WO2021065353A1 - 工作機械の制御装置 - Google Patents

工作機械の制御装置 Download PDF

Info

Publication number
WO2021065353A1
WO2021065353A1 PCT/JP2020/033668 JP2020033668W WO2021065353A1 WO 2021065353 A1 WO2021065353 A1 WO 2021065353A1 JP 2020033668 W JP2020033668 W JP 2020033668W WO 2021065353 A1 WO2021065353 A1 WO 2021065353A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
runout
machining
spindle
machine tool
Prior art date
Application number
PCT/JP2020/033668
Other languages
English (en)
French (fr)
Inventor
信一 小佐野
健次 勝又
前田 淳一
Original Assignee
株式会社牧野フライス製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社牧野フライス製作所 filed Critical 株式会社牧野フライス製作所
Publication of WO2021065353A1 publication Critical patent/WO2021065353A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/155Arrangements for automatic insertion or removal of tools, e.g. combined with manual handling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form

Definitions

  • the present invention relates to a control device for a machine tool, and more particularly to a control device for a machine tool having a function of measuring runout of a rotary tool.
  • the machine tool In machine tools such as machining centers that have a tool magazine and an automatic tool changer, tool change is automatically performed by the automatic tool changer according to a command from the machining program.
  • a tool holder integrated with a tool When a tool holder integrated with a tool is mounted on the spindle, if foreign matter such as chips is caught in the fitting surface between the tool holder and the spindle, the rotation axis of the tool is tilted, causing rotational runout of the tool. Causes processing defects. Therefore, every time the tool is changed, high-pressure air or the like is conventionally blown onto the fitting surface in order to remove foreign matter. Further, in order to detect the rotational runout of the tool before the start of machining, the machine tool may be provided with, for example, the chuck miss detection device described in Patent Document 1.
  • This device determines the presence or absence of a chuck error by measuring the rotational runout of the tool holder mounted on the spindle with an eddy current sensor. Further, conventionally, the rotational runout is measured when the spindle head is stationary at the tool change position.
  • Chuck misses are reliably detected by a chuck miss detection device as described in Patent Document 1.
  • a chuck miss detection device as described in Patent Document 1.
  • simplification of the machining program for detecting chuck mistakes has also been required.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a machine tool control device that substantially shortens the time required for measuring the rotational runout of a spindle tool after a tool change.
  • At least the tool changer, the tool rotary runout measuring device, and the processing unit that controls the spindle motor at least the operation sequence of the command code of the machining program, and the rotary runout of the tool mounted on the spindle of the machine tool are measured and obtained in advance.
  • a storage unit that stores the rotational runout reference value and the threshold value of the deviation between the value measured by the tool rotary runout measuring device and the rotary runout reference value, the measured value of the tool rotary runout measuring device, and the rotation of the tool.
  • a tool rotary runout determination unit for determining whether or not the deviation from the runout reference value exceeds the threshold value is provided, and the processing unit includes a tool rotary runout measurement after tool replacement and a rotary runout determination.
  • the processing unit includes a tool rotary runout measurement after tool replacement and a rotary runout determination.
  • a machine tool control device that performs a series of operations with shifting to the machining rotation speed of the spindle motor when the judgment result is good, and a feed positioning operation to the machining start position of the machine tool in parallel. Will be done.
  • the control device can use a simplified machining program that calls an operation sequence related to tool rotational runout measurement from a storage unit by executing a specific command code.
  • the machine tool control device 10 will be described below with reference to FIGS. 1 to 3.
  • the machine tool device 100 including the control device 10 according to the embodiment of the present invention is configured as a vertical machining center, and in addition to the control device 10, a machine tool 50, a tool magazine (not shown), and a tool carrier (not shown). However, in FIG. 1, only a part of the machine tool device 100 is schematically shown.
  • the machine tool 50 includes an automatic tool changer (hereinafter referred to as “ATC”) 60.
  • ATC automatic tool changer
  • the tool 40 mounted on the spindle 51 of the machine tool 50 arranged at the tool change position and the same tool 40 held by the tool pot 82 held by the gripper 81 of the tool carrier are the tool change of the ATC 60. It is schematically shown with the arm 61 in between.
  • the machine tool 50 of FIG. 1 also includes a runout measuring device 70 for measuring the rotational runout of the tool 40, and the vortex current type displacement sensor 71 of the runout measuring device 70 is adjacent to the outer peripheral surface of the flange 42b of the tool holder 42. As such, it is fixed to the tip of the bracket 72 extending from the end surface of the spindle head 52 of the machine tool 50.
  • rotational runout in the present specification refers to JIS B0021 "Geometric characteristic specification (GPS) of product-Geometric tolerance display method-Shape, posture, position and when the rotation axis of the main shaft 51 is a datum axis straight line. It is used synonymously with the radial “circumferential runout” described in “Runout tolerance display method”, and is simply abbreviated as “runout” in the following description.
  • the tool 40 is composed of a tool body 41 having a cutting edge and a tool holder 42 that integrally holds the tool body 41.
  • the tool holder 42 of FIG. 1 is of a known type including a tapered portion 42a fitted to the spindle 51, a flange 42b, and a tool body fixing portion 42c. Further, the runout of the tool 40 is obtained by measuring the outer peripheral surface of the flange 42b of the tool holder 42 instead of the tool body 41.
  • the control device 10 includes a numerical control unit 20 that controls the feed shaft motor 53 of the machine tool 50, and a machine control unit 30 that controls the spindle motor 54, the ATC 60, the runout measuring device 70, and the like.
  • the numerical control unit 20 includes a reading / interpreting unit 21, an interpolation unit 22, and a servo control unit 23 for a machining program (NC program).
  • the machine control unit 30 includes a processing unit 31, a spindle motor control unit 32, a runout determination unit 33, a storage unit 34, and a display input unit 35.
  • the storage unit 34 stores a tool database 34a, a runout deviation threshold value 34b, a command code processing sequence 34c, and the like.
  • the tool database 34a includes a runout detection mark (for example, a circle) indicating the necessity of runout measurement, and a runout reference value.
  • Data is input to the storage unit 34 via the display input unit 35.
  • the display input unit 35 also displays a vibration determination result and the like.
  • the processing unit 31 commands the spindle motor control unit 32, the runout measuring device 70, and the ATC 60 based on the command code from the reading / interpreting unit 21 and the operation sequence called from the storage unit 34. For example, when the processing unit 31 receives information from the tool database 34a of the storage unit 34 that the target tool 40 has a runout detection mark, the processing unit 31 compares the rotational speed of the spindle motor 54 of the machine tool 50 suitable for runout measurement. While issuing a command to start at a relatively low rotation speed, a command to measure the runout of the tool 40 to the runout measuring device 70 and a command to move the spindle head 52 of the machine tool 50 to the machining start position are numerically controlled. Hand over to department 20.
  • the processing unit 31 When the processing unit 31 receives information from the runout determination unit 33 that the runout determination result is good, the processing unit 31 issues a command to increase the rotation speed of the spindle motor 54 to a normal machining rotation speed. On the other hand, when the processing unit 31 receives information from the runout determination unit 33 that the determination result is defective, the processing unit 31 commands the numerical control unit 20 to return to the tool change position.
  • the deviation between the measured value received from the runout measuring device 70 and the runout reference value of the tool 40 stored in the storage unit 34 is the threshold of the runout deviation also stored in the storage unit 34. It is determined whether or not the value 34b has been exceeded, and the determination result is sent to the processing unit 31.
  • step S10 the tool change command code M6 is executed, and the ATC 60 performs the tool change.
  • the spindle head 52 of the machine tool 50 is arranged at a predetermined tool changing position close to the tool changing arm 61. Further, before the tool 40 is mounted on the spindle 51 of the machine tool 50, high-pressure air is blown onto the fitting surface in order to remove foreign matter such as chips from the fitting surface between the tool 40 and the spindle 51.
  • the machining spindle rotation speed command code S6000 is executed in step S11, and then the spindle start command code M303 is executed in step S12. Then, the process proceeds to step S13, and the spindle head 52 starts to move from the tool changing position to the machining start position according to the command code G90. In parallel with the flow of transition to step S13, the flow from step S14 to step S20 related to runout measurement is executed. Further, the processing sequence of the steps related to the runout measurement is stored in the storage unit 34 as a processing sequence corresponding to the command code M303. In the present embodiment, when M303 is executed following the command code S6000, the processing sequence 34c stored in the storage unit 34 is called and executed.
  • step S14 the presence or absence of the runout detection mark of the target tool 40 is determined. Since the tool database 34a of the storage unit 34 contains information about the presence / absence of the runout detection mark, the processing unit 31 determines based on the information. If there is no runout detection mark, there is no need for runout measurement, so the process proceeds to step S15 and the spindle 51 is started with the machining rotation speed as the designated rotation speed.
  • the roughing tool such as the front milling cutter is a tool that does not perform runout detection, and therefore does not have a runout detection mark in the tool database 34a. Other finishing tools and precision machining tools need runout detection, so they have a runout detection mark.
  • step S16 the spindle 51 is activated at a low measurement rotation speed suitable for measurement, and then the process proceeds to step S17 to perform runout measurement.
  • the measurement is performed by the runout measuring device 70 of the machine tool 50, and the measured value data is sent from the runout measuring device 70 to the runout determination unit 33.
  • step S18 the quality of the measurement result is determined by the runout determination unit 33. More specifically, the runout determination unit 33 determines whether or not the deviation between the measured value and the runout reference value of the tool 40 exceeds the runout deviation threshold 34b.
  • step S18 If the result of the pass / fail judgment in step S18 is no, the process proceeds to step S19, the spindle head 52 returns to the tool change position, and the process proceeds to step S10 for removing foreign matter by air. On the other hand, if the result of the quality determination in step S18 is good, the process proceeds to step S20 and the rotation speed of the spindle 51 is changed to the processing rotation speed.
  • step S21 it is determined whether or not the rotation speed of the spindle 51 has reached the processing rotation speed according to the command code M302. If the result of the determination is negative, step S21 is repeated until the machining rotation speed is reached.
  • step S22 machining is started by the tool 40 which has already been fed and positioned at the machining start position (for example, the positions of coordinates X100, Y200, and Z-150) in step S13.
  • step S18 The judgment of the quality of the measurement result in step S18 can be moved to the subsequent stage of step S21. In this way, after the spindle head 52 is positioned at the machining start position, the operation of returning to the tool change position in step S19 is started, and the starting point of the operation of returning to the tool change position is determined. By determining the start point and end point of the operation of returning to the tool change position, there is an effect that it becomes easy to generate a program of the return operation.
  • step S12 when the command of M303 is received in step S12, the spindle head 52 of the machine tool 50 starts moving from the tool change position toward the machining start position (step S13) at the same time.
  • steps S14 to S20 for runout measurement is also executed. That is, the runout measurement is also performed in parallel while the spindle head 52 is moving, and therefore, the time from the tool change to the start of machining is compared with the conventional method in which the runout measurement is performed while the spindle head 52 is stationary. Can be shortened to almost the same time as when the runout measurement is not performed.
  • the processing sequence 34c related to the runout measurement is stored in the storage unit 34 in advance, and is called and executed when the command codes S6000 and M303 are executed in the machining program. Therefore, the machining program creator only needs to describe the command codes S6000 and M303 in the machining program for the runout measurement.
  • the following is an example of a part related to runout measurement of the machining program used in the control device 10 of the present embodiment. M6; (tool change) S6000 M303; (Main spindle command rotation speed during machining) G90 G00 Xxx. Yxxx. Zxxxx. M302; (Confirmation of spindle arrival speed)
  • the machining program includes the command code M303, and the operation sequence of the command code M303 starts the spindle 51 at the rotation speed for the runout measurement of the tool 40, performs the runout measurement and the judgment of the tool 40, and the judgment result is When it is good, in parallel with a series of operations of shifting the spindle 51 to the machining rotation speed described in the same block of the machining program, an operation of sending the spindle 51 to the machining start position described in the next block of the machining program to position the spindle 51. Is to execute.
  • the characters in parentheses in FIG. 3 and the illustrated machining program are added for explanation and are not included in the actual machining program.
  • the command code M303 of the present embodiment is an M code that can be predetermined by the user of the machine tool. In the present embodiment, the number 303 is assigned after M, but a number other than the number of the M code specified in JISB6315-2 can be assigned.
  • Control device 20 Numerical control unit 30 Machine control unit 31 Processing unit 32 Spindle motor control unit 33 Runout judgment unit 34 Storage unit 40 Tool 50 Machine tool 60 ATC 70 Runout measuring device

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Automatic Tool Replacement In Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

工作機械の制御装置(10)であって、加工プログラムの指令コードに応じて、工具交換装置(60)、工具回転振れ測定装置(70)、および主軸モータ(54)を制御する処理部(31)と、指令コードの動作シーケンス、工具(40)の回転振れを予め測定して求めた回転振れ基準値、および工具回転振れ測定装置(70)による測定値と回転振れ基準値との偏差のしきい値を記憶する記憶部(34)と、工具回転振れ測定装置(70)の測定値と工具の回転振れ基準値との偏差がしきい値を超えたか否かを判定する工具回転振れ判定部(33)と、を具備し、処理部(31)は、工具の回転振れ測定と、回転振れ判定と、判定結果が良のときに主軸モータ(54)の加工回転速度への変速との一連の動作、および工作機械(50)の加工開始位置への送り位置決めの動作を並行して実施する工作機械の制御装置(10)。

Description

工作機械の制御装置
 本発明は、工作機械の制御装置に関するものであり、特に、回転工具の振れの測定機能を有する工作機械の制御装置に関するものである。
 工具マガジンおよび自動工具交換装置を有するマシニングセンタ等の工作機械において、工具交換は、加工プログラムからの指令により自動工具交換装置によって自動的に行われる。工具と一体の工具ホルダが主軸に装着されるとき、工具ホルダと主軸との間の嵌合面に切りくず等の異物が挟まると、工具の回転軸線が傾斜するので、工具に回転振れが生じて加工不良が引き起こされる。そのため、工具交換の度に、異物の除去のために嵌合面に対する高圧エアー等の吹き付けが従来行われている。さらに、加工開始前に工具の回転振れを検出するために、工作機械が、例えば特許文献1に記載されているチャックミス検出装置を備えることもある。この装置は、主軸に装着された工具ホルダの回転振れを渦電流式センサによって測定することによって、チャックミスの有無を判定する。また従来、回転振れの測定は、主軸頭が工具交換位置で静止しているときに行われている。
特許第4081596号公報
 特許文献1に記載されているようなチャックミス検出装置によってチャックミスは確実に検出されている。ただし、工具交換から加工開始に至る時間を短縮するために、検出に要する時間を短縮することも望まれていた。また、チャックミス検出を行う場合の加工プログラムの簡素化も求められていた。
 本発明は、上記事情に鑑みてなされたものであって、工具交換後の主軸工具の回転振れの測定に要する時間を実質短縮する工作機械の制御装置を提供することを目的とする。
 さらに、本発明は、回転振れの測定も実施する簡素化された加工プログラムを提供することもその目的とする。
 上述の目的を達成するために、本発明によれば、工作機械の工具交換後、主軸に装着された工具の回転振れ測定を行う工作機械の制御装置において、加工プログラムの指令コードに応じて、少なくとも工具交換装置、工具回転振れ測定装置、および主軸モータを制御する処理部と、少なくとも加工プログラムの指令コードの動作シーケンス、前記工作機械の主軸に装着された工具の回転振れを予め測定して求めた回転振れ基準値、および前記工具回転振れ測定装置による測定値と前記回転振れ基準値との偏差のしきい値を記憶する記憶部と、前記工具回転振れ測定装置の測定値と前記工具の回転振れ基準値との偏差が前記しきい値を超えたか否かを判定する工具回転振れ判定部と、を具備し、前記処理部は、工具交換後の工具の回転振れ測定と、回転振れ判定と、判定結果が良のときに主軸モータの加工回転速度への変速との一連の動作、および前記工作機械の加工開始位置への送り位置決めの動作を並行して実施する工作機械の制御装置が提供される。
 従来は、工作機械の主軸頭が工具交換位置で静止した状態で回転振れ測定に関する一連の動作が実施され、測定後に主軸頭は加工プログラムで指定された加工開始位置への移動を開始していた。これに対して、本発明によると、工作機械の主軸頭の移動中に並行して、工具の回転振れ測定に関する一連の動作が実施されるので、前記一連の動作に要する時間の全てまたは一部を考慮する必要がなく、したがって工具交換から加工開始に至る時間が短縮される。
 本発明による制御装置は、工具の回転振れ測定に関する動作シーケンスを特定の指令コードの実行によって記憶部から呼び出す簡素化された加工プログラムを使用することが可能である。
工作機械の主軸に装着された工具および工具ポットに把持された工具を模式的に示す正面図である。 本発明の実施形態による工作機械の制御装置の構成を概略的に示すブロック図である。 本発明の実施形態による工作機械の制御装置によって実行される、工具交換から加工開始までの動作の一例を示すフロー図である。
 以下に、図1~図3を参照して、本発明の実施形態による工作機械の制御装置10について説明する。本発明の実施形態による制御装置10を含む工作機械装置100は、立形マシニングセンタとして構成され、制御装置10の他に、工作機械50、工具マガジン(図示せず)、工具キャリア(図示せず)等を具備するが、図1では、工作機械装置100の一部だけが模式的に示される。工作機械50は、自動工具交換装置(以下、「ATC」と呼ぶ)60を具備する。
 図1では、工具交換位置に配置された工作機械50の主軸51に装着された工具40、および工具キャリアのグリッパ81によって把持された工具ポット82により保持された同じ工具40が、ATC60の工具交換アーム61を挟んで模式的に示されている。図1の工作機械50は、工具40の回転振れを測定する振れ測定装置70も具備しており、振れ測定装置70の渦電流式変位センサ71が、工具ホルダ42のフランジ42bの外周面に隣接するように、工作機械50の主軸頭52の端面から延びるブラケット72の先端に固定されている。なお、本明細書における用語の「回転振れ」は、主軸51の回転軸線をデータム軸直線としたときの、JISB0021「製品の幾何特性仕様(GPS)-幾何公差表示方式-形状,姿勢,位置及び振れの公差表示方式」に記載された半径方向の「円周振れ」と同義で用いられており、また、以下の説明では単に「振れ」と略称される。
 本明細書では、工具40は、切れ刃を有する工具本体41と、それを一体的に保持する工具ホルダ42とから構成されている。図1の工具ホルダ42は、主軸51に嵌合するテーパ部分42aと、フランジ42bと、工具本体固定部42cとを備える公知のタイプのものである。また、工具40の振れは、工具本体41ではなく、工具ホルダ42のフランジ42bの外周面を測定することにより得ている。
 次に、本発明の実施形態による制御装置10の基本構成について図2を参照して説明する。制御装置10は、工作機械50の送り軸モータ53を制御する数値制御部20と、主軸モータ54、ATC60、および振れ測定装置70等を制御する機械制御部30とを具備する。数値制御部20は、加工プログラム(NCプログラム)に対する読取り解釈部21、補間部22、およびサーボ制御部23を具備する。
 機械制御部30は、処理部31、主軸モータ制御部32、振れ判定部33、記憶部34、および表示入力部35を具備する。記憶部34には、工具データベース34a、振れ偏差のしきい値34b、指令コードの処理シーケンス34c等が格納されている。工具データベース34aには、各工具40の寸法や許容回転数等の他に、振れ測定の要否を示す振れ検知マーク(例えば○印)、および振れの基準値が含まれる。記憶部34には表示入力部35を介してデータが入力される。表示入力部35は、データの入力の他に振れの判定結果等の表示も行う。
 処理部31は、読取り解釈部21からの指令コードと記憶部34から呼び出された動作シーケンスに基づいて主軸モータ制御部32、振れ測定装置70、およびATC60に指令する。例えば、処理部31は、対象の工具40に振れ検知マークが有りとの情報を記憶部34の工具データベース34aから受けた場合、工作機械50の主軸モータ54の回転速度を振れ測定に適した比較的低速の回転速度で起動する指令を出す一方で、振れ測定装置70に対して工具40の振れの測定を指令し、さらに工作機械50の主軸頭52を加工開始位置へ移動させる指令を数値制御部20に引き渡す。処理部31は、振れの判定結果が良であるとの情報を振れ判定部33より受けた場合、主軸モータ54の回転速度を通常の加工回転速度まで増速する指令を出す。一方、処理部31は、判定結果が不良であるとの情報を振れ判定部33より受けた場合、工具交換位置へ戻るよう数値制御部20に指令する。
 振れ判定部33は、振れ測定装置70から受けた測定値と、記憶部34に記憶されている工具40の振れ基準値との偏差が、やはり記憶部34に記憶されている振れ偏差のしきい値34bを超えたか否かを判定して、判定結果を処理部31に送る。
 次に、工具40の振れの測定に関連する制御部の動作について図3のフロー図を参照して以下に説明する。
 最初に、ステップS10において、工具交換の指令コードM6が実行され、ATC60が工具交換を行う。このとき、工作機械50の主軸頭52は工具交換アーム61に近い所定の工具交換位置に配置されている。また、工具40が工作機械50の主軸51に装着される前に、工具40と主軸51との嵌合面から切りくず等の異物を除去するために、嵌合面に高圧エアーが吹き付けられる。
 ステップS11において加工用主軸回転速度指令コードS6000が実行され、次いでステップS12において主軸起動指令コードM303が実行される。そうすると、ステップS13へ移行し、指令コードG90に従って主軸頭52が工具交換位置から加工開始位置へ向けて移動し始める。このステップS13へ移行するフローと並行して振れ測定に関するステップS14からステップS20までのフローが実行される。また、これら振れ測定に関するステップの処理シーケンスは、指令コードM303に対応する処理シーケンスとして記憶部34に格納されている。本実施形態では、指令コードS6000に続いてM303が実行されると、記憶部34に格納されていた処理シーケンス34cが呼び出されて実行される。
 ステップS14において、対象の工具40の振れ検知マークの有無が判定される。記憶部34の工具データベース34aには振れ検知マークの有無についての情報が含まれているので、その情報に基づいて処理部31が判定する。そして、振れ検知マークが無い場合は、振れ測定の必要性がないので、ステップS15に進み加工用回転速度を指定回転速度として主軸51を起動する。本実施形態では、正面フライスのような荒加工用工具が、振れ検知を行わない工具とされ、したがって工具データベース34aに振れ検知マークを有しない。その他の、仕上げ加工用工具や精密加工用工具は振れ検知が必要であるので、振れ検知マークを有する。
 振れ検知マークが有りの場合は、ステップS16に進み、測定に適した低速の測定用回転速度で主軸51を起動し、次いでステップS17に進み、振れ測定を行う。測定は、工作機械50の振れ測定装置70によって行われ、測定値データは振れ測定装置70から振れ判定部33に送られる。そして、ステップS18において、測定結果の良否が振れ判定部33によって判定される。より詳しくは、振れ判定部33は、測定値と工具40の振れ基準値との偏差が振れ偏差のしきい値34bを超えているか否かを判定する。
 ステップS18における良否の判定の結果が否である場合、ステップS19に進み、主軸頭52は工具交換位置へ戻り、そしてエアーによる異物の除去のためにステップS10に進む。一方、ステップS18における良否の判定の結果が良である場合、ステップS20に進み主軸51の回転速度を加工用回転速度に変速する。
 次に、ステップS21に進み、指令コードM302にしたがって、主軸51の回転速度が加工用回転速度に到達したか否かを判定する。判定の結果が否である場合は、加工用回転速度に到達するまでステップS21を繰り返す。加工用回転速度に到達したなら、ステップS22に進み、ステップS13によって加工開始位置(例えば座標X100、Y200、Z-150の位置)に既に送り位置決めされている工具40によって加工を開始する。
 なお、ステップS18の測定結果良否の判定は、ステップS21の後段へ移動することもできる。こうすれば主軸頭52が加工開始位置に位置決めされた後にステップS19の工具交換位置へ戻る動作が開始され、工具交換位置へ戻る動作の起点が確定されることになる。工具交換位置へ戻る動作の起点と終点が確定されることにより、戻り動作のプログラムを生成しやすくなるという効果がある。
 本実施形態の制御装置10によると、ステップS12でM303の指令を受けると、工作機械50の主軸頭52が工具交換位置から加工開始位置を目指して移動を開始する(ステップS13)のと同時に、振れ測定のためのステップS14~S20のフローも実行される。つまり、主軸頭52の移動中に振れ測定も並行して実施され、したがって、振れ測定が主軸頭52の静止中に実施される従来のやり方に比べると、工具交換から加工開始に至るまでの時間を、振れ測定を実施しなかった場合とほぼ同等の時間へ短縮することが可能である。なお、工具交換位置から加工開始位置までの距離が短い場合には、振れ測定のための一連のステップが主軸頭52の移動中に完了しない場合もあり得るが、そのような場合でも時間短縮の効果が得られることは明らかであろう。また、1回の工具交換で短縮される時間は、ほとんどの場合1秒未満であるとはいえ、工具交換が多くかつ大量生産される例えば自動車のエンジンブロックのような被加工物に対しては、本発明の効果が大きいことが理解されよう。
 また、本発明におけるように、主軸頭52の移動中に振れ測定を実施した場合でも、従来のように静止時に測定した場合と同等の測定精度が得られることが本発明の発明者によって確認されている。
 本実施形態の制御装置10によると、振れ測定に関する処理シーケンス34cは、記憶部34にあらかじめ格納されていて、加工プログラムで指令コードS6000およびM303が実行されると呼び出されて実行される。そのため、加工プログラム作成者は、振れ測定に関しては指令コードS6000およびM303を加工プログラムに記述しておきさえすればよい。以下に、本実施形態の制御装置10で用いられる加工プログラムの振れ測定に関連する部分の一例を以下に示す。
 M6;(工具交換)
 S6000 M303;(加工時の主軸指令回転速度)
 G90 G00 Xxx. Yxxx. Zxxxx. M302;(主軸到達速度の確認)
 上記加工プログラムは指令コードM303を含んでおり、指令コードM303の動作シーケンスは、主軸51を工具40の振れ測定用の回転速度で起動し、工具40の振れ測定と判定とを行い、判定結果が良のとき、加工プログラムの同一ブロックに記載の加工回転速度まで主軸51を変速する一連の動作と並行して、加工プログラムの次ブロックに記載の加工開始位置まで主軸51を送って位置決めする動作とを実行するものである。なお、図3および例示した加工プログラムにおける丸括弧内の文字は説明用に付加したものであって、実際の加工プログラムには含まれていない。本実施形態の指令コードM303は、工作機械の使用者によって予め定めることができるMコードである。本実施形態ではMの次に303という数字を当てたが、JISB6315-2で規定されたMコードの数字以外の別の数字を当てることができる。
 これに対し、主軸頭52が静止した状態で振れ測定を行う従来の加工プログラムの振れ測定に関連する部分を以下に示す。上記本発明による制御装置10に用いられる加工プログラムの倍のブロックを要することが分かる。
 M6;(工具交換)
 S600;(振れ検知時の主軸指令回転速度)
 M3;(主軸起動)
 M460;(振れ検知)
 G90 G00 Xxx. Yxxx. Zxxxx. S6000 M303;(位置決めと同時に加工時の主軸指令回転速度)
 …M302;(主軸速度の到達を確認)
 10  制御装置
 20  数値制御部
 30  機械制御部
 31  処理部
 32  主軸モータ制御部
 33  振れ判定部
 34  記憶部
 40  工具
 50  工作機械
 60  ATC
 70  振れ測定装置

Claims (3)

  1.  工作機械の工具交換後、主軸に装着された工具の回転振れ測定を行う工作機械の制御装置において、
     加工プログラムの指令コードに応じて、少なくとも工具交換装置、工具回転振れ測定装置、および主軸モータを制御する処理部と、
     少なくとも加工プログラムの指令コードの動作シーケンス、前記工作機械の主軸に装着された工具の回転振れを予め測定して求めた振れ基準値、および前記工具回転振れ測定装置による測定値と前記振れ基準値との偏差のしきい値を記憶する記憶部と、
     前記工具回転振れ測定装置の測定値と前記工具の回転振れ基準値との偏差が前記しきい値を超えたか否かを判定する工具回転振れ判定部と、
     を具備し、
     前記処理部は、工具交換後の工具の回転振れ測定と、回転振れ判定と、判定結果が良のときに主軸モータの加工回転速度への変速との一連の動作、および前記工作機械の加工開始位置への送り位置決めの動作を並行して実施することを特徴とした工作機械の制御装置。
  2.  前記記憶部は、更に、各工具に対する回転振れ測定および判定の要否を示すマークを記憶する、請求項1に記載の工作機械の制御装置。
  3.  前記加工プログラムは予め定めた指令コードを含んでおり、前記予め定めた指令コードの動作シーケンスは、主軸を工具の回転振れ測定用の回転速度で起動し、工具の回転振れ測定と判定とを行い、判定結果が良のとき、加工プログラムの同一ブロックに記載の加工回転速度まで主軸を変速する一連の動作と並行して、加工プログラムの次ブロックに記載の加工開始位置まで主軸を送って位置決めする動作とを実行する、請求項1または2に記載の工作機械の制御装置。
PCT/JP2020/033668 2019-09-30 2020-09-04 工作機械の制御装置 WO2021065353A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-179222 2019-09-30
JP2019179222A JP2021053744A (ja) 2019-09-30 2019-09-30 工作機械の制御装置

Publications (1)

Publication Number Publication Date
WO2021065353A1 true WO2021065353A1 (ja) 2021-04-08

Family

ID=75269300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033668 WO2021065353A1 (ja) 2019-09-30 2020-09-04 工作機械の制御装置

Country Status (2)

Country Link
JP (1) JP2021053744A (ja)
WO (1) WO2021065353A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7124242B1 (ja) 2022-03-28 2022-08-23 株式会社東京精密 ツールホルダ装着状態検出方法及び装置、並びに工作機械
WO2023188451A1 (ja) * 2022-03-28 2023-10-05 株式会社東京精密 ツールホルダ装着状態検出方法、ツールホルダ装着状態検出装置、変位検出方法、変位検出装置、及び、工作機械

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114670047A (zh) * 2022-05-30 2022-06-28 苏州珈玛自动化科技有限公司 一种立式综合加工中心用刀库及加工中心

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04201049A (ja) * 1990-11-29 1992-07-22 Osaka Kiko Co Ltd 工具装着誤差検出方法
JP2000280140A (ja) * 1999-03-31 2000-10-10 Mori Seiki Co Ltd 工具脱落防止装置及びこれを備えた工作機械
JP2002200542A (ja) * 2000-10-27 2002-07-16 Tokyo Seimitsu Co Ltd 工作機械
JP2004330339A (ja) * 2003-05-06 2004-11-25 Yamazaki Mazak Corp 複合加工旋盤
US20090228137A1 (en) * 2007-09-10 2009-09-10 Ex-Cell-O Gmbh Method for testing the fit or for testing the imbalance of a tool
JP2011189459A (ja) * 2010-03-15 2011-09-29 Howa Mach Ltd ツールホルダ装着異常検出方法及び工作機械

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04201049A (ja) * 1990-11-29 1992-07-22 Osaka Kiko Co Ltd 工具装着誤差検出方法
JP2000280140A (ja) * 1999-03-31 2000-10-10 Mori Seiki Co Ltd 工具脱落防止装置及びこれを備えた工作機械
JP2002200542A (ja) * 2000-10-27 2002-07-16 Tokyo Seimitsu Co Ltd 工作機械
JP2004330339A (ja) * 2003-05-06 2004-11-25 Yamazaki Mazak Corp 複合加工旋盤
US20090228137A1 (en) * 2007-09-10 2009-09-10 Ex-Cell-O Gmbh Method for testing the fit or for testing the imbalance of a tool
JP2011189459A (ja) * 2010-03-15 2011-09-29 Howa Mach Ltd ツールホルダ装着異常検出方法及び工作機械

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7124242B1 (ja) 2022-03-28 2022-08-23 株式会社東京精密 ツールホルダ装着状態検出方法及び装置、並びに工作機械
WO2023188451A1 (ja) * 2022-03-28 2023-10-05 株式会社東京精密 ツールホルダ装着状態検出方法、ツールホルダ装着状態検出装置、変位検出方法、変位検出装置、及び、工作機械
JP2023144184A (ja) * 2022-03-28 2023-10-11 株式会社東京精密 ツールホルダ装着状態検出方法及び装置、並びに工作機械

Also Published As

Publication number Publication date
JP2021053744A (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
WO2021065353A1 (ja) 工作機械の制御装置
CA2537155C (en) Grinding machine with concentricity correction
US6640676B2 (en) Tool presetter and tool offset amount calculation method
EP1758004B1 (en) NC Machine Tool
US20060259180A1 (en) Device and method for workpiece calibration
JPWO2014167636A1 (ja) 数値制御装置
JP2002006911A (ja) 公称移動機械加工
JP6921511B2 (ja) 自動工具交換装置付き工作機械及び自動測定方法
RU2293011C2 (ru) Определение фазы заготовки для станка со шпинделем и устройство для его осуществления
JP2007257606A (ja) ツールの加工位置決め誤差補正方法
US11383313B2 (en) Machine tool and gear machining method
JP4047986B2 (ja) 数値制御方法および装置
JPH07124849A (ja) 工作機械における工具取付位置の補正装置およびその補正方法
JP3459847B2 (ja) ツールプリセッタによる工具補正量再設定方法およびその装置
JPH11188572A (ja) Nc工作機械の工具交換時における刃先位置設定方法及び、この方法を実行するnc工作機械
JP2001269843A (ja) 回転工具の中心位置測定方法
JPH10309653A (ja) 刃先位置変位検出方法及び刃先位置変位検出機能を備えた工作機械並びに該工作機械用工具ホルダ
JP2000141167A (ja) 工作機械の数値制御装置
JP4491686B2 (ja) 工作機械におけるワークの加工制御方法
JPH05177480A (ja) 自動工具交換装置を備えたマシニングセンタの制御装 置
JPH0740171A (ja) Nc工作機械およびその工具情報確認方法
JP3755411B2 (ja) 工具回転径検出方法
JP4324264B2 (ja) ツールプリセッタ
JPS5926401B2 (ja) 工作機械における工具位置補正方法
JP7090018B2 (ja) 工作機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871314

Country of ref document: EP

Kind code of ref document: A1