WO2021065399A1 - 光学デバイス - Google Patents

光学デバイス Download PDF

Info

Publication number
WO2021065399A1
WO2021065399A1 PCT/JP2020/034183 JP2020034183W WO2021065399A1 WO 2021065399 A1 WO2021065399 A1 WO 2021065399A1 JP 2020034183 W JP2020034183 W JP 2020034183W WO 2021065399 A1 WO2021065399 A1 WO 2021065399A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
unit
movable portion
control unit
movable
Prior art date
Application number
PCT/JP2020/034183
Other languages
English (en)
French (fr)
Inventor
進也 岩科
中村 重幸
直人 櫻井
勇樹 森永
大幾 鈴木
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to US17/763,285 priority Critical patent/US20220342206A1/en
Priority to DE112020004669.9T priority patent/DE112020004669T5/de
Priority to CN202080068254.0A priority patent/CN114450618B/zh
Publication of WO2021065399A1 publication Critical patent/WO2021065399A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/181Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • G02B7/1815Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation with cooling or heating systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/103Scanning systems having movable or deformable optical fibres, light guides or waveguides as scanning elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0866Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by thermal means

Definitions

  • the present invention relates to an optical device.
  • Patent Document 1 An optical device having a movable portion provided with a mirror surface is known (for example, Patent Document 1).
  • Patent Document 1 describes that the swing of the movable portion is controlled by a drive signal so that the movable portion swings at a resonance frequency.
  • the resonance frequency of moving parts may differ from the intended one due to individual differences due to manufacturing variations and environmental temperature. If the frequency of the drive signal that drives the movable part does not match the resonance frequency, there is a concern that the desired swing angle cannot be obtained in the movable part and that the operation of the movable part becomes unstable. .. If the frequency of the drive signal is controlled to match the resonance frequency, good amplitude can be obtained in the mirror. However, in this configuration, it is difficult to move the mirror at the desired frequency.
  • One aspect of the present invention is to provide an optical device capable of realizing stable swinging of a movable portion at a desired frequency and a desired swing angle.
  • the optical device includes a mirror drive unit, a drive control unit, a heating unit, and a heating control unit.
  • the mirror drive portion includes a movable portion, an elastic connecting portion, a support portion, and a power generating portion.
  • the movable portion is provided with a mirror surface.
  • the elastic connecting portion is connected to the movable portion.
  • the support portion supports the movable portion via the elastic connecting portion.
  • the power generating unit generates power in the moving part.
  • the drive control unit outputs a drive signal for operating the power generation unit.
  • the heating part heats the elastic connecting part.
  • the heating control unit controls the heating unit.
  • the movable portion has a resonance frequency higher than the frequency of the drive signal output by the drive control unit in the state before the elastic connecting portion is heated.
  • the movable portion swings due to elastic deformation of the elastic connecting portion according to the power of the power generating portion.
  • the heating control unit acquires a signal indicating the swing state of the movable portion, and feedback-controls the heating of the elastic connecting portion by the heating unit based on the phase of the acquired signal.
  • the optical device includes a heating portion that heats the elastic connecting portion.
  • the elastic connecting portion is heated by the heating portion, the elastic modulus of the elastic connecting portion changes.
  • the resonance frequency of the moving part also changes. Therefore, the optical device can easily change the resonance frequency of the moving portion.
  • the optical device can stably swing the movable portion at a desired frequency and a desired runout angle. In such a configuration, precise and rapid temperature adjustment is required in the elastic connecting portion.
  • feedback control is performed based on the temperature detected by the temperature sensor, there is a time lag in detecting the temperature of the elastic connection portion that contributes most to the change in the resonance frequency.
  • the heat transferred from the elastic connecting portion to the support portion is detected, so that a time lag corresponding to the temperature transfer speed occurs in the feedback control.
  • the heating control unit feedback-controls the heating of the elastic connecting portion by the heating unit based on the phase of the signal indicating the swing state of the movable portion. Therefore, the optical device realizes at least more precise and quicker temperature adjustment than the case of feedback control based on the temperature detected by the temperature sensor. Therefore, the accuracy of changing the resonance frequency in the moving portion is also improved.
  • the movable portion has a resonance frequency higher than the frequency of the drive signal output by the drive control unit. In this case, the optical device can match the resonance frequency of the movable portion with the frequency of the drive signal only by the heating control by the heating control unit.
  • the optical device can be made more compact than at least when a cooling element is used.
  • the movable portion may include a first movable portion and a second movable portion.
  • the first movable portion may be provided with a mirror surface.
  • the second movable portion may surround the first movable portion.
  • the elastic connecting portion may include a first connecting portion and a second connecting portion.
  • the first connecting portion may elastically connect the first movable portion and the second movable portion.
  • the second connecting portion may elastically connect the second movable portion and the supporting portion.
  • the heating unit may heat the first connecting unit.
  • the movable portion may have a resonance frequency higher than the frequency of the drive signal output by the drive control unit in the state before the elastic connecting portion is heated.
  • the optical device can match the resonance frequency of the movable portion with the frequency of the drive signal only by the heating control by the heating control unit.
  • the above optical device is at least more compact than the case where a cooling element is used.
  • the heating control unit heats the elastic connecting portion at the first power and then heats the elastic connecting portion at a second power smaller than the first power by the heating unit. May be good.
  • the heating control unit can roughly adjust the resonance frequency of the movable portion and then finely adjust the resonance frequency of the movable portion.
  • the optical device can adjust the resonance frequency of the moving part more precisely and quickly.
  • the heating unit may include a first heating unit and a second heating unit.
  • the first heating portion may give a first amount of heat to the elastic connecting portion.
  • the second heating portion may give a second heat quantity smaller than the first heat quantity to the elastic connecting portion.
  • the heating control unit can roughly adjust the resonance frequency of the movable portion by the first heating unit, and finely adjust the resonance frequency of the movable portion by the second heating unit. Therefore, the optical device can adjust the resonance frequency of the moving part more precisely and quickly.
  • the first heating portion may be provided on the support portion.
  • the second heating portion may be provided at least one of the first connecting portion and the movable portion.
  • the optical device has a compact configuration, and the resonance frequency of the moving part can be adjusted more precisely and quickly.
  • the heating portion may include a laser irradiation portion that heats the elastic connecting portion.
  • the heating portion can heat the elastic connecting portion more quickly.
  • the optical device can change the resonance frequency of the moving part more precisely and quickly.
  • the heating portion may include a heating wire that heats the elastic connecting portion.
  • the heating wire may be provided at least one of the elastic connecting portion and the movable portion so as to be point-symmetrical with the center of gravity of the mirror surface as a point of symmetry.
  • the heating portion can precisely heat the elastic connecting portion with a compact structure. Since the Lorentz forces generated in the heating wire cancel each other out, the disturbance of the swing of the moving part is suppressed.
  • the heating wire may be provided on the movable portion so as to surround the mirror surface.
  • the elastic connection is heated more quickly and precisely. Since the Lorentz forces generated in the heating wire cancel each other out, the disturbance of the swing of the moving part is suppressed.
  • the heating control unit is an elastic connection portion by the heating unit so that the phase difference between the phase of the drive signal output from the drive control unit and the phase of the signal indicating the swing state of the movable unit is small. You may control the heating of. In this case, when comparing the phase of the drive signal and the phase of the signal indicating the swing state of the movable part, it is more precise than when comparing the frequency of the drive signal and the frequency of the signal indicating the swing state of the movable part. , The heating of the elastic connection can be controlled. Therefore, the optical device can more accurately obtain the desired runout angle at the desired frequency.
  • a plurality of mirror units may be provided.
  • Each mirror unit may include a mirror driving unit and a heating unit.
  • the heating control unit may control the heating of the elastic connection portion in each of the plurality of mirror units.
  • the optical device can change the resonance frequency of each moving part. Therefore, the optical device can swing each movable portion at a desired frequency and a desired runout angle.
  • the movable portion in each of all the mirror units included in the optical device has the frequency of the drive signal output by the drive control unit in the state before heating the elastic connecting portion connected to each movable portion. It may have a higher resonance frequency than.
  • the heating control unit may heat the elastic connecting parts of all the mirror units by the heating unit. Since the cooling element is relatively large, the optical device can be made more compact than when the cooling element is used.
  • One aspect of the present invention provides an optical device capable of achieving stable swinging of a movable portion at a desired frequency and a desired swing angle.
  • FIG. 1 is a block diagram of an optical device according to the present embodiment.
  • FIG. 2 is a schematic plan view of the mirror unit.
  • FIG. 3 is a schematic plan view of the mirror unit according to the modified example of the present embodiment.
  • FIG. 4 is a schematic plan view of the mirror unit according to the modified example of the present embodiment.
  • FIG. 5 is a flowchart showing a control method in the optical device.
  • FIG. 6 is a flowchart showing the phase stabilization process of the movable portion.
  • FIG. 7 is a diagram showing the relationship between the resonance frequency of the movable portion and the frequency of the drive signal in each mirror unit.
  • FIG. 1 is a block diagram of an optical device.
  • the optical device 1 includes a mirror surface, and swings the mirror surface.
  • the optical device 1 is used, for example, in an optical switch for optical communication, an optical scanner, and the like.
  • the optical device 1 includes at least one mirror unit 2, a drive control unit 3, and a heating control unit 4.
  • the optical device 1 includes a plurality of mirror units 2.
  • Each mirror unit 2 has a mirror driving unit 11 and a heating unit 15.
  • the mirror drive unit 11 is configured as, for example, a MEMS (Micro Electro Mechanical Systems) device.
  • the mirror drive unit 11 is manufactured using MEMS techniques such as patterning and etching.
  • the heating unit 15 heats the mirror drive unit 11.
  • the drive control unit 3 outputs a drive signal, and controls the drive of the mirror drive unit 11 by the drive signal.
  • the heating control unit 4 controls the heating unit 15.
  • FIG. 2 is a schematic plan view of the mirror unit.
  • the mirror driving unit 11 includes a magnetic field generating unit 21, a supporting unit 22, a movable unit 23, and an elastic connecting unit 24.
  • the support portion 22, the movable portion 23, and the elastic connecting portion 24 are integrally formed by, for example, an SOI (Silicon on Insulator) substrate.
  • the support portion 22, the movable portion 23, and the elastic connecting portion 24 are made of, for example, silicon. At least one of the support portion 22, the movable portion 23, and the elastic connecting portion 24 may be made of metal.
  • the magnetic field generating unit 21 generates, for example, a magnetic field in a direction D inclined by 45 degrees with respect to each of the X-axis and the Y-axis orthogonal to the X-axis in a plan view.
  • the direction D of the magnetic field generated by the magnetic field generating unit 21 may be inclined at an angle other than 45 degrees with respect to the X-axis and the Y-axis in a plan view.
  • the magnetic field generator 21 has a plurality of permanent magnets arranged in a Halbach array.
  • the support portion 22 has, for example, a quadrangular outer shape in a plan view and is formed in a frame shape.
  • the support portion 22 is separated from the permanent magnet of the magnetic field generating portion 21 and is arranged side by side with the permanent magnet in a direction orthogonal to the X-axis and the Y-axis.
  • the movable portion 23 is arranged in a frame formed by the support portion 22 when viewed from a direction orthogonal to the X-axis and the Y-axis in a state of being separated from the magnetic field generating portion 21.
  • the movable portion 23 includes a first movable portion 31 and a second movable portion 32.
  • the first movable portion 31 is provided with a mirror surface 31a.
  • the second movable portion 32 is swung around the Y axis, and the first movable portion 31 is swung around the X axis and the Y axis.
  • the second movable portion 32 is formed in a frame shape and is arranged so as to surround the first movable portion 31.
  • the second movable portion 32 is supported by the support portion 22.
  • the first movable portion 31 has a main body portion 36, an annular portion 37, and a pair of holding portions 38.
  • the main body 36 has a circular shape in a plan view.
  • the main body 36 may be formed in any shape such as an elliptical shape, a quadrangular shape, and a diamond shape.
  • the main body 36 is provided with a mirror surface 31a on the side opposite to the permanent magnet of the magnetic field generating portion 21 in the direction orthogonal to the X-axis and the Y-axis.
  • the mirror surface 31a is formed of, for example, a metal film.
  • the metal film is, for example, aluminum, an aluminum alloy, gold, or silver.
  • the center of gravity P of the main body 36 coincides with the intersection of the X-axis and the Y-axis.
  • the center of gravity P of the mirror surface 31a coincides with the intersection of the X-axis and the Y-axis.
  • the annular portion 37 is formed in an annular shape so as to surround the main body portion 36 in a plan view.
  • the annular portion 37 has an octagonal outer shape in a plan view.
  • the annular portion 37 may have an arbitrary outer shape such as a circular shape, an elliptical shape, a quadrangular shape, or a rhombic shape.
  • the pair of holding portions 38 are arranged on both sides of the main body portion 36 along the Y axis, and the main body portion 36 and the annular portion 37 are connected to each other. In this way, the mirror surface 31a is provided on the main body 36 connected to the annular portion 37 via the plurality of holding portions 38. Therefore, even if the first movable portion 31 swings around the X-axis at the resonance frequency level, deformation such as bending of the mirror surface 31a is suppressed.
  • the elastic connecting portion 24 includes a pair of first connecting portions 41 and 42 and a pair of second connecting portions 43 and 44.
  • the first connecting portions 41, 42 and the second connecting portions 43, 44 are, for example, torsion bars.
  • the pair of first connecting portions 41 and 42 elastically connects the first movable portion 31 and the second movable portion 32.
  • the first connecting portions 41 and 42 are elastic connecting portions connected to the first movable portion 31 provided with the mirror surface 31a.
  • the pair of second connecting portions 43, 44 elastically connects the supporting portion 22 and the second movable portion 32.
  • the support portion 22 supports the first movable portion 31 via the first connecting portions 41, 42, the second movable portion 32, and the second connecting portions 43, 44.
  • the first connecting portions 41 and 42 are arranged on both sides of the first movable portion 31 so as to pass through the X axis.
  • the first movable portion 31 is sandwiched between a pair of first connecting portions 41 and 42.
  • the pair of first connecting portions 41 and 42 connect the annular portion 37 of the first movable portion 31 and the second movable portion 32 to each other. Therefore, the first movable portion 31 can swing around the X axis due to the elasticity of the pair of first connecting portions 41 and 42.
  • Each of the first connecting portions 41 and 42 extends linearly along the X axis.
  • the width of the end portion of each of the first connecting portions 41 and 42 on the side of the first movable portion 31 increases as it approaches the first movable portion 31.
  • the width of the end portion of each of the first connecting portions 41 and 42 on the side of the second movable portion 32 increases as it approaches the second movable portion 32. Therefore, the influence of the torsional stress acting on the first connecting portions 41 and 42 is alleviated, and the deterioration of the first connecting portions 41 and 42 is suppressed.
  • the second connecting portions 43 and 44 are arranged on both sides of the second movable portion 32 so as to pass through the Y axis.
  • the second movable portion 32 is sandwiched between a pair of second connecting portions 43 and 44.
  • the pair of second connecting portions 43 and 44 connect the second movable portion 32 and the supporting portion 22 to each other.
  • the second connecting portions 43 and 44 meander and extend in a plan view.
  • Each of the second connecting portions 43 and 44 has a plurality of linear portions 45 and a plurality of folded portions 46.
  • the linear portions 45 extend in a direction parallel to the Y axis and are arranged side by side in a direction parallel to the X axis.
  • the folded-back portion 46 alternately connects both ends of the adjacent linear portions 45.
  • the mirror drive unit 11 further includes a power generation unit 50.
  • the power generation unit 50 generates power to the first movable unit 31 and the second movable unit 32.
  • the first movable portion 31 swings due to elastic deformation of the first connecting portions 41 and 42 in response to the power generated by the power generating portion 50.
  • the second movable portion 32 swings due to elastic deformation of the second connecting portions 43 and 44 in response to the power generated by the power generating portion 50.
  • the power generating unit 50 has a pair of driving coils 51, 52, a plurality of wirings 61, 62, 63, 64, and a plurality of electrode pads 66, 67, 68, 69.
  • the drive coils 51 and 52 are provided in the second movable portion 32 so as to surround the first movable portion 31.
  • the drive coils 51 and 52 have a spiral shape in a plan view.
  • the drive coils 51 and 52 are wound around the first movable portion 31 a plurality of times.
  • the pair of drive coils 51 and 52 are arranged so as to be arranged alternately in the width direction of the second movable portion 32 in a plan view. In FIG. 2, the region R in which the driving coils 51 and 52 are arranged is indicated by hatching.
  • Each drive coil 51, 52 is formed by the damascene method.
  • the drive coils 51 and 52 are embedded in the second movable portion 32.
  • Each of the driving coils 51 and 52 is covered with an insulating layer 55.
  • the drive coils 51 and 52 are embedded in the second movable portion 32.
  • the insulating layer 55 is made of, for example, silicon oxide, silicon nitride, silicon oxynitride, or the like. This insulating layer is integrally formed so as to cover the surfaces of the support portion 22, the first movable portion 31, the second movable portion 32, the first connecting portions 41, 42, and the second connecting portions 43, 44. ..
  • Each of the drive coils 51 and 52 is made of a metal material having a density higher than the density of the material constituting the second movable portion 32.
  • the second movable portion 32 is made of silicon, and the driving coils 51 and 52 are made of copper.
  • the drive coils 51 and 52 may be made of gold.
  • Each electrode pad 66, 67, 68, 69 is provided on the support portion 22 and is exposed to the outside from the insulating layer 55.
  • Each of the electrode pads 66, 67, 68, 69 is connected to the drive control unit 3.
  • the wiring 61 is electrically connected to one end of the driving coil 51 and the electrode pad 66.
  • the wiring 61 extends from one end of the drive coil 51 to the electrode pad 66 via the second connecting portion 43.
  • the wiring 62 is electrically connected to the other end of the driving coil 51 and the electrode pad 67.
  • the wiring 62 extends from the other end of the drive coil 51 to the electrode pad 67 via the second connecting portion 44.
  • the wirings 61 and 62 are formed by the damascene method, as in the case of the driving coils 51 and 52, for example.
  • Each of the wirings 61 and 62 is covered with an insulating layer 55.
  • the wiring 63 is electrically connected to one end of the drive coil 52 and the electrode pad 68.
  • the wiring 63 extends from one end of the drive coil 52 to the electrode pad 68 via the second connecting portion 43.
  • the wiring 64 is electrically connected to the other end of the driving coil 52 and the electrode pad 69.
  • the wiring 64 extends from the other end of the drive coil 52 to the electrode pad 69 via the second connecting portion 44.
  • the wirings 63 and 64 are formed by the damascene method, as in the case of the driving coils 51 and 52, for example. Each of the wirings 63 and 64 is covered with an insulating layer 55.
  • the drive control unit 3 outputs a drive signal for operating the power generation unit 50.
  • the drive control unit 3 inputs a drive signal to the power generation unit 50 of the mirror drive unit 11 configured as described above.
  • a drive signal for linear operation is input from the drive control unit 3 to the drive coil 51 via the electrode pads 66, 67 and the wirings 61, 62, the drive is driven by interaction with the magnetic field generated by the magnetic field generation unit 21.
  • Lorentz force acts on the coil 51.
  • the second movable portion 32 operates linearly around the Y axis together with the first movable portion 31 having the mirror surface 31a.
  • This vibration is transmitted to the first movable portion 31 via the first connecting portions 41 and 42, and the first movable portion 31 swings around the X axis. If the resonance frequency of the first movable portion 31 around the X-axis and the frequency of the drive signal match, the first movable portion 31 stably swings around the X-axis at this frequency.
  • the first movable portion 31 in each of all the mirror units 2 included in the optical device 1 is in a state before the first connecting portions 41 and 42 connected to the first movable portion 31 are heated. , Has a resonance frequency higher than the frequency of the drive signal output by the drive control unit 3.
  • the heating control unit 4 acquires a signal indicating the swing state of the first movable unit 31, and feedback-controls the heating of the first connecting units 41 and 42 by the heating unit 15 based on the phase of this signal.
  • the signal indicating the swing state is a signal indicating the relative position of the first movable portion 31 with respect to the support portion 22.
  • the signal indicating the swing state is a signal indicating the phase of the swing angle of the first movable portion 31.
  • the heating control unit 4 controls the heating of the first connecting units 41 and 42 in each of the plurality of mirror units 2. In the present embodiment, the heating control unit 4 heats the first connecting units 41 and 42 of all the mirror units 2 by the heating unit 15.
  • the heating control unit 4 rapidly heats the first connecting portions 41 and 42 by the heating unit 15, and then gently heats the first connecting portions 41 and 42. As a result, the heating control unit 4 finely adjusts the temperature of the first connecting units 41 and 42. In other words, the heating control unit 4 heats the first connecting units 41 and 42 at the first power by the heating unit, and then the first connecting unit has a second power that is smaller than the first power. 41, 42 are heated.
  • each heating unit 15 includes a first heating unit 71 and a second heating unit 72.
  • the first heating unit 71 and the second heating unit 72 give different amounts of heat to the first movable unit 31.
  • the first heating unit 71 and the second heating unit 72 heat the first movable unit 31 by, for example, irradiation of a laser or heat generation of a heating wire.
  • the first heating unit 71 gives a first amount of heat to the first connecting units 41 and 42 in response to a signal from the heating control unit 4.
  • the second heating unit 72 gives the first connecting units 41 and 42 a second amount of heat smaller than the first amount of heat in response to a signal from the heating control unit 4.
  • the heating control unit 4 heats the first connecting portions 41 and 42 largely by the first heating unit 71, and then heats the first connecting portions 41 and 42 small by the second heating unit 72. As a result, the heating control unit 4 adjusts the temperature of the first connecting units 41 and 42.
  • the mirror unit 2 has a heating wire unit 73 and a laser irradiation unit 74.
  • These heating wire portions 73 and the laser irradiation portion 74 function as heating portions 15 for heating the first connecting portions 41 and 42.
  • the heating unit 15 includes a heating wire unit 73 and a laser irradiation unit 74.
  • the heating wire unit 73 generates heat according to the applied voltage.
  • the voltage applied to the heating wire unit 73 is controlled by the heating control unit 4.
  • the heating wire portion 73 includes a heating wire 73a.
  • the mirror drive unit 11 further includes wirings 76 and 77 and electrode pads 78 and 79.
  • the heating wire 73a is provided on the support portion 22 so as to surround the second movable portion 32.
  • the heating wire 73a has a spiral shape in a plan view.
  • the heating wire 73a is made of metal or a semiconductor.
  • the heating wire 73a is made of copper or an aluminum alloy.
  • the heating wire 73a may be composed of a diffusion layer.
  • Each of the electrode pads 78 and 79 is provided on the support portion 22 and is exposed to the outside from the above-mentioned insulating layer 55.
  • the wiring 76 is electrically connected to one end of the heating wire 73a and the electrode pad 78.
  • the wiring 77 is electrically connected to the other end of the heating wire 73a and the electrode pad 79.
  • the electrode pads 78 and 79 are electrically connected to the heating control unit 4.
  • the laser irradiation unit 74 irradiates at least one of the first movable portion 31 and the pair of first connecting portions 41 and 42 with a laser.
  • the laser irradiation unit 74 is electrically connected to the heating control unit 4.
  • the intensity of the laser emitted from the laser irradiation unit 74 is controlled by the heating control unit 4.
  • the laser irradiation unit 74 irradiates the first movable unit 31 with a laser.
  • the first movable portion 31 is heated, and heat is transferred from the heated first movable portion 31 to the pair of first connecting portions 41 and 42.
  • the first connecting portions 41 and 42 are heated.
  • the laser irradiation unit 74 is included in the second heating unit 72.
  • FIG. 3 is a schematic plan view of the mirror unit according to the modified example of the present embodiment.
  • This modification is generally similar to or the same as the above-described embodiment.
  • This modification is different from the above-described embodiment in that the heating unit 15 does not include the laser irradiation unit 74 and the heating wire unit 73 includes the heating wires 73b and 73c.
  • FIG. 3 is shown by omitting the pair of drive coils 51 and 52 and the plurality of wirings 61, 62, 63 and 64.
  • the heating wire portion 73 includes the heating wires 73b and 73c in addition to the heating wire 73a as shown in FIG.
  • the mirror drive unit 11 further includes wirings 81, 82, 83, 84 and electrode pads 86, 87, 88, 89.
  • the heating wires 73b and 73c are provided in the second movable portion 32.
  • the heating wires 73b and 73c are included in the second heating unit 72.
  • the heating wires 73b and 73c are provided so as to be point-symmetrical with the center of gravity of the mirror surface 31a as a point of symmetry.
  • the heating wire 73b extends from the connecting portion between the second connecting portion 43 and the second movable portion 32 toward the connecting portion between the second movable portion 32 and the first connecting portion 41.
  • the heating wire 73b meanders at the connecting portion between the second movable portion 32 and the first connecting portion 41, and then extends toward the connecting portion between the second connecting portion 43 and the second movable portion 32.
  • the heating wire 73b has a plurality of linear portions 85a and a plurality of folded portions 85b at the connecting portion between the second movable portion 32 and the first connecting portion 41.
  • the linear portions 75b extend in a direction parallel to the Y axis and are arranged side by side in a direction parallel to the X axis.
  • the folded-back portion 85b alternately connects both ends of the adjacent linear portions 85a.
  • the heating wire 73c extends from the connecting portion between the second connecting portion 44 and the second movable portion 32 toward the connecting portion between the second movable portion 32 and the first connecting portion 42.
  • the heating wire 73c meanders at the connecting portion between the second movable portion 32 and the first connecting portion 42, and then extends toward the connecting portion between the second connecting portion 44 and the second movable portion 32.
  • the heating wire 73c has a plurality of linear portions 85c and a plurality of folded portions 85d at the connecting portion between the second movable portion 32 and the first connecting portion 42.
  • the linear portion 85c extends in a direction parallel to the Y axis and is arranged side by side in a direction parallel to the X axis.
  • the folded-back portion 85d alternately connects both ends of the adjacent linear portions 85c.
  • the heating wires 73b and 73b are formed by sputtering and photolithography.
  • the heating wires 73b and 73c may be exposed from the insulating layer 55.
  • the heating wires 73b and 73c may be formed by the damascene method, as in the case of the driving coils 51 and 52, for example.
  • the heating wires 73b and 73c are embedded in the second movable portion 32 in a layer different from the driving coils 51 and 52.
  • the heating wires 73b and 73c are covered with the insulating layer 55.
  • the heating wires 73b and 73c are made of metal or semiconductor.
  • the heating wires 73b and 73c are made of copper or an aluminum alloy.
  • the heating wires 73b and 73c may be composed of a diffusion layer.
  • the wiring 81 is electrically connected to one end of the heating wire 73b and the electrode pad 86.
  • the wiring 81 extends from one end of the heating wire 73b to the electrode pad 86 via the second connecting portion 43.
  • the wiring 82 is electrically connected to the other end of the heating wire 73b and the electrode pad 87.
  • the wiring 82 extends from the other end of the heating wire 73b to the electrode pad 87 via the second connecting portion 43.
  • the wirings 81 and 82 are formed by the damascene method, like the driving coils 51 and 52, and are covered with the insulating layer 55.
  • the wiring 83 is electrically connected to one end of the heating wire 73c and the electrode pad 88.
  • the wiring 83 extends from one end of the heating wire 73c to the electrode pad 88 via the second connecting portion 44.
  • the wiring 84 is electrically connected to the other end of the heating wire 73c and the electrode pad 89.
  • the wiring 84 extends from the other end of the heating wire 73c to the electrode pad 89 via the second connecting portion 44.
  • the wirings 83 and 84 are formed by the damascene method, as in the case of the driving coils 51 and 52, for example.
  • Each of the wirings 83 and 84 is covered with an insulating layer 55.
  • the electrode pads 86, 87, 88, 89 are electrically connected to the heating control unit 4.
  • the heating wire 73b When a voltage is applied to the electrode pads 86 and 87 by the heating control unit 4, the heating wire 73b generates heat and the second movable unit 32 is heated. In particular, the connecting portion between the second movable portion 32 and the first connecting portion 41 is heated. The first connecting portion 41 is heated by transferring heat from the heated portion to the first connecting portion 41.
  • the heating wire 73c generates heat and the second movable unit 32 is heated. In particular, the connecting portion between the second movable portion 32 and the first connecting portion 42 is heated. The first connecting portion 42 is heated by transferring heat from the heated portion to the first connecting portion 42.
  • the heating wires 73b and 73c are included in the second heating unit 72.
  • FIG. 4 is a schematic plan view of the mirror unit according to the modified example of the present embodiment.
  • This modification is generally similar to or the same as the above-described embodiment.
  • This modification is different from the above-described embodiment in that the heating unit 15 does not include the laser irradiation unit 74 and the heating wire unit 73 includes the heating wires 73d, 73e, 73f.
  • the differences between the above-described embodiment and the modified examples will be mainly described.
  • a pair of driving coils 51, 52 and a plurality of wirings 61, 62, 63, 64 are omitted.
  • the heating wire portion 73 includes the heating wires 73d, 73e, 73f in addition to the heating wire 73a, as shown in FIG.
  • the mirror drive unit 11 further includes wirings 91 and 92 and electrode pads 96 and 97.
  • the heating wires 73d, 73e, 73f are provided in the second movable portion 32.
  • the heating wires 73d and 73f are indicated by alternate long and short dash lines.
  • the heating wire 73e is indicated by a broken line.
  • the heating wires 73d, 73e, 73f are included in the second heating unit 72.
  • the heating wires 73d, 73e, and 73f are provided so as to be point-symmetrical with the center of gravity of the mirror surface 31a as a point of symmetry.
  • the heating wire 73d extends from the connecting portion between the second connecting portion 43 and the second movable portion 32 to the connecting portion between the second movable portion 32 and the first connecting portion 41.
  • the heating wire 73e is connected to the heating wire 73d at the connecting portion between the second movable portion 32 and the first connecting portion 41.
  • the heating wire 73e is provided on the annular portion 37 of the first movable portion 31.
  • the heating wire 73e extends along the first connecting portion 41 from the connecting portion between the second movable portion 32 and the first connecting portion 41 to the connecting portion between the first movable portion 31 and the first connecting portion 41. ..
  • the heating wire 73e is divided into two at the connecting portion between the first movable portion 31 and the first connecting portion 41, and extends along the edge of the first movable portion 31 so as to surround the mirror surface 31a.
  • the two separate heating wires 73e are connected to each other at the connecting portion between the first movable portion 31 and the first connecting portion 42.
  • the heating wire 73e extends along the first connecting portion 42 from the connecting portion between the first movable portion 31 and the first connecting portion 42 to the connecting portion between the second movable portion 32 and the first connecting portion 42. ..
  • the heating wire 73e is connected to the heating wire 73f at the connecting portion between the second movable portion 32 and the first connecting portion 42.
  • the heating wire 73f extends from the connecting portion between the second movable portion 32 and the first connecting portion 42 to the connecting portion between the second connecting portion 44 and the second movable portion 32.
  • the heating wires 73d, 73e, 73f are formed by the damascene method, for example, like the driving coils 51 and 52.
  • the heating wires 73d, 73e, 73f are embedded in the first movable portion 31, the second movable portion 32, and the first connecting portions 41, 42.
  • the heating wires 73d, 73e, 73f are covered with an insulating layer 55.
  • the heating wires 73d, 73e, 73f may be embedded in the first movable portion 31, the second movable portion 32, and the first connecting portions 41, 42 in a layer different from the driving coils 51, 52.
  • the heating wires 73d, 73e, 73f may be exposed from the insulating layer 55.
  • the heating wires 73d, 73e, 73f are made of metal or a semiconductor.
  • the heating wires 73d, 73e, 73f are made of copper or an aluminum alloy.
  • the heating wires 73d, 73e, 73f may be composed of a diffusion layer.
  • the heating wire 73e is preferably composed of a diffusion layer or polysilicon.
  • the wiring 91 is electrically connected to one end of the heating wire 73d and the electrode pad 96.
  • the wiring 91 extends from one end of the heating wire 73d to the electrode pad 96 via the second connecting portion 43.
  • the wiring 92 is electrically connected to one end of the heating wire 73f and the electrode pad 97.
  • the wiring 92 extends from one end of the heating wire 73f to the electrode pad 97 via the second connecting portion 44.
  • the wirings 91 and 92 are formed by the damascene method, as in the case of the driving coils 51 and 52, for example.
  • Each of the wirings 91 and 92 is covered with an insulating layer 55.
  • the electrode pads 96 and 97 are electrically connected to the heating control unit 4.
  • the heating wires 73d, 73e, 73f generate heat
  • the first movable portion 31, the second movable portion 32, and the first connecting portions 41, 42 generate heat. It is heated.
  • the heating wires 73d, 73e, 73f are included in the second heating unit 72.
  • the first heating portion 71 is provided on the support portion 22.
  • the second heating portion 72 is provided in at least one of the first connecting portions 41 and 42, the first movable portion 31, and the second movable portion 32.
  • FIG. 5 is a flowchart showing a control method of the optical device 1.
  • the optical device 1 performs phase stabilization processing of the first movable unit 31 by the heating control unit 4 (processing S1).
  • the heating control unit 4 acquires a signal indicating the swing state of the first movable unit 31.
  • the heating control unit 4 acquires a signal indicating the phase of the swing angle of the first movable unit 31, and controls the heating unit 15 based on the acquired signal.
  • the heating control unit 4 is first connected by the heating unit 15 so that the phase difference between the phase of the drive signal output from the drive control unit 3 and the phase of the signal indicating the swing state of the first movable unit 31 becomes small. Controls the heating of parts 41 and 42.
  • the heating control unit 4 applies a large amount of heat to the first connecting units 41 and 42 by the first heating unit 71, and then applies a small amount of heat to the first connecting units 41 and 42 by the second heating unit 72. And fine-tune.
  • the heating control unit 4 acquires a signal indicating the phase of the swing angle of the changed first movable unit 31, and controls the heating unit 15 based on the acquired signal. That is, the heating control unit 4 feedback-controls the heating unit 15 based on the signal indicating the phase of the swing angle of the movable unit 23.
  • the heating control unit 4 controls the heating unit 15 by this feedback control so that the resonance frequency of the first movable unit 31 and the frequency of the drive signal match.
  • the resonance frequency of the first movable portion 31 and the frequency of the drive signal match, the phase of the deflection angle of the first movable portion 31 is advanced by 90 ° with respect to the phase of the drive signal.
  • the heating control unit 4 detects the phase of the signal indicating the counter electromotive force in the drive coils 51 and 52.
  • the heating control unit 4 controls the heating unit 15 based on the difference between the phase of the signal indicating the counter electromotive force and the phase of the drive signal output from the drive control unit 3.
  • the phase of the signal indicating the counter electromotive force changes due to the heating of the first movable portion 31.
  • the phase of the signal indicating the counter electromotive force corresponds to the resonance frequency of the first movable portion 31.
  • the optical device 1 may separately have an electromotive force monitor coil in the movable portion 23.
  • the heating control unit 4 controls the heating unit 15 based on the difference between the phase of the signal indicating the electromotive force in the electromotive force monitoring coil and the phase of the drive signal output from the drive control unit 3. That is, the signal indicating the electromotive force generated in the electromotive force monitoring coil corresponds to the signal indicating the counter electromotive force in the drive coils 51 and 52 described above.
  • a signal indicating inverse piezoelectricity or a signal from an optical sensor that detects the position of the first movable portion 31 may be used as a signal indicating a swing state of the first movable portion 31.
  • the optical device 1 controls the amplitude of the first movable unit 31 by the drive control unit 3 (process S2).
  • the drive control unit 3 controls the current flowing through the drive coils 51 and 52 based on the swing amplitude of the first movable unit 31.
  • the drive control unit 3 controls the current flowing through the drive coils 51 and 52 based on the peak of the signal indicating the counter electromotive force described above.
  • a signal indicating the electromotive force generated in the electromotive force monitoring coil may be used.
  • FIG. 6 is a flowchart showing the phase stabilization process of the first movable portion 31.
  • the heating control unit 4 acquires a signal indicating the counter electromotive force in the drive coils 51 and 52 (process S11). Subsequently, the heating control unit 4 calculates the phase of the signal indicating the counter electromotive force based on the acquired signal (process S12).
  • the heating control unit 4 determines whether or not the acquisition of the signal indicating the counter electromotive force and the calculation of the phase of the acquired signal have been repeated a predetermined number of times (process S13). For example, the heating control unit 4 determines whether or not the acquisition of the signal indicating the counter electromotive force and the calculation of the phase of the acquired signal are repeated 50 times (process S13). When the heating control unit 4 determines that the process has not been repeated 50 times (NO in process S13), the process returns to process S11.
  • the process proceeds to process S14.
  • the heating control unit 4 averages the phases of the counter electromotive force signals acquired by repeating the processes S11 and S12 (process S14). In this embodiment, the heating control unit 4 averages the phases of 50 signals.
  • the heating control unit 4 determines whether or not the phase of the runout angle of the first movable unit 31 is stable (process S15).
  • the heating control unit 4 has the runout of the first movable unit 31 based on the difference between the average phase of the runout angle obtained by the process S14 and the phase of the drive signal output from the drive control unit 3. Determine if the angle phase is stable. If the difference is 90 °, the resonance frequency of the first movable portion 31 and the frequency of the drive signal match.
  • the heating control unit 4 determines that the phase of the runout angle of the first movable unit 31 is stable when the difference is within a range from 90 ° in consideration of the error. For example, if the difference is 90 ⁇ 0.15 °, the heating control unit 4 determines that the phase of the runout angle of the first movable unit 31 is stable. The heating control unit 4 may determine that the phase of the runout angle of the first movable part 31 is stable when the maximum value of the runout angle of the first movable part 31 becomes a predetermined value or more.
  • the heating control unit 4 determines that the phase is not stable (NO in the process S15)
  • the process proceeds to the process S16.
  • the heating control unit 4 determines that the phase is stable (YES in the process S15)
  • the heating control unit 4 ends the phase stabilization process.
  • the heating control unit 4 controls the heating unit 15 based on the average phase obtained by the process S14 (process S16).
  • the heating control unit 4 controls the heating unit 15 based on the difference between the average of the phases and the phase of the drive signal output from the drive control unit 3.
  • the heating control unit 4 is first moved by the heating unit 15 so that the resonance frequency of the first movable unit 31 and the frequency of the drive signal match according to the difference between the phase of the counter electromotive force and the phase of the drive signal. Part 31 is heated.
  • the heating control unit 4 determines the amount of heat given to the first movable unit 31 by the heating unit 15 according to the value of the difference, and the heating unit 15 so that the determined heat amount is given to the first connecting units 41 and 42. To control. For example, the heating control unit 4 determines the intensity of the laser emitted from the laser irradiation unit 74 according to the value of the difference. For example, the heating control unit 4 determines the voltage applied to the heating wire unit 73 according to the value of the difference. When the heating control unit 4 determines that the resonance frequency of the first movable unit 31 and the frequency of the drive signal do not match, the heating control unit 4 heats the first connecting units 41 and 42 so that a predetermined amount of heat is given to the first connecting units 41 and 42. The unit 15 may be controlled.
  • the heating control unit 4 waits for a predetermined time after performing the process S16 (process S17). After waiting for a predetermined time, the heating control unit 4 returns the process to the process S11. In the present embodiment, the heating control unit 4 waits for 1 second after performing the process S16.
  • FIG. 7 shows the relationship between the resonance frequency of the first movable portion 31 and the frequency of the drive signal in each mirror unit 2.
  • the vertical axis shows the amplitude and the horizontal axis shows the frequency.
  • the waveforms 101, 102, 103, and 104 shown by the thick solid lines are the relationship between the amplitude and frequency in the swing of the first movable portion 31 in the state before the first connecting portions 41 and 42 are heated by the heating portion 15. Is shown.
  • the waveforms 101, 102, 103, and 104 correspond to different first movable portions 31. Therefore, the alternate long and short dash line indicates the resonance frequency of the first movable portion 31 corresponding to the waveform 101.
  • the dashed line indicates the frequency of the drive signal.
  • the resonance frequency of the first movable unit 31 is higher than the frequency of the drive signal of the drive control unit 3.
  • the elastic modulus of the first connecting portions 41 and 42 changes. If the elastic modulus of the first connecting portions 41 and 42 changes, the resonance frequency of the first movable portion 31 also changes.
  • the resonance frequency of the first movable portion 31 When the elastic modulus of the first connecting portions 41 and 42 decreases, the resonance frequency of the first movable portion 31 also decreases. Therefore, for example, when the first connecting portions 41 and 42 connected to the first movable portion 31 corresponding to the waveform 101 are heated, the waveform 101 shifts in the arrow ⁇ direction. Therefore, by heating the first connecting portions 41 and 42, the resonance frequency of the first movable portion 31 and the frequency of the drive signal can be matched. In this way, the optical device 1 can easily change the resonance frequency of the first movable portion 31 so as to match the frequency of the drive signal. As a result, the optical device 1 can stably swing the first movable portion 31 at a desired frequency and a desired runout angle.
  • the first connecting portions 41 and 42 In such a configuration, precise and quick temperature adjustment is required in the first connecting portions 41 and 42.
  • precise and quick temperature adjustment is required in the first connecting portions 41 and 42.
  • the temperature sensor When the temperature sensor is provided on the support portion 22, the heat transferred from the first connecting portions 41 and 42 to the support portion is detected, so that a time lag corresponding to the temperature transfer speed occurs in the feedback control.
  • the heating control unit 4 feedback-controls the heating of the first connecting units 41 and 42 by the heating unit 15 based on the phase of the signal indicating the swing state of the first movable unit 31.
  • the optical device 1 realizes more precise and quicker temperature adjustment than the case of feedback control based on the temperature detected by the temperature sensor.
  • the heating control unit 4 can adjust the temperature of the first connecting units 41 and 42 in increments of 0.003 to 0.005 ° C., for example. As a result, the accuracy of changing the resonance frequency in the first movable portion 31 is also improved.
  • the heating control unit 4 controls the heating of the first connecting units 41 and 42 in each of the plurality of mirror units 2. Therefore, the optical device 1 can change the resonance frequency of each of the first movable portions 31 so as to match the frequency of the drive signal. As a result, the optical device 1 can swing each of the first movable portions 31 at a desired frequency and a desired runout angle.
  • the first movable unit 31 In the state before the first connecting portions 41 and 42 are heated by the heating unit 15, the first movable unit 31 has a frequency higher than the frequency of the drive signal output by the drive control unit 3, as shown in FIG. It has a high resonance frequency. Therefore, the optical device 1 can match the resonance frequency of the first movable unit 31 with the frequency of the drive signal only by controlling the heating by the heating control unit 4. If the first connecting portions 41 and 42 are cooled by the cooling element, the resonance frequency of the first movable portion 31 can be shifted in the direction opposite to the case of heating. However, the cooling element is relatively large. The optical device 1 is made more compact than the case where a cooling element is used.
  • the first movable portion 31 in each of all the mirror units 2 included in the optical device 1 is before heating the first connecting portions 41 and 42 connected to the first movable portion 31.
  • it has a resonance frequency higher than the frequency of the drive signal output by the drive control unit 3.
  • the heating control unit 4 heats the first connecting units 41 and 42 of all the mirror units 2 by the heating unit 15. Therefore, the optical device can be made more compact than the case where the cooling element is used.
  • the heating control unit 4 heats the first connecting units 41 and 42 at the first power by the heating unit 15, and then the first connecting units 41 and 42 have a second power that is smaller than the first power. To heat. Therefore, the heating control unit 4 can roughly adjust the resonance frequency of the first movable unit 31 and then finely adjust the resonance frequency of the first movable unit 31. As a result, the optical device 1 can adjust the resonance frequency of the first movable portion 31 more precisely and quickly.
  • the heating unit 15 includes a first heating unit 71 and a second heating unit 72.
  • the first heating unit 71 gives a first amount of heat to the first connecting units 41 and 42.
  • the second heating unit 72 gives the first connecting units 41 and 42 a second amount of heat that is smaller than the first amount of heat. Therefore, the heating control unit 4 can roughly adjust the resonance frequency of the first movable unit 31 by the first heating unit 71, and finely adjust the resonance frequency of the first movable unit 31 by the second heating unit 72. .. Therefore, the optical device 1 can adjust the resonance frequency of the first movable portion 31 more precisely and quickly.
  • the heating control unit 4 is first connected by the heating unit 15 so that the phase difference between the phase of the drive signal output from the drive control unit 3 and the phase of the signal indicating the swing state of the first movable unit 31 becomes small. Controls the heating of parts 41 and 42.
  • the heating of the first connecting portions 41 and 42 can be controlled precisely. Therefore, the optical device 1 can more accurately obtain a desired runout angle at a desired frequency.
  • the heating unit 15 in the present embodiment includes a laser irradiation unit 74 that heats the first connecting units 41 and 42. Therefore, the heating unit 15 can heat the first connecting units 41 and 42 more quickly. As a result, the optical device 1 can change the resonance frequency of the first movable portion 31 more precisely and quickly. Since the temperature of the permanent magnet in the magnetic field generating portion 21 is unlikely to change, the change in the swing angle of the first movable portion 31 due to the change in the magnetic field is suppressed.
  • the first heating portion 71 is provided on the support portion 22.
  • the second heating portion 72 is provided in at least one of the first connecting portions 41 and 42, the first movable portion 31, and the second movable portion 32. Therefore, the optical device 1 has a compact configuration, and the resonance frequency of the first movable portion 31 can be adjusted more precisely and quickly.
  • the heating unit 15 includes heating wires 73b, 73c, 73d, 73e, 73f for heating the first connecting units 41, 42.
  • the heating wires 73b, 73c, 73d, 73e, 73f of the first connecting portion 41, 42, the first movable portion 31, and the second movable portion 32 are point-symmetrical with the center of gravity of the mirror surface 31a as the point of symmetry. At least one is provided. Therefore, the heating unit 15 can precisely heat the first connecting units 41 and 42 in a compact configuration.
  • the heating wire 73e is provided on the first movable portion 31 so as to surround the mirror surface 31a. Therefore, the first connecting portions 41 and 42 are heated quickly and precisely. Since the Lorentz forces generated in the heating wire 73e cancel each other out, the disturbance of the swing of the first movable portion 31 is suppressed.
  • the heating unit 15 has the first heating unit 71 and the second heating unit 72 has been described.
  • the number of heating units 15 may be one.
  • the heating control unit 4 may change the power of the heating wire by adjusting the voltage applied to the heating wire, for example.
  • the heating control unit 4 may apply a first voltage to the heating wire and then apply a second voltage smaller than the first voltage to the heating wire.
  • the first connecting portions 41 and 42 may be heated only by the heating wire 73a.
  • the first connecting portions 41 and 42 may be heated by only one of the heating wires 73b, 73c, 73d, 73e and 73f.
  • the optical device 1 may use only one laser irradiation unit 74 as the heating unit 15.
  • the heating control unit 4 irradiates the first movable unit 31 with a laser of the first intensity from the laser irradiation unit 74, and then emits a second intensity laser smaller than the first intensity to the first movable unit. 31 may be irradiated.
  • the heating control unit 4 can roughly adjust the resonance frequency of the first movable unit 31 and then finely adjust the resonance frequency of the first movable unit 31.
  • the laser irradiation unit 74 may be further provided.
  • a plurality of laser irradiation units 74 may be provided in one mirror unit 2.
  • the heating wire 73a may be used as a resistor for a temperature sensor.
  • the heating control unit 4 does not pass a current through the heating wire 73a.
  • Both the heating wire 73a and the temperature sensor resistor may be provided on the support portion 22.
  • a temperature sensor resistor may be provided on the outside or inside of the heating wire 73a in a plan view.
  • the heating wire 73a and the temperature sensor resistor may be provided in different layers from each other.
  • the heating wire portion 73 may not be provided on the support portion 22, the movable portion 23, and the elastic connecting portion 24.
  • the heating wire portion 73 may be arranged with a gap provided between the support portion 22, the movable portion 23, and the elastic connecting portion 24.
  • the signal indicating the swing state of the first movable portion 31 is the signal indicating the phase of the swing angle of the first movable portion 31
  • the signal indicating the swing state of the first movable portion 31 may be a signal indicating the phase of the velocity of the first movable portion 31.
  • the heating control unit 4 determines whether the phase of the deflection angle of the first movable unit 31 is stable based on the difference between the phase of the signal indicating the phase of the velocity and the phase of the drive signal output from the drive control unit 3. Judge whether or not. If this difference is 0 °, the resonance frequency of the first movable portion 31 and the frequency of the drive signal match.
  • the heating control unit 4 determines that the phase of the runout angle of the first movable unit 31 is stable when the difference is within a range from 0 ° in consideration of the error. For example, if the difference is 0 ⁇ 0.15 °, the heating control unit 4 determines that the phase of the runout angle of the first movable unit 31 is stable.
  • the movable portion 23 is driven by two axes, the X axis and the Y axis.
  • the movable portion 23 may be driven by one axis.
  • the first movable portion 31 and the support portion 22 are connected by the first connecting portions 41 and 42.
  • the drive system of the movable portion 23 may be a piezoelectric drive system or an electrostatic drive system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

光学デバイス1は、ミラー駆動部11と、加熱部15と、加熱制御部4と、を備える。ミラー駆動部11において、可動部23には、ミラー面31aが設けられている。支持部22は、弾性連結部24を介して可動部23を支持する。動力発生部50は、可動部23に動力を発生させる。駆動制御部3は、動力発生部50を動作させる駆動信号を出力する。可動部23は、弾性連結部24が加熱される前の状態において、駆動制御部3が出力する駆動信号の周波数よりも高い共振周波数を有する。可動部23は、動力発生部50の動力に応じた弾性連結部24の弾性変形によって揺動する。加熱制御部4は、可動部23の揺動状態を示す信号を取得し、取得された信号の位相に基づいて加熱部15による弾性連結部24の加熱をフィードバック制御する。

Description

光学デバイス
 本発明は、光学デバイスに関する。
 ミラー面が設けられた可動部を備える光学デバイスが知られている(たとえば、特許文献1)。特許文献1には、可動部が共振周波数で揺動するように、駆動信号によって可動部の揺動を制御することが記載されている。
特開2015-36782号公報
 製造ばらつきによる個体差及び環境温度などによって、可動部の共振周波数が意図していたものと異なる場合がある。可動部を駆動する駆動信号の周波数が共振周波数に合っていない場合には、可動部において所望の振れ角が得られないこと、及び、上記可動部の動作が不安定となることが懸念される。共振周波数に合うように駆動信号の周波数が制御されれば、ミラーにおいて良好な振幅が得られる。しかし、この構成では、所望の周波数でミラーを動かすことは困難である。
 本発明の一つの態様は、所望の周波数かつ所望の振れ角で安定した可動部の揺動を実現できる光学デバイスを提供することを目的とする。
 本発明の一つの態様に係る光学デバイスは、ミラー駆動部と、駆動制御部と、加熱部と、加熱制御部と、を備える。ミラー駆動部は、可動部と、弾性連結部と、支持部と、動力発生部とを有する。可動部には、ミラー面が設けられている。弾性連結部は、可動部に接続されている。支持部は、弾性連結部を介して可動部を支持する。動力発生部は、可動部に動力を発生させる。駆動制御部は、動力発生部を動作させる駆動信号を出力する。加熱部は、弾性連結部を加熱する。加熱制御部は、加熱部を制御する。可動部は、弾性連結部が加熱される前の状態において、駆動制御部が出力する駆動信号の周波数よりも高い共振周波数を有する。可動部は、動力発生部の動力に応じた弾性連結部の弾性変形によって揺動する。加熱制御部は、可動部の揺動状態を示す信号を取得し、取得された信号の位相に基づいて加熱部による弾性連結部の加熱をフィードバック制御する。
 上記一つの態様において、光学デバイスは、弾性連結部を加熱する加熱部を備える。加熱部によって弾性連結部が加熱されると、弾性連結部の弾性率は変化する。この結果、可動部の共振周波数も変化する。このため、上記光学デバイスは、可動部の共振周波数を容易に変化させることができる。この結果、この光学デバイスは、所望の周波数かつ所望の振れ角で安定して可動部を揺動できる。このような構成では、弾性連結部において精密かつ迅速な温度調整が求められる。しかし、たとえば、温度センサによって検出された温度に基づいてフィードバック制御を行う場合には、共振周波数の変化に最も寄与する弾性連結部の温度の検出にタイムラグが生じる。支持部に温度センサが設けられた場合には弾性連結部から支持部に伝達した熱を検出するため、フィードバック制御において温度の伝達速度に応じたタイムラグが生じる。上記加熱制御部は、可動部の揺動状態を示す信号の位相に基づいて加熱部による弾性連結部の加熱をフィードバック制御する。このため、この光学デバイスは、少なくとも、温度センサによって検出された温度に基づいてフィードバック制御する場合よりも精密かつ迅速な温度調整が実現される。したがって、可動部における共振周波数の変更の精度も向上されている。弾性連結部が加熱される前の状態において、可動部は、駆動制御部が出力する駆動信号の周波数よりも高い共振周波数を有している。この場合、光学デバイスは、加熱制御部による加熱制御のみによって、可動部の共振周波数を駆動信号の周波数に合わせることができる。上記光学デバイスは、少なくとも冷却素子を用いる場合に比べて光学デバイスのコンパクト化が図られる。
 上記一つの態様において、可動部は、第1可動部と第2可動部とを含んでもよい。第1可動部には、ミラー面が設けられていてもよい。第2可動部は、第1可動部を囲んでもよい。弾性連結部は、第1連結部と第2連結部とを含んでいてもよい。第1連結部は、第1可動部と第2可動部とを弾性的に連結してもよい。第2連結部は、第2可動部と支持部とを弾性的に連結してもよい。
 上記一つの態様において、加熱部は、第1連結部を加熱してもよい。
 上記一つの態様において、弾性連結部が加熱される前の状態において、可動部は、駆動制御部が出力する駆動信号の周波数よりも高い共振周波数を有してもよい。この場合、光学デバイスは、加熱制御部による加熱制御のみによって、可動部の共振周波数を駆動信号の周波数に合わせることができる。上記光学デバイスは、少なくとも冷却素子を用いる場合に比べて光学デバイスのコンパクト化が図られている。
 上記一つの態様において、加熱制御部は、加熱部によって、第一の仕事率で弾性連結部を加熱した後に、第一の仕事率よりも小さい第二の仕事率で弾性連結部を加熱してもよい。この場合、加熱制御部は、可動部の共振周波数を大まかに調整した後に、可動部の共振周波数を細かく調整することができる。この結果、光学デバイスは、可動部の共振周波数をより精密かつ迅速に調整できる。
 上記一つの態様において、加熱部は、第1加熱部と第2加熱部とを含んでもよい。第1加熱部は、第一の熱量を弾性連結部に与えてもよい。第2加熱部は、第一の熱量よりも小さい第二の熱量を弾性連結部に与えてもよい。この場合、加熱制御部は、第1加熱部によって可動部の共振周波数を大まかに調整し、第2加熱部によって可動部の共振周波数を細かく調整することができる。このため、光学デバイスは、可動部の共振周波数をより精密かつ迅速に調整できる。
 上記一つの態様において、第1加熱部は、支持部に設けられてもよい。第2加熱部は、第1連結部、及び可動部の少なくとも1つに設けられてもよい。この場合、光学デバイスは、コンパクトな構成で、可動部の共振周波数をより精密かつ迅速に調整できる。
 上記一つの態様において、加熱部は、弾性連結部を加熱するレーザ照射部を含んでもよい。この場合、加熱部は、弾性連結部をより迅速に加熱することができる。この結果、光学デバイスは、可動部の共振周波数をより精密かつ迅速に変化させることができる。
 上記一つの態様において、加熱部は、弾性連結部を加熱する電熱線を含んでもよい。電熱線は、ミラー面の重心を対称点として点対称となるように、弾性連結部、及び可動部の少なくとも1つに設けられていてもよい。この場合、加熱部は、コンパクトな構成で精密に弾性連結部を加熱することができる。電熱線に発生するローレンツ力が打ち消し合うため、可動部の揺動の乱れが抑制される。
 上記一つの態様において、電熱線は、ミラー面を囲むように可動部に設けられていてもよい。この場合、弾性連結部がより迅速かつ精密に加熱される。電熱線に発生するローレンツ力が打ち消し合うため、可動部の揺動の乱れが抑制される。
 上記一つの態様において、加熱制御部は、駆動制御部から出力された駆動信号の位相と可動部の揺動状態を示す信号の位相との位相差が小さくなるように、加熱部による弾性連結部の加熱を制御してもよい。この場合、駆動信号の位相と可動部の揺動状態を示す信号の位相とを比較する場合、駆動信号の周波数と可動部の揺動状態を示す信号の周波数とを比較する場合よりも精密に、弾性連結部の加熱が制御され得る。したがって、光学デバイスは、所望の周波数で所望の振れ角をより正確に得ることができる。
 上記一つの態様において、複数のミラーユニットを備えてもよい。各ミラーユニットは、ミラー駆動部と加熱部とを含んでもよい。加熱制御部は、複数のミラーユニットの各々における弾性連結部の加熱を制御してもよい。この場合、光学デバイスは、各可動部の共振周波数を変化させることができる。このため、光学デバイスは、所望の周波数かつ所望の振れ角で各可動部を揺動することができる。
 上記一つの態様において、この光学デバイスが備える全てのミラーユニットの各々における可動部は、各可動部に接続された弾性連結部を加熱する前の状態において、駆動制御部が出力する駆動信号の周波数よりも高い共振周波数を有してもよい。加熱制御部は、全てのミラーユニットにおける弾性連結部を加熱部によって加熱してもよい。冷却素子は比較的大型であるため、冷却素子を用いる場合に比べて光学デバイスのコンパクト化が図られる。
 本発明の一つの態様は、所望の周波数かつ所望の振れ角で安定した可動部の揺動を実現できる光学デバイスを提供する。
図1は、本実施形態に係る光学デバイスのブロック図である。 図2は、ミラーユニットの概略平面図である。 図3は、本実施形態の変形例に係るミラーユニットの概略平面図である。 図4は、本実施形態の変形例に係るミラーユニットの概略平面図である。 図5は、光学デバイスにおける制御方法を示すフローチャートである。 図6は、可動部の位相安定処理を示すフローチャートである。 図7は、各ミラーユニットにおける可動部の共振周波数と駆動信号の周波数との関係を示す図である。
 以下、添付図面を参照して、本発明の実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有している要素には、同一符号を用いることとし、重複する説明は省略する。
 まず、図1を参照して、本実施形態に係る光学デバイスの概要を説明する。図1は、光学デバイスのブロック図である。光学デバイス1は、ミラー面を含んでおり、このミラー面を揺動する。光学デバイス1は、たとえば光通信用光スイッチ、光スキャナなどに用いられる。光学デバイス1は、少なくとも1つのミラーユニット2と、駆動制御部3と、加熱制御部4とを備えている。本実施形態では、光学デバイス1は、複数のミラーユニット2を備えている。
 各ミラーユニット2は、ミラー駆動部11と、加熱部15とを有している。ミラー駆動部11は、たとえば、MEMS(Micro Electro Mechanical Systems)デバイスとして構成されている。ミラー駆動部11は、パターニング及びエッチングなどのMEMS技術を用いて製造される。加熱部15は、ミラー駆動部11を加熱する。駆動制御部3は、駆動信号を出力し、この駆動信号によってミラー駆動部11の駆動を制御する。加熱制御部4は、加熱部15を制御する。
 次に、図2を参照して、ミラー駆動部11の構成について詳細に説明する。図2は、ミラーユニットの概略平面図である。
 ミラー駆動部11は、図2に示されているように、磁界発生部21と、支持部22と、可動部23と、弾性連結部24とを有する。支持部22、可動部23、及び弾性連結部24は、たとえばSOI(Silicon on Insulator)基板によって一体的に形成されている。支持部22、可動部23、及び弾性連結部24は、たとえば、シリコンによって構成されている。支持部22、可動部23、及び弾性連結部24の少なくとも1つは、金属によって構成されていてもよい。
 磁界発生部21は、たとえば、平面視においてX軸、及び、X軸に直交するY軸のそれぞれに対して45度傾斜した向きDの磁界を発生させる。磁界発生部21によって発生する磁界の向きDは、平面視においてX軸及びY軸に対して45度以外の角度で傾斜していてもよい。本実施形態では、磁界発生部21は、ハルバッハ配列によって配置された複数の永久磁石を有している。
 支持部22は、たとえば、平面視において四角形状の外形を有し、枠状に形成されている。本実施形態において、支持部22は、磁界発生部21の永久磁石から離間し、X軸及びY軸に直交する方向においてこの永久磁石と並んで配置されている。
 可動部23は、磁界発生部21から離間した状態において、X軸及びY軸に直交する方向から見て、支持部22によって形成される枠内に配置されている。可動部23は、第1可動部31と、第2可動部32とを含んでいる。第1可動部31には、ミラー面31aが設けられている。ミラー駆動部11において、Y軸周りに第2可動部32が揺動され、X軸周り及びY軸周りに第1可動部31が揺動される。第2可動部32は、枠状に形成されており、第1可動部31を囲むように配置されている。第2可動部32は、支持部22に支持されている。
 図2に示されているように、第1可動部31は、本体部36と、環状部37と、一対の保持部38とを有している。本実施形態において、本体部36は、平面視において円形状を呈している。本体部36は、楕円形状、四角形状、菱形状などの任意の形状に形成されてもよい。本体部36には、X軸及びY軸に直交する方向において磁界発生部21の永久磁石と反対側に、ミラー面31aが設けられている。ミラー面31aは、たとえば、金属膜によって形成される。金属膜は、たとえばアルミニウム、アルミニウム系合金、金、又は銀である。平面視において、本体部36の重心Pは、X軸及びY軸の交点と一致している。平面視において、ミラー面31aの重心Pは、X軸及びY軸の交点と一致している。
 環状部37は、平面視において本体部36を囲むように環状に形成されている。環状部37は、平面視において八角形状の外形を有している。環状部37は、円形状、楕円形状、四角形状、菱形状などの任意の外形を有していてもよい。一対の保持部38は、Y軸に沿って本体部36の両側に配置され、本体部36と環状部37とを互いに連結している。このように、複数の保持部38を介して環状部37に接続された本体部36にミラー面31aが設けられている。このため、第1可動部31が共振周波数レベルでX軸周りに揺動しても、ミラー面31aに撓みなどの変形が抑制される。
 弾性連結部24は、一対の第1連結部41,42と、一対の第2連結部43,44とを含んでいる。第1連結部41,42及び第2連結部43,44は、たとえばトーションバーである。一対の第1連結部41,42は、第1可動部31と第2可動部32とを弾性的に連結する。換言すれば、第1連結部41,42は、ミラー面31aが設けられた第1可動部31に接続された弾性連結部である。一対の第2連結部43,44は、支持部22と第2可動部32とを弾性的に連結する。換言すれば、支持部22は、第1連結部41,42、第2可動部32、及び第2連結部43,44を介して、第1可動部31を支持している。
 第1連結部41,42は、X軸を通るように第1可動部31の両側に配置されている。第1可動部31は、一対の第1連結部41,42に挟まれている。一対の第1連結部41,42は、第1可動部31の環状部37と第2可動部32とを互いに連結している。このため、第1可動部31は、一対の第1連結部41,42の弾性によって、X軸周りに揺動可能である。
 各第1連結部41,42は、X軸に沿って直線状に延在している。本実施形態において、各第1連結部41,42における第1可動部31側の端部の幅は、第1可動部31に近づくほど広がっている。各第1連結部41,42における第2可動部32側の端部の幅は、第2可動部32に近づくほど広がっている。このため、第1連結部41,42に作用するねじり応力の影響が緩和され、第1連結部41,42の劣化が抑制される。
 第2連結部43,44は、Y軸を通るように第2可動部32の両側に配置されている。第2可動部32は、一対の第2連結部43,44に挟まれている。一対の第2連結部43,44は、第2可動部32と支持部22とを互いに連結している。
 各第2連結部43,44は、平面視において蛇行して延在している。各第2連結部43,44は、複数の直線状部45と、複数の折り返し部46と、を有している。直線状部45は、Y軸に平行な方向に延在し、X軸に平行な方向に並んで配置されている。折り返し部46は、隣り合う直線状部45の両端を交互に連結している。
 ミラー駆動部11は、動力発生部50を更に備える。動力発生部50は、第1可動部31及び第2可動部32に動力を発生させる。第1可動部31は、動力発生部50による動力に応じた第1連結部41,42の弾性変形によって揺動する。第2可動部32は、動力発生部50による動力に応じた第2連結部43,44の弾性変形によって揺動する。
 動力発生部50は、一対の駆動用コイル51,52と、複数の配線61,62,63,64と、複数の電極パッド66,67,68,69とを有する。駆動用コイル51,52は、第1可動部31を囲むように第2可動部32に設けられている。各駆動用コイル51,52は、平面視において渦巻き状を呈している。各駆動用コイル51,52は、第1可動部31の周りに複数回巻かれている。一対の駆動用コイル51,52は、平面視において第2可動部32の幅方向に互い違いに並ぶように、配置されている。図2において、駆動用コイル51,52が配置されている領域Rはハッチングで示されている。
 各駆動用コイル51,52は、ダマシン法により形成されている。各駆動用コイル51,52は、第2可動部32に埋め込まれている。各駆動用コイル51,52は、絶縁層55に覆われている。各駆動用コイル51,52は、第2可動部32に埋め込まれている。絶縁層55は、例えば酸化ケイ素、窒化ケイ素、酸窒化ケイ素などによって構成されている。この絶縁層は、支持部22、第1可動部31、第2可動部32、第1連結部41,42、及び第2連結部43,44の表面を覆うように一体的に形成されている。
 各駆動用コイル51,52は、第2可動部32を構成する材料の密度よりも高い密度を有している金属材料によって構成されている。本実施形態において、第2可動部32はシリコンによって構成されており、各駆動用コイル51,52は銅によって構成されている。各駆動用コイル51,52は、金によって構成されてもよい。
 各電極パッド66,67,68,69は、支持部22に設けられ、上記絶縁層55から外部に露出している。各電極パッド66,67,68,69は、駆動制御部3に接続されている。配線61は、駆動用コイル51の一端と電極パッド66とに電気的に接続されている。配線61は、駆動用コイル51の一端から第2連結部43を介して電極パッド66まで延在している。配線62は、駆動用コイル51の他端と電極パッド67とに電気的に接続されている。配線62は、駆動用コイル51の他端から第2連結部44を介して電極パッド67まで延在している。各配線61,62は、たとえば駆動用コイル51,52と同様に、ダマシン法により形成されている。各配線61,62は、絶縁層55に覆われている。
 配線63は、駆動用コイル52の一端と電極パッド68とに電気的に接続されている。配線63は、駆動用コイル52の一端から第2連結部43を介して電極パッド68まで延在している。配線64は、駆動用コイル52の他端と電極パッド69とに電気的に接続されている。配線64は、駆動用コイル52の他端から第2連結部44を介して電極パッド69まで延在している。各配線63,64は、たとえば駆動用コイル51,52と同様に、ダマシン法により形成されている。各配線63,64は、絶縁層55に覆われている。
 駆動制御部3は、動力発生部50を動作させる駆動信号を出力する。駆動制御部3は、以上のように構成されたミラー駆動部11の動力発生部50に駆動信号を入力する。電極パッド66,67及び配線61,62を介して、駆動制御部3から駆動用コイル51にリニア動作用の駆動信号が入力されると、磁界発生部21によって発生する磁界との相互作用によって駆動用コイル51にローレンツ力が作用する。このローレンツ力と第2連結部43,44の弾性力とに応じて、ミラー面31aを有する第1可動部31と共に第2可動部32がY軸周りにリニア動作する。
 電極パッド68,69及び配線63,64を介して、駆動制御部3から駆動用コイル52に共振動作用の駆動信号が入力されると、磁界発生部21によって発生する磁界との相互作用によって駆動用コイル52にローレンツ力が作用する。このローレンツ力に応じた第1可動部31の共振によって、X軸周りにミラー面31aを有する第1可動部31が共振動作する。具体的には、駆動制御部3からの駆動信号が駆動用コイル52に入力されると、第2可動部32がX軸周りにこの駆動信号の周波数で僅かに振動する。この振動が第1連結部41,42を介して第1可動部31に伝わり、第1可動部31がX軸周りに揺動する。X軸周りにおける第1可動部31の共振周波数と上記駆動信号の周波数が一致していれば、第1可動部31はX軸周りにこの周波数で安定して揺動する。本実施形態において、光学デバイス1が備える全てのミラーユニット2の各々における第1可動部31は、この第1可動部31に接続された第1連結部41,42が加熱される前の状態において、駆動制御部3が出力する駆動信号の周波数よりも高い共振周波数を有する。
 次に、図2を参照して、加熱部15の構成について詳細に説明する。光学デバイス1において、複数の加熱部15が各ミラーユニット2に設けられている。加熱制御部4は、第1可動部31の揺動状態を示す信号を取得し、この信号の位相に基づいて加熱部15による第1連結部41,42の加熱をフィードバック制御する。本実施形態において、揺動状態を示す信号とは、支持部22に対する第1可動部31の相対位置を示す信号である。換言すれば、揺動状態を示す信号とは、第1可動部31の振れ角の位相を示す信号である。加熱制御部4は、複数のミラーユニット2の各々における第1連結部41,42の加熱を制御する。本実施形態において、加熱制御部4は、全てのミラーユニット2における第1連結部41,42を加熱部15によって加熱する。
 加熱制御部4は、加熱部15によって、第1連結部41,42を急速に加熱した後に、第1連結部41,42を緩やかに加熱する。これによって、加熱制御部4は、第1連結部41,42の温度を細かく調整する。換言すれば、加熱制御部4は、加熱部によって、第一の仕事率で第1連結部41,42を加熱した後に、第一の仕事率よりも小さい第二の仕事率で第1連結部41,42を加熱する。
 本実施形態において、各加熱部15は、第1加熱部71と、第2加熱部72とを含む。第1加熱部71及び第2加熱部72は、互いに異なる熱量を第1可動部31に与える。第1加熱部71及び第2加熱部72は、たとえば、レーザの照射又は電熱線の発熱によって第1可動部31を加熱する。
 第1加熱部71は、加熱制御部4から信号に応じて、第一の熱量を第1連結部41,42に与える。第2加熱部72は、加熱制御部4からの信号に応じて、第一の熱量よりも小さい第二の熱量を第1連結部41,42に与える。加熱制御部4は、第1加熱部71によって第1連結部41,42を大きく加熱した後に、第2加熱部72によって第1連結部41,42を小さく加熱する。これによって加熱制御部4は、第1連結部41,42の温度を調整する。
 本実施形態において、図2に示されているように、ミラーユニット2は、電熱線部73と、レーザ照射部74とを有している。これらの電熱線部73とレーザ照射部74とが、第1連結部41,42を加熱する加熱部15として機能する。換言すれば、加熱部15は、電熱線部73とレーザ照射部74とを含む。
 電熱線部73は、印加される電圧に応じた熱を発する。電熱線部73に印加される電圧は、加熱制御部4によって制御される。電熱線部73は、電熱線73aを含む。ミラー駆動部11は、配線76,77と、電極パッド78,79と、を更に備えている。電熱線73aは、第2可動部32を囲むように支持部22に設けられている。電熱線73aは、平面視において渦巻き状を呈している。
 電熱線73aは、金属又は半導体によって構成されている。たとえば、電熱線73aは、銅、又はアルミニウム合金によって構成される。電熱線73aは、拡散層によって構成されてもよい。
 各電極パッド78,79は、支持部22に設けられ、上述した絶縁層55から外部に露出している。配線76は、電熱線73aの一端と電極パッド78とに電気的に接続されている。配線77は、電熱線73aの他端と電極パッド79とに電気的に接続されている。電極パッド78,79は、加熱制御部4と電気的に接続されている。電極パッド78,79に電圧が印加されると、電熱線73aが発熱し、可動部23が全体的に加熱される。これにより、第1連結部41,42が加熱される。電熱線73aは、第1加熱部71に含まれる。
 レーザ照射部74は、第1可動部31と一対の第1連結部41,42との少なくとも一方にレーザを照射する。レーザ照射部74は、加熱制御部4と電気的に接続されている。レーザ照射部74から照射されるレーザの強度は、加熱制御部4によって制御される。本実施形態において、レーザ照射部74は、第1可動部31にレーザを照射する。これによって、第1可動部31が加熱され、加熱された第1可動部31から一対の第1連結部41,42に熱が伝達される。この結果、第1連結部41,42が加熱される。第1可動部31のミラー面31aにレーザが照射された場合も、上記熱の伝達によって、第1連結部41,42が加熱される。本実施形態において、レーザ照射部74は、第2加熱部72に含まれる。
 次に、図3及び図4を参照して、本実施形態の変形例に係る光学デバイスのミラーユニットについて説明する。図3は、本実施形態の変形例に係るミラーユニットの概略平面図である。本変形例は、概ね、上述した実施形態と類似又は同じである。本変形例は、加熱部15がレーザ照射部74を含まない点、及び、電熱線部73が電熱線73b,73cを含む点に関して、上述した実施形態と相違する。以下、上述した実施形態と変形例との相違点を主として説明する。なお、図3は、一対の駆動用コイル51,52、及び、複数の配線61,62,63,64を省略して図示している。
 本変形例のミラーユニット2Aにおいて、電熱線部73は、図3に示されているように、電熱線73aに加えて電熱線73b,73cを含む。ミラー駆動部11は、配線81,82,83,84と、電極パッド86,87,88,89とを更に備えている。電熱線73b,73cは、第2可動部32に設けられている。電熱線73b,73cは、第2加熱部72に含まれる。電熱線73b,73cは、ミラー面31aの重心を対称点として点対称となるように設けられている。
 電熱線73bは、第2連結部43と第2可動部32との接続部分から第2可動部32と第1連結部41との接続部分に向かって延在している。電熱線73bは、第2可動部32と第1連結部41との接続部分において蛇行した後に、第2連結部43と第2可動部32との接続部分に向かって延在している。電熱線73bは、第2可動部32と第1連結部41との接続部分において、複数の直線状部85aと、複数の折り返し部85bと、を有している。直線状部75bは、Y軸に平行な方向に延在し、X軸に平行な方向に並んで配置されている。折り返し部85bは、隣り合う直線状部85aの両端を交互に連結している。
 電熱線73cは、第2連結部44と第2可動部32との接続部分から第2可動部32と第1連結部42との接続部分に向かって延在している。電熱線73cは、第2可動部32と第1連結部42との接続部分において蛇行した後に、第2連結部44と第2可動部32との接続部分に向かって延在している。電熱線73cは、第2可動部32と第1連結部42との接続部分において、複数の直線状部85cと、複数の折り返し部85dと、を有している。直線状部85cは、Y軸に平行な方向に延在し、X軸に平行な方向に並んで配置されている。折り返し部85dは、隣り合う直線状部85cの両端を交互に連結している。
 本変形例において、電熱線73b,73bは、スパッタリング及びフォトリソグラフィによって形成される。電熱線73b,73cは、絶縁層55から露出していてもよい。電熱線73b,73cは、たとえば駆動用コイル51,52と同様に、ダマシン法により形成されていてもよい。この場合、電熱線73b,73cは、各駆動用コイル51,52と異なる層において、第2可動部32に埋め込まれる。この場合、電熱線73b,73cは、絶縁層55に覆われる。
 電熱線73b,73cは、金属又は半導体によって構成されている。たとえば、電熱線73b,73cは、銅、又はアルミニウム合金によって構成される。電熱線73b,73cは、拡散層によって構成されてもよい。
 配線81は、電熱線73bの一端と電極パッド86とに電気的に接続されている。配線81は、電熱線73bの一端から第2連結部43を介して電極パッド86まで延在している。配線82は、電熱線73bの他端と電極パッド87とに電気的に接続されている。配線82は、電熱線73bの他端から第2連結部43を介して電極パッド87まで延在している。各配線81,82は、たとえば駆動用コイル51,52と同様に、ダマシン法により形成されており、絶縁層55に覆われている。
 配線83は、電熱線73cの一端と電極パッド88とに電気的に接続されている。配線83は、電熱線73cの一端から第2連結部44を介して電極パッド88まで延在している。配線84は、電熱線73cの他端と電極パッド89とに電気的に接続されている。配線84は、電熱線73cの他端から第2連結部44を介して電極パッド89まで延在している。各配線83,84は、たとえば駆動用コイル51,52と同様に、ダマシン法により形成されている。各配線83,84は、絶縁層55に覆われている。
 電極パッド86,87,88,89は、加熱制御部4と電気的に接続されている。加熱制御部4によって電極パッド86,87に電圧が印加されると、電熱線73bが発熱し、第2可動部32が加熱される。特に、第2可動部32と第1連結部41との接続部分が加熱される。加熱された部分から第1連結部41に熱が伝達されることにより、第1連結部41が加熱される。加熱制御部4によって電極パッド88,89に電圧が印加されると、電熱線73cが発熱し、第2可動部32が加熱される。特に、第2可動部32と第1連結部42との接続部分が加熱される。加熱された部分から第1連結部42に熱が伝達されることにより、第1連結部42が加熱される。電熱線73b,73cは、第2加熱部72に含まれる。
 次に、図4を参照して、本実施形態の変形例に係る光学デバイスのミラーユニットについて説明する。図4は、本実施形態の変形例に係るミラーユニットの概略平面図である。本変形例は、概ね、上述した実施形態と類似又は同じである。本変形例は、加熱部15がレーザ照射部74を含まない点、及び、電熱線部73が電熱線73d,73e,73fを含む点に関して、上述した実施形態と相違する。以下、上述した実施形態と変形例との相違点を主として説明する。なお、図4において、一対の駆動用コイル51,52、及び、複数の配線61,62,63,64が省略されている。
 本変形例のミラーユニット2Bにおいて、電熱線部73は、図4に示されているように、電熱線73aに加えて電熱線73d,73e,73fを含む。ミラー駆動部11は、配線91,92と、電極パッド96,97とを更に備えている。電熱線73d,73e,73fは、第2可動部32に設けられている。電熱線73d,73fは、一点鎖線で示されている。電熱線73eは、破線で示されている。電熱線73d,73e,73fは、第2加熱部72に含まれる。電熱線73d,73e,73fは、ミラー面31aの重心を対称点として点対称となるように設けられている。
 電熱線73dは、第2連結部43と第2可動部32との接続部分から第2可動部32と第1連結部41との接続部分まで延在している。電熱線73eは、第2可動部32と第1連結部41との接続部分において電熱線73dに接続されている。電熱線73eは、第1可動部31の環状部37に設けられている。電熱線73eは、第2可動部32と第1連結部41との接続部分から第1可動部31と第1連結部41との接続部分まで第1連結部41に沿って延在している。電熱線73eは、第1可動部31と第1連結部41との接続部分において2つに分かれ、第1可動部31の縁に沿ってミラー面31aを囲むように延在している。2つに分かれた電熱線73eは、第1可動部31と第1連結部42との接続部分において互いに接続されている。電熱線73eは、第1可動部31と第1連結部42との接続部分から第2可動部32と第1連結部42との接続部分まで第1連結部42に沿って延在している。電熱線73eは、第2可動部32と第1連結部42との接続部分において電熱線73fに接続されている。電熱線73fは、第2可動部32と第1連結部42との接続部分から第2連結部44と第2可動部32との接続部分まで延在している。
 本変形例において、電熱線73d,73e,73fは、たとえば駆動用コイル51,52と同様に、ダマシン法により形成されている。電熱線73d,73e,73fは、第1可動部31、第2可動部32、及び第1連結部41,42に埋め込まれている。電熱線73d,73e,73fは、絶縁層55に覆われている。電熱線73d,73e,73fは、各駆動用コイル51,52と異なる層において、第1可動部31、第2可動部32、及び第1連結部41,42に埋め込まれていてもよい。電熱線73d,73e,73fは、絶縁層55から露出していてもよい。
 電熱線73d,73e,73fは、金属又は半導体によって構成されている。たとえば、電熱線73d,73e,73fは、銅、又はアルミニウム合金によって構成される。電熱線73d,73e,73fは、拡散層によって構成されてもよい。電熱線73eは、拡散層又はポリシリコンによって構成されることが好ましい。
 配線91は、電熱線73dの一端と電極パッド96とに電気的に接続されている。配線91は、電熱線73dの一端から第2連結部43を介して電極パッド96まで延在している。配線92は、電熱線73fの一端と電極パッド97とに電気的に接続されている。配線92は、電熱線73fの一端から第2連結部44を介して電極パッド97まで延在している。各配線91,92は、たとえば駆動用コイル51,52と同様に、ダマシン法により形成されている。各配線91,92は、絶縁層55に覆われている。
 電極パッド96,97は、加熱制御部4と電気的に接続されている。加熱制御部4によって電極パッド96,97に電圧が印加されると、電熱線73d,73e,73fが発熱し、第1可動部31、第2可動部32、及び第1連結部41,42が加熱される。電熱線73d,73e,73fは、第2加熱部72に含まれる。
 以上のように、図3及び図4に示されている変形例において、第1加熱部71は、支持部22に設けられている。第2加熱部72は、第1連結部41,42、第1可動部31、第2可動部32の少なくとも1つに設けられている。
 次に、図5を参照して、光学デバイス1における制御方法の一例について説明する。図5は、光学デバイス1の制御方法を示すフローチャートである。
 光学デバイス1は、加熱制御部4によって第1可動部31の位相安定処理を行う(処理S1)。加熱制御部4は、第1可動部31の揺動状態を示す信号を取得する。本実施形態において、加熱制御部4は、第1可動部31の振れ角の位相を示す信号を取得し、取得された信号に基づいて、加熱部15を制御する。加熱制御部4は、駆動制御部3から出力された駆動信号の位相と第1可動部31の揺動状態を示す信号の位相との位相差が小さくなるように、加熱部15による第1連結部41,42の加熱を制御する。本実施形態において、加熱制御部4は、第1加熱部71によって大きな熱量を第1連結部41,42に与えた後に、第2加熱部72によって第1連結部41,42に小さな熱量を与えて微調整する。
 加熱部15によって第1連結部41,42が加熱されると、第1連結部41,42の弾性率が変化する。第1連結部41,42の弾性率が変化すると、第1可動部31の振れ角の位相が変化する。加熱制御部4は、変化した第1可動部31の振れ角の位相を示す信号を取得し、取得された信号に基づいて加熱部15を制御する。すなわち、加熱制御部4は、可動部23の振れ角の位相を示す信号に基づいて、加熱部15をフィードバック制御する。加熱制御部4は、このフィードバック制御によって、第1可動部31の共振周波数と駆動信号の周波数とが一致するように加熱部15を制御する。第1可動部31の共振周波数と駆動信号の周波数とが一致すると、第1可動部31の振れ角の位相が駆動信号の位相に対して90°進んだ状態となる。
 本実施形態において、加熱制御部4は、駆動用コイル51,52における逆起電力を示す信号の位相を検出する。加熱制御部4は、逆起電力を示す信号の位相と駆動制御部3から出力される駆動信号の位相との差分に基づいて、加熱部15を制御する。第1可動部31の加熱によって、逆起電力を示す信号の位相は変化する。逆起電力を示す信号の位相は、第1可動部31の共振周波数に対応している。
 本実施形態の変形例として、光学デバイス1は、可動部23に起電力モニタ用コイルを別途、有していてもよい。この場合、加熱制御部4は、起電力モニタ用コイルにおける起電力を示す信号の位相と駆動制御部3から出力される駆動信号の位相との差分に基づいて、加熱部15を制御する。すなわち、起電力モニタ用コイルに発生する起電力を示す信号は、上述した駆動用コイル51,52における逆起電力を示す信号に対応する。逆圧電を示す信号又は第1可動部31の位置を検出する光センサから信号が、第1可動部31の揺動状態を示す信号として用いられてもよい。
 光学デバイス1は、位相安定処理が行われると、駆動制御部3によって第1可動部31の振幅制御を行う(処理S2)。駆動制御部3は、第1可動部31の揺動の振幅に基づいて、駆動用コイル51,52に流す電流を制御する。たとえば、駆動制御部3は、上述した逆起電力を示す信号のピークに基づいて駆動用コイル51,52に流す電流を制御する。駆動用コイル51,52における逆起電力を示す信号の代わりに、起電力モニタ用コイルに発生する起電力を示す信号などが用いられてもよい。
 次に、図6を参照して、第1可動部31の位相安定処理の一例について詳細に説明する。図6は、第1可動部31の位相安定処理を示すフローチャートである。
 まず、加熱制御部4は、駆動用コイル51,52における逆起電力を示す信号を取得する(処理S11)。続いて、加熱制御部4は、取得された信号に基づいて、逆起電力を示す信号の位相を算出する(処理S12)。
 次に、加熱制御部4は、逆起電力を示す信号の取得及び取得した信号の位相の算出を所定回数繰り返したか否かを判断する(処理S13)。たとえば、加熱制御部4は、逆起電力を示す信号の取得及び取得した信号の位相の算出が50回繰り返されたか否かを判断する(処理S13)。加熱制御部4は、50回繰り返されていないと判断した場合(処理S13のNO)に、処理を処理S11に戻す。
 加熱制御部4は、50回繰り返されたと判断した場合(処理S13のYES)に、処理を処理S14に進める。加熱制御部4は、処理S11及び処理S12の繰り返しによって取得された逆起電力の信号の位相を平均する(処理S14)。本実施形態において、加熱制御部4は、50個の信号の位相を平均する。
 次に、加熱制御部4は、第1可動部31の振れ角の位相が安定しているか否かを判断する(処理S15)。第1可動部31の共振周波数と駆動信号の周波数とが一致している場合に、第1可動部31の振れ角の位相は安定する。本実施形態において、加熱制御部4は、処理S14によって求められた振れ角の位相の平均と駆動制御部3から出力される駆動信号の位相との差分に基づいて、第1可動部31の振れ角の位相が安定しているか否かを判断する。上記差分が90°であれば、第1可動部31の共振周波数と駆動信号の周波数とが一致している。加熱制御部4は、上記差分が90°から誤差を考慮した範囲内にある場合に、第1可動部31の振れ角の位相が安定していると判断する。たとえば、加熱制御部4は、上記差分が90±0.15°であれば、第1可動部31の振れ角の位相が安定していると判断する。加熱制御部4は、第1可動部31の振れ角の最大値が所定以上の値となる場合に、第1可動部31の振れ角の位相が安定していると判断してもよい。
 加熱制御部4は、位相が安定していないと判断した場合(処理S15のNO)に、処理を処理S16に進める。加熱制御部4は、位相が安定していると判断した場合(処理S15のYES)に、位相安定処理を終了する。
 加熱制御部4は、処理S14によって求められた位相の平均に基づいて、加熱部15を制御する(処理S16)。加熱制御部4は、上記位相の平均と駆動制御部3から出力される駆動信号の位相との差分に基づいて、加熱部15を制御する。加熱制御部4は、逆起電力の位相と駆動信号の位相との差分に応じて、第1可動部31の共振周波数と駆動信号の周波数とが一致するように、加熱部15によって第1可動部31を加熱する。
 加熱制御部4は、上記差分の値に応じて、加熱部15が第1可動部31に与える熱量を決定し、決定された熱量が第1連結部41,42に与えられるように加熱部15を制御する。たとえば、加熱制御部4は、上記差分の値に応じて、レーザ照射部74から照射されるレーザの強度を決定する。たとえば、加熱制御部4は、上記差分の値に応じて、電熱線部73に印加する電圧を決定する。加熱制御部4は、第1可動部31の共振周波数と駆動信号の周波数とが一致していないと判断した場合に、予め決められた熱量が第1連結部41,42に与えられるように加熱部15を制御してもよい。
 加熱制御部4は、処理S16を行った後に、所定時間待機する(処理S17)。加熱制御部4は、所定時間待機した後に、処理を処理S11に戻す。本実施形態において、加熱制御部4は、処理S16を行った後に1秒間待機する。
 次に、上述した実施形態及び変形例における光学デバイスの作用効果について説明する。
 図7は、各ミラーユニット2における第1可動部31の共振周波数と駆動信号の周波数との関係を示している。縦軸は振幅を示し、横軸は周波数を示している。太い実線で示されている波形101,102,103,104は、加熱部15によって第1連結部41,42が加熱される前の状態における第1可動部31の揺動における振幅と周波数の関係を示している。波形101,102,103,104は、それぞれ異なる第1可動部31に対応する。したがって、一点鎖線は、波形101に対応する第1可動部31の共振周波数を示している。破線は、駆動信号の周波数を示している。
 このように、光学デバイス1において、第1可動部31の共振周波数が、駆動制御部3の駆動信号の周波数よりも高い。この状態において、第1連結部41,42が加熱部15によって加熱されると、第1連結部41,42の弾性率が変化する。第1連結部41,42の弾性率が変化すれば、第1可動部31の共振周波数も変化する。
 第1連結部41,42の弾性率が低下すると、第1可動部31の共振周波数も低下する。このため、たとえば、波形101に対応する第1可動部31に接続された第1連結部41,42が加熱されると、波形101は矢印α方向にシフトする。したがって、第1連結部41,42を加熱することで、第1可動部31の共振周波数と駆動信号の周波数とを一致させることができる。このように、上記光学デバイス1は、駆動信号の周波数に合うように第1可動部31の共振周波数を容易に変化させることができる。この結果、光学デバイス1は、所望の周波数かつ所望の振れ角で安定して第1可動部31を揺動できる。
 このような構成において、第1連結部41,42において精密かつ迅速な温度調整が求められる。しかし、たとえば、温度センサによって検出された温度に基づいてフィードバック制御を行う場合に、共振周波数の変化に最も寄与する第1連結部41,42の温度の検出にタイムラグが生じる。支持部22に温度センサが設けられた場合には第1連結部41,42から支持部に伝達した熱を検出するため、フィードバック制御において温度の伝達速度に応じたタイムラグが生じる。加熱制御部4は、第1可動部31の揺動状態を示す信号の位相に基づいて加熱部15による第1連結部41,42の加熱をフィードバック制御する。このため、光学デバイス1は、少なくとも、温度センサによって検出された温度に基づいてフィードバック制御する場合よりも精密かつ迅速な温度調整が実現される。加熱制御部4は、たとえば、0.003~0.005℃刻みで第1連結部41,42の温度調節を行うことができる。この結果、第1可動部31における共振周波数の変更の精度も向上されている。
 加熱制御部4は、複数のミラーユニット2の各々における第1連結部41,42の加熱を制御する。このため、光学デバイス1は、駆動信号の周波数に合うように各第1可動部31の共振周波数を変化させることができる。この結果、光学デバイス1は、所望の周波数かつ所望の振れ角で各第1可動部31を揺動することができる。
 加熱部15によって第1連結部41,42が加熱される前の状態において、第1可動部31は、図7に示されているように、駆動制御部3が出力する駆動信号の周波数よりも高い共振周波数を有している。このため、光学デバイス1は、加熱制御部4による加熱の制御のみによって、第1可動部31の共振周波数を駆動信号の周波数に合わせることができる。冷却素子によって第1連結部41,42を冷却すれば、加熱する場合と逆方向に第1可動部31の共振周波数をシフトできる。しかし、冷却素子は比較的大型である。光学デバイス1は、冷却素子を用いる場合に比べてコンパクト化が図られている。
 図7に示したように、この光学デバイス1が備える全てのミラーユニット2の各々における第1可動部31は、各第1可動部31に接続された第1連結部41,42を加熱する前の状態において、駆動制御部3が出力する駆動信号の周波数よりも高い共振周波数を有する。加熱制御部4は、全てのミラーユニット2における第1連結部41,42を加熱部15によって加熱する。したがって、冷却素子を用いる場合に比べて光学デバイスのコンパクト化が図られる。
 加熱制御部4は、加熱部15によって、第一の仕事率で第1連結部41,42を加熱した後に、第一の仕事率よりも小さい第二の仕事率で第1連結部41,42を加熱する。このため、加熱制御部4は、第1可動部31の共振周波数を大まかに調整した後に、第1可動部31の共振周波数を細かく調整することができる。この結果、光学デバイス1は、第1可動部31の共振周波数をより精密かつ迅速に調整できる。
 加熱部15は、第1加熱部71と第2加熱部72とを含んでいる。第1加熱部71は、第一の熱量を第1連結部41,42に与える。第2加熱部72は、第一の熱量よりも小さい第二の熱量を第1連結部41,42に与える。このため、加熱制御部4は、第1加熱部71によって第1可動部31の共振周波数を大まかに調整し、第2加熱部72によって第1可動部31の共振周波数を細かく調整することができる。したがって、光学デバイス1は、第1可動部31の共振周波数をより精密かつ迅速に調整できる。
 加熱制御部4は、駆動制御部3から出力された駆動信号の位相と第1可動部31の揺動状態を示す信号の位相との位相差が小さくなるように、加熱部15による第1連結部41,42の加熱を制御する。駆動信号の位相と第1可動部31の揺動状態を示す信号の位相とを比較する場合、駆動信号の周波数と第1可動部31の揺動状態を示す信号の周波数とを比較する場合よりも精密に、第1連結部41,42の加熱が制御され得る。このため、光学デバイス1は、所望の周波数で所望の振れ角をより正確に得ることができる。
 本実施形態における加熱部15は、第1連結部41,42を加熱するレーザ照射部74を含む。このため、加熱部15は、第1連結部41,42をより迅速に加熱することができる。この結果、光学デバイス1は、第1可動部31の共振周波数をより精密かつ迅速に変化させることができる。磁界発生部21における永久磁石の温度が変化しにくいため、磁界の変化による第1可動部31の振れ角の変化が抑制される。
 図3及び図4に示した変形例において、第1加熱部71は、支持部22に設けられている。第2加熱部72は、第1連結部41,42、第1可動部31、及び第2可動部32の少なくとも1つに設けられている。このため、光学デバイス1は、コンパクトな構成で、第1可動部31の共振周波数をより精密かつ迅速に調整できる。
 図3及び図4に示した変形例において、加熱部15は、第1連結部41,42を加熱する電熱線73b,73c,73d,73e,73fを含んでいる。電熱線73b,73c,73d,73e,73fは、ミラー面31aの重心を対称点として点対称となるように、第1連結部41,42、第1可動部31、及び第2可動部32の少なくとも1つに設けられている。このため、加熱部15は、コンパクトな構成で精密に第1連結部41,42を加熱することができる。電熱線73b,73c,73d,73e,73fに発生するローレンツ力が打ち消し合うため、第1可動部31の揺動の乱れが抑制される。磁界発生部21における永久磁石の温度が変化しにくいため、磁界の変化による第1可動部31の振れ角の変化が抑制される。
 図4に示した変形例において、電熱線73eは、ミラー面31aを囲むように第1可動部31に設けられている。このため、第1連結部41,42が迅速かつ精密に加熱される。電熱線73eに発生するローレンツ力が打ち消し合うため、第1可動部31の揺動の乱れが抑制される。
 以上、本発明の実施形態及び変形例について説明してきたが、本発明は必ずしも上述した実施形態及び変形例に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。
 本実施形態及び変形例において、加熱部15が第1加熱部71及び第2加熱部72を有する例について説明した。しかし、加熱部15は、1つであってもよい。たとえば、加熱部15として1つの電熱線のみが用いられてもよい。この場合、加熱制御部4は、たとえば、この電熱線に印加する電圧を調整することで、電熱線の仕事率を変化させてもよい。たとえば、加熱制御部4は、第一の電圧を電熱線に印加した後に、第一の電圧よりも小さい第二の電圧を電熱線に印加してもよい。たとえば、電熱線73aのみによって第1連結部41,42が加熱されてもよい。電熱線73b,73c,73d,73e,73fのいずれか一つのみによって第1連結部41,42が加熱されてもよい。
 光学デバイス1は、加熱部15として1つのレーザ照射部74のみを用いてもよい。この場合、加熱制御部4は、たとえば、レーザ照射部74から第一の強度のレーザを第1可動部31に照射した後に、第一強度よりも小さい第二の強度のレーザを第1可動部31に照射してもよい。これらの場合も、加熱制御部4は、第1可動部31の共振周波数を大まかに調整した後に、第1可動部31の共振周波数を細かく調整することができる。
 図3及び図4に示した変形例の構成において、レーザ照射部74がさらに設けられていてもよい。複数のレーザ照射部74が、1つのミラーユニット2に設けられていてもよい。
 電熱線73aは、温度センサ用抵抗として用いられてもよい。電熱線73aを温度センサ用抵抗として用いる場合には、加熱制御部4は電熱線73aには電流を流さない。
 電熱線73aと温度センサ用抵抗との双方が、支持部22に設けられてもよい。この場合、平面視において電熱線73aの外側又は内側に温度センサ用抵抗が設けられてもよい。電熱線73aと温度センサ用抵抗とが、互いに異なる層に設けられてもよい。
 電熱線部73は、支持部22、可動部23、及び弾性連結部24に設けられていなくてもよい。たとえば、電熱線部73は、支持部22、可動部23、及び弾性連結部24との間に、間隙を設けた状態で配置されてもよい。
 本実施形態及び変形例において、第1可動部31の揺動状態を示す信号が、第1可動部31の振れ角の位相を示す信号である場合について説明した。第1可動部31の揺動状態を示す信号は、第1可動部31の速度の位相を示す信号であってもよい。この場合、加熱制御部4は、速度の位相を示す信号と駆動制御部3から出力される駆動信号の位相との差分に基づいて、第1可動部31の振れ角の位相が安定しているか否かを判断する。この差分が0°であれば、第1可動部31の共振周波数と駆動信号の周波数とが一致している。加熱制御部4は、上記差分が0°から誤差を考慮した範囲内にある場合に、第1可動部31の振れ角の位相が安定していると判断する。たとえば、加熱制御部4は、上記差分が0±0.15°であれば、第1可動部31の振れ角の位相が安定していると判断する。
 本実施形態及び変形例において、可動部23がX軸及びY軸の2軸で駆動される例を説明した。可動部23は、1軸で駆動されてもよい。この場合、たとえば、第1可動部31と支持部22とが第1連結部41,42によって連結される。
 本実施形態及び変形例において、可動部23が電磁式で駆動される例について説明した。可動部23の駆動方式は、圧電駆動方式、又は、静電駆動方式であってもよい。
 1…光学デバイス、2,2A,2B…ミラーユニット、3…駆動制御部、4…加熱制御部、11…ミラー駆動部、15…加熱部、22…支持部、23…可動部、24…弾性連結部、31…第1可動部、31a…ミラー面、32…第2可動部、41,42…第1連結部、43,44…第2連結部、50…動力発生部、71…第1加熱部、72…第2加熱部、73a,73b,73c,73d,73e,73f…電熱線、74…レーザ照射部、P…重心。

Claims (12)

  1.  光学デバイスであって、
     ミラー面が設けられた可動部と、前記可動部に接続された弾性連結部と、前記弾性連結部を介して前記可動部を支持する支持部と、前記可動部に動力を発生させる動力発生部と、を有するミラー駆動部と、
     前記動力発生部を動作させる駆動信号を出力する駆動制御部と、
     前記弾性連結部を加熱する加熱部と、
     前記加熱部を制御する加熱制御部と、を備え、
     前記可動部は、前記弾性連結部が加熱される前の状態において、前記駆動制御部が出力する前記駆動信号の周波数よりも高い共振周波数を有し、前記動力発生部の動力に応じた前記弾性連結部の弾性変形によって揺動し、
     前記加熱制御部は、前記可動部の揺動状態を示す信号を取得し、取得された信号の位相に基づいて前記加熱部による前記弾性連結部の加熱をフィードバック制御する。
  2.  請求項1に記載の光学デバイスであって、
     前記可動部は、前記ミラー面が設けられた第1可動部と、前記第1可動部を囲む第2可動部とを含み、
     前記弾性連結部は、前記第1可動部と前記第2可動部とを弾性的に連結する第1連結部と、前記第2可動部と前記支持部とを弾性的に連結する第2連結部と、を含む。
  3.  請求項1又は2に記載の光学デバイスであって、前記加熱部は、第1連結部を加熱する。
  4.  請求項1~3のいずれか一項に記載の光学デバイスであって、前記加熱制御部は、前記加熱部によって、第一の仕事率で前記弾性連結部を加熱した後に、第一の仕事率よりも小さい第二の仕事率で前記弾性連結部を加熱する。
  5.  請求項1~4のいずれか一項に記載の光学デバイスであって、前記加熱部は、第一の熱量を前記弾性連結部に与える第1加熱部と、前記第一の熱量よりも小さい第二の熱量を前記弾性連結部に与える第2加熱部とを含む。
  6.  請求項5に記載の光学デバイスであって、
     前記第1加熱部は、前記支持部に設けられ、
     前記第2加熱部は、前記弾性連結部及び前記可動部の少なくとも1つに設けられている。
  7.  請求項1~5のいずれか一項に記載の光学デバイスであって、前記加熱部は、前記弾性連結部を加熱するレーザ照射部を含む。
  8.  請求項1~7のいずれか一項に記載の光学デバイスであって、
     前記加熱部は、前記弾性連結部を加熱する電熱線を含み、
     前記電熱線は、前記ミラー面の重心を対称点として点対称となるように、前記弾性連結部、及び前記可動部の少なくとも1つに設けられている。
  9.  請求項8に記載の光学デバイスであって、前記電熱線は、前記ミラー面を囲むように前記可動部に設けられている。
  10.  請求項1~9のいずれか一項に記載の光学デバイスであって、前記加熱制御部は、前記駆動制御部から出力された前記駆動信号の位相と前記可動部の揺動状態を示す信号の位相との位相差が小さくなるように、前記加熱部による前記弾性連結部の加熱を制御する。
  11.  請求項1~10のいずれか一項に記載の光学デバイスであって、
     各々が前記ミラー駆動部と前記加熱部とを含む複数のミラーユニットを備え、
     前記加熱制御部は、前記複数のミラーユニットの各々における前記弾性連結部の加熱を制御する。
  12.  請求項11に記載の光学デバイスであって、
     前記光学デバイスが備える全ての前記ミラーユニットの各々における前記可動部は、各前記可動部に接続された前記弾性連結部を加熱する前の状態において、前記駆動制御部が出力する前記駆動信号の周波数よりも高い共振周波数を有し、
     前記加熱制御部は、前記全てのミラーユニットにおける前記弾性連結部を前記加熱部によって加熱する。
PCT/JP2020/034183 2019-09-30 2020-09-09 光学デバイス WO2021065399A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/763,285 US20220342206A1 (en) 2019-09-30 2020-09-09 Optical device
DE112020004669.9T DE112020004669T5 (de) 2019-09-30 2020-09-09 Optikvorrichtung
CN202080068254.0A CN114450618B (zh) 2019-09-30 2020-09-09 光学装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019178842A JP7481821B2 (ja) 2019-09-30 2019-09-30 光学デバイス
JP2019-178842 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021065399A1 true WO2021065399A1 (ja) 2021-04-08

Family

ID=75270662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034183 WO2021065399A1 (ja) 2019-09-30 2020-09-09 光学デバイス

Country Status (6)

Country Link
US (1) US20220342206A1 (ja)
JP (1) JP7481821B2 (ja)
CN (1) CN114450618B (ja)
DE (1) DE112020004669T5 (ja)
TW (1) TW202127095A (ja)
WO (1) WO2021065399A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069731A (ja) * 2002-08-01 2004-03-04 Ricoh Co Ltd 振動ミラー、振動ミラーの振れ角制御方法、光書込装置及び画像形成装置
WO2014094850A1 (en) * 2012-12-20 2014-06-26 Lemoptix Sa A mems device
WO2019107312A1 (ja) * 2017-12-01 2019-06-06 浜松ホトニクス株式会社 アクチュエータ装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008013098B4 (de) * 2007-04-02 2012-02-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikromechanisches System mit Temperaturstabilisierung
EP2703872A4 (en) * 2011-04-26 2014-08-20 Toyota Motor Co Ltd MIRROR DEVICE
JP2015036782A (ja) 2013-08-14 2015-02-23 レーザーテック株式会社 ミラー駆動装置、及び、ミラー駆動方法
JP6459392B2 (ja) * 2014-10-28 2019-01-30 ミツミ電機株式会社 光走査装置
JP2018081176A (ja) * 2016-11-15 2018-05-24 株式会社デンソー Memsデバイス
JP7459580B2 (ja) * 2020-03-16 2024-04-02 株式会社リコー 可動装置、画像投影装置、ヘッドアップディスプレイ、レーザヘッドランプ、ヘッドマウントディスプレイ、物体認識装置、及び移動体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069731A (ja) * 2002-08-01 2004-03-04 Ricoh Co Ltd 振動ミラー、振動ミラーの振れ角制御方法、光書込装置及び画像形成装置
WO2014094850A1 (en) * 2012-12-20 2014-06-26 Lemoptix Sa A mems device
WO2019107312A1 (ja) * 2017-12-01 2019-06-06 浜松ホトニクス株式会社 アクチュエータ装置

Also Published As

Publication number Publication date
JP7481821B2 (ja) 2024-05-13
US20220342206A1 (en) 2022-10-27
CN114450618B (zh) 2024-03-08
JP2021056368A (ja) 2021-04-08
DE112020004669T5 (de) 2022-06-15
TW202127095A (zh) 2021-07-16
CN114450618A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
KR100901237B1 (ko) 광 편향기 및 이를 이용하는 광학 기구
US7684102B2 (en) Oscillator device and image forming apparatus using the same
US5543956A (en) Torsional vibrators and light deflectors using the torsional vibrator
KR101088501B1 (ko) 성능개선된 mems 스캐닝 시스템
JP6278130B2 (ja) 微小光学電気機械デバイスおよびその製造方法
JPWO2008044470A1 (ja) 光走査装置
WO2018159077A1 (ja) 光モジュール及び測距装置
US9664899B2 (en) Optical scanning device and image reading system
US6285485B1 (en) Induction microscanner
US7436566B2 (en) Oscillating device, optical deflector and method of controlling the same
JP5098319B2 (ja) 光スキャナ装置
WO2021065399A1 (ja) 光学デバイス
JP5447411B2 (ja) 2次元光走査装置及び画像投影装置
JP2015099270A (ja) 振動装置、光走査装置、それを用いた画像形成装置および映像投射装置
JP3776521B2 (ja) 光スキャナ
JP7221180B2 (ja) 光学デバイス
JP2008225041A (ja) 光スキャナ駆動制御方法及び駆動制御装置
JP2006072251A (ja) プレーナ型アクチュエータ
JP2001305472A (ja) 光偏向器
JP6224432B2 (ja) 振動装置、光走査装置、それを用いた画像形成装置および映像投射装置
JP2018013783A (ja) 機械的構成部品および少なくとも回動軸線を中心として調節可能部分を調節する方法
JP4446345B2 (ja) 光偏向素子と光偏向器と光走査装置及び画像形成装置
JP2015210455A (ja) 振動素子、光走査装置、画像形成装置、画像投影装置および読み取り装置
JPH11202226A (ja) 光偏向器
JP2009258468A (ja) 揺動体装置、光偏向装置、及びそれを用いた光学機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871131

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20871131

Country of ref document: EP

Kind code of ref document: A1