JP2010078217A (ja) 空調システム
CN211854229U (zh) 一种立柜式等离子体净化消毒空调器
US20220214061A1 (en) Air conditioner
KR20100083913A (ko) 공기조화기 및 이의 제어방법
KR102043661B1 (ko) 천장형 공기조화기
JP2004116860A (ja) 空気調和機
KR100505748B1 (ko) 공기조화기의 온수 및 스팀 코일 동파 방지 장치
JP7041366B2 (ja) 空気調和装置
WO2021095423A1 (ja) 空気調和装置
JPH06123469A (ja) 空調換気機能付き除湿ユニットの運転制御装置
JP2001280667A (ja) 空気調和機
JP2007255846A (ja) 空気調和装置
KR20070019192A (ko) 공기조화기
JP2021156512A (ja) 空気調和機
JP2021103052A (ja) 空気調和装置
JP2022185847A (ja) 空気調和装置
JP2022011220A (ja) 空気浄化機能付き熱交換形換気装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020872653

Country of ref document: EP

Effective date: 20220328