WO2021065391A1 - 絶縁転がり軸受 - Google Patents

絶縁転がり軸受 Download PDF

Info

Publication number
WO2021065391A1
WO2021065391A1 PCT/JP2020/034063 JP2020034063W WO2021065391A1 WO 2021065391 A1 WO2021065391 A1 WO 2021065391A1 JP 2020034063 W JP2020034063 W JP 2020034063W WO 2021065391 A1 WO2021065391 A1 WO 2021065391A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin layer
rolling bearing
base material
metal base
Prior art date
Application number
PCT/JP2020/034063
Other languages
English (en)
French (fr)
Inventor
福澤 覚
正人 下田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019179197A external-priority patent/JP7433829B2/ja
Priority claimed from JP2020042655A external-priority patent/JP2021143713A/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN202080066401.0A priority Critical patent/CN114514384A/zh
Priority to US17/762,706 priority patent/US11873863B2/en
Publication of WO2021065391A1 publication Critical patent/WO2021065391A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/07Fixing them on the shaft or housing with interposition of an element
    • F16C35/073Fixing them on the shaft or housing with interposition of an element between shaft and inner race ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/07Fixing them on the shaft or housing with interposition of an element
    • F16C35/077Fixing them on the shaft or housing with interposition of an element between housing and outer race ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Definitions

  • the present invention relates to an insulated rolling bearing, and particularly to an insulated rolling bearing used in a refrigerant compressor.
  • the positive displacement refrigerant compressor is widely used in various fields as a compressor for refrigeration and air conditioning equipment.
  • air conditioners that are closely related to the living environment are attracting a lot of public attention, so there is a need to develop highly reliable products that can achieve lower costs and higher efficiency.
  • the number of variable-speed operations that drive electric motors has increased, and the efficiency has been improved compared to conventional constant-speed refrigerant compressors.
  • the drive current (input current from the inverter to the motor) at high load is larger than that of the conventional constant speed type refrigerant compressor. Therefore, the voltage (shaft voltage) generated in the crankshaft that rotates integrally with the electric motor tends to increase. As the shaft voltage increases, the potential difference between the inner ring and the outer ring of the rolling bearing that supports the crankshaft increases, and as a result, an increase in the current flowing through the rolling bearing is caused. This current causes corrosion called electrolytic corrosion on both the inner and outer raceway surfaces of the rolling bearing and the rolling surface of the rolling element, which lowers the reliability of the refrigerant compressor.
  • the refrigerant compressor described in Patent Document 1 is known as a conventional refrigerant compressor that prevents the occurrence of such electrolytic corrosion.
  • an insulating sleeve made of an insulating material is provided between the crankshaft and the auxiliary bearing that rotationally supports the auxiliary shaft portion on the anti-compression mechanism portion side of the drive portion on the crankshaft.
  • the insulating sleeve is fitted on the inner diameter side of the inner ring by means such as press fitting.
  • the insulating sleeve and the crankshaft and the insulating sleeve and the inner ring rotate relative to each other, the insulating sleeve is likely to be worn.
  • a gap is created between the crankshaft and the inner ring, which may cause vibration and abnormal noise of the entire compressor.
  • an insulating film made of synthetic resin is formed by injection molding on the anti-track surface of the outer ring or the inner ring.
  • injection molding the molten resin is injected at a high pressure, and the resin shrinks due to cooling and solidification, so that the shape of the raceway surface formed with high precision may deteriorate. Therefore, it is necessary to increase the thickness of the raceway ring on the side where the insulating film is formed, and it is difficult to reduce the size of the device.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an insulated rolling bearing that can prevent electrolytic corrosion and prevent a gap between a shaft and a raceway ring.
  • the insulated rolling bearing of the present invention includes an inner ring and an outer ring, a plurality of rolling elements interposed between the inner and outer rings, and an insulating bush fitted to the inner peripheral portion of the inner ring or the outer peripheral portion of the outer ring.
  • An insulating rolling bearing, the insulating bush has a substantially cylindrical metal base material and a resin layer formed on an inner peripheral surface or an outer peripheral surface of the metal base material, and the insulating bush is the metal. It is characterized in that the base material side is brought into contact with the inner peripheral portion of the inner ring or the outer peripheral portion of the outer ring and fitted.
  • the insulating bush is a wound bush having a cut portion in a part in the circumferential direction.
  • the base resin of the resin layer is a polytetrafluoroethylene (PTFE) resin. Further, the resin layer is characterized by containing 10% by mass to 30% by mass of glass fibers with respect to the entire resin layer.
  • PTFE polytetrafluoroethylene
  • the resin layer is an injection-molded layer formed on the inner peripheral surface of the metal base material, and the insulating bush is fitted so that the metal base material side is in contact with the inner peripheral portion of the inner ring. It is characterized by.
  • the base resin of the resin layer is a polyphenylene sulfide (PPS) resin, a polyether ketone (PEK) resin, a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) resin, a tetrafluoroethylene-hexafluoropropylene copolymer ( It is characterized by being a FEP) resin or a tetrafluoroethylene-ethylene copolymer (ETFE) resin.
  • PPS polyphenylene sulfide
  • PEK polyether ketone
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • ETFE tetrafluoroethylene-ethylene copolymer
  • the joint surface of the metal base material with the resin layer is characterized by being subjected to a chemical surface treatment for increasing the adhesion of the resin layer.
  • the chemical surface treatment is characterized in that a fine uneven shape is formed on the joint surface or a joint film that chemically reacts with the resin layer is formed on the joint surface.
  • the insulated rolling bearing is used in a refrigerant compressor, and is characterized by being a bearing that rotationally supports a shaft that is rotationally driven by an electric motor of the refrigerant compressor. Further, the refrigerant compressor is characterized by being a scroll type refrigerant compressor.
  • the insulated rolling bearing of the present invention includes an inner ring and an outer ring, a rolling element, and an insulating bush fitted to the inner peripheral portion of the inner ring or the outer peripheral portion of the outer ring. It has a resin layer formed on the surface of the material, and the metal base material is brought into contact with the inner peripheral portion of the inner ring or the outer peripheral portion of the outer ring to be fitted.
  • the surface of the outer ring or the inner ring in contact with the antibonding surface is made of metal, and the non-contact surface is made of a resin layer. You can prevent eating.
  • the bearing main body and the insulating bush have an integrated structure, it is possible to prevent the insulating bush from rotating (sliding) relative to the bearing main body and the shaft, and it is possible to prevent wear of the insulating bush. As a result, it is possible to prevent a gap from being generated between the bearing main body and the shaft, and it is possible to prevent vibration and abnormal noise of the entire compressor even when used in a refrigerant compressor or the like.
  • the insulated rolling bearing of the present invention it is not necessary to increase the thickness of the raceway ring, and the device can be miniaturized. Furthermore, without using rolling bearings filled with conductive grease, it is possible to improve the reliability of the refrigerant compressor by suppressing bearing damage due to bearing electrolytic corrosion and insufficient oil supply with an inexpensive structure. it can.
  • the base resin of the resin layer is PTFE resin, it has excellent heat resistance and chemical resistance. Further, since the resin layer contains 10% by mass to 30% by mass of glass fibers with respect to the entire resin layer, creep resistance can be improved.
  • the resin layer is an injection-molded layer formed on the inner peripheral surface of the metal base material, and the insulating bush is fitted by bringing the metal base material into contact with the inner peripheral portion of the inner ring. Is cut into the roughness of the surface of the metal base material, the bonding area is increased, and the adhesion strength between the resin layer and the metal base material can be ensured. Further, the injection molding layer is not formed directly on the antibonding ring of the inner ring, but the injection molding layer is formed on a metal base material which is a member different from the inner ring. Therefore, the dimensional accuracy of the inner ring (orbital ring) can be improved. Can be maintained.
  • the base resin of the resin layer is PPS resin, PEK resin, PFA resin, FEP resin, or ETFE resin, it has excellent heat resistance and chemical resistance.
  • the bonding surface of the metal base material with the resin layer is subjected to a chemical surface treatment that enhances the adhesion of the resin layer, more specifically, a treatment that forms a fine uneven shape, or a bonding film that chemically reacts with the resin layer. Is applied, so that the adhesion strength between the resin layer and the metal base material is improved, and the resin layer can be prevented from peeling off from the metal base material even when used under a high load.
  • FIG. 1 It is sectional drawing which shows an example of the refrigerant compressor using the insulating rolling bearing of this invention. It is an enlarged sectional view of the insulation rolling bearing of FIG. It is a perspective view which shows an example of the insulation bush of the insulation rolling bearing of this invention. It is a perspective view which shows another example of the insulation bush of the insulation rolling bearing of this invention. It is a perspective view which shows another example of the insulation bush of the insulation rolling bearing of this invention. It is a perspective view which shows another example of the insulation bush of the insulation rolling bearing of this invention.
  • FIG. 1 is a cross-sectional view of a refrigerant compressor.
  • FIG. 1 shows a positive displacement scroll compressor as the refrigerant compressor
  • the refrigerant compressor to which the insulated rolling bearing of the present invention is applied is not limited to the scroll type, and the rotary type, the reciprocating type, and the like. It can also be applied to other compression type positive displacement compressors such as the screw type. Further, it can be applied to both a horizontal refrigerant compressor and a vertical refrigerant compressor.
  • the compressor 1 is composed of a fixed scroll 2, a center housing 3, and a motor housing 4.
  • An iron shaft 5, which is a rotating shaft, is rotatably supported in the center housing 3 and the motor housing 4 via a main bearing 18 and an auxiliary bearing 21.
  • a balance weight 6 is attached to the shaft 5, and the shaft 5 and the balance weight 6 form a rotating member.
  • the center housing 3 has a bearing support portion 3a for installing a main bearing 18 composed of rolling bearings, and a support portion 3b extending in the outer diameter direction from the bearing support portion 3a and fixing the fixed scroll 2.
  • the main bearing 18 is fitted into a through hole formed in the center of the bearing support portion 3a.
  • the fixed scroll 2 includes a substrate 2a and a scroll wrap 2b that stands vertically from the substrate 2a. Further, a suction port 2c is provided on the outer peripheral portion of the fixed scroll 2.
  • the movable scroll 7 includes a substrate 7a and a scroll wrap 7b vertically erected from the substrate 7a, and a discharge port 7d is provided at the center. Further, a boss portion 7c is provided so as to project vertically in the center of the substrate 7a on the anti-scroll wrap side, and a swivel bearing 8 composed of a slide bearing is press-fitted into the boss portion 7c.
  • the compression chamber 10 is formed by engaging the fixed scroll 2 and the movable scroll 7, and the movable scroll 7 rotates to perform a compression operation in which the volume is reduced.
  • the refrigerant gas of the refrigerating cycle is introduced into the compression chamber 10 via the suction pipe (not shown) and the suction port 2c.
  • the refrigerant gas sucked into the compression chamber 10 is discharged from the discharge port 7d to the discharge chamber 13 through the compression stroke, and then flows from the fluid flow path (not shown) to the motor chamber 14 side.
  • the compressed refrigerant gas flowing to the motor chamber 14 side flows out from the discharge pipe (not shown) to the refrigeration cycle.
  • a stator 11 as a stator is fixed on the inner peripheral surface of the motor housing 4, and a rotor 12 as a rotor is fixed on the outer peripheral surface of the shaft 5 at a position facing the stator 11.
  • the stator 11 and the rotor 12 form an electric motor, and the rotor 12 and the shaft 5 rotate integrally when the stator 11 is energized.
  • the shaft 5 is supported by a spindle portion 5a that is rotationally supported by the main bearing 18, an auxiliary shaft portion 5b that is rotationally supported by the auxiliary bearing 21, and a swivel bearing 8 of the movable scroll 7 that is provided at the end of the spindle portion 5a. It is composed of an eccentric shaft portion 5c and the like.
  • the main shaft portion 5a and the sub-shaft portion 5b are formed on the same axis, and the eccentric shaft portion 5c is provided eccentrically with respect to the main shaft portion 5a. Further, the eccentric shaft portion 5c is rotatably supported by the swivel bearing 8 via the sleeve 9.
  • the inner peripheral surface of the swivel bearing 8 serves as a sliding contact surface with the outer peripheral surface of the eccentric shaft portion 5c.
  • FIG. 15 is a seal ring provided in the groove of the center housing 3 facing the substrate 7a of the movable scroll 7.
  • the outside of the seal ring 15 is a low pressure chamber 16 having a pressure value close to the suction pressure.
  • the space 17 is formed by pressure regulation by a regulating valve and leakage of refrigerant gas from a high pressure region (motor chamber 14 or discharge chamber 13) through a slight gap between the main bearing 18 and the swivel bearing 8 and the shaft 5.
  • the intermediate pressure state is maintained at a lower pressure than the high pressure region and higher than the low pressure chamber 16.
  • the main bearing 18 is composed of ball bearings which are rolling bearings, and is arranged on the compression mechanism side of the shaft 5 with respect to the electric motor.
  • a roller bearing may be used for the main bearing 18.
  • the auxiliary bearing 21 is composed of a ball bearing which is a rolling bearing, and is arranged on the anti-compression mechanism side of the electric motor.
  • the auxiliary bearing 21 is provided in the bearing support portion 4a of the motor housing 4.
  • the bearing support portion 4a has an opening 4b for inserting the auxiliary bearing 21 on the motor side, and the auxiliary bearing 21 is inserted through the opening 4b.
  • a cover that covers the opening 4b may be provided.
  • the auxiliary bearing 21 includes a bearing main body having an inner ring 22 and an outer ring 23 which are raceway rings, and a plurality of balls (rolling bodies) 24 interposed between the inner and outer rings, and an inner ring 22.
  • An insulating bush 28 fitted to the inner peripheral portion is provided.
  • the balls 24 are aligned and held at regular intervals by the cage 25.
  • the bearing space around the ball 24 is filled with grease 27, and the bearing space is sealed by the sealing member 26.
  • the inner ring 22, the outer ring 23, and the ball 24 are made of bearing steel such as SUJ2.
  • the insulating bush 28 is press-fitted by bringing the metal base material 28a into contact with the inner peripheral portion on the antibonding side of the inner ring 22.
  • the insulating bush 28 is formed of a metal base material 28a on the outer diameter surface side and a resin layer 28b on the inner diameter surface side.
  • the inner ring 22 and the insulating bush 28 are integrated by press-fitting and are not adhered by an adhesive or the like.
  • FIG. 3 is a perspective view showing an example of the insulating bush.
  • the insulating bush 28 is a substantially cylindrical member having a cut portion (abutment) in a part in the circumferential direction, and is a substantially cylindrical metal base material 28a and the metal base material 28a. It has a resin layer 28b formed on the inner peripheral surface.
  • FIG. 4 shows another example of an insulating bush having a cut portion in a part in the circumferential direction.
  • the insulating bush 29 shown in FIG. 4 is provided with a resin layer 29b on the inner peripheral surface of a flanged cylindrical metal base material 29a.
  • the insulating bush 29 is fitted to the inner peripheral portion of the inner ring, the flange portion is fitted to the width surface of the inner ring, and the metal base material 29a comes into contact with the width surface.
  • the thickness of the metal base material and the resin layer is not particularly limited, but it is preferable that the thickness of the metal base material is larger than the thickness of the resin layer.
  • the thickness of the metal base material is preferably 0.5 mm to 5 mm, more preferably 1 mm to 3 mm.
  • the thickness of the resin layer is preferably 0.1 mm to 2 mm, more preferably 0.1 mm to 1 mm, still more preferably 0.1 mm to 0.5 mm, because the strain due to the load during use can be reduced by making the resin layer thinner.
  • molten metal is preferable from the viewpoint of strength, and iron-based, aluminum-based, and copper-based molten metal are more preferable.
  • iron system carbon steel for general structure (SS400, etc.), carbon steel for machine structure (S45C, etc.), stainless steel (SUS303, SUS316, etc.) and the like can be used. Further, these iron-based materials may be plated with zinc, nickel, copper or the like.
  • aluminum alloys such as A1050, A1100, A2017, A2024, A5056, A6061 can be used.
  • A2017 and A2024 are preferable because they are excellent in workability.
  • copper alloys such as C1100 and C3604 can be used.
  • C6801 and C6802 having a lead of 0.1% or less and cadmium of 0.0075% or less are preferable.
  • the base resin of the resin layer in the insulating bush is not particularly limited, and for example, PEK-based resin, polyacetal resin, PPS resin, injection-moldable thermoplastic polyimide resin, polyamideimide resin, polyamide resin, injection-moldable fluororesin, and the like.
  • PTFE resin or the like can be used.
  • Each of these synthetic resins may be used alone or may be a polymer alloy in which two or more kinds are mixed. Since the resin layer is used in an environment exposed to a refrigerant or a lubricating oil, it preferably has chemical resistance.
  • PEK-based resin a PEK-based resin, a PPS resin, a PFA resin, a FEP resin, an ETFE resin, or a PTFE resin
  • PEK-based resins include polyetheretherketone (PEEK) resin, polyetherketone (PEK) resin, and polyetherketone etherketoneketone (PEKEKK) resin.
  • additives can be appropriately added to the resin layer.
  • the additive since creep resistance can be improved, it is preferable to add a non-conductive reinforcing material such as glass fiber, aramid fiber, potassium titanate whiskers, and titanium oxide whiskers. Further, it is preferable that the resin layer does not contain a conductive additive.
  • the resin layer it is preferable to use a PTFE resin having particularly excellent chemical resistance as the base resin and glass fiber as an additive.
  • the glass fiber preferably contains 10% by mass to 30% by mass of the entire resin layer.
  • the insulated rolling bearing of FIG. 3 can be obtained by, for example, the following method.
  • a resin sheet having a thickness of 0.5 mm which is a mixture of PTFE resin and glass fiber, is adhered to the surface of a steel plate having a thickness of 1 mm such as SPCC.
  • the adhesive surface of the metal base material is preferably roughened by the roughening treatment.
  • the surface of the roughened metal base material plays a role of firmly adhering the resin layer (including the resin sheet) by the anchor effect.
  • a mechanical roughening method such as a shot blast method, an electrical roughening method such as a glow discharge or plasma discharge treatment, or a chemical roughening method such as an alkali treatment described later can be adopted. ..
  • the composite plate of the metal base material and the synthetic resin sheet is bent into a cylindrical shape so that the resin sheet is on the inner peripheral side, thereby forming a winding bush (insulating bush). ) Is obtained.
  • the insulating bush of FIG. 3 is a wound bush formed by rolling a metal plate coated with a synthetic resin into a cylindrical shape.
  • the resin layer of the insulating bush is not limited to the case of being formed of a resin sheet, but can also be obtained by applying a molten resin composition to the surface of a metal base material and drying it, or by injection molding.
  • the insulated rolling bearing shown in FIG. 2 By press-fitting the obtained insulating bush into the inner peripheral portion of the inner ring of the rolling bearing, the insulated rolling bearing shown in FIG. 2 can be obtained.
  • the press-fitting allowance between the insulating bush and the inner ring is, for example, 10 ⁇ m to 60 ⁇ m, preferably 20 ⁇ m to 50 ⁇ m. If the press-fitting allowance is less than 10 ⁇ m, the inner ring and the insulating bush may rotate relatively as the shaft rotates. Further, if the press-fitting allowance is more than 60 ⁇ m, the roundness of the raceway surface of the inner ring may be deteriorated.
  • the resin layer of the insulating bush is an injection molded layer
  • FIG. 5 is a perspective view showing an example of the insulating bush.
  • the insulating bush 30 is a substantially cylindrical member, and is a substantially cylindrical metal base material 30a and a resin layer 30b which is an injection-molded layer formed on the inner peripheral surface of the metal base material 30a. And have.
  • the insulating bush 30 is obtained by arranging a metal base material 30a in an injection molding die and performing insert molding in which a predetermined synthetic resin is injection molded. By this insert molding, the metal base material 30a and the resin layer 30b are firmly integrated into the insulating bush 30.
  • the material of the metal base material is more preferably a molten metal having a tensile elongation at break of 5% or more.
  • aluminum alloy die castings, aluminum alloy castings, and copper alloy castings having a tensile elongation at break of less than 5% are not suitable in some cases.
  • the joint surface of the metal base material with the resin layer is roughened to an uneven shape by shot blasting, tumbling, machining, etc. in order to increase the adhesion strength between the metal base material and the resin layer.
  • the surface roughness at that time is preferably Ra 4 ⁇ m or more.
  • a chemical surface treatment it is preferable to apply a chemical surface treatment to the joint surface between the metal base material and the resin layer.
  • the chemical surface treatment it is preferable to perform (1) a treatment for forming a fine uneven shape on the joint surface, or (2) a treatment for forming a joint film that chemically reacts with the resin layer on the joint surface.
  • the joint surface By making the joint surface a fine uneven shape, the true joint area is increased, and the adhesion strength between the resin layer and the metal base material is further improved. Further, by interposing a bonding film that chemically reacts with the resin layer on the bonding surface, the adhesion strength between the resin layer and the metal base material is further improved.
  • Surface roughening treatments that result in fine irregularities include acidic solution treatment (sulfuric acid, nitric acid, hydrochloric acid, etc., or a mixture with other solutions), alkaline solution treatment (sodium hydroxide, potassium hydroxide, etc., or other solutions).
  • a method of melting the inner peripheral surface of the metal base material can be mentioned.
  • the shape of the fine unevenness varies depending on the concentration, the treatment time, the post-treatment, and the like, but in order to improve the adhesion due to the anchor effect, it is preferable to make the fine unevenness having a concave pitch of several nm to several tens of ⁇ m.
  • special MEC Amalfa treatment, Taisei Plus NMT treatment, and the like can be exemplified.
  • the resin material is poured at high speed, so that the resin material may deeply penetrate into the fine uneven shape having a concave pitch of several nm to several tens of ⁇ m due to shearing force. it can. As a result, the adhesion strength between the metal base material and the resin layer can be ensured.
  • the fine uneven shape formed by the chemical surface treatment has a complicated three-dimensional structure such as porous, unlike the shape that is simply roughened mechanically, so that it is easy to exert an anchor effect and is strong. Adhesion is possible.
  • Examples of the surface treatment for forming a bonding film that chemically reacts with the resin layer include a dipping treatment in a solution of a triazinedithiol derivative, an s-triazine compound, or the like. In these surface treatments, when the treated metal base material is placed in a mold and injection molded, it reacts with the resin material by heat and pressure, and the adhesion between the resin layer and the metal base material is enhanced. Examples of such a surface treatment include a TRI treatment manufactured by Toa Denka Co., Ltd.
  • the shear adhesion strength between the metal base material and the resin layer is preferably 2 MPa or more. Within this range, sufficient adhesion strength can be obtained during use, and the resin layer does not peel off from the metal substrate even when used under a high load. In order to further increase the safety factor, 4 MPa or more is preferable. Adhesion improving means such as physical fixing, mechanical roughening treatment, and chemical roughening treatment are preferably used in combination by appropriately selecting them so as to secure the shear adhesion strength.
  • an injection-moldable synthetic resin is used as the base resin.
  • PPS resin, PEK resin, PFA resin, FEP resin, or ETFE resin are preferable because they are excellent in chemical resistance and heat resistance.
  • the resin layer it is preferable to use PPS resin as the base resin and glass fiber as the additive. It is more preferable that the glass fiber contains 10% by mass to 30% by mass of the entire resin layer.
  • the insulating bush of FIG. 5 can be obtained by, for example, the following method. First, a cylinder (metal base material) having a wall thickness of 1 mm is cut from a metal pipe material, and a chemical surface treatment is applied to the inner peripheral surface of the cylinder. After that, the cylinder is placed in a mold, and a resin layer is formed on the inner peripheral surface of the cylinder by injection molding. It is preferable to form a resin layer having a predetermined thickness by injection molding, but as described above, a clearance is provided between the mold and the metal base material. Therefore, the thickness of the resin layer with respect to the metal substrate may be non-uniform. In such a case, a resin layer having a uniform thickness can be obtained by cutting the resin layer with a lathe and processing it coaxially with the metal base material.
  • FIG. 6 Another example of the insulating bush is shown in FIG.
  • the insulating bush 31 shown in FIG. 6 is provided with a resin layer 31b on the inner peripheral surface of a flanged cylindrical metal base material 31a.
  • the flange portion is fitted to the width surface of the inner ring, and the metal base material 31a comes into contact with the width surface.
  • the configuration of the insulating bush 31, for example, from the viewpoint of injection molding by providing the gate at the position of the flange portion, it is possible to prevent the gate mark (convex portion) after the gate cut from protruding to the contact surface with the shaft.
  • the insulating bush is fitted to the inner peripheral portion of the inner ring, but the present invention is not limited to this.
  • an insulating bush can be fitted to the outer peripheral portion of the outer ring.
  • the insulating bush is fitted so that the metal base material comes into contact with the outer peripheral portion of the outer ring, and the outer peripheral surface of the insulating rolling bearing becomes a resin layer.
  • ball bearings are shown as the insulated rolling bearings of the present invention, but tapered roller bearings, cylindrical roller bearings, self-aligning roller bearings, needle roller bearings, thrust cylindrical roller bearings, and thrust tapered roller bearings. , Thrust needle roller bearings, thrust self-aligning roller bearings, etc.
  • the configuration of the refrigerant compressor is not limited to the configuration shown in FIG.
  • an oil supply pump connected to an oil sump may be provided at the end of the shaft 5 in FIG. 1, and an oil passage may be formed in the shaft 5 so as to penetrate in the axial direction.
  • the swivel bearing, the main bearing, and the auxiliary bearing can be lubricated by supplying the oil in the oil sump (refrigerator oil) to the oil passage via the oil supply pump.
  • the insulated rolling bearing of the present invention can be widely used as an electrolytic corrosion prevention bearing that can prevent electrolytic corrosion and prevent a gap between the shaft and the raceway ring.
  • Compressor 2 Fixed scroll 3 Center housing 4 Motor housing 5 Shaft 6 Balance weight 7 Movable scroll 8 Swivel bearing 9 Sleeve 10 Compression chamber 11 Stator 12 Rotor 13 Discharge chamber 14 Motor chamber 15 Seal ring 16 Low pressure chamber 17 Space 18 Main bearing 21 Sub-bearing (insulated rolling bearing) 22 Inner ring 23 Outer ring 24 Ball 25 Cage 26 Sealing member 27 Grease 28 Insulation bush 29 Insulation bush 30 Insulation bush 31 Insulation bush

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

電食を防止するとともに、シャフトと軌道輪との間に隙間が生じることを防止できる絶縁転がり軸受を提供する。副軸受21は、内輪22および外輪23と、この内・外輪間に介在する複数の玉24と、内輪22の内周部に嵌合された絶縁ブッシュ28とを備え、絶縁ブッシュ28は、略円筒状の金属基材28aと、金属基材28aの内周面に形成された樹脂層28bとを有し、金属基材28a側を内輪22の内周部に接触させて嵌合されている。

Description

絶縁転がり軸受
 本発明は、絶縁転がり軸受に関し、特に冷媒圧縮機に使用される絶縁転がり軸受に関する。
 容積形の冷媒圧縮機は、冷凍空調機器用の圧縮機として様々な分野で広く活用されている。近年、エネルギーの削減に向けた関心が高まり、種々の産業において効率向上が求められている。特に、住環境に密接した空気調和機においては、世論の注目度が高いことから、より低コスト化、高効率化を達成できる信頼性の高い製品の開発が求められており、インバータを用いて電動機を駆動する可変速運転が増加し、従来の一定速型の冷媒圧縮機に比べて高効率化が進んでいる。
 上記インバータを用いた冷媒圧縮機では、従来の一定速型の冷媒圧縮機に比べて、高負荷時の駆動電流(インバータからモータへの入力電流)がより多くなる。そのため、電動機と一体に回転するクランク軸に発生する電圧(軸電圧)が増大する傾向になっている。この軸電圧の増大に伴って、クランク軸を支持する転がり軸受の内輪と外輪との間の電位差が大きくなり、その結果、転がり軸受に流れる電流の増大が引き起こされる。この電流は、転がり軸受の内輪、外輪の両軌道面と転動体の転動面に電食と呼ばれる腐食を発生させ、冷媒圧縮機の信頼性を低下させる。
 このような電食の発生を防止するようにした従来の冷媒圧縮機として、特許文献1記載の冷媒圧縮機が知られている。この冷媒圧縮機では、クランク軸における駆動部よりも反圧縮機構部側の副軸部を回転支持する副軸受とクランク軸との間に絶縁材で構成された絶縁スリーブが設けられている。これにより、軸受の電食を防止し、安価な構造で、軸受電食や給油量不足による軸受損傷を抑制して冷媒圧縮機の信頼性向上を図っている。
 また、その他の電食対策を施した転がり軸受として、導電性グリースが充填された転がり軸受(特許文献2参照)や、軌道輪に直接絶縁被膜を形成した転がり軸受(特許文献3参照)などが知られている。
特開2018-40261号公報 特開2004-263836号公報 特開2002-295483号公報
 上記特許文献1記載の冷媒圧縮機では、絶縁スリーブが、圧入などの手段で内輪の内径側に嵌め込まれている。しかし、絶縁スリーブとクランク軸、および絶縁スリーブと内輪とがそれぞれ相対回転するため、絶縁スリーブに摩耗が発生しやすい。その結果、クランク軸と内輪との間に隙間が生じ、圧縮機全体の振動や異音の原因となる懸念がある。
 また、冷媒圧縮機において、転がり軸受は、冷凍機油と冷媒が混合された液冷媒中で使用されるため、上記特許文献2記載の転がり軸受では、導電性グリースが溶出して電食防止効果が低下するという懸念がある。
 また、上記特許文献3記載の転がり軸受は、外輪または内輪の反軌道面に合成樹脂からなる絶縁被膜を射出成形で形成している。射出成形は高圧で溶融樹脂を射出するとともに、冷却、固化により樹脂が収縮するため、高精度に形成された軌道面の形状が劣化するおそれがある。このため、絶縁被膜を形成する側の軌道輪の厚みを厚くする必要があり、装置の小型化などが困難であった。
 本発明は上記事情に鑑みてなされたものであり、電食を防止するとともに、シャフトと軌道輪との間に隙間が生じることを防止できる絶縁転がり軸受を提供することを目的とする。
 本発明の絶縁転がり軸受は、内輪および外輪と、この内・外輪間に介在する複数の転動体と、上記内輪の内周部または上記外輪の外周部に嵌合された絶縁ブッシュとを備えた絶縁転がり軸受であって、上記絶縁ブッシュは、略円筒状の金属基材と、該金属基材の内周面または外周面に形成された樹脂層とを有し、上記絶縁ブッシュは、上記金属基材側を上記内輪の内周部または上記外輪の外周部に接触させて嵌合されていることを特徴とする。
 上記絶縁ブッシュは、円周方向の一部に切断部を有する巻きブッシュであることを特徴とする。
 上記樹脂層のベース樹脂がポリテトラフルオロエチレン(PTFE)樹脂であることを特徴とする。また、上記樹脂層に、該樹脂層全体に対して10質量%~30質量%のガラス繊維が含まれることを特徴とする。
 上記樹脂層は、上記金属基材の内周面に形成された射出成形層であり、上記絶縁ブッシュは、上記金属基材側を上記内輪の内周部に接触させて嵌合されていることを特徴とする。
 上記樹脂層のベース樹脂がポリフェニレンサルファイド(PPS)樹脂、ポリエーテルケトン(PEK)系樹脂、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)樹脂、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)樹脂、またはテトラフルオロエチレン-エチレン共重合体(ETFE)樹脂であることを特徴とする。
 上記金属基材の上記樹脂層との接合面には、上記樹脂層の密着力を高くする化学表面処理が施されていることを特徴とする。
 上記化学表面処理は、上記接合面に微細凹凸形状が形成される処理、または、上記接合面に上記樹脂層と化学反応する接合膜が形成される処理であることを特徴とする。
 上記絶縁転がり軸受は、冷媒圧縮機に使用され、該冷媒圧縮機の電動機によって回転駆動されるシャフトを回転支持する軸受であることを特徴とする。また、上記冷媒圧縮機は、スクロール式の冷媒圧縮機であることを特徴とする。
 本発明の絶縁転がり軸受は、内輪および外輪と、転動体と、内輪の内周部または外輪の外周部に嵌合された絶縁ブッシュとを備え、該絶縁ブッシュは、金属基材と該金属基材の表面に形成された樹脂層とを有し、該金属基材を内輪の内周部または外輪の外周部に接触させて嵌合される。この場合、絶縁ブッシュにおいて、外輪または内輪の反軌道面と接触する面が金属となり、非接触面が樹脂層となるので、軸電流がシャフトを介して軸受本体部に流れることを遮断でき、電食を防止できる。また、軸受本体部と絶縁ブッシュが篏合一体構造になることで、絶縁ブッシュが軸受本体部やシャフトに対して相対回転(摺動)することを防止でき、絶縁ブッシュの摩耗を防止できる。その結果、軸受本体部とシャフトとの間に隙間が生じることを防止でき、例えば冷媒圧縮機などに使用した場合でも圧縮機全体の振動や異音の発生を防ぐことができる。
 また、本発明の絶縁転がり軸受によれば、軌道輪の厚みを厚くする必要がなく、装置の小型化が可能となる。さらには、導電性グリースを充填している転がり軸受を使用することなく、安価な構造で、軸受電食や給油量不足による軸受損傷を抑制して、冷媒圧縮機の信頼性向上を図ることができる。
 樹脂層のベース樹脂がPTFE樹脂であるので、耐熱性や耐薬品性に優れる。さらに、樹脂層に、該樹脂層全体に対して10質量%~30質量%のガラス繊維が含まれるので、耐クリープ性も向上できる。
 上記絶縁ブッシュにおいて、樹脂層は金属基材の内周面に形成された射出成形層であり、絶縁ブッシュは、金属基材を内輪の内周部に接触させて嵌合されるので、樹脂層が金属基材の表面の粗さに食い込んで、接合面積が増大し、樹脂層と金属基材との密着強さを確保することができる。また、内輪の反軌道輪に直接、射出成形層が形成される構成でなく、内輪とは別部材である金属基材に射出成形層が形成されるので、内輪(軌道輪)の寸法精度を維持することができる。
 樹脂層のベース樹脂がPPS樹脂、PEK系樹脂、PFA樹脂、FEP樹脂、またはETFE樹脂であるので、耐熱性や耐薬品性に優れる。
 金属基材の樹脂層との接合面には、樹脂層の密着力を高くする化学表面処理、より具体的には、微細凹凸形状が形成される処理、または、樹脂層と化学反応する接合膜が形成される処理が施されるので、樹脂層と金属基材の密着強さが向上し、高負荷で使用しても、樹脂層が金属基材から剥離することを防止できる。
本発明の絶縁転がり軸受を用いた冷媒圧縮機の一例を示す断面図である。 図1の絶縁転がり軸受の拡大断面図である。 本発明の絶縁転がり軸受の絶縁ブッシュの一例を示す斜視図である。 本発明の絶縁転がり軸受の絶縁ブッシュの他の例を示す斜視図である。 本発明の絶縁転がり軸受の絶縁ブッシュの他の例を示す斜視図である。 本発明の絶縁転がり軸受の絶縁ブッシュの他の例を示す斜視図である。
 本発明の絶縁転がり軸受を備える冷媒圧縮機を図1に基づいて説明する。図1は冷媒圧縮機の断面図である。なお、図1には、冷媒圧縮機として、容積形のスクロール圧縮機を示すが、本発明の絶縁転がり軸受が適用される冷媒圧縮機は、スクロール方式に限定されず、ロータリ方式、レシプロ方式、スクリュー方式などの他の圧縮方式の容積形圧縮機にも適用できる。また、横型の冷媒圧縮機でも縦型の冷媒圧縮機でも適用できる。
 図1に示すように、圧縮機1は、固定スクロール2と、センターハウジング3と、モータハウジング4によってハウジングが構成されている。センターハウジング3およびモータハウジング4には、回転軸である鉄製のシャフト5が主軸受18および副軸受21を介して回転可能に支持されている。シャフト5には、バランスウェイト6が取り付けられており、シャフト5およびバランスウェイト6によって回転部材が構成されている。
 センターハウジング3は、転がり軸受で構成された主軸受18を設置する軸受支持部3aと、この軸受支持部3aよりも外径方向に延び、固定スクロール2を固定する支持部3bを有する。主軸受18は、軸受支持部3aの中央に形成された貫通孔に嵌入されている。
 固定スクロール2は、基板2aと、この基板2aから垂直に立設したスクロールラップ2bを備える。また、固定スクロール2の外周部には吸入口2cが設けられている。可動スクロール7は、基板7aと、この基板7aから垂直に立設したスクロールラップ7bを備え、中心には吐出口7dが設けられている。また、基板7aの反スクロールラップ側の中央にはボス部7cが垂直に突出するように設けられ、このボス部7c内にはすべり軸受で構成された旋回軸受8が圧入されている。
 固定スクロール2と可動スクロール7を噛み合わせることにより圧縮室10が形成され、可動スクロール7が旋回運動することにより、その容積が減少する圧縮動作が行われる。可動スクロール7の旋回運動に伴って、冷凍サイクルの冷媒ガスが吸入管(図示省略)および吸入口2cを介して圧縮室10へ導入される。
 圧縮室10に吸込まれた冷媒ガスは、圧縮行程を経て、吐出口7dから吐出室13に吐出され、その後、流体流路(図示省略)からモータ室14側に流れる。モータ室14側に流れた圧縮冷媒ガスは吐出管(図示省略)から冷凍サイクルに流出する。
 モータハウジング4の内周面には固定子であるステータ11が固定されており、シャフト5の外周面にはステータ11と相対する位置に回転子であるロータ12が固定されている。ステータ11およびロータ12は電動機を構成し、ステータ11への通電によりロータ12およびシャフト5が一体回転する。
 シャフト5は、主軸受18で回転支持される主軸部5aと、副軸受21に回転支持される副軸部5bと、主軸部5aの端部に設けられ可動スクロール7の旋回軸受8に支持される偏心軸部5cなどで構成される。主軸部5aと副軸部5bとは同一軸心上に形成され、偏心軸部5cは主軸部5aに対して偏心して設けられる。また、偏心軸部5cは、スリーブ9を介して旋回軸受8に回転自在に支持されている。旋回軸受8の内周面が、偏心軸部5cの外周面との摺接面となる。
 図1の15は、可動スクロール7の基板7aに対向するセンターハウジング3の溝に設けられたシールリングである。このシールリング15を挟んで外側は吸入圧に近い圧力値を有した低圧室16となる。空間17は、調整弁による調圧や、主軸受18および旋回軸受8と、シャフト5との僅かな隙間を介した高圧領域(モータ室14や吐出室13)からの冷媒ガスの漏洩により、該高圧領域よりも低圧であるとともに低圧室16よりも高圧な中間圧状態に維持される。可動スクロール7の背面に高圧領域よりも圧力が低い領域(空間17)が設けられることにより、可動スクロール7の背面に加わる圧力によって可動スクロール7に生じる固定スクロール2側への荷重は軽減される。そのため、可動スクロール7のスムーズな公転が得られるとともに、可動スクロール7の機械的損失が低減される。
 主軸受18は、転がり軸受である玉軸受により構成され、シャフト5の電動機よりも圧縮機構部側に配設されている。なお、主軸受18にころ軸受を用いてもよい。副軸受21は、転がり軸受である玉軸受により構成され、電動機よりも反圧縮機構部側に配設されている。
 副軸受21は、モータハウジング4の軸受支持部4a内に設けられている。具体的には、軸受支持部4aは、電動機側に副軸受21を挿入するための開口部4bを有しており、この開口部4bから副軸受21が挿入される。なお、開口部4bを覆うカバーが備えられていてもよい。
 次に、図2を用いて図1に示す副軸受21である絶縁転がり軸受を説明する。図2に示すように、副軸受21は、軌道輪である内輪22および外輪23と、この内・外輪間に介在する複数の玉(転動体)24とを有する軸受本体部と、内輪22の内周部に嵌合された絶縁ブッシュ28とを備える。玉24は、保持器25によって一定間隔に整列して保持されている。玉24周囲の軸受空間にはグリース27が充填されており、シール部材26によって軸受空間が密封されている。内輪22と外輪23と玉24は、SUJ2などの軸受鋼で形成されている。
 図2において、絶縁ブッシュ28は、金属基材28aを、内輪22の反軌道側である内周部に接触させて圧入嵌合されている。絶縁ブッシュ28は、外径面側が金属基材28aで、内径面側が樹脂層28bで形成される。内輪22と絶縁ブッシュ28は、圧入嵌合により一体化されており、接着剤などにより接着されていない。絶縁ブッシュ28が圧入嵌合され、さらに、絶縁ブッシュ28の軸孔にシャフト5が挿入されることで、シャフト5、絶縁ブッシュ28、および内輪22は一体回転可能となる。シャフト5の回転時において、樹脂層28bはシャフト5の外周面に対し摺動せずに接触する。また、図2のように、樹脂層28bが、内輪22および金属基材28aとシャフト5との間に介在することで、軸電流がシャフト5を介して軸受本体部に流れることを遮断できる。
 図3は、絶縁ブッシュの一例を示す斜視図である。図3に示すように、絶縁ブッシュ28は、円周方向の一部に切断部(合い口)を有する略円筒状部材であり、略円筒状の金属基材28aと、該金属基材28aの内周面に形成された樹脂層28bとを有する。
 また、円周方向の一部に切断部を有する絶縁ブッシュの他の例を図4に示す。図4に示す絶縁ブッシュ29は、フランジ付き円筒状の金属基材29aの内周面に樹脂層29bを設けたものである。絶縁ブッシュ29が内輪の内周部に嵌合される場合、フランジ部は内輪の幅面と嵌合され、該幅面に金属基材29aが接触する。
 金属基材および樹脂層の厚さは、特に限定されないが、金属基材の厚さの方が樹脂層の厚さよりも大きいことが好ましい。金属基材の厚さは、好ましくは0.5mm~5mmであり、より好ましくは1mm~3mmである。樹脂層の厚さは、薄くすることで使用時の負荷による歪みを小さくできることから、0.1mm~2mmが好ましく、0.1mm~1mmがより好ましく、0.1mm~0.5mmがさらに好ましい。
 金属基材の材料として、強度の面から溶製金属が好ましく、鉄系、アルミニウム系、銅系の溶製金属がより好ましい。鉄系としては、一般構造用炭素鋼(SS400など)、機械構造用炭素鋼(S45Cなど)、ステンレス鋼(SUS303、SUS316など)などが使用できる。また、これらの鉄系に、亜鉛、ニッケル、銅などのめっきを施してもよい。
 アルミニウム系としてはA1050、A1100などや、A2017、A2024、A5056、A6061などのアルミニウム合金が使用できる。特に加工性に優れることから、A2017、A2024が好ましい。
 銅系としてはC1100などや、C3604などの銅合金が使用できる。特に加工性および環境性の観点から、鉛0.1%以下およびカドミウム0.0075%以下のC6801、C6802などが好ましい。
 絶縁ブッシュにおける樹脂層のベース樹脂は、特に限定されず、例えば、PEK系樹脂、ポリアセタール樹脂、PPS樹脂、射出成形可能な熱可塑性ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、射出成形可能なフッ素樹脂、PTFE樹脂などを用いることができる。これらの各合成樹脂は単独で使用してもよく、2種類以上混合したポリマーアロイであってもよい。樹脂層は、冷媒や潤滑油にさらされた環境下で使用されるため耐薬品性を有していることが好ましい。具体的には、樹脂層のベース樹脂として、PEK系樹脂、PPS樹脂、PFA樹脂、FEP樹脂、ETFE樹脂、またはPTFE樹脂を用いることが好ましい。なお、PEK系樹脂としては、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトン(PEK)樹脂、ポリエーテルケトンエーテルケトンケトン(PEKEKK)樹脂などが挙げられる。
 また、樹脂層には、添加剤を適宜配合することができる。添加剤としては、耐クリープ性を向上できることから、例えばガラス繊維、アラミド繊維、チタン酸カリウムウィスカ、酸化チタンウィスカなどの非導電性の補強材を配合することが好ましい。また、樹脂層は導電性の添加剤を含まないことが好ましい。
 具体的な樹脂層の一形態として、ベース樹脂に、耐薬品性に特に優れるPTFE樹脂を用い、添加剤にガラス繊維を用いることが好ましい。該ガラス繊維は、樹脂層全体の10質量%~30質量%含むことが好ましい。
 図3の絶縁転がり軸受は、例えば、以下の方法で得ることができる。まず、厚さ1mmのSPCCなどの鋼板の表面に、PTFE樹脂にガラス繊維を配合した厚さ0.5mmの樹脂シートを接着させる。なお、金属基材の接着面は、粗面化処理によって粗くなっていることが好ましい。粗面化した金属基材表面は、アンカー効果により樹脂層(樹脂シートを含む)を強固に密着させる役割を果たす。粗面化処理としては、ショットブラスト法などの機械的粗面化法、グロー放電やプラズマ放電処理などの電気的粗面化法、後述するアルカリ処理などの化学的粗面化法などが採用できる。そして、金属基材および合成樹脂シートの複合板を所定サイズの長方形にカットした後、樹脂シートが内周側となるように、複合板を円筒状に曲げ加工することで、巻きブッシュ(絶縁ブッシュ)が得られる。このように、図3の絶縁ブッシュは合成樹脂で被覆された金属板を円筒状に丸めて形成した巻きブッシュである。
 なお、絶縁ブッシュの樹脂層は、樹脂シートで形成する場合に限らず、溶融した樹脂組成物を金属基材の表面に塗工し乾燥することや、射出成形によっても得られる。
 得られた絶縁ブッシュを、転がり軸受の内輪の内周部に圧入することで、図2の絶縁転がり軸受が得られる。なお、絶縁ブッシュと内輪との圧入代は、例えば10μm~60μmであり、好ましくは20μm~50μmである。圧入代が10μmより少ないと、シャフトの回転に伴い、内輪と絶縁ブッシュとが相対的に回転するおそれがある。また、圧入代が60μmより多いと、内輪の軌道面の真円度が悪くなるおそれがある。
 以下には、特に、絶縁ブッシュの樹脂層が射出成形層である場合について説明する。
 図5は、絶縁ブッシュの一例を示す斜視図である。図5に示すように、絶縁ブッシュ30は、略円筒状部材であり、略円筒状の金属基材30aと、該金属基材30aの内周面に形成された射出成形層である樹脂層30bとを有する。絶縁ブッシュ30は、金属基材30aを射出成形金型内に配置し、これに所定の合成樹脂を射出成形するインサート成形を行うことで得られる。このインサート成形によって、金属基材30aと樹脂層30bとが強固に一体化された絶縁ブッシュ30になる。
 金属基材を射出成形金型に入れ、合成樹脂を射出成形する工程において、金属基材を金型内に収容および取り出すためには、金型と金属基材の外周部との間に微小なクリアランスが必要である。しかし、合成樹脂を射出成形すると、金属基材の内周部に射出成形圧力が加わるため、金属基材の外周部側にクリアランスがあると金属基材は外側に膨張する。この際、金属の引っ張り破断伸びが小さいと、射出成形によって金属基材が破断する可能性がある。そのため、金属基材の材料は、引っ張り破断伸びが5%以上の溶製金属であることがより好ましい。一方、引っ張り破断伸びが5%に満たない、アルミニウム合金ダイカストや、アルミニウム合金鋳物、銅合金鋳物は場合によっては適さない。
 金属基材における樹脂層との接合面は、金属基材と樹脂層との密着強度を高くするために、ショットブラスト、タンブラー、機械加工などにより、凹凸形状などに荒らすことが好ましい。その際の表面粗さはRa4μm以上が好ましい。
 特に、金属基材と樹脂層との密着性を高めるには、金属基材の樹脂層との接合面に、化学表面処理を施すことが好ましい。化学表面処理としては、(1)接合面に微細凹凸形状が形成される処理、または、(2)接合面に樹脂層と化学反応する接合膜が形成される処理、を施すことが好ましい。
 接合面を微細凹凸形状とすることで、真の接合面積が増大し、樹脂層と金属基材との密着強さが一層向上する。また、接合面において樹脂層と化学反応する接合膜を介在させることで、樹脂層と金属基材との密着強さが一層向上する。
 微細凹凸形状となる表面粗化処理としては、酸性溶液処理(硫酸、硝酸、塩酸など、もしくは他の溶液との混合)、アルカリ性溶液処理(水酸化ナトリウム、水酸化カリウムなど、もしくは他の溶液との混合)により、金属基材の内周面を溶かす方法が挙げられる。微細凹凸形状は、濃度、処理時間、後処理などによって異なるが、アンカー効果による密着性を高めるためには、凹ピッチが数nm~数十μmの微細な凹凸にすることが好ましい。また、一般的な酸性溶液処理、アルカリ性溶液処理以外に、特殊なメック社製アマルファ処理、大成プラス社製NMT処理などが例示できる。
 樹脂層を射出成形で形成する際には、樹脂材が高速で流し込まれるため、該樹脂材が、せん断力により凹ピッチが数nm~数十μmである上記微細凹凸形状にも深く入り込むことができる。これにより、金属基材と樹脂層との密着強度が確保できる。また、化学表面処理により形成された上記微細凹凸形状は、機械的に単純に荒らした形状とは異なり、多孔質のような複雑な立体構造となっているため、アンカー効果を発揮しやすく、強固な密着が可能となる。
 樹脂層と化学反応する接合膜が形成される表面処理としては、トリアジンジチオール誘導体、s-トリアジン化合物などの溶液への浸漬処理が挙げられる。これら表面処理は、処理した金属基材を金型に入れ射出成形する際に、熱と圧力により樹脂材と反応し、樹脂層と金属基材との密着性が高まる。このような表面処理としては、例えば、東亜電化社製TRI処理などが例示できる。
 化学表面処理のうち、メック社製アマルファ処理、大成プラス社製NMT処理、東亜電化社製TRI処理などの特殊表面処理は、アルミニウム、銅に適している。このため、これらの処理を施す場合は、少なくとも金属基材の内周面がアルミニウムまたは銅であることが好ましい。
 金属基材と樹脂層とのせん断接着強さは、2MPa以上であることが好ましい。この範囲であれば、使用に際して充分な密着強さを得ることができ、高負荷で使用しても、樹脂層が金属基材から剥離することはない。更に安全率を高めるためには、4MPa以上が好ましい。物理固定、機械的な粗面化処理、化学的な粗面化処理などの密着性向上手段は、上記せん断接着強さを確保できるよう、適宜選択して組み合わせて用いることが好ましい。
 樹脂層が射出成形層の場合、射出成形可能な合成樹脂をベース樹脂に用いる。射出成形可能な合成樹脂の中でも、耐薬品性と耐熱性に優れることから、PPS樹脂、PEK系樹脂、PFA樹脂、FEP樹脂、またはETFE樹脂が好ましい。
 具体的な樹脂層の一形態として、ベース樹脂にPPS樹脂を用い、添加剤にガラス繊維を用いることが好ましい。該ガラス繊維は、樹脂層全体の10質量%~30質量%含むことがより好ましい。
 図5の絶縁ブッシュは、例えば、以下の方法で得ることができる。まず、金属パイプ材から肉厚1mmの円筒体(金属基材)を切削し、その円筒体の内周面に化学表面処理を施す。その後、円筒体を金型に入れ、射出成形によって円筒体の内周面に樹脂層を形成する。射出成形により所定厚さの樹脂層を形成することが好ましいが、上述したとおり、金型と金属基材との間にはクリアランスが設けられている。そのため、金属基材に対する樹脂層の厚さが不均一になる場合がある。そのような場合は、旋盤にて樹脂層を切削して金属基材と同軸に加工することで、均一な厚さの樹脂層が得られる。
 絶縁ブッシュの他の例を図6に示す。図6に示す絶縁ブッシュ31は、フランジ付き円筒状の金属基材31aの内周面に樹脂層31bを設けたものである。絶縁ブッシュ31が内輪の内周部に嵌合される場合、フランジ部は内輪の幅面と嵌合され、該幅面に金属基材31aが接触する。絶縁ブッシュ31の構成では、例えば射出成形の観点から、フランジ部の位置にゲートを設けることで、ゲートカット後のゲート痕(凸部)がシャフトとの接触面に突出することを防止できる。
 以上のとおり、本発明の絶縁転がり軸受は、図1の冷媒圧縮機に用いる場合、内輪の内周部に絶縁ブッシュを嵌合した構成としたが、これに限らない。例えば、冷媒圧縮機に用いる軸受が外輪回転の構成では、外輪の外周部に絶縁ブッシュを嵌合することができる。この場合、絶縁ブッシュは、外輪の外周部に金属基材が接触するように嵌合され、絶縁転がり軸受の外周面が樹脂層となる。
 上記図1~図2では、本発明の絶縁転がり軸受として玉軸受を示したが、円すいころ軸受、円筒ころ軸受、自動調心ころ軸受、針状ころ軸受、スラスト円筒ころ軸受、スラスト円すいころ軸受、スラスト針状ころ軸受、スラスト自動調心ころ軸受などにも適用できる。
 冷媒圧縮機の構成は、図1の構成に限らない。例えば、図1のシャフト5の端部に油溜りに接続された給油ポンプを設けるとともに、シャフト5内に軸方向に貫通するように油通路を形成してもよい。この構成によれば、油溜りの油(冷凍機油)を給油ポンプを介して、油通路に供給することで、旋回軸受や、主軸受、副軸受を潤滑させることができる。
 本発明の絶縁転がり軸受は、電食を防止するとともに、シャフトと軌道輪との間に隙間が生じることを防止できる電食防止軸受として広く利用することができる。
 1  圧縮機
 2  固定スクロール
 3  センターハウジング
 4  モータハウジング
 5  シャフト
 6  バランスウェイト
 7  可動スクロール
 8  旋回軸受
 9  スリーブ
 10 圧縮室
 11 ステータ
 12 ロータ
 13 吐出室
 14 モータ室
 15 シールリング
 16 低圧室
 17 空間
 18 主軸受
 21 副軸受(絶縁転がり軸受)
 22 内輪
 23 外輪
 24 玉
 25 保持器
 26 シール部材
 27 グリース
 28 絶縁ブッシュ
 29 絶縁ブッシュ
 30 絶縁ブッシュ
 31 絶縁ブッシュ

Claims (10)

  1.  内輪および外輪と、この内・外輪間に介在する複数の転動体と、前記内輪の内周部または前記外輪の外周部に嵌合された絶縁ブッシュとを備えた絶縁転がり軸受であって、
     前記絶縁ブッシュは、略円筒状の金属基材と、該金属基材の内周面または外周面に形成された樹脂層とを有し、前記絶縁ブッシュは、前記金属基材側を前記内輪の内周部または前記外輪の外周部に接触させて嵌合されていることを特徴とする絶縁転がり軸受。
  2.  前記絶縁ブッシュは、円周方向の一部に切断部を有する巻きブッシュであることを特徴とする請求項1記載の絶縁転がり軸受。
  3.  前記樹脂層のベース樹脂がポリテトラフルオロエチレン樹脂であることを特徴とする請求項1記載の絶縁転がり軸受。
  4.  前記樹脂層に、該樹脂層全体に対して10質量%~30質量%のガラス繊維が含まれることを特徴とする請求項1記載の絶縁転がり軸受。
  5.  前記樹脂層は、前記金属基材の内周面に形成された射出成形層であり、前記絶縁ブッシュは、前記金属基材側を前記内輪の内周部に接触させて嵌合されていることを特徴とする請求項1記載の絶縁転がり軸受。
  6.  前記樹脂層のベース樹脂がポリフェニレンサルファイド樹脂、ポリエーテルケトン系樹脂、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体樹脂、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体樹脂、またはテトラフルオロエチレン-エチレン共重合体樹脂であることを特徴とする請求項5記載の絶縁転がり軸受。
  7.  前記金属基材の前記樹脂層との接合面には、前記樹脂層の密着力を高くする化学表面処理が施されていることを特徴とする請求項1記載の絶縁転がり軸受。
  8.  前記化学表面処理は、前記接合面に微細凹凸形状が形成される処理、または、前記接合面に前記樹脂層と化学反応する接合膜が形成される処理であることを特徴とする請求項7記載の絶縁転がり軸受。
  9.  前記絶縁転がり軸受は、冷媒圧縮機に使用され、該冷媒圧縮機の電動機によって回転駆動されるシャフトを回転支持する軸受であることを特徴とする請求項1記載の絶縁転がり軸受。
  10.  前記冷媒圧縮機は、スクロール式の冷媒圧縮機であることを特徴とする請求項9記載の絶縁転がり軸受。
PCT/JP2020/034063 2019-09-30 2020-09-09 絶縁転がり軸受 WO2021065391A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080066401.0A CN114514384A (zh) 2019-09-30 2020-09-09 绝缘滚动轴承
US17/762,706 US11873863B2 (en) 2019-09-30 2020-09-09 Insulating rolling bearing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019179197A JP7433829B2 (ja) 2019-09-30 2019-09-30 絶縁転がり軸受
JP2019-179197 2019-09-30
JP2020-042655 2020-03-12
JP2020042655A JP2021143713A (ja) 2020-03-12 2020-03-12 絶縁転がり軸受

Publications (1)

Publication Number Publication Date
WO2021065391A1 true WO2021065391A1 (ja) 2021-04-08

Family

ID=75337385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034063 WO2021065391A1 (ja) 2019-09-30 2020-09-09 絶縁転がり軸受

Country Status (3)

Country Link
US (1) US11873863B2 (ja)
CN (1) CN114514384A (ja)
WO (1) WO2021065391A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7421331B2 (ja) * 2019-12-26 2024-01-24 川崎重工業株式会社 ヘリコプターのトランスミッション構造
TWI843297B (zh) * 2022-11-25 2024-05-21 台全電機股份有限公司 電動機

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510111A (en) * 1978-07-04 1980-01-24 Nippon Seiko Kk Roller bearing for preventing electrolytic corrosion
JPH0674240A (ja) * 1992-08-26 1994-03-15 Ntn Corp 電食防止転がり軸受
JP2006250347A (ja) * 2005-02-10 2006-09-21 Nsk Ltd 電食防止転がり軸受及びその取付方法
JP2007292119A (ja) * 2006-04-21 2007-11-08 Ntn Corp 軸受、転動部材および転動部材の製造方法
JP2014224502A (ja) * 2013-05-16 2014-12-04 Ntn株式会社 ウォータポンププーリユニット
JP2018040261A (ja) * 2016-09-05 2018-03-15 日立ジョンソンコントロールズ空調株式会社 冷媒圧縮機
JP2019094976A (ja) * 2017-11-22 2019-06-20 株式会社ジェイテクト 電食防止軸受

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4997293A (en) * 1990-03-22 1991-03-05 Nippon Sharyo Seizo Kabushiki Kaisha Anti-electrolytic corrosion type rolling bearing
JP2567304Y2 (ja) * 1992-04-30 1998-04-02 光洋精工株式会社 電食防止転がり軸受
JP3868529B2 (ja) * 1995-12-29 2007-01-17 Ntn株式会社 絶縁断熱スリーブおよびこれを用いた軸受構造,定着装置
US5961222A (en) * 1996-03-29 1999-10-05 Nsk Ltd. Anti-electrolytic corrosion rolling bearing
JP2005282862A (ja) * 1997-05-12 2005-10-13 Nsk Ltd 電食防止転がり軸受
JP3738556B2 (ja) * 1997-05-12 2006-01-25 日本精工株式会社 電食防止転がり軸受
JP2000145785A (ja) * 1998-11-10 2000-05-26 Hitachi Ltd スラスト軸受装置
US6390683B1 (en) * 1999-06-11 2002-05-21 Ntn Corporation Heat insulation sleeve and bearing device for fixing roller
JP4072314B2 (ja) * 1999-12-24 2008-04-09 Ntn株式会社 電食防止転がり軸受
JP3736486B2 (ja) 2002-03-25 2006-01-18 日本精工株式会社 電食防止転がり軸受
JP2004263836A (ja) 2003-03-04 2004-09-24 Nsk Ltd 電動コンプレッサ用転がり軸受
JP2006027018A (ja) * 2004-07-14 2006-02-02 Taisei Plas Co Ltd 金属と樹脂の複合体およびその製造方法
JP2005033999A (ja) * 2004-09-08 2005-02-03 Nsk Ltd ファン駆動用電動モータ
JP5715504B2 (ja) * 2011-06-15 2015-05-07 Ntn株式会社 複層軸受の製造方法および複層軸受
JP2013024252A (ja) * 2011-07-15 2013-02-04 Ntn Corp 転がり軸受装置
EP2833009B1 (en) * 2012-03-27 2020-06-17 NTN Corporation Composite plain bearing, cradle guide, and sliding nut
JP5925552B2 (ja) * 2012-03-27 2016-05-25 Ntn株式会社 複合滑り軸受
DE102013225341A1 (de) * 2013-12-10 2015-06-11 Schaeffler Technologies AG & Co. KG Wälzlagerung mit Strom isolierender Hülse
JP2019138467A (ja) * 2018-02-07 2019-08-22 株式会社ジェイテクト 電食防止軸受

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510111A (en) * 1978-07-04 1980-01-24 Nippon Seiko Kk Roller bearing for preventing electrolytic corrosion
JPH0674240A (ja) * 1992-08-26 1994-03-15 Ntn Corp 電食防止転がり軸受
JP2006250347A (ja) * 2005-02-10 2006-09-21 Nsk Ltd 電食防止転がり軸受及びその取付方法
JP2007292119A (ja) * 2006-04-21 2007-11-08 Ntn Corp 軸受、転動部材および転動部材の製造方法
JP2014224502A (ja) * 2013-05-16 2014-12-04 Ntn株式会社 ウォータポンププーリユニット
JP2018040261A (ja) * 2016-09-05 2018-03-15 日立ジョンソンコントロールズ空調株式会社 冷媒圧縮機
JP2019094976A (ja) * 2017-11-22 2019-06-20 株式会社ジェイテクト 電食防止軸受

Also Published As

Publication number Publication date
US11873863B2 (en) 2024-01-16
US20220341464A1 (en) 2022-10-27
CN114514384A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
EP2833009B1 (en) Composite plain bearing, cradle guide, and sliding nut
WO2021065391A1 (ja) 絶縁転がり軸受
US6354825B1 (en) Helical blade fluid compressor having an aluminum alloy rotating member
JP5385873B2 (ja) 冷媒圧縮機
JP5925552B2 (ja) 複合滑り軸受
EP1281869B1 (en) Scroll type compressor
US10316841B2 (en) Compressor, oil-free screw compressor, and method of manufacturing casing used therefor
JP4514493B2 (ja) スクロール型流体機械
US9353624B2 (en) Scroll compressor
WO2015087891A1 (ja) 内接歯車ポンプ
US20140294643A1 (en) Refrigerant Compressor
JP2021143713A (ja) 絶縁転がり軸受
JP2005201140A (ja) 流体機械
US8419286B2 (en) Hermetic compressor
US9657728B2 (en) Semispherical shoe for swash plate compressor and swash plate compressor
WO1992018772A1 (en) Rotary compressor
US20200208644A1 (en) Centrifugal compressor
JP7433829B2 (ja) 絶縁転がり軸受
JP2006275280A (ja) 摺動部材及び流体機械
GB2537857A (en) Thrust washer comprising a polymer running layer having a textured surface
US6099278A (en) Cantilever mount orbiting scroll with shaft adjustment
JP2018053902A (ja) 内接歯車ポンプ
CN109642561B (zh) 压缩机和制冷循环装置
CN118499250A (zh) 压缩机及制冷设备
JP2024119837A (ja) 摺動部材および摺動部材を製造する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20872739

Country of ref document: EP

Kind code of ref document: A1