WO2021065070A1 - Adhesive sheet and method for producing adhesive sheet - Google Patents

Adhesive sheet and method for producing adhesive sheet Download PDF

Info

Publication number
WO2021065070A1
WO2021065070A1 PCT/JP2020/020327 JP2020020327W WO2021065070A1 WO 2021065070 A1 WO2021065070 A1 WO 2021065070A1 JP 2020020327 W JP2020020327 W JP 2020020327W WO 2021065070 A1 WO2021065070 A1 WO 2021065070A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive sheet
pressure
sensitive adhesive
test piece
semiconductor chip
Prior art date
Application number
PCT/JP2020/020327
Other languages
French (fr)
Japanese (ja)
Inventor
高野 健
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2021551128A priority Critical patent/JPWO2021065070A1/ja
Priority to KR1020227011032A priority patent/KR20220075341A/en
Priority to CN202080069927.4A priority patent/CN114502679A/en
Priority to TW109119420A priority patent/TW202122533A/en
Publication of WO2021065070A1 publication Critical patent/WO2021065070A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/25Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/062Copolymers with monomers not covered by C09J133/06
    • C09J133/066Copolymers with monomers not covered by C09J133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/122Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present only on one side of the carrier, e.g. single-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/302Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being pressure-sensitive, i.e. tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature

Definitions

  • the present invention relates to an adhesive sheet and a method for manufacturing an adhesive sheet.
  • CSP chip scale package
  • WLP wafer level package
  • an external electrode or the like is formed on the wafer before it is separated by dicing, and finally the wafer is diced and separated. Examples of the WLP include a fan-in type and a fan-out type.
  • the semiconductor chip is covered with a sealing member so as to have a region larger than the chip size, and the semiconductor chip sealant is covered.
  • the rewiring layer and the external electrode are formed not only on the circuit surface of the semiconductor chip but also on the surface region of the sealing member.
  • an expansion wafer is formed by surrounding a plurality of semiconductor chips separated from a semiconductor wafer by using a mold member, leaving a circuit forming surface thereof, and forming an expansion wafer in a region outside the semiconductor chip.
  • a method for manufacturing a semiconductor package formed by extending a rewiring pattern is described.
  • the manufacturing method described in Patent Document 1 before enclosing a plurality of individualized semiconductor chips with a mold member, they are replaced with a wafer mount tape for expansion, and the wafer mount tape is spread to form a plurality of semiconductor chips. The distance between them is increasing.
  • a tape or sheet to which a plurality of semiconductor chips are attached is spread to increase the distance between the semiconductor chips.
  • the sheet is pulled and spread, if the amount of elongation differs within the sheet surface, it is difficult to evenly expand the distance between the semiconductor chips.
  • the pressure-sensitive adhesive contained in the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet exudes from the end portion in the width direction of the sheet.
  • An object of the present invention is to obtain an adhesive sheet having excellent expandability by reducing the difference in the amount of elongation of the adhesive sheet in the in-plane direction when the adhesive sheet is expanded in the expanding step to extend the distance between semiconductor chips. To provide. Another object of the present invention is to suppress the seepage of the pressure-sensitive adhesive, and to extend the pressure-sensitive adhesive sheet in the expanding step to extend the distance between the semiconductor chips, and to increase the amount of elongation of the pressure-sensitive adhesive sheet in the in-plane direction. It is an object of the present invention to provide a pressure-sensitive adhesive sheet having a small difference and excellent expandability, and a method for manufacturing the pressure-sensitive adhesive sheet.
  • the pressure-sensitive adhesive sheet according to one aspect of the present invention has a base material and a pressure-sensitive adhesive layer.
  • a first test piece having a width of 25 mm is prepared from the pressure-sensitive adhesive sheet, and the base material and the pressure-sensitive adhesive layer at both ends of the first test piece in the longitudinal direction are gripped by a gripper and subjected to a tensile tester. and the tensile strength F A1 when pulling 0.5mm,
  • the first semiconductor chip and the second semiconductor chip having a vertical dimension of 45 mm, a horizontal dimension of 35 mm, and a thickness dimension of 0.625 mm are the vertical dimensions of the first semiconductor chip and the second semiconductor chip.
  • the pressure-sensitive adhesive sheet according to one aspect of the present invention has a base material and a pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive layer contains an energy ray-curable resin and contains
  • the pressure-sensitive adhesive layer has a cured portion in which the energy ray-curable resin is cured at both ends in the width direction of the pressure-sensitive adhesive layer, and an uncured portion in which the energy ray-curable resin is not cured.
  • a first test piece having a width of 25 mm is prepared from the pressure-sensitive adhesive sheet in the region corresponding to the uncured portion, and the base material and the pressure-sensitive adhesive layer at both ends of the first test piece in the longitudinal direction.
  • the first semiconductor chip and the second semiconductor chip having a vertical dimension of 45 mm, a horizontal dimension of 35 mm, and a thickness dimension of 0.625 mm are the vertical dimensions of the first semiconductor chip and the second semiconductor chip. Is 45 mm along the longitudinal direction of the first test piece, and the distance between the first semiconductor chip and the second semiconductor chip is 35 ⁇ m, in the longitudinal direction of the first test piece.
  • the first semiconductor chip is attached to the pressure-sensitive adhesive layer of the uncured portion on one end side
  • the second semiconductor chip is attached to the pressure-sensitive adhesive layer of the uncured portion on the other end side in the longitudinal direction of the first test piece.
  • a semiconductor chip is attached to prepare a second test piece, and the base material, the pressure-sensitive adhesive layer of the uncured portion, and the semiconductor chip at both ends in the longitudinal direction of the second test piece are gripped.
  • F B1 when gripped by the tensile 0.5mm by a tensile tester, but satisfies the following equation (equation 1A).
  • the pressure-sensitive adhesive sheet is cut into a size of 150 mm in length and 25 mm in width along the elongated direction of the pressure-sensitive adhesive sheet so as to include a cured portion in which the energy ray-curable resin is cured.
  • the third test piece was gripped by a pair of chucks with a chuck-to-chuck distance of 100 mm, and extended to a chuck-to-chuck distance of 200 mm at a speed of 5 mm / sec, the cured portion. It is preferable that the interface between the substrate and the substrate does not float.
  • the adhesive sheet is placed in the first direction, the second direction opposite to the first direction, the third direction perpendicular to the first direction, and the direction opposite to the third direction.
  • the area ratio (S2 / S1) ⁇ 100 of the area S1 of the pressure-sensitive adhesive sheet before stretching and the area S2 of the pressure-sensitive adhesive sheet after stretching is 381%
  • the pressure-sensitive adhesive layer is stretched in four directions. It is preferable that the cured portion of the above does not peel off at the interface with the base material.
  • the Young's modulus Y A1 of the first test piece and the Young's modulus Y B1 of the second test piece satisfy the relationship of the following mathematical formula (Equation 2A). Is preferable. Y B1 / Y A1 ⁇ 19 ... (Equation 2A)
  • the pressure-sensitive adhesive layer preferably contains an acrylic pressure-sensitive adhesive.
  • the base material preferably contains a urethane-based elastomer.
  • the pressure-sensitive adhesive sheet according to one aspect of the present invention is preferably used in an expanding step for expanding the distance between a plurality of semiconductor chips during the manufacturing process of a semiconductor device.
  • the pressure-sensitive adhesive sheet according to one aspect of the present invention has a long shape and is wound in a roll shape. Adhesive sheet.
  • the method for producing an adhesive sheet according to one aspect of the present invention is A step of applying a pressure-sensitive adhesive composition containing an energy ray-curable resin onto a base material to form a pressure-sensitive adhesive layer, A step of irradiating both ends of the pressure-sensitive adhesive layer in the width direction with energy rays to cure the energy ray-curable resin to form a cured portion.
  • the entire cured portion is left outside the both ends in the width direction of the uncured portion in which the energy ray-curable resin is not cured, or a part of the cured portion is left outside the cured portion. It has a step of cutting.
  • the width of the cured portion left outside the both ends in the width direction of the uncured portion is preferably 0.5 mm or more independently.
  • the pressure-sensitive adhesive sheet when the pressure-sensitive adhesive sheet is expanded in the expanding step to extend the distance between semiconductor chips, the difference in the amount of elongation of the pressure-sensitive adhesive sheet in the in-plane direction can be reduced, and the expandability is excellent.
  • Adhesive sheets can be provided.
  • the pressure-sensitive adhesive when the pressure-sensitive adhesive is suppressed from seeping out and the pressure-sensitive adhesive sheet is spread in the expanding step to increase the distance between the semiconductor chips, the pressure-sensitive adhesive sheet is in the in-plane direction. It is possible to provide a pressure-sensitive adhesive sheet having an excellent expandability and a method for manufacturing the pressure-sensitive adhesive sheet, which can reduce the difference in the amount of elongation.
  • the pressure-sensitive adhesive sheet according to this embodiment has a base material and a pressure-sensitive adhesive layer.
  • the shape of the adhesive sheet can be any shape such as a tape shape (long form) and a label shape (single leaf shape).
  • FIG. 1 is a schematic cross-sectional view of an example of the pressure-sensitive adhesive sheet according to the present embodiment.
  • FIG. 1 shows a pressure-sensitive adhesive sheet 1 having a base material 10 and a pressure-sensitive adhesive layer 20.
  • the ratio of the tensile strength of the first test piece and the second test piece produced from the pressure-sensitive adhesive sheet measured by a tensile tester satisfies a predetermined range.
  • the first test piece is made from the pressure-sensitive adhesive sheet according to the present embodiment.
  • the width of the first test piece is 25 mm.
  • FIG. 2 the base material 10 and the adhesive layer 20 on one end side of the first test piece are gripped by the first gripper 110 of the tensile tester, and the base material 10 and the adhesive layer 20 on the other end side of the first test piece are held.
  • the second test piece is produced by attaching two semiconductor chips to the first test piece produced from the pressure-sensitive adhesive sheet according to the present embodiment.
  • the two semiconductor chips are a first semiconductor chip and a second semiconductor chip. Both the first semiconductor chip and the second semiconductor chip have a vertical dimension of 45 mm, a horizontal dimension of 35 mm, and a thickness dimension of 0.625 mm.
  • the sides of the first semiconductor chip and the second semiconductor chip having a vertical dimension of 45 mm are attached along the longitudinal direction of the first test piece.
  • the first semiconductor chip is attached to one end side in the longitudinal direction of the first test piece.
  • the second semiconductor chip is attached to the other end side in the longitudinal direction of the first test piece.
  • the distance between the first semiconductor chip and the second semiconductor chip attached to the first test piece is 35 ⁇ m.
  • FIG. 3 the base material 10, the adhesive layer 20, and the first semiconductor chip CP1 on one end side of the second test piece are gripped by the first gripper 110 of the tensile tester, and the other of the second test piece is shown.
  • the tensile strength FA1 is when the base material and the pressure-sensitive adhesive layer at both ends in the longitudinal direction of the first test piece are gripped with a gripper and pulled by a tensile tester by 0.5 mm. Strength.
  • the tensile strength FB1 is 0.5 mm by a tensile tester by grasping the base material, the pressure-sensitive adhesive layer and the semiconductor chip at both ends in the longitudinal direction of the second test piece with a gripper. It is the strength at the time of tension.
  • the present inventors have different behaviors of how the adhesive sheet extends when the adhesive sheet is expanded (expanded) between the portion where the semiconductor chip of the adhesive sheet is not attached and the portion where the semiconductor chip is attached. I found that. Further, in the conventional adhesive sheet, the present inventors have a large difference between the tensile strength of the portion of the adhesive sheet to which the semiconductor chip is not attached and the tensile strength of the portion to which the semiconductor chip is attached. It was also found that when the pressure-sensitive adhesive sheet is expanded in the expanding step to increase the distance between the semiconductor chips, the difference in the amount of elongation of the pressure-sensitive adhesive sheet in the in-plane direction is large.
  • the FB1 / FA1 is 30 or less, the tensile strength of the portion of the adhesive sheet where the semiconductor chip is not attached, and the tensile strength of the portion where the semiconductor chip is attached.
  • the ratio F B1 / F A1 to the strength is small. Therefore, according to the pressure-sensitive adhesive sheet according to the present embodiment, when the pressure-sensitive adhesive sheet is expanded in the expanding step to extend the distance between the semiconductor chips, the difference in the amount of elongation of the pressure-sensitive adhesive sheet in the in-plane direction becomes small. It has excellent expandability and can reduce variations in distance between semiconductor chips.
  • the amount of tension that 0.5mm in measuring the tensile strength F A1 and F B1 is one measure of the draw amount in expanding step. Therefore, the pressure-sensitive adhesive sheet according to the present embodiment may be used in an expanding step having a tensile amount smaller than 0.5 mm, or may be used in an expanding step having a tensile amount larger than 0.5 mm.
  • the pressure-sensitive adhesive sheet according to the present embodiment since F B1 / F A1 when pulling 0.5mm is 30 or less, using a pressure-sensitive adhesive sheet according to the present embodiment expanding step to greatly stretched than 0.5mm At that time, it is possible to suppress an excessively large difference in the amount of elongation between the portion of the pressure-sensitive adhesive sheet to which the semiconductor chip is not attached and the tensile strength of the portion to which the semiconductor chip is attached.
  • the tensile strength F B1 tensile strength F A1 and the second test piece of the first test piece was measured using a tensile tester, satisfies the following equation (Equation 1B) Is preferable. 1 ⁇ F B1 / F A1 ⁇ 30 ... (Equation 1B)
  • the tensile strength F B1 tensile strength F A1 and the second test piece of the first test piece was measured using a tensile tester, satisfies the following equation (Equation 1C) It is also preferable.
  • the value of F B1 / F A1 formula (number 1A), as a method of adjusting the range of formula (number 1B) or a formula (number 1C), include the following method. For example, changing the composition of the pressure-sensitive adhesive composition used for the pressure-sensitive adhesive layer 20, changing the thickness of the pressure-sensitive adhesive layer, changing the material of the base material, changing the thickness of the base material, etc. by combining one or more, F B1 / F equation value of A1 (number 1A), can be adjusted within the range of equation (equation 1B) or a formula (number 1C).
  • the Young's modulus Y A1 of the first test piece and the Young's modulus Y B1 of the second test piece satisfy the relationship of the following mathematical formula (Equation 2A).
  • Equation 2A Y B1 / Y A1 ⁇ 19 ...
  • Equation 2A the ratio of the Young's modulus of the portion where the semiconductor chip of the adhesive sheet is not attached to the Young's modulus of the portion where the semiconductor chip is attached Y B1 / Y A1 Is small.
  • the base material preferably has a first base material surface and a second base material surface opposite to the first base material surface.
  • the base material 10 of the pressure-sensitive adhesive sheet 1 has a first base material surface 11 and a second base material surface 12 on the opposite side of the first base material surface 11.
  • the pressure-sensitive adhesive layer according to the present embodiment is provided on one surface of the first base material surface and the second base material surface.
  • the material of the base material is preferably a thermoplastic elastomer or a rubber-based material, and more preferably a thermoplastic elastomer from the viewpoint of being easily stretched greatly.
  • thermoplastic elastomer examples include urethane-based elastomers, olefin-based elastomers, vinyl chloride-based elastomers, polyester-based elastomers, styrene-based elastomers, acrylic-based elastomers, and amide-based elastomers.
  • the thermoplastic elastomer may be used alone or in combination of two or more.
  • the thermoplastic elastomer it is preferable to use a urethane-based elastomer from the viewpoint of being large and easy to stretch. That is, in the pressure-sensitive adhesive sheet according to the present embodiment, the base material preferably contains a urethane-based elastomer.
  • the base material may be a laminated film in which a plurality of films made of the above materials (for example, a thermoplastic elastomer or a rubber-based material) are laminated. Further, the base material may be a laminated film in which a film made of the above materials (for example, a thermoplastic elastomer or a rubber-based material) and another film are laminated.
  • the base material may contain an additive in a film containing the above resin-based material as a main material.
  • the additive include pigments, dyes, flame retardants, plasticizers, antistatic agents, lubricants, fillers and the like.
  • the pigment include titanium dioxide, carbon black and the like.
  • the filler include organic materials such as melamine resin, inorganic materials such as fumed silica, and metallic materials such as nickel particles.
  • the content of such additives is not particularly limited, but it is preferable to keep the content within a range in which the base material can exhibit a desired function.
  • the substrate is surface-treated or primer on one or both sides, if desired, for the purpose of improving adhesion to the pressure-sensitive adhesive layer laminated on at least one of the first substrate surface and the second substrate surface. It may be treated.
  • the surface treatment include an oxidation method and an unevenness method.
  • the primer treatment include a method of forming a primer layer on the surface of the base material.
  • the oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone treatment, ultraviolet irradiation treatment and the like.
  • Examples of the unevenness method include a sandblasting method and a thermal spraying treatment method.
  • the base material When the pressure-sensitive adhesive layer contains an energy ray-curable pressure-sensitive adhesive, the base material preferably has permeability to energy rays. When ultraviolet rays are used as energy rays, the base material preferably has transparency to ultraviolet rays. When an electron beam is used as the energy ray, the base material preferably has the transparency of the electron beam.
  • the thickness of the base material is not limited as long as the adhesive sheet can function properly in the desired process.
  • the thickness of the base material is preferably 20 ⁇ m or more, and more preferably 40 ⁇ m or more.
  • the thickness of the base material is preferably 250 ⁇ m or less, more preferably 200 ⁇ m or less.
  • the standard deviation of the thickness of the base material is 2 ⁇ m or less when the thickness of a plurality of places is measured at intervals of 2 cm in the in-plane direction of the first base material surface or the second base material surface of the base material. It is preferably 1.5 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the pressure-sensitive adhesive sheet has a highly accurate thickness, and the pressure-sensitive adhesive sheet can be uniformly stretched.
  • the tensile elastic modulus in the MD direction and the CD direction of the base material at 23 ° C. is 10 MPa or more and 350 MPa or less, respectively, and the 100% stress in the MD direction and the CD direction of the base material at 23 ° C. is 3 MPa or more and 20 MPa or less, respectively. It is preferable to have.
  • the pressure-sensitive adhesive sheet can be greatly stretched.
  • the 100% stress of the base material is a value obtained as follows. A test piece having a size of 100 mm (length direction) x 15 mm (width direction) is cut out from the base material.
  • the test piece is pulled in the length direction at a speed of 200 mm / min, and the measured value of the tensile force when the length between the gripping tools becomes 100 mm is read.
  • the 100% stress of the base material is a value obtained by dividing the read measured value of the tensile force by the cross-sectional area of the base material.
  • the cross-sectional area of the base material is calculated by the length in the width direction of 15 mm ⁇ the thickness of the base material (test piece).
  • the cutting is performed so that the flow direction (MD direction) or the direction orthogonal to the MD direction (CD direction) at the time of manufacturing the base material coincides with the length direction of the test piece.
  • the thickness of the test piece is not particularly limited and may be the same as the thickness of the base material to be tested.
  • the elongation at break in the MD direction and the CD direction of the base material at 23 ° C. is 100% or more, respectively.
  • the breaking elongation of the base material in the MD direction and the breaking elongation in the CD direction is 100% or more, the pressure-sensitive adhesive sheet can be greatly stretched without breaking.
  • the tensile elastic modulus (MPa) of the base material and the breaking elongation (%) of the base material can be measured as follows.
  • the base material is cut into 15 mm ⁇ 140 mm to obtain a test piece.
  • the elongation at break and the tensile elastic modulus at 23 ° C. are measured in accordance with JIS K7161: 2014 and JIS K7127: 1999.
  • the above test piece is pulled at a speed of 200 mm / min after setting the distance between chucks to 100 mm with a tensile tester (manufactured by Shimadzu Corporation, product name "Autograph AG-IS 500N").
  • the measurement is performed in both the flow direction (MD) at the time of manufacturing the base material and the direction perpendicular to the flow direction (CD).
  • the pressure-sensitive adhesive layer is not particularly limited as long as the relationship of the above-mentioned mathematical formula (Equation 1A) is satisfied.
  • the materials constituting the pressure-sensitive adhesive layer can be appropriately selected and blended from, for example, the materials described below so as to satisfy the range of the relationship of the above-mentioned mathematical formula (Equation 1A).
  • examples of the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer include rubber-based pressure-sensitive adhesives, acrylic-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, polyester-based pressure-sensitive adhesives, and urethane-based pressure-sensitive adhesives.
  • the pressure-sensitive adhesive layer preferably contains an acrylic pressure-sensitive adhesive.
  • the pressure-sensitive adhesive layer preferably contains an energy ray-curable resin (a1).
  • the energy ray-curable resin (a1) has an energy ray-curable double bond in the molecule.
  • the pressure-sensitive adhesive layer containing the energy ray-curable resin is cured by energy ray irradiation, and the adhesive strength is reduced.
  • the pressure-sensitive adhesive layer can be easily separated by irradiating the pressure-sensitive adhesive layer with energy rays.
  • the energy ray-curable resin (a1) is preferably a (meth) acrylic resin.
  • the energy ray-curable resin (a1) is preferably an ultraviolet curable resin, and more preferably an ultraviolet curable (meth) acrylic resin.
  • the energy ray-curable resin (a1) is a resin that polymerizes and cures when irradiated with energy rays.
  • Examples of the energy ray include ultraviolet rays and electron beams.
  • Examples of the energy ray-curable resin (a1) include low molecular weight compounds having an energy ray-polymerizable group (monofunctional monomer, polyfunctional monomer, monofunctional oligomer, and polyfunctional oligomer).
  • the energy ray-curable resin (a1) includes trimethyl propantriacrylate, tetramethylolmethanetetraacrylate, pentaerythritol triacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, 1,4-.
  • Butylene glycol diacrylate acrylates such as 1,6-hexanediol diacrylate, cyclic aliphatic skeleton-containing acrylates such as dicyclopentadiene dimethoxydiacrylate and isobornyl acrylate, polyethylene glycol diacrylates, oligoester acrylates, urethane acrylate oligomers, Acrylate-based compounds such as epoxy-modified acrylates, polyether acrylates, and itaconic acid oligomers are used.
  • acrylates such as 1,6-hexanediol diacrylate, cyclic aliphatic skeleton-containing acrylates such as dicyclopentadiene dimethoxydiacrylate and isobornyl acrylate, polyethylene glycol diacrylates, oligoester acrylates, urethane acrylate oligomers, Acrylate-based compounds such as epoxy-modified acrylates, polyether acrylates, and itaconic
  • the molecular weight of the energy ray-curable resin (a1) is usually 100 or more and 30,000 or less, and preferably 300 or more and 10,000 or less.
  • the pressure-sensitive adhesive layer according to the present embodiment preferably further contains a (meth) acrylic copolymer (b1).
  • the (meth) acrylic copolymer is different from the energy ray-curable resin (a1) described above.
  • the (meth) acrylic copolymer (b1) preferably has an energy ray-curable carbon-carbon double bond. That is, in the present embodiment, the pressure-sensitive adhesive layer preferably contains an energy ray-curable resin (a1) and an energy ray-curable (meth) acrylic copolymer (b1).
  • the pressure-sensitive adhesive layer according to the present embodiment preferably contains the energy ray-curable resin (a1) in a proportion of 10 parts by mass or more with respect to 100 parts by mass of the (meth) acrylic copolymer (b1). It is more preferably contained in a proportion of parts by mass or more, and further preferably contained in a proportion of 25% by mass or more.
  • the pressure-sensitive adhesive layer according to the present embodiment preferably contains the energy ray-curable resin (a1) in a proportion of 80 parts by mass or less with respect to 100 parts by mass of the (meth) acrylic copolymer (b1). It is more preferably contained in a proportion of parts by mass or less, and further preferably contained in a proportion of 60 parts by mass or less.
  • the weight average molecular weight (Mw) of the (meth) acrylic copolymer (b1) is preferably 10,000 or more, more preferably 150,000 or more, and even more preferably 200,000 or more.
  • the weight average molecular weight (Mw) of the (meth) acrylic copolymer (b1) is preferably 1.5 million or less, more preferably 1 million or less.
  • the weight average molecular weight (Mw) in the present specification is a standard polystyrene-equivalent value measured by a gel permeation chromatography method (GPC method).
  • the (meth) acrylic copolymer (b1) is a (meth) acrylic acid ester polymer (b2) in which a functional group (energy ray-curable group) having energy ray curability is introduced into the side chain (hereinafter, “energy”). It may be referred to as “line curable polymer (b2)").
  • an acrylic copolymer (b21) having a functional group-containing monomer unit is reacted with an unsaturated group-containing compound (b22) having a functional group bonded to the functional group. It is preferable that the copolymer is obtained.
  • (meth) acrylic acid ester means both acrylic acid ester and methacrylic acid ester. The same applies to other similar terms.
  • the acrylic copolymer (b21) preferably contains a structural unit derived from a functional group-containing monomer and a structural unit derived from a (meth) acrylic acid ester monomer or a derivative of the (meth) acrylic acid ester monomer. ..
  • the functional group-containing monomer as a constituent unit of the acrylic copolymer (b21) is preferably a monomer having a polymerizable double bond and a functional group in the molecule.
  • the functional group is preferably at least one functional group selected from the group consisting of a hydroxy group, a carboxy group, an amino group, a substituted amino group, an epoxy group and the like.
  • hydroxy group-containing monomer examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl ( Examples thereof include meta) acrylate and 4-hydroxybutyl (meth) acrylate.
  • the hydroxy group-containing monomer may be used alone or in combination of two or more.
  • carboxy group-containing monomer examples include ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, and citraconic acid.
  • carboxy group-containing monomer may be used alone or in combination of two or more.
  • amino group-containing monomer or the substituted amino group-containing monomer examples include aminoethyl (meth) acrylate and n-butylaminoethyl (meth) acrylate.
  • the amino group-containing monomer or the substituted amino group-containing monomer may be used alone or in combination of two or more.
  • the (meth) acrylic acid ester monomer constituting the acrylic copolymer (b21) includes an alkyl (meth) acrylate having an alkyl group having 1 or more and 20 or less carbon atoms, and for example, an alicyclic structure in the molecule. (Alicyclic structure-containing monomer) having the above is preferably used.
  • alkyl (meth) acrylate an alkyl (meth) acrylate having an alkyl group having 1 or more and 18 or less carbon atoms is preferable.
  • alkyl (meth) acrylate for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and the like are more preferable.
  • Alkyl (meth) acrylates may be used alone or in combination of two or more.
  • Examples of the alicyclic structure-containing monomer include cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, adamantyl (meth) acrylate, isobornyl (meth) acrylate, and dicyclopentenyl (meth) acrylate. , And dicyclopentenyloxyethyl (meth) acrylate and the like are preferably used.
  • the alicyclic structure-containing monomer may be used alone or in combination of two or more.
  • the acrylic copolymer (b21) preferably contains the structural unit derived from the functional group-containing monomer in a proportion of 1% by mass or more, and more preferably in a proportion of 5% by mass or more. It is more preferable to contain it in a proportion of mass% or more. Further, the acrylic copolymer (b21) preferably contains the structural unit derived from the functional group-containing monomer in a proportion of 35% by mass or less, and more preferably in a proportion of 30% by mass or less. , 25% by mass or less is more preferable.
  • the acrylic copolymer (b21) preferably contains a structural unit derived from the (meth) acrylic acid ester monomer or a derivative thereof in a proportion of 50% by mass or more, and preferably in a proportion of 60% by mass or more. It is more preferable that the content is 70% by mass or more. Further, the acrylic copolymer (b21) preferably contains a structural unit derived from the (meth) acrylic acid ester monomer or a derivative thereof in a proportion of 99% by mass or less, and preferably in a proportion of 95% by mass or less. It is more preferable that the content is 90% by mass or less.
  • the acrylic copolymer (b21) can be obtained by copolymerizing a functional group-containing monomer as described above with a (meth) acrylic acid ester monomer or a derivative thereof by a conventional method.
  • the acrylic copolymer (b21) may contain at least one structural unit selected from the group consisting of dimethylacrylamide, vinyl formate, vinyl acetate, styrene and the like, in addition to the above-mentioned monomers. ..
  • the energy ray-curable polymer (b2) Is obtained.
  • the functional group of the unsaturated group-containing compound (b22) can be appropriately selected depending on the type of functional group of the functional group-containing monomer unit of the acrylic copolymer (b21).
  • the functional group of the acrylic copolymer (b21) is a hydroxy group, an amino group or a substituted amino group
  • the functional group of the unsaturated group-containing compound (b22) is preferably an isocyanate group or an epoxy group, and acrylic.
  • the functional group of the system copolymer (b21) is an epoxy group
  • the functional group of the unsaturated group-containing compound (b22) is preferably an amino group, a carboxy group or an aziridinyl group.
  • the unsaturated group-containing compound (b22) contains at least one energy ray-polymerizable carbon-carbon double bond in one molecule, preferably one or more and six or less, and preferably contains one or more and four or less. Is more preferable.
  • Examples of the unsaturated group-containing compound (b22) include 2-methacryloyloxyethyl isocyanate (2-isocyanatoethyl methacrylate), meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, methacryloyl isocyanate, and allyl isocyanate, 1,1 -(Bisocyanyloxymethyl) ethyl isocyanate; acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth) acrylate; a diisocyanate compound or polyisocyanate compound, a polyol compound, and hydroxyethyl ( Acryloyl monoisocyanate compound obtained by reaction with meta) acrylate; glycidyl (meth) acrylate; (meth) acrylic acid, 2- (1-aziridinyl) ethyl (meth)
  • the unsaturated group-containing compound (b22) is preferably used at a ratio (addition rate) of 50 mol% or more, preferably 60 mol%, based on the number of moles of the functional group-containing monomer of the acrylic copolymer (b21). It is more preferably used in the above ratio, and further preferably used in the ratio of 70 mol% or more.
  • the unsaturated group-containing compound (b22) is preferably used in a proportion of 95 mol% or less, preferably 93 mol% or less, based on the number of moles of the functional group-containing monomer of the acrylic copolymer (b21). It is more preferably used, and further preferably used in a proportion of 90 mol% or less.
  • the functional group of the acrylic copolymer (b21) and the functional group of the unsaturated group-containing compound (b22) are used.
  • the reaction temperature, pressure, solvent, time, presence / absence of catalyst, and type of catalyst can be appropriately selected.
  • the functional group of the acrylic copolymer (b21) reacts with the functional group of the unsaturated group-containing compound (b22), and the unsaturated group becomes a side chain of the acrylic copolymer (b21). Introduced to give the energy ray-curable polymer (b2).
  • the weight average molecular weight (Mw) of the energy ray-curable polymer (b2) is preferably 10,000 or more, more preferably 150,000 or more, and even more preferably 200,000 or more.
  • the weight average molecular weight (Mw) of the energy ray-curable polymer (b2) is preferably 1.5 million or less, more preferably 1 million or less.
  • the pressure-sensitive adhesive layer contains a UV-curable compound (for example, a UV-curable resin)
  • the pressure-sensitive adhesive layer preferably contains a photopolymerization initiator (C). Since the pressure-sensitive adhesive layer contains the photopolymerization initiator (C), the polymerization curing time and the amount of light irradiation can be reduced.
  • photopolymerization initiator (C) examples include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, and benzoin dimethyl ketal.
  • 2,4-Diethylthioxanthone 1-hydroxycyclohexylphenylketone, benzyldiphenylsulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, ⁇ -chloranthraquinone, (2,4) 6-trimethylbenzyldiphenyl) phosphine oxide, 2-benzothiazole-N, N-diethyldithiocarbamate, oligo ⁇ 2-hydroxy-2-methyl-1- [4- (1-propenyl) phenyl] propanone ⁇ , and 2 , 2-Dimethoxy-1,2-diphenylethane-1-one and the like. These may be used alone or in combination of two or more.
  • the photopolymerization initiator (C) is an energy ray-curable resin (a1).
  • the total amount of the (meth) acrylic copolymer (b1) is preferably 0.1 parts by mass or more, and more preferably 0.5 parts by mass or more. preferable.
  • the photopolymerization initiator (C) is an energy ray-curable resin (a1) when the energy ray-curable resin (a1) and the (meth) acrylic copolymer (b1) are blended in the pressure-sensitive adhesive layer.
  • the (meth) acrylic copolymer (b1) in an amount of 10 parts by mass or less, more preferably 6 parts by mass or less, based on 100 parts by mass of the total amount.
  • the pressure-sensitive adhesive layer may contain other components as appropriate in addition to the above components.
  • other components include a cross-linking agent (E) and the like.
  • cross-linking agent (E) a polyfunctional compound having reactivity with a functional group of the (meth) acrylic copolymer (b1) or the like can be used.
  • polyfunctional compounds include isocyanate compounds, epoxy compounds, amine compounds, melamine compounds, aziridine compounds, hydrazine compounds, aldehyde compounds, oxazoline compounds, metal alkoxide compounds, metal chelate compounds, metal salts, ammonium salts, etc. And reactive phenolic resins and the like.
  • the blending amount of the cross-linking agent (E) is preferably 0.01 part by mass or more, and preferably 0.03 part by mass or more with respect to 100 parts by mass of the (meth) acrylic copolymer (b1). More preferably, it is 0.04 parts by mass or more.
  • the amount of the cross-linking agent (E) to be blended is preferably 8 parts by mass or less, and more preferably 5 parts by mass or less, based on 100 parts by mass of the (meth) acrylic copolymer (b1). , 3.5 parts by mass or less is more preferable.
  • the thickness of the adhesive layer is not particularly limited.
  • the thickness of the pressure-sensitive adhesive layer is, for example, preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • the thickness of the pressure-sensitive adhesive layer is preferably 150 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the adhesive sheet according to the present embodiment may have a release sheet laminated on the adhesive surface for the purpose of protecting the adhesive surface until the adhesive surface is attached to an adherend (for example, a semiconductor chip or the like). ..
  • the structure of the release sheet is arbitrary.
  • the release sheet include a plastic film that has been peeled off with a release agent or the like.
  • Specific examples of the plastic film include a polyester film and a polyolefin film.
  • the polyester film include films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate.
  • the polyolefin film include a film such as polypropylene or polyethylene.
  • silicone-based, fluorine-based, long-chain alkyl-based, and the like can be used.
  • these release agents a silicone type that can obtain stable performance at low cost is preferable.
  • the thickness of the release sheet is not particularly limited. The thickness of the release sheet is usually 20 ⁇ m or more and 250 ⁇ m or less.
  • the pressure-sensitive adhesive sheet according to this embodiment can be manufactured in the same manner as the conventional pressure-sensitive adhesive sheet.
  • the method for producing the pressure-sensitive adhesive sheet is not particularly limited as long as the above-mentioned pressure-sensitive adhesive layer can be laminated on one surface of the base material.
  • the following methods can be mentioned as an example of the method for manufacturing the adhesive sheet.
  • a pressure-sensitive composition constituting the pressure-sensitive adhesive layer and, if desired, a coating liquid further containing a solvent or a dispersion medium are prepared.
  • the coating liquid is applied onto one surface of the base material by the coating means to form a coating film.
  • the coating means include a die coater, a curtain coater, a spray coater, a slit coater, a knife coater and the like.
  • the pressure-sensitive adhesive layer can be formed by drying the coating film.
  • the properties of the coating liquid are not particularly limited as long as it can be applied.
  • the coating liquid may contain a component for forming the pressure-sensitive adhesive layer as a solute, or may contain a component for forming the pressure-sensitive adhesive layer as a dispersoid.
  • a coating liquid is applied on the peeled surface of the above-mentioned peeling sheet to form a coating film.
  • the coating film is dried to form a laminate composed of an adhesive layer and a release sheet.
  • a base material may be attached to the surface of the pressure-sensitive adhesive layer of the laminated body opposite to the surface on the release sheet side to obtain a laminate of the pressure-sensitive adhesive sheet and the release sheet.
  • the release sheet in this laminate may be peeled off as a process material, or protects the pressure-sensitive adhesive layer until an adherend (for example, a semiconductor chip, a semiconductor wafer, etc.) is attached to the pressure-sensitive adhesive layer. May be good.
  • the coating liquid contains a cross-linking agent
  • the cross-linking reaction between the acrylic copolymer (b1) and the cross-linking agent may be allowed to proceed to form a cross-linked structure in the pressure-sensitive adhesive layer at a desired abundance density.
  • the obtained pressure-sensitive adhesive sheet is allowed to stand in an environment of, for example, 23 ° C. and a relative humidity of 50% for several days. You may perform curing such as placing.
  • the thickness of the pressure-sensitive adhesive sheet according to this embodiment is preferably 30 ⁇ m or more, and more preferably 50 ⁇ m or more.
  • the thickness of the pressure-sensitive adhesive sheet is preferably 400 ⁇ m or less, and more preferably 300 ⁇ m or less.
  • the adherend to which the pressure-sensitive adhesive sheet according to the present embodiment can be applied is not particularly limited.
  • the adherend is preferably a semiconductor chip and a semiconductor wafer.
  • the pressure-sensitive adhesive sheet according to this embodiment can be used, for example, for semiconductor processing. During the manufacturing process of a semiconductor device, it is preferably used in an expanding process for expanding the distance between a plurality of semiconductor chips.
  • the plurality of semiconductor chips are preferably attached to the central portion of the pressure-sensitive adhesive sheet.
  • the plurality of semiconductor chips are preferably semiconductor chips obtained by dicing a semiconductor wafer.
  • the semiconductor wafer attached to the dicing sheet may be diced, divided into a plurality of semiconductor chips, and the plurality of semiconductor chips obtained by the division may be directly transferred to the adhesive sheet according to the present embodiment. Then, it may be transferred to another pressure-sensitive adhesive sheet and then transferred from the other pressure-sensitive adhesive sheet to the pressure-sensitive adhesive sheet according to the present embodiment.
  • the expansion interval of a plurality of semiconductor chips depends on the size of the semiconductor chips, and is not particularly limited.
  • the pressure-sensitive adhesive sheet according to the present embodiment is preferably used to widen the distance between adjacent semiconductor chips in a plurality of semiconductor chips attached to one side of the pressure-sensitive adhesive sheet by 200 ⁇ m or more.
  • the upper limit of the distance between the semiconductor chips is not particularly limited.
  • the upper limit of the distance between the semiconductor chips may be, for example, 6000 ⁇ m.
  • the pressure-sensitive adhesive sheet according to the present embodiment can also be used when the distance between a plurality of semiconductor chips laminated on one side of the pressure-sensitive adhesive sheet is widened by at least biaxial stretching.
  • the adhesive sheet is stretched by applying tension in four directions of + X-axis direction, -X-axis direction, + Y-axis direction, and -Y-axis direction, for example, in the X-axis and Y-axis orthogonal to each other. More specifically, it is stretched in the MD direction and the CD direction of the base material, respectively.
  • Biaxial stretching as described above can be performed using, for example, a separation device that applies tension in the X-axis direction and the Y-axis direction.
  • a separation device that applies tension in the X-axis direction and the Y-axis direction.
  • the X-axis and the Y-axis are orthogonal to each other, one of the directions parallel to the X-axis is the + X-axis direction, the direction opposite to the + X-axis direction is the -X-axis direction, and the direction parallel to the Y-axis.
  • One of them is defined as the + Y-axis direction, and the direction opposite to the + Y-axis direction is defined as the ⁇ Y-axis direction.
  • the separating device applies tension to the adhesive sheet in four directions of + X-axis direction, -X-axis direction, + Y-axis direction, and -Y-axis direction, and with a plurality of holding means in each of the four directions. , It is preferable to provide a plurality of tension applying means corresponding to them.
  • the number of holding means and tension applying means in each direction depends on the size of the pressure-sensitive adhesive sheet, but may be, for example, about 3 or more and 10 or less.
  • each holding means includes a holding member for holding the adhesive sheet. It is preferable that each tension applying means applies tension to the pressure-sensitive adhesive sheet by moving the holding member corresponding to the tension applying means in the + X-axis direction. Then, it is preferable that the plurality of tension applying means are independently provided so as to move the holding means in the + X axis direction. Further, the same configuration is also applied to three groups including a plurality of holding means and a plurality of tension applying means provided for applying tension in the ⁇ X axis direction, the + Y axis direction, and the ⁇ Y axis direction, respectively. It is preferable to have. As a result, the separation device can apply a different magnitude of tension to the pressure-sensitive adhesive sheet for each region in the direction orthogonal to each direction.
  • the pressure-sensitive adhesive sheet is held from four directions of + X-axis direction, -X-axis direction, + Y-axis direction and -Y-axis direction by using four holding members and stretched in the four directions, the pressure-sensitive adhesive sheet is formed.
  • these composite directions for example, the composite direction of the + X-axis direction and the + Y-axis direction, the composite direction of the + Y-axis direction and the -X-axis direction, and the composite of the -X-axis direction and the -Y-axis direction).
  • Tension is also applied in the direction and the combined direction of the ⁇ Y axis direction and the + X axis direction). As a result, there may be a difference between the distance between the semiconductor chips in the inner region of the pressure-sensitive adhesive sheet and the distance between the semiconductor chips in the outer region.
  • a plurality of tension applying means can independently apply tension to the pressure-sensitive adhesive sheet in each of the + X-axis direction, the ⁇ X-axis direction, the + Y-axis direction, and the ⁇ Y-axis direction. Therefore, the pressure-sensitive adhesive sheet can be stretched so that the difference in the distance between the inside and the outside of the pressure-sensitive adhesive sheet as described above is eliminated. As a result, the distance between the semiconductor chips can be adjusted accurately.
  • the separation device further includes a measuring means for measuring the mutual distance between the semiconductor chips.
  • the tension applying means is provided so that a plurality of holding members can be individually moved based on the measurement results of the measuring means.
  • the separation device is provided with the measuring means, the distance can be further adjusted based on the measurement result of the distance between the semiconductor chips by the measuring means, and as a result, the distance between the semiconductor chips can be adjusted more accurately. Is possible.
  • examples of the holding means include a chucking means and a depressurizing means.
  • examples of the chucking means include a mechanical chuck and a chuck cylinder.
  • Examples of the decompression means include a decompression pump, a vacuum ejector, and the like.
  • the holding means may be configured to support the pressure-sensitive adhesive sheet with an adhesive, a magnetic force, or the like.
  • the holding member in the chuck means for example, a lower support member that supports the adhesive sheet from below, a drive device that is supported by the lower support member, and a drive device that is supported by the output shaft of the drive device to drive the drive device.
  • a holding member having a structure including an upper support member capable of pressing the adhesive sheet from above can be used.
  • the drive device include an electric device, an actuator, and the like.
  • the electric device include a rotary motor, a linear motor, a linear motor, a single-axis robot, an articulated robot, and the like.
  • the actuator include an air cylinder, a hydraulic cylinder, a rodless cylinder, a rotary cylinder, and the like.
  • the tension applying means may include a drive device, and the holding member may be moved by the drive device.
  • the drive device included in the tension applying means the same drive device as the drive device included in the holding member described above can be used.
  • the tension applying means includes a linear motor as a drive device and an output shaft interposed between the linear motor and the holding member, and the driven linear motor moves the holding member via the output shaft. It may be a configuration.
  • the distance between the semiconductor chips When the distance between the semiconductor chips is widened by using the adhesive sheet according to the present embodiment, the distance may be widened from the state where the semiconductor chips are in contact with each other or the distance between the semiconductor chips is hardly widened, or the semiconductor. The distance between the chips may be further increased from the state in which the distance between the chips has already been increased to a predetermined distance.
  • the distance between the semiconductor chips is increased from the state where the semiconductor chips are in contact with each other or the distance between the semiconductor chips is hardly widened, for example, after obtaining a plurality of semiconductor chips by dividing the semiconductor wafer on a dicing sheet.
  • a plurality of semiconductor chips can be transferred from the dicing sheet to the pressure-sensitive adhesive sheet according to the present embodiment, and subsequently, the distance between the semiconductor chips can be widened.
  • the semiconductor wafer is divided on the pressure-sensitive adhesive sheet according to the present embodiment to obtain a plurality of semiconductor chips, the distance between the semiconductor chips can be widened.
  • another pressure-sensitive adhesive sheet preferably the pressure-sensitive adhesive sheet according to the present embodiment (first stretching pressure-sensitive adhesive sheet) is used.
  • the semiconductor chips are transferred from the sheet (adhesive sheet for first stretching) to the adhesive sheet (adhesive sheet for second stretching) according to the present embodiment, and subsequently.
  • stretching the pressure-sensitive adhesive sheet (the pressure-sensitive adhesive sheet for second stretching) according to the present embodiment the distance between the semiconductor chips can be further increased.
  • the transfer of the semiconductor chip and the stretching of the pressure-sensitive adhesive sheet may be repeated a plurality of times until the distance between the semiconductor chips reaches a desired distance.
  • the pressure-sensitive adhesive sheet according to the present embodiment has a base material and a pressure-sensitive adhesive layer like the pressure-sensitive adhesive sheet according to the first embodiment.
  • the pressure-sensitive adhesive layer according to the present embodiment contains an energy ray-curable resin, a cured portion where the energy ray-curable resin is cured at both ends in the width direction of the pressure-sensitive adhesive layer, and a cured portion where the energy ray-curable resin is cured. It differs from the pressure-sensitive adhesive sheet according to the first embodiment in that it has an uncured portion that has not been cured.
  • the ratio of the tensile strength of the first test piece and the second test piece prepared from the uncured portion of the pressure-sensitive adhesive sheet measured by a tensile tester satisfies a predetermined range.
  • the parts related to the differences from the first embodiment will be mainly described, and the overlapping description will be omitted or simplified.
  • the same reference numerals are given to the same configurations as those in the first embodiment, and the description thereof will be omitted or simplified.
  • the pressure-sensitive adhesive sheet according to this embodiment also has a base material and a pressure-sensitive adhesive layer.
  • the shape of the adhesive sheet can be any shape such as a tape shape (long form) and a label shape (single leaf shape).
  • FIG. 4 shows a schematic cross-sectional view of the pressure-sensitive adhesive sheet 1A according to the present embodiment.
  • the pressure-sensitive adhesive sheet 1A has a base material 10 and a pressure-sensitive adhesive layer 20.
  • the pressure-sensitive adhesive layer 20 contains an energy ray-curable resin.
  • the pressure-sensitive adhesive layer 20 has a cured portion 22 in which the energy ray-curable resin is cured and an uncured portion 21 in which the energy ray-curable resin is not cured.
  • the cured portions 22 are formed at both ends in the width direction of the pressure-sensitive adhesive layer 20 of the pressure-sensitive adhesive sheet 1A. There is an uncured portion 21 between the cured portion 22 on one end side in the width direction and the cured portion 22 on the other end side.
  • the two sides of the pressure-sensitive adhesive sheet 1A facing each other in the width direction are cured by energy rays, and the cured portions 22 are formed at both ends in the width direction of the pressure-sensitive adhesive sheet 1A. Suppresses oozing out from the widthwise end of the adhesive sheet 1A to the outside of the sheet.
  • the cross-sectional shape of the cured portion 22 is rectangular in FIG. 4, but is not limited to a rectangular shape, and is not particularly limited as long as it can suppress the exudation of the adhesive.
  • the cured portion 22 is continuously formed along both ends in the width direction of the pressure-sensitive adhesive sheet 1A. Since the cured portion 22 is continuously formed in the longitudinal direction of the pressure-sensitive adhesive sheet 1A, it is easier to prevent the adhesive from seeping out from the end portion in the width direction of the sheet from the uncured portion 21. If the cured portion 22 is formed discontinuously, the adhesive may seep out from the portion where the cured portion 22 is not formed.
  • the cured portion 22 is continuously formed in the longitudinal direction of the adhesive sheet 1A. Since the cured portion 22 is continuously formed in the longitudinal direction of the pressure-sensitive adhesive sheet 1A, it is easier to prevent the adhesive from seeping out from the end portion in the width direction of the sheet from the uncured portion 21.
  • FIG. 5 shows a schematic perspective view showing a long adhesive sheet 1A wound in a roll shape. Note that FIG. 5 shows a state in which the adhesive sheet 1A is partially extended from the roll.
  • cured portions 22 are formed at both ends in the width direction of the pressure-sensitive adhesive sheet 1A, and are uncured between the cured portions 22 on one end side in the width direction and the cured portions 22 on the other end side. There is a part 21.
  • Each of the cured portions 22 is continuously formed in the longitudinal direction of the pressure-sensitive adhesive sheet 1A.
  • the roll on which the long adhesive sheet 1A as shown in FIG. 5 is wound is often stored so that the width direction of the roll is perpendicular to the mounting surface. Therefore, since the cured portions 22 are continuously formed at both ends of the pressure-sensitive adhesive sheet 1A in the width direction, it is easy to suppress the seepage of the adhesive from the uncured portions 21 during roll storage.
  • the width of the cured portion 22 is preferably 0.5 mm or more independently of each other.
  • the width of the cured portion 22 is 0.5 mm or more, it is easier to prevent the adhesive from seeping out from the sheet width direction end portion from the uncured portion 21 to the outside of the sheet.
  • the width of the cured portion 22 does not have to be constant in the longitudinal direction, and is 0.5 mm or more in the longitudinal direction. It is preferably formed with the width of.
  • the width of the cured portion 22 is preferably 10 mm or less independently of each other.
  • the width of the cured portion 22 is preferably formed to be 10 mm or less in the longitudinal direction. If the width of the cured portion 22 is large, it becomes easier to suppress the seepage of the adhesive, but since the area of the uncured portion 21 becomes narrow, the effect of suppressing the seepage of the adhesive and the adhesion as an adhesive sheet are obtained. From the viewpoint of securing the area of the uncured portion 21 having the force, it is preferable to set the upper limit of the width of the cured portion 22.
  • the first test piece is produced from the region of the uncured portion 21 of the pressure-sensitive adhesive sheet 1A according to the present embodiment.
  • the width of the first test piece is 25 mm.
  • the state in which the first test piece is gripped in this embodiment is the same as in FIG. 2 shown in the first embodiment.
  • the base material 10 on one end side of the first test piece and the uncured portion 21 of the adhesive layer 20 are gripped by the first gripper 110 of the tensile tester, and the base material 10 on the other end side of the first test piece.
  • the uncured portion 21 of the pressure-sensitive adhesive layer 20 is gripped by the second gripper 120 of the tensile tester.
  • the second test piece is produced by attaching two semiconductor chips to the first test piece produced from the pressure-sensitive adhesive sheet 1A according to the present embodiment.
  • the two semiconductor chips are a first semiconductor chip and a second semiconductor chip. Both the first semiconductor chip and the second semiconductor chip have a vertical dimension of 45 mm, a horizontal dimension of 35 mm, and a thickness dimension of 0.625 mm.
  • the sides of the first semiconductor chip and the second semiconductor chip having a vertical dimension of 45 mm are attached along the longitudinal direction of the first test piece.
  • the first semiconductor chip is attached to one end side in the longitudinal direction of the first test piece.
  • the second semiconductor chip is attached to the other end side in the longitudinal direction of the first test piece.
  • the distance between the first semiconductor chip and the second semiconductor chip attached to the first test piece is 35 ⁇ m.
  • the state in which the second test piece is gripped in this embodiment is the same as in FIG. 3 shown in the first embodiment.
  • the base material 10 on one end side of the second test piece, the uncured portion 21 of the adhesive layer 20, and the first semiconductor chip CP1 are gripped by the first gripper 110 of the tensile tester, and the second test piece is subjected to.
  • the base material 10, the uncured portion 21 of the adhesive layer 20, and the second semiconductor chip CP2 on the other end side are gripped by the second gripper 120 of the tensile tester.
  • the tensile strength FA1 is when the base material and the pressure-sensitive adhesive layer at both ends in the longitudinal direction of the first test piece are gripped with a gripper and pulled by a tensile tester by 0.5 mm. Strength.
  • the tensile strength FB1 is 0.5 mm by a tensile tester by grasping the base material, the pressure-sensitive adhesive layer and the semiconductor chip at both ends in the longitudinal direction of the second test piece with a gripper. It is the strength at the time of tension.
  • a third test piece was prepared by cutting out the pressure-sensitive adhesive sheet 1A into a size of 150 mm in length and 25 mm in width along the elongated direction of the pressure-sensitive adhesive sheet 1A so as to include the cured portion 22 in which the energy ray-curable resin was cured.
  • the test piece of No. 1 was grasped by a pair of chucks with a chuck-to-chuck distance of 100 mm and extended to a chuck-to-chuck distance of 200 mm at a speed of 5 mm / sec, no floating occurred at the interface between the cured portion 22 and the base material 10. Is preferable.
  • the pressure-sensitive adhesive sheet 1A does not float at the interface between the cured portion 22 and the base material 10 in the tensile test using the third test piece, and therefore is based on the broken cured portion as described above. It is easy to suppress contamination of the adherend and the expanding device.
  • a method of controlling the degree of curing of the energy ray-curable resin can be mentioned.
  • the adhesive sheet 1A has a first direction, a second direction opposite to the first direction, a third direction perpendicular to the first direction, and the third direction.
  • the area ratio (S2 / S1) ⁇ 100 of the area S1 of the pressure-sensitive adhesive sheet 1A before stretching and the area S2 of the pressure-sensitive adhesive sheet 1A after stretching is 381% after being stretched in the fourth direction, which is the opposite direction. It is preferable that the cured portion 22 of the pressure-sensitive adhesive layer 20 does not peel off at the interface with the base material 10.
  • the first direction, the second direction, the third direction, and the fourth direction correspond to, for example, the four directions of the biaxial stretching + X-axis direction, -X-axis direction, + Y-axis direction, and -Y-axis direction, which will be described later, respectively. It is preferable to do so.
  • Examples of the device for extending in four directions include an expanding device described later.
  • the pressure-sensitive adhesive sheet 1A according to the present embodiment is stretched in four directions, and when the area ratio (S2 / S1) ⁇ 100 before and after stretching is 381%, the cured portion 22 of the pressure-sensitive adhesive layer 20 is with the base material 10. Since it does not peel off at the interface, even if the adhesive sheet 1A is used in the expanding step having a high elongation rate, it is easy to suppress contamination of the adherend and the expanding device due to the broken hardened portion.
  • the method for producing the pressure-sensitive adhesive sheet 1A includes the following steps (P1) to (P3).
  • P1 A step of applying a pressure-sensitive adhesive composition containing an energy ray-curable resin onto a base material 10 to form a pressure-sensitive adhesive layer 20.
  • P2 A step of irradiating both ends of the pressure-sensitive adhesive layer 20 in the width direction with energy rays UV to cure the energy ray-curable resin to form a cured portion 22.
  • P3 From the cured portion 22 by leaving the entire cured portion 22 outside the widthwise both ends of the uncured portion 21 in which the energy ray-curable resin is not cured, or leaving a part of the cured portion 22. The process of cutting the outside.
  • the pressure-sensitive adhesive sheet 1A according to the present embodiment can be manufactured, for example, as follows. First, as a step (P1), the pressure-sensitive adhesive layer 20 is formed on the base material 10. In the present embodiment, the pressure-sensitive adhesive layer 20 can be formed, for example, in the same manner as in the first embodiment.
  • FIG. 6A is a schematic cross-sectional view illustrating a step (P2) of forming the cured portions 22 at both ends in the width direction of the pressure-sensitive adhesive sheet 1A.
  • the pressure-sensitive adhesive layer 20 contains an energy ray-curable resin
  • both ends in the width direction are irradiated with energy rays UV to form a cured portion 22.
  • the energy ray-curable resin is an ultraviolet curable resin
  • it is irradiated with ultraviolet rays as energy rays.
  • the cured portion 22 is preferably formed with a width larger than the width of the cured portion 22 required for use as the pressure-sensitive adhesive sheet 1A.
  • FIG. 6B is a schematic cross-sectional view illustrating a step (P3) of irradiating energy rays to form the cured portion 22 and then cutting both ends of the pressure-sensitive adhesive sheet 1A in the width direction so that the cured portion 22 remains.
  • cuts are made at positions C1 and C2 of the cured portion 22 formed with a width larger than the width required for use as the pressure-sensitive adhesive sheet 1A.
  • the width of the cured portion 22 (the distance from the boundary between the uncured portion 21 and the cured portion 22 to the position C1 or C2 in cross-sectional view) left outside the both ends in the width direction of the uncured portion 21 is independent of each other. , 0.5 mm or more is preferable.
  • FIG. 6C shows an adhesive sheet 1A in which hardened portions 22 are formed at both ends in the width direction after cutting by the step (P3), and scraps 1a.
  • step (P3) of cutting the outside of the cured portion 22 it is preferable to further have a step of winding the cut adhesive sheet 1A into a roll shape.
  • the pressure-sensitive adhesive sheet 1A according to the present embodiment can also be applied to the same usage method as the pressure-sensitive adhesive sheet according to the first embodiment.
  • the pressure-sensitive adhesive sheet 1A according to this embodiment can be used, for example, for semiconductor processing.
  • the pressure-sensitive adhesive sheet 1A is preferably used in an expanding step for expanding the distance between a plurality of semiconductor chips during the manufacturing process of the semiconductor device.
  • the plurality of semiconductor chips are preferably attached to the central portion (uncured portion 21) of the pressure-sensitive adhesive sheet 1A.
  • the expanding step it is preferable to hold the cured portion 22 of the pressure-sensitive adhesive sheet 1A by the holding means of the separating device.
  • the pressure-sensitive adhesive sheet 1A according to the present embodiment stretches in the in-plane direction of the pressure-sensitive adhesive sheet when the pressure-sensitive adhesive is suppressed from seeping out and the pressure-sensitive adhesive sheet is expanded in the expanding step to extend the distance between semiconductor chips.
  • the difference in quantity can be reduced, and it has excellent expandability.
  • the present invention is not limited to the above-described embodiment.
  • the present invention includes aspects obtained by modifying the above-described embodiment to the extent that the object of the present invention can be achieved.
  • Example 1 An acrylic copolymer was obtained by copolymerizing 62 parts by mass of butyl acrylate (BA), 10 parts by mass of methyl methacrylate (MMA), and 28 parts by mass of 2-hydroxyethyl acrylate (2HEA). A solution of a resin (acrylic A) to which 2-isocyanate ethyl methacrylate (manufactured by Showa Denko KK, product name "Karenzu MOI” (registered trademark)) is added to this acrylic copolymer (adhesive main agent, solid). Minutes 35.0% by mass) were prepared.
  • BA butyl acrylate
  • MMA methyl methacrylate
  • 2HEA 2-hydroxyethyl acrylate
  • the addition rate was 80 mol% of 2-isocyanate ethyl methacrylate with respect to 100 mol% of 2HEA of the acrylic copolymer.
  • the weight average molecular weight (Mw) of the obtained resin (acrylic A) was 90,000, and Mw / Mn was 4.5.
  • the weight average molecular weight Mw and the number average molecular weight Mn in terms of standard polystyrene were measured by gel permeation chromatography (GPC) method, and the molecular weight distribution (Mw / Mn) was obtained from each measured value.
  • a range isocyanate-based cross-linking agent (manufactured by Nippon Polyurethane Industry Co., Ltd., product name "Coronate L”) was added. 50 parts by mass of UV resin A was added and 0.2 parts by mass of a cross-linking agent was added with respect to 100 parts by mass of the solid content in the pressure-sensitive adhesive main agent. After the addition, the pressure-sensitive adhesive composition A1 was prepared by stirring for 30 minutes.
  • the prepared solution of the pressure-sensitive adhesive composition A1 was applied to a polyethylene terephthalate (PET) -based release film (manufactured by Lintec Corporation, product name "SP-PET38131", thickness 38 ⁇ m), dried, and adhered to a thickness of 40 ⁇ m.
  • the agent layer was formed on the release film.
  • a polyester polyurethane elastomer sheet manufactured by Seadam Co., Ltd., product name "Higres DUS202", thickness 100 ⁇ m
  • an adhesive sheet is attached to the pressure-sensitive adhesive layer, and then unnecessary portions at the ends in the width direction are cut and removed.
  • Example 2 An acrylic copolymer was obtained by copolymerizing 52 parts by mass of butyl acrylate (BA), 20 parts by mass of methyl methacrylate (MMA), and 28 parts by mass of 2-hydroxyethyl acrylate (2HEA).
  • BA butyl acrylate
  • MMA methyl methacrylate
  • 2HEA 2-hydroxyethyl acrylate
  • the addition rate was 90 mol% of 2-isocyanate ethyl methacrylate with respect to 100 mol% of 2HEA of the acrylic copolymer.
  • the weight average molecular weight (Mw) of the obtained resin (acrylic A2) was 600,000, and Mw / Mn was 4.5.
  • the weight average molecular weight Mw and the number average molecular weight Mn in terms of standard polystyrene were measured by gel permeation chromatography (GPC) method, and the molecular weight distribution (Mw / Mn) was obtained from each measured value.
  • Energy ray curable resin A manufactured by Sakamoto Yakuhin Kogyo Co., Ltd., product name "SA-TE60”
  • photopolymerization initiator manufactured by IGM Resins BV, product name "Omnirad 127D”
  • a cross-linking agent TMP-TDI (trimethylol propan adduct of tolylene diisocyanate) manufactured by Toyochem Co., Ltd.
  • TMP-TDI trimethylol propan adduct of tolylene diisocyanate
  • composition A1 was prepared. Next, the prepared solution of the pressure-sensitive adhesive composition A1 was applied to a polyethylene terephthalate (PET) -based release film (manufactured by Lintec Corporation, product name "PET752150”), the coating film was dried at 90 ° C. for 90 seconds, and further 100. Drying at ° C. for 90 seconds formed a 30 ⁇ m thick pressure-sensitive adhesive layer on the release film.
  • PET polyethylene terephthalate
  • a urethane base material manufactured by Kurabo Industries Ltd., product name "U-1490", thickness 100 ⁇ m, hardness 90 degrees (A type)
  • a type hardness 90 degrees
  • Table 2 shows the widths of the cured portions at both ends in the sheet width direction.
  • the speed of the slit at the time of cutting was set to 10 m / min.
  • Table 2 shows the relationship between the output of the LED-UV unit and the amount of light and illuminance per LED-UV unit.
  • Example 3 As for the adhesive sheet of Example 3, the output of the LED-UV unit in the production of the adhesive sheet according to Example 2 was changed to 40%, and the widths of the cured portions at both ends in the sheet width direction are shown in Table 2. It was produced in the same manner as in Example 2 except that each was set to 0.50 mm.
  • Example 4 As for the adhesive sheet of Example 4, the output of the LED-UV unit in the production of the adhesive sheet according to Example 2 was changed to 90%, and the widths of the cured portions at both ends in the sheet width direction are shown in Table 2. It was produced in the same manner as in Example 2 except that each was set to 1.25 mm.
  • Example 5 The pressure-sensitive adhesive sheet of Example 5 was produced in the same manner as in Example 2 except that the base material in the production of the pressure-sensitive adhesive sheet according to Example 2 was changed to woodfree paper (basis weight: 60 g / m 2).
  • Example 6 The pressure-sensitive adhesive sheet of Example 6 was produced in the same manner as in Example 2 except that the base material in the production of the pressure-sensitive adhesive sheet according to Example 2 was changed to a polyethylene terephthalate film (thickness: 50 ⁇ m).
  • An adhesive sheet was produced in the same manner as in Example 1 except that the adhesive main agent was changed to the following.
  • An acrylic copolymer was obtained by copolymerizing 52 parts by mass of butyl acrylate (BA), 20 parts by mass of methyl methacrylate (MMA), and 28 parts by mass of 2-hydroxyethyl acrylate (2HEA).
  • a solution of a resin (acrylic B) to which 2-isocyanate ethyl methacrylate manufactured by Showa Denko KK, product name "Karenzu MOI” (registered trademark)
  • Minutes 35.0% by mass were prepared.
  • the addition rate was 90 mol% of 2-isocyanate ethyl methacrylate with respect to 100 mol% of 2HEA of the acrylic copolymer.
  • the weight average molecular weight (Mw) of the obtained resin (acrylic B) was 600,000, and Mw / Mn was 4.5.
  • the weight average molecular weight Mw and the molecular weight distribution (Mw / Mn) of the resin (acrylic B) according to Comparative Example 1 were determined in the same manner as in Example 1.
  • Comparative Example 2 The pressure-sensitive adhesive sheet of Comparative Example 2 was produced in the same manner as in Example 2 except that UV was not irradiated in the production of the pressure-sensitive adhesive sheet according to Example 2.
  • ⁇ Measurement method> (Measurement method of tensile strength)
  • Autograph AG-IS manufactured by Shimadzu Corporation was used as a tensile tester for measuring the tensile strength.
  • a first test piece having a width of 25 mm was prepared from the pressure-sensitive adhesive sheet.
  • a first test piece was prepared from a region corresponding to the uncured portion of the pressure-sensitive adhesive sheet.
  • a first semiconductor chip and a second semiconductor chip were attached to the first test piece to prepare a second test piece.
  • the first semiconductor chip and the second semiconductor chip As the first semiconductor chip and the second semiconductor chip, a semiconductor chip having a vertical dimension of 45 mm, a horizontal dimension of 35 mm, and a thickness dimension of 0.625 mm was used.
  • the sides of the first semiconductor chip and the second semiconductor chip having a vertical dimension of 45 mm were attached along the longitudinal direction of the first test piece.
  • the first semiconductor chip was attached to one end side in the longitudinal direction of the first test piece.
  • the second semiconductor chip was attached to the other end side in the longitudinal direction of the first test piece.
  • the distance between the first semiconductor chip and the second semiconductor chip attached to the first test piece was set to 35 ⁇ m.
  • the base material and the pressure-sensitive adhesive layer at both ends of the first test piece in the longitudinal direction were grasped with a gripper, and the tensile strength was measured with a tensile tester.
  • the base material, the pressure-sensitive adhesive layer and the semiconductor chip at both ends of the second test piece in the longitudinal direction were grasped with a gripper, and the tensile strength was measured with a tensile tester.
  • the unit of tensile strength is N.
  • Other conditions at the time of the tensile test are as follows. Distance between grippers: 50 mm
  • the pressure-sensitive adhesive sheets according to Examples 1 and 2 have FB1 / FA1 of 30 or less, the tensile strength of the portion of the pressure-sensitive adhesive sheet to which the semiconductor chip is not attached, and the semiconductor chip.
  • There the ratio F B1 / F A1 and tensile strength of the portion is affixed is smaller than Comparative example 1. Therefore, according to the pressure-sensitive adhesive sheets according to Examples 1 and 2, when the pressure-sensitive adhesive sheet is expanded in the expanding step to extend the distance between the semiconductor chips, the difference in the amount of elongation of the pressure-sensitive adhesive sheet in the in-plane direction is obtained. Is small, the expandability is excellent, and the variation in the distance between semiconductor chips can be reduced.
  • a roll was produced by winding an adhesive sheet having a width of 300 mm having hardened portions formed at both ends in the width direction. After 3 days after storing the roll at 40 ° C., it was confirmed visually or with a microscope whether or not the adhesive had exuded at the end of the roll.
  • the evaluation criteria for exudation suppression were set as follows. In this embodiment, the evaluation A was judged to be acceptable. ⁇ Evaluation criteria for suppressing seepage Evaluation A: No change in appearance at the end of the roll Evaluation B: Change in appearance at the end of the roll
  • the pressure-sensitive adhesive sheets produced in Examples and Comparative Examples were cut into a size of 210 mm ⁇ 210 mm to obtain a test pressure-sensitive adhesive sheet. At this time, each side of the sheet after cutting was cut so as to be parallel or perpendicular to the MD direction of the base material in the adhesive sheet.
  • the silicon wafer was diced, and a total of 49 chips were cut out so that the chips having a size of 3 mm ⁇ 3 mm had 7 rows in the X-axis direction and 7 rows in the Y-axis direction.
  • the release film of the test pressure-sensitive adhesive sheet was peeled off, and a total of 49 chips cut out as described above were attached to the center of the exposed pressure-sensitive adhesive layer. At this time, the chips were arranged in 7 rows in the X-axis direction and 7 rows in the Y-axis direction, and the distance between the chips was 35 ⁇ m in both the X-axis direction and the Y-axis direction.
  • FIG. 7 shows a plan view illustrating the expanding device 100.
  • the X-axis and the Y-axis are orthogonal to each other, the positive direction of the X-axis is the + X-axis direction, the negative direction of the X-axis is the ⁇ X-axis direction, and the positive direction of the Y-axis. Is the + Y-axis direction, and the negative direction of the Y-axis is the ⁇ Y-axis direction.
  • the test adhesive sheet 200 was installed in the expanding device 100 so that each side was parallel to the X-axis or the Y-axis. As a result, the MD direction of the base material in the test pressure-sensitive adhesive sheet 200 is parallel to the X-axis or the Y-axis. In FIG. 7, the chip is omitted.
  • the expanding device 100 includes five holding means 101 (a total of 20 holding means 101) in each of the + X-axis direction, the ⁇ X-axis direction, the + Y-axis direction, and the ⁇ Y-axis direction.
  • the holding means 101A is located at both ends
  • the holding means 101C is located at the center
  • the holding means 101B is located between the holding means 101A and the holding means 101C.
  • Each side of the test adhesive sheet 200 was gripped by these holding means 101.
  • one side of the test adhesive sheet 200 is 210 mm. Further, the distance between the holding means 101 on each side is 40 mm. Further, the distance between the end portion (the apex of the sheet) on one side of the test adhesive sheet 200 and the holding means 101A existing on the side and closest to the end portion is 25 mm.
  • a plurality of tension applying means (not shown) corresponding to each of the holding means 101 were driven to move the holding means 101 independently.
  • the four sides of the test adhesive sheet were fixed with a gripping jig, and the test adhesive sheet was expanded at a speed of 5 mm / s in the X-axis direction and the Y-axis direction with an expansion amount of 200 mm.
  • the area of the adhesive sheet for testing was expanded to 381% compared to before expanding.
  • this expansion test having an expansion amount of 200 mm may be referred to as a first expansion test.
  • the adhesive sheets of Examples 5 and 6 could not be expanded.
  • the expanded state of the test pressure-sensitive adhesive sheet 200 was maintained by a ring frame.
  • the variation was evaluated by calculating the standard deviation based on the positional relationship between the chips while maintaining the expanded state.
  • the position of the chip on the test adhesive sheet was measured using a CNC image measuring machine (manufactured by Mitutoyo Co., Ltd., product name "Vision ACCEL").
  • the standard deviation was calculated using JMP13, a data analysis software manufactured by JMP.
  • the evaluation criteria for variation were set as follows. In this example, evaluation A or evaluation B was judged to be acceptable. -Evaluation criteria for variation Evaluation A: The standard deviation was 100 ⁇ m or less.
  • Evaluation B The standard deviation was 200 ⁇ m or less.
  • Evaluation C The standard deviation was 201 ⁇ m or more.
  • a third test piece cut out to a size of 150 mm in length and 25 mm in width along the elongated direction of the pressure-sensitive adhesive sheet was prepared so as to include the cured portion in which the energy ray-curable resin was cured.
  • the third test piece was gripped by a pair of chucks of a tensile tester. As the tensile tester, Autograph AG-IS manufactured by Shimadzu Corporation was used. The distance between the chucks holding the third test piece was set to 100 mm.
  • the evaluation criteria for the adhesive floating when the elongation was 100% were set as follows. In this embodiment, the evaluation A was judged to be acceptable. -Evaluation criteria for adhesive floating at 100% elongation Evaluation A: No floating of the hardened part of the adhesive layer occurred at 100% elongation Evaluation B: Lifting of the hardened part of the adhesive layer at 100% elongation Occurred in one or more places
  • evaluation method of area expandability At the time of the above-mentioned first expansion test, it was visually confirmed whether the cured portion of the pressure-sensitive adhesive layer was peeled off at the interface with the base material and the floating was generated.
  • the evaluation criteria for area expandability were set as follows. In this embodiment, the evaluation A was judged to be acceptable. The adhesive sheets of Examples 5 and 6 could not be evaluated because they could not be expanded. -Evaluation Criteria for Area Expandability Evaluation A: No floating of the cured portion of the pressure-sensitive adhesive layer occurred during the first expansion test. Evaluation B: During the first expanding test, one or more floating portions of the cured portion of the pressure-sensitive adhesive layer occurred.
  • the adhesive sheets according to Examples 2 to 6 had hardened portions at both ends in the width direction, the seepage of the adhesive could be suppressed. Further, in the pressure-sensitive adhesive sheets according to Examples 2 and 3, the adhesive did not float when the elongation was 100% and during the first expanding test. It is probable that the cured portion of the pressure-sensitive adhesive sheet according to Examples 2 and 3 was formed by UV irradiation having an output of about 40% to 50%, and the degree of curing of the cured portion was appropriately controlled.
  • Adhesive sheet 10 ... Base material, 20 ... Adhesive layer, CP1 ... First semiconductor chip, CP2 ... Second semiconductor chip.

Abstract

An adhesive sheet (1A) which has a base material (10) and an adhesive layer (20), wherein: both edges of the adhesive layer (20), which contains an energy ray-curable resin, in the width direction have cured parts (22) where the energy ray-curable resin is cured and uncured parts (21); and the tensile strength FA1 at a tensile elongation of 0.5 mm as determined by means of a tensile testing machine by preparing a first test piece having a width of 25 mm from a region corresponding to the uncured parts (21) and holding both ends of the first test piece in the longitudinal direction by a holding tool and the tensile strength FB1 at a tensile elongation of 0.5 mm as determined by means of a tensile testing machine by preparing a second test piece by bonding a first semiconductor chip to one end of the first test piece in the longitudinal direction and bonding a second semiconductor chip to the other end thereof in the longitudinal direction, said first semiconductor chip and second semiconductor chip having a length of 45 mm, a width of 35 mm and a thickness of 0.625 mm, and holding the both ends of the second test piece in the longitudinal direction by a holding tool satisfy the relationship of mathematical formula (1A). (1A): FB1/FA1 ≤ 30

Description

粘着シート及び粘着シートの製造方法Adhesive sheet and manufacturing method of adhesive sheet
 本発明は、粘着シート及び粘着シートの製造方法に関する。 The present invention relates to an adhesive sheet and a method for manufacturing an adhesive sheet.
 近年、電子機器の小型化、軽量化、及び高機能化が進んでいる。電子機器に搭載される半導体装置にも、小型化、薄型化、及び高密度化が求められている。半導体チップは、そのサイズに近いパッケージに実装されることがある。このようなパッケージは、チップスケールパッケージ(Chip Scale Package;CSP)と称されることもある。CSPの一つとして、ウエハレベルパッケージ(Wafer Level Package;WLP)が挙げられる。WLPにおいては、ダイシングにより個片化する前に、ウエハに外部電極等を形成し、最終的にはウエハをダイシングして、個片化する。WLPとしては、ファンイン(Fan-In)型とファンアウト(Fan-Out)型が挙げられる。ファンアウト型のWLP(以下、「FO-WLP」と略記する場合がある。)においては、半導体チップを、チップサイズよりも大きな領域となるように封止部材で覆って半導体チップ封止体を形成し、再配線層や外部電極を、半導体チップの回路面だけでなく封止部材の表面領域においても形成する。 In recent years, electronic devices have become smaller, lighter, and more sophisticated. Semiconductor devices mounted on electronic devices are also required to be smaller, thinner, and higher in density. Semiconductor chips may be mounted in packages close to their size. Such a package is sometimes referred to as a chip scale package (CSP). One of the CSPs is a wafer level package (WLP). In the WLP, an external electrode or the like is formed on the wafer before it is separated by dicing, and finally the wafer is diced and separated. Examples of the WLP include a fan-in type and a fan-out type. In a fan-out type WLP (hereinafter, may be abbreviated as "FO-WLP"), the semiconductor chip is covered with a sealing member so as to have a region larger than the chip size, and the semiconductor chip sealant is covered. The rewiring layer and the external electrode are formed not only on the circuit surface of the semiconductor chip but also on the surface region of the sealing member.
 例えば、特許文献1には、半導体ウエハから個片化された複数の半導体チップについて、その回路形成面を残し、モールド部材を用いて周りを囲んで拡張ウエハを形成し、半導体チップ外の領域に再配線パターンを延在させて形成する半導体パッケージの製造方法が記載されている。特許文献1に記載の製造方法において、個片化された複数の半導体チップをモールド部材で囲う前に、エキスパンド用のウエハマウントテープに貼り替え、ウエハマウントテープを展延して複数の半導体チップの間の距離を拡大させている。 For example, in Patent Document 1, an expansion wafer is formed by surrounding a plurality of semiconductor chips separated from a semiconductor wafer by using a mold member, leaving a circuit forming surface thereof, and forming an expansion wafer in a region outside the semiconductor chip. A method for manufacturing a semiconductor package formed by extending a rewiring pattern is described. In the manufacturing method described in Patent Document 1, before enclosing a plurality of individualized semiconductor chips with a mold member, they are replaced with a wafer mount tape for expansion, and the wafer mount tape is spread to form a plurality of semiconductor chips. The distance between them is increasing.
国際公開第2010/058646号International Publication No. 2010/058646
 エキスパンド工程においては、複数の半導体チップが貼着されているテープ又はシートを展延させて、半導体チップ同士の間隔を拡大させる。シートを引っ張って展延させる際に、シート面内で伸び量が異なると、半導体チップ同士の間隔も均等に拡大させ難い。
 また、粘着シートの粘着剤層に含有される粘着剤がシート幅方向の端部から染み出すという不具合が生じる場合もある。
In the expanding step, a tape or sheet to which a plurality of semiconductor chips are attached is spread to increase the distance between the semiconductor chips. When the sheet is pulled and spread, if the amount of elongation differs within the sheet surface, it is difficult to evenly expand the distance between the semiconductor chips.
In addition, there may be a problem that the pressure-sensitive adhesive contained in the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet exudes from the end portion in the width direction of the sheet.
 本発明の目的は、エキスパンド工程で粘着シートを展延させて半導体チップ間の距離を拡張させる際に、粘着シートの面内方向での伸び量の差を小さくでき、拡張性に優れる粘着シートを提供することである。
 本発明の別の目的は、粘着剤の染み出しを抑制し、かつエキスパンド工程で粘着シートを展延させて半導体チップ間の距離を拡張させる際に、粘着シートの面内方向での伸び量の差を小さくでき、拡張性に優れる粘着シート並びに当該粘着シートの製造方法を提供することである。
An object of the present invention is to obtain an adhesive sheet having excellent expandability by reducing the difference in the amount of elongation of the adhesive sheet in the in-plane direction when the adhesive sheet is expanded in the expanding step to extend the distance between semiconductor chips. To provide.
Another object of the present invention is to suppress the seepage of the pressure-sensitive adhesive, and to extend the pressure-sensitive adhesive sheet in the expanding step to extend the distance between the semiconductor chips, and to increase the amount of elongation of the pressure-sensitive adhesive sheet in the in-plane direction. It is an object of the present invention to provide a pressure-sensitive adhesive sheet having a small difference and excellent expandability, and a method for manufacturing the pressure-sensitive adhesive sheet.
 本発明の一態様に係る粘着シートは、基材と、粘着剤層と、を有し、
 前記粘着シートから幅25mmの第一の試験片を作製して、前記第一の試験片の長手方向のそれぞれの両端における前記基材及び前記粘着剤層を掴み具で把持して引張試験機による0.5mm引張り時の引張強度FA1と、
 縦寸法が45mmであり、横寸法が35mmであり、厚さ寸法が0.625mmである第一の半導体チップ及び第二の半導体チップを前記第一の半導体チップ及び第二の半導体チップの縦寸法が45mmである辺を、前記第一の試験片の長手方向に沿わせ、前記第一の半導体チップと前記第二の半導体チップとの間隔を35μmとして、前記第一の試験片の長手方向の一端側の粘着剤層に前記第一の半導体チップを貼着し、前記第一の試験片の長手方向の他端側の粘着剤層に前記第二の半導体チップを貼着して第二の試験片を作製して、前記第二の試験片の長手方向のそれぞれの両端における前記基材、前記粘着剤層及び前記半導体チップを掴み具で把持して引張試験機による0.5mm引張り時の引張強度FB1と、が、下記数式(数1A)の関係を満たす。
   FB1/FA1≦30 …(数1A)
The pressure-sensitive adhesive sheet according to one aspect of the present invention has a base material and a pressure-sensitive adhesive layer.
A first test piece having a width of 25 mm is prepared from the pressure-sensitive adhesive sheet, and the base material and the pressure-sensitive adhesive layer at both ends of the first test piece in the longitudinal direction are gripped by a gripper and subjected to a tensile tester. and the tensile strength F A1 when pulling 0.5mm,
The first semiconductor chip and the second semiconductor chip having a vertical dimension of 45 mm, a horizontal dimension of 35 mm, and a thickness dimension of 0.625 mm are the vertical dimensions of the first semiconductor chip and the second semiconductor chip. Is 45 mm along the longitudinal direction of the first test piece, and the distance between the first semiconductor chip and the second semiconductor chip is 35 μm, in the longitudinal direction of the first test piece. The first semiconductor chip is attached to the pressure-sensitive adhesive layer on one end side, and the second semiconductor chip is attached to the pressure-sensitive adhesive layer on the other end side in the longitudinal direction of the first test piece. When a test piece is prepared, the base material, the pressure-sensitive adhesive layer, and the semiconductor chip at both ends in the longitudinal direction of the second test piece are gripped with a gripping tool and pulled by a tensile tester by 0.5 mm. The tensile strength FB1 and Satisfy the relationship of the following formula (Equation 1A).
F B1 / F A1 ≤ 30 ... (Equation 1A)
 本発明の一態様に係る粘着シートは、基材と、粘着剤層と、を有し、
 前記粘着剤層は、エネルギー線硬化性樹脂を含有し、
 前記粘着剤層は、前記粘着剤層の幅方向両端部における前記エネルギー線硬化性樹脂が硬化された硬化部と、前記エネルギー線硬化性樹脂が硬化されていない未硬化部と、を有し、
 前記未硬化部に対応する領域の前記粘着シートから幅25mmの第一の試験片を作製して、前記第一の試験片の長手方向のそれぞれの両端における前記基材及び前記粘着剤層の前記未硬化部を掴み具で把持して引張試験機による0.5mm引張り時の引張強度FA1と、
 縦寸法が45mmであり、横寸法が35mmであり、厚さ寸法が0.625mmである第一の半導体チップ及び第二の半導体チップを前記第一の半導体チップ及び第二の半導体チップの縦寸法が45mmである辺を、前記第一の試験片の長手方向に沿わせ、前記第一の半導体チップと前記第二の半導体チップとの間隔を35μmとして、前記第一の試験片の長手方向の一端側の前記未硬化部の粘着剤層に前記第一の半導体チップを貼着し、前記第一の試験片の長手方向の他端側の前記未硬化部の粘着剤層に前記第二の半導体チップを貼着して第二の試験片を作製して、前記第二の試験片の長手方向のそれぞれの両端における前記基材、前記未硬化部の粘着剤層及び前記半導体チップを掴み具で把持して引張試験機による0.5mm引張り時の引張強度FB1と、が、下記数式(数1A)の関係を満たす。
   FB1/FA1≦30 …(数1A)
The pressure-sensitive adhesive sheet according to one aspect of the present invention has a base material and a pressure-sensitive adhesive layer.
The pressure-sensitive adhesive layer contains an energy ray-curable resin and contains
The pressure-sensitive adhesive layer has a cured portion in which the energy ray-curable resin is cured at both ends in the width direction of the pressure-sensitive adhesive layer, and an uncured portion in which the energy ray-curable resin is not cured.
A first test piece having a width of 25 mm is prepared from the pressure-sensitive adhesive sheet in the region corresponding to the uncured portion, and the base material and the pressure-sensitive adhesive layer at both ends of the first test piece in the longitudinal direction. and the tensile strength F A1 when pulling 0.5mm by gripping to a tensile tester uncured portions in the jaws,
The first semiconductor chip and the second semiconductor chip having a vertical dimension of 45 mm, a horizontal dimension of 35 mm, and a thickness dimension of 0.625 mm are the vertical dimensions of the first semiconductor chip and the second semiconductor chip. Is 45 mm along the longitudinal direction of the first test piece, and the distance between the first semiconductor chip and the second semiconductor chip is 35 μm, in the longitudinal direction of the first test piece. The first semiconductor chip is attached to the pressure-sensitive adhesive layer of the uncured portion on one end side, and the second semiconductor chip is attached to the pressure-sensitive adhesive layer of the uncured portion on the other end side in the longitudinal direction of the first test piece. A semiconductor chip is attached to prepare a second test piece, and the base material, the pressure-sensitive adhesive layer of the uncured portion, and the semiconductor chip at both ends in the longitudinal direction of the second test piece are gripped. in the tensile strength F B1 when gripped by the tensile 0.5mm by a tensile tester, but satisfies the following equation (equation 1A).
F B1 / F A1 ≤ 30 ... (Equation 1A)
 本発明の一態様に係る粘着シートにおいて、前記エネルギー線硬化性樹脂が硬化された硬化部を含むように、前記粘着シートの長尺方向に沿って長さ150mm、幅25mmのサイズに切り出した第三の試験片を作製し、当該第三の試験片をチャック間距離を100mmとして一対のチャックで把持し、速度5mm/secで、チャック間距離が200mmになるまで伸長させた際、前記硬化部と前記基材との界面に浮きが発生しないことが好ましい。 In the pressure-sensitive adhesive sheet according to one aspect of the present invention, the pressure-sensitive adhesive sheet is cut into a size of 150 mm in length and 25 mm in width along the elongated direction of the pressure-sensitive adhesive sheet so as to include a cured portion in which the energy ray-curable resin is cured. When three test pieces were prepared, the third test piece was gripped by a pair of chucks with a chuck-to-chuck distance of 100 mm, and extended to a chuck-to-chuck distance of 200 mm at a speed of 5 mm / sec, the cured portion. It is preferable that the interface between the substrate and the substrate does not float.
 本発明の一態様に係る粘着シートにおいて、
 前記粘着シートを、第一方向、前記第一方向とは反対方向である第二方向、前記第一方向に対して垂直方向である第三方向、及び前記第三方向とは反対方向である第四方向に伸長させて、伸長前の前記粘着シートの面積S1と、伸長後の前記粘着シートの面積S2との面積比(S2/S1)×100が381%であるときに、前記粘着剤層の前記硬化部が前記基材との界面で剥がれないことが好ましい。
In the pressure-sensitive adhesive sheet according to one aspect of the present invention
The adhesive sheet is placed in the first direction, the second direction opposite to the first direction, the third direction perpendicular to the first direction, and the direction opposite to the third direction. When the area ratio (S2 / S1) × 100 of the area S1 of the pressure-sensitive adhesive sheet before stretching and the area S2 of the pressure-sensitive adhesive sheet after stretching is 381%, the pressure-sensitive adhesive layer is stretched in four directions. It is preferable that the cured portion of the above does not peel off at the interface with the base material.
 本発明の一態様に係る粘着シートにおいて、前記引張強度FA1と、前記引張強度FB1と、が、下記数式(数1B)の関係を満たすことが好ましい。
   1≦FB1/FA1≦30 …(数1B)
The adhesive sheet according to an embodiment of the present invention, the tensile strength F A1, wherein the tensile strength F B1, but it is preferable to satisfy the following relationship formula (Equation 1B).
1 ≤ F B1 / F A1 ≤ 30 ... (Equation 1B)
 本発明の一態様に係る粘着シートにおいて、前記第一の試験片のヤング率YA1と、前記第二の試験片のヤング率YB1と、が、下記数式(数2A)の関係を満たすことが好ましい。
   YB1/YA1≦19 …(数2A)
In the pressure-sensitive adhesive sheet according to one aspect of the present invention, the Young's modulus Y A1 of the first test piece and the Young's modulus Y B1 of the second test piece satisfy the relationship of the following mathematical formula (Equation 2A). Is preferable.
Y B1 / Y A1 ≤ 19 ... (Equation 2A)
 本発明の一態様に係る粘着シートにおいて、前記粘着剤層は、アクリル系粘着剤を含有することが好ましい。 In the pressure-sensitive adhesive sheet according to one aspect of the present invention, the pressure-sensitive adhesive layer preferably contains an acrylic pressure-sensitive adhesive.
 本発明の一態様に係る粘着シートにおいて、前記基材は、ウレタン系エラストマーを含有することが好ましい。 In the pressure-sensitive adhesive sheet according to one aspect of the present invention, the base material preferably contains a urethane-based elastomer.
 本発明の一態様に係る粘着シートは、半導体装置の製造工程中、複数の半導体チップ同士の間隔を拡張するためのエキスパンド工程に使用されることが好ましい。 The pressure-sensitive adhesive sheet according to one aspect of the present invention is preferably used in an expanding step for expanding the distance between a plurality of semiconductor chips during the manufacturing process of a semiconductor device.
 本発明の一態様に係る粘着シートは、長尺状であり、ロール状に巻き取られている、
 粘着シート。
The pressure-sensitive adhesive sheet according to one aspect of the present invention has a long shape and is wound in a roll shape.
Adhesive sheet.
 本発明の一態様に係る粘着シートの製造方法は、
 基材の上に、エネルギー線硬化性樹脂を含有する粘着剤組成物を塗布して、粘着剤層を形成する工程と、
 前記粘着剤層の幅方向の両端部にエネルギー線を照射して、前記エネルギー線硬化性樹脂を硬化させて硬化部を形成する工程と、
 前記エネルギー線硬化性樹脂を硬化させていない未硬化部の幅方向両端部よりも外側に前記硬化部の全部を残すか、又は前記硬化部の一部を残して、前記硬化部よりも外側を裁断する工程と、を有する。
The method for producing an adhesive sheet according to one aspect of the present invention is
A step of applying a pressure-sensitive adhesive composition containing an energy ray-curable resin onto a base material to form a pressure-sensitive adhesive layer,
A step of irradiating both ends of the pressure-sensitive adhesive layer in the width direction with energy rays to cure the energy ray-curable resin to form a cured portion.
The entire cured portion is left outside the both ends in the width direction of the uncured portion in which the energy ray-curable resin is not cured, or a part of the cured portion is left outside the cured portion. It has a step of cutting.
 本発明の一態様に係る粘着シートの製造方法において、
 前記未硬化部の幅方向両端部よりも外側に残す前記硬化部の幅は、それぞれ独立に、0.5mm以上であることが好ましい。
In the method for producing an adhesive sheet according to one aspect of the present invention.
The width of the cured portion left outside the both ends in the width direction of the uncured portion is preferably 0.5 mm or more independently.
 本発明の一態様に係る粘着シートの製造方法において、
 前記硬化部よりも外側を裁断する工程の後に、裁断後の粘着シートをロール状に巻き取る工程をさらに有することが好ましい。
In the method for producing an adhesive sheet according to one aspect of the present invention.
After the step of cutting the outside of the cured portion, it is preferable to further have a step of winding the cut adhesive sheet into a roll shape.
 本発明の一態様によれば、エキスパンド工程で粘着シートを展延させて半導体チップ間の距離を拡張させる際に、粘着シートの面内方向での伸び量の差を小さくでき、拡張性に優れる粘着シートを提供できる。
 本発明の別の一態様によれば、粘着剤の染み出しを抑制し、かつエキスパンド工程で粘着シートを展延させて半導体チップ間の距離を拡張させる際に、粘着シートの面内方向での伸び量の差を小さくでき、拡張性に優れる粘着シート並びに当該粘着シートの製造方法を提供できる。
According to one aspect of the present invention, when the pressure-sensitive adhesive sheet is expanded in the expanding step to extend the distance between semiconductor chips, the difference in the amount of elongation of the pressure-sensitive adhesive sheet in the in-plane direction can be reduced, and the expandability is excellent. Adhesive sheets can be provided.
According to another aspect of the present invention, when the pressure-sensitive adhesive is suppressed from seeping out and the pressure-sensitive adhesive sheet is spread in the expanding step to increase the distance between the semiconductor chips, the pressure-sensitive adhesive sheet is in the in-plane direction. It is possible to provide a pressure-sensitive adhesive sheet having an excellent expandability and a method for manufacturing the pressure-sensitive adhesive sheet, which can reduce the difference in the amount of elongation.
一実施形態に係る粘着シートの断面概略図である。It is sectional drawing of the adhesive sheet which concerns on one Embodiment. 第一の試験片を引張試験機の掴み具で把持した状態を示す概略図である。It is the schematic which shows the state which the 1st test piece was grasped by the gripper of the tensile tester. 第二の試験片を引張試験機の掴み具で把持した状態を示す概略図である。It is the schematic which shows the state which the 2nd test piece was grasped by the gripper of the tensile tester. 別の実施形態に係る粘着シートの断面概略図である。It is sectional drawing of the adhesive sheet which concerns on another embodiment. 別の実施形態に係る粘着シートがロール状に巻き取られた状態を示す斜視図である。It is a perspective view which shows the state which the adhesive sheet which concerns on another embodiment is wound up in a roll shape. 別の実施形態に係る粘着シートの製造方法を示す断面概略図である。It is sectional drawing which shows the manufacturing method of the adhesive sheet which concerns on another embodiment. 別の実施形態に係る粘着シートの製造方法を示す断面概略図である。It is sectional drawing which shows the manufacturing method of the adhesive sheet which concerns on another embodiment. 別の実施形態に係る粘着シートの製造方法を示す断面概略図である。It is sectional drawing which shows the manufacturing method of the adhesive sheet which concerns on another embodiment. 実施例で使用した2軸延伸エキスパンド装置を説明する平面図である。It is a top view explaining the biaxial stretching expanding apparatus used in an Example.
 以下、本発明の一実施形態について説明する。 Hereinafter, an embodiment of the present invention will be described.
〔第1実施形態〕
[粘着シート]
 本実施形態に係る粘着シートは、基材と、粘着剤層と、を有する。粘着シートの形状は、例えば、テープ状(長尺の形態)、及びラベル状(枚葉の形態)等、あらゆる形状をとり得る。
 図1は、本実施形態に係る粘着シートの一例の断面概略図である。図1には、基材10及び粘着剤層20を有する粘着シート1が記載されている。
[First Embodiment]
[Adhesive sheet]
The pressure-sensitive adhesive sheet according to this embodiment has a base material and a pressure-sensitive adhesive layer. The shape of the adhesive sheet can be any shape such as a tape shape (long form) and a label shape (single leaf shape).
FIG. 1 is a schematic cross-sectional view of an example of the pressure-sensitive adhesive sheet according to the present embodiment. FIG. 1 shows a pressure-sensitive adhesive sheet 1 having a base material 10 and a pressure-sensitive adhesive layer 20.
 本実施形態に係る粘着シートは、当該粘着シートから作製した第一の試験片及び第二の試験片を、引張試験機で測定した引張強度の比が所定の範囲を満たす。 In the pressure-sensitive adhesive sheet according to the present embodiment, the ratio of the tensile strength of the first test piece and the second test piece produced from the pressure-sensitive adhesive sheet measured by a tensile tester satisfies a predetermined range.
(第一の試験片)
 第一の試験片は、本実施形態に係る粘着シートから作製される。第一の試験片の幅は、25mmである。
(First test piece)
The first test piece is made from the pressure-sensitive adhesive sheet according to the present embodiment. The width of the first test piece is 25 mm.
 図2は、第一の試験片の一端側における基材10及び粘着剤層20を引張試験機の第一の掴み具110で把持し、第一の試験片の他端側における基材10及び粘着剤層20を引張試験機の第二の掴み具120で把持した状態を示す概略図である。 In FIG. 2, the base material 10 and the adhesive layer 20 on one end side of the first test piece are gripped by the first gripper 110 of the tensile tester, and the base material 10 and the adhesive layer 20 on the other end side of the first test piece are held. It is the schematic which shows the state which the pressure-sensitive adhesive layer 20 was gripped by the second gripping tool 120 of a tensile tester.
(第二の試験片)
 第二の試験片は、本実施形態に係る粘着シートから作製された第一の試験片に2つの半導体チップを貼着することにより作製される。本実施形態においては、この2つの半導体チップは、第一の半導体チップ及び第二の半導体チップである。第一の半導体チップ及び第二の半導体チップは、いずれも、縦寸法が45mmであり、横寸法が35mmであり、厚さ寸法が0.625mmである。
 第一の半導体チップ及び第二の半導体チップの縦寸法が45mmである辺を、第一の試験片の長手方向に沿わせて貼着する。
 第一の半導体チップは、第一の試験片の長手方向の一端側に貼着される。第二の半導体チップは、第一の試験片の長手方向の他端側に貼着される。第一の試験片に貼着された第一の半導体チップと第二の半導体チップとの間隔を35μmとする。
(Second test piece)
The second test piece is produced by attaching two semiconductor chips to the first test piece produced from the pressure-sensitive adhesive sheet according to the present embodiment. In the present embodiment, the two semiconductor chips are a first semiconductor chip and a second semiconductor chip. Both the first semiconductor chip and the second semiconductor chip have a vertical dimension of 45 mm, a horizontal dimension of 35 mm, and a thickness dimension of 0.625 mm.
The sides of the first semiconductor chip and the second semiconductor chip having a vertical dimension of 45 mm are attached along the longitudinal direction of the first test piece.
The first semiconductor chip is attached to one end side in the longitudinal direction of the first test piece. The second semiconductor chip is attached to the other end side in the longitudinal direction of the first test piece. The distance between the first semiconductor chip and the second semiconductor chip attached to the first test piece is 35 μm.
 図3は、第二の試験片の一端側における基材10、粘着剤層20及び第一の半導体チップCP1を引張試験機の第一の掴み具110で把持し、第二の試験片の他端側における基材10、粘着剤層20及び第二の半導体チップCP2を引張試験機の第二の掴み具120で把持した状態を示す概略図である。 In FIG. 3, the base material 10, the adhesive layer 20, and the first semiconductor chip CP1 on one end side of the second test piece are gripped by the first gripper 110 of the tensile tester, and the other of the second test piece is shown. It is a schematic diagram which shows the state which the base material 10, the pressure-sensitive adhesive layer 20 and the 2nd semiconductor chip CP2 on the end side are gripped by the 2nd gripping tool 120 of a tensile tester.
(引張強度)
 本実施形態に係る粘着シートは、引張試験機を用いて測定した第一の試験片及び第二の試験片の引張強度が、下記数式(数1A)の関係を満たす。
   FB1/FA1≦30 …(数1A)
(Tensile strength)
In the pressure-sensitive adhesive sheet according to the present embodiment, the tensile strengths of the first test piece and the second test piece measured by using a tensile tester satisfy the relationship of the following mathematical formula (Equation 1A).
F B1 / F A1 ≤ 30 ... (Equation 1A)
 前記数式(数1A)において、引張強度FA1は、第一の試験片の長手方向のそれぞれの両端における基材及び粘着剤層を掴み具で把持して引張試験機による0.5mm引張り時の強度である。 In the above formula (Equation 1A), the tensile strength FA1 is when the base material and the pressure-sensitive adhesive layer at both ends in the longitudinal direction of the first test piece are gripped with a gripper and pulled by a tensile tester by 0.5 mm. Strength.
 前記数式(数1A)において、引張強度FB1は、第二の試験片の長手方向のそれぞれの両端における基材、粘着剤層及び半導体チップを掴み具で把持して引張試験機による0.5mm引張り時の強度である。 In the above formula (Equation 1A), the tensile strength FB1 is 0.5 mm by a tensile tester by grasping the base material, the pressure-sensitive adhesive layer and the semiconductor chip at both ends in the longitudinal direction of the second test piece with a gripper. It is the strength at the time of tension.
 本発明者らは、粘着シートの半導体チップが貼着されていない部位と、半導体チップが貼着されている部位とで、エキスパンド(展延)した際に、粘着シートの延び方の挙動が異なることを見出した。また、本発明者らは、従来の粘着シートにおいては、粘着シートの半導体チップが貼着されていない部位の引張強度と、半導体チップが貼着されている部位の引張強度とが、大きく異なり、エキスパンド工程で粘着シートを展延させて半導体チップ間の距離を拡大させる際に、粘着シートの面内方向での伸び量の差が大きいことも見出した。
 本実施形態に係る粘着シートによれば、FB1/FA1が30以下であり、粘着シートの半導体チップが貼着されていない部位の引張強度と、半導体チップが貼着されている部位の引張強度との比FB1/FA1が小さい。そのため、本実施形態に係る粘着シートによれば、エキスパンド工程で粘着シートを展延させて半導体チップ間の距離を拡張させる際に、粘着シートの面内方向での伸び量の差が小さくなり、拡張性に優れ、半導体チップ間の距離のばらつきを小さくできる。
 なお、引張強度FA1及びFB1を測定する際の0.5mmという引張量は、エキスパンド工程における引張量の一つの目安である。そのため、本実施形態に係る粘着シートは、0.5mmよりも小さい引張量のエキスパンド工程で使用してもよいし、0.5mmよりも大きい引張量のエキスパンド工程で使用してもよい。
 本実施形態に係る粘着シートによれば、0.5mm引張り時のFB1/FA1が30以下であるので、0.5mmよりも大きく延伸させるエキスパンド工程に本実施形態に係る粘着シートを用いた際に、粘着シートの半導体チップが貼着されていない部位と、半導体チップが貼着されている部位の引張強度との伸び量の差が過度に大きくなることも抑制できる。
The present inventors have different behaviors of how the adhesive sheet extends when the adhesive sheet is expanded (expanded) between the portion where the semiconductor chip of the adhesive sheet is not attached and the portion where the semiconductor chip is attached. I found that. Further, in the conventional adhesive sheet, the present inventors have a large difference between the tensile strength of the portion of the adhesive sheet to which the semiconductor chip is not attached and the tensile strength of the portion to which the semiconductor chip is attached. It was also found that when the pressure-sensitive adhesive sheet is expanded in the expanding step to increase the distance between the semiconductor chips, the difference in the amount of elongation of the pressure-sensitive adhesive sheet in the in-plane direction is large.
According to the pressure-sensitive adhesive sheet according to the present embodiment, the FB1 / FA1 is 30 or less, the tensile strength of the portion of the adhesive sheet where the semiconductor chip is not attached, and the tensile strength of the portion where the semiconductor chip is attached. The ratio F B1 / F A1 to the strength is small. Therefore, according to the pressure-sensitive adhesive sheet according to the present embodiment, when the pressure-sensitive adhesive sheet is expanded in the expanding step to extend the distance between the semiconductor chips, the difference in the amount of elongation of the pressure-sensitive adhesive sheet in the in-plane direction becomes small. It has excellent expandability and can reduce variations in distance between semiconductor chips.
Incidentally, the amount of tension that 0.5mm in measuring the tensile strength F A1 and F B1 is one measure of the draw amount in expanding step. Therefore, the pressure-sensitive adhesive sheet according to the present embodiment may be used in an expanding step having a tensile amount smaller than 0.5 mm, or may be used in an expanding step having a tensile amount larger than 0.5 mm.
According to the pressure-sensitive adhesive sheet according to the present embodiment, since F B1 / F A1 when pulling 0.5mm is 30 or less, using a pressure-sensitive adhesive sheet according to the present embodiment expanding step to greatly stretched than 0.5mm At that time, it is possible to suppress an excessively large difference in the amount of elongation between the portion of the pressure-sensitive adhesive sheet to which the semiconductor chip is not attached and the tensile strength of the portion to which the semiconductor chip is attached.
 本実施形態に係る粘着シートは、引張試験機を用いて測定した第一の試験片の引張強度FA1及び第二の試験片の引張強度FB1が、下記数式(数1B)の関係を満たすことが好ましい。
   1≦FB1/FA1≦30 …(数1B)
PSA sheet according to the present embodiment, the tensile strength F B1 tensile strength F A1 and the second test piece of the first test piece was measured using a tensile tester, satisfies the following equation (Equation 1B) Is preferable.
1 ≤ F B1 / F A1 ≤ 30 ... (Equation 1B)
 本実施形態に係る粘着シートは、引張試験機を用いて測定した第一の試験片の引張強度FA1及び第二の試験片の引張強度FB1が、下記数式(数1C)の関係を満たすことも好ましい。
   FB1/FA1≦20 …(数1C)
PSA sheet according to the present embodiment, the tensile strength F B1 tensile strength F A1 and the second test piece of the first test piece was measured using a tensile tester, satisfies the following equation (Equation 1C) It is also preferable.
F B1 / F A1 ≤ 20 ... (Equation 1C)
 FB1/FA1の値を前記数式(数1A)、数式(数1B)又は数式(数1C)の範囲内に調整する方法としては、以下のような方法が挙げられる。例えば、粘着剤層20に用いる粘着剤組成物の組成を変更すること、粘着剤層の厚さを変更すること、基材の材質を変更すること、並びに基材の厚さを変更すること等の1つ又は2つ以上を組み合わせることによって、FB1/FA1の値を前記数式(数1A)、数式(数1B)又は数式(数1C)の範囲内に調整できる。 Wherein the value of F B1 / F A1 formula (number 1A), as a method of adjusting the range of formula (number 1B) or a formula (number 1C), include the following method. For example, changing the composition of the pressure-sensitive adhesive composition used for the pressure-sensitive adhesive layer 20, changing the thickness of the pressure-sensitive adhesive layer, changing the material of the base material, changing the thickness of the base material, etc. by combining one or more, F B1 / F equation value of A1 (number 1A), can be adjusted within the range of equation (equation 1B) or a formula (number 1C).
(ヤング率)
 本実施形態に係る粘着シートにおいて、第一の試験片のヤング率YA1と、第二の試験片のヤング率YB1と、が、下記数式(数2A)の関係を満たすことが好ましい。
   YB1/YA1≦19 …(数2A)
 上記数式(数2A)の関係を満たすことにより、粘着シートの半導体チップが貼着されていない部位のヤング率と、半導体チップが貼着されている部位のヤング率との比YB1/YA1が小さい。そのため、エキスパンド工程で粘着シートを展延させて半導体チップ間の距離を拡張させる際に、粘着シートの面内方向での伸び量の差を小さくし易い。また、上記数式(数2A)の関係を満たすことにより、引張量が0.5mmより大きいエキスパンド工程で粘着シートを使用しても、YB1/YA1の値が過度に大きくなることを抑制できる。
 粘着シートのヤング率は、後述する実施例に記載の測定方法に従って測定できる。
(Young's modulus)
In the pressure-sensitive adhesive sheet according to the present embodiment, it is preferable that the Young's modulus Y A1 of the first test piece and the Young's modulus Y B1 of the second test piece satisfy the relationship of the following mathematical formula (Equation 2A).
Y B1 / Y A1 ≤ 19 ... (Equation 2A)
By satisfying the relationship of the above mathematical formula (Equation 2A), the ratio of the Young's modulus of the portion where the semiconductor chip of the adhesive sheet is not attached to the Young's modulus of the portion where the semiconductor chip is attached Y B1 / Y A1 Is small. Therefore, when the pressure-sensitive adhesive sheet is expanded in the expanding step to increase the distance between the semiconductor chips, it is easy to reduce the difference in the amount of elongation of the pressure-sensitive adhesive sheet in the in-plane direction. Further, by satisfying the relationship of the above mathematical formula (Equation 2A), it is possible to prevent the value of Y B1 / Y A1 from becoming excessively large even if the adhesive sheet is used in the expanding step in which the tensile amount is larger than 0.5 mm. ..
The Young's modulus of the pressure-sensitive adhesive sheet can be measured according to the measuring method described in Examples described later.
(基材)
 前記基材は、第一の基材面と、第一の基材面とは反対側の第二の基材面とを有することが好ましい。例えば、図1に示すように、粘着シート1の基材10は、第一の基材面11と、第一の基材面11とは反対側の第二の基材面12とを有する。
 本実施形態の粘着シートにおいて、本実施形態に係る粘着剤層が、第一の基材面及び第二の基材面の一方の面に設けられていることが好ましい。
(Base material)
The base material preferably has a first base material surface and a second base material surface opposite to the first base material surface. For example, as shown in FIG. 1, the base material 10 of the pressure-sensitive adhesive sheet 1 has a first base material surface 11 and a second base material surface 12 on the opposite side of the first base material surface 11.
In the pressure-sensitive adhesive sheet of the present embodiment, it is preferable that the pressure-sensitive adhesive layer according to the present embodiment is provided on one surface of the first base material surface and the second base material surface.
 基材の材料は、大きく延伸させ易いという観点から、熱可塑性エラストマー、またはゴム系材料であることが好ましく、熱可塑性エラストマーであることがより好ましい。 The material of the base material is preferably a thermoplastic elastomer or a rubber-based material, and more preferably a thermoplastic elastomer from the viewpoint of being easily stretched greatly.
 熱可塑性エラストマーとしては、ウレタン系エラストマー、オレフィン系エラストマー、塩化ビニル系エラストマー、ポリエステル系エラストマー、スチレン系エラストマー、アクリル系エラストマー、及びアミド系エラストマー等が挙げられる。熱可塑性エラストマーは、1種を単独でまたは2種以上を組み合わせて使用することができる。熱可塑性エラストマーとしては、大きく延伸させ易いという観点から、ウレタン系エラストマーを使用することが好ましい。すなわち、本実施形態に係る粘着シートにおいて、基材は、ウレタン系エラストマーを含有することが好ましい。 Examples of the thermoplastic elastomer include urethane-based elastomers, olefin-based elastomers, vinyl chloride-based elastomers, polyester-based elastomers, styrene-based elastomers, acrylic-based elastomers, and amide-based elastomers. The thermoplastic elastomer may be used alone or in combination of two or more. As the thermoplastic elastomer, it is preferable to use a urethane-based elastomer from the viewpoint of being large and easy to stretch. That is, in the pressure-sensitive adhesive sheet according to the present embodiment, the base material preferably contains a urethane-based elastomer.
 基材は、上記のような材料(例えば、熱可塑性エラストマー、またはゴム系材料)からなるフィルムが、複数、積層された積層フィルムでもよい。また、基材は、上記のような材料(例えば、熱可塑性エラストマー、またはゴム系材料)からなるフィルムと、その他のフィルムとが積層された積層フィルムでもよい。 The base material may be a laminated film in which a plurality of films made of the above materials (for example, a thermoplastic elastomer or a rubber-based material) are laminated. Further, the base material may be a laminated film in which a film made of the above materials (for example, a thermoplastic elastomer or a rubber-based material) and another film are laminated.
 基材は、上記の樹脂系材料を主材料とするフィルム内に、添加剤を含んでいてもよい。
 添加剤としては、例えば、顔料、染料、難燃剤、可塑剤、帯電防止剤、滑剤、及びフィラー等が挙げられる。顔料としては、例えば、二酸化チタン、及びカーボンブラック等が挙げられる。また、フィラーとしては、メラミン樹脂のような有機系材料、ヒュームドシリカのような無機系材料、及びニッケル粒子のような金属系材料が例示される。こうした添加剤の含有量は特に限定されないが、基材が所望の機能を発揮し得る範囲に留めることが好ましい。
The base material may contain an additive in a film containing the above resin-based material as a main material.
Examples of the additive include pigments, dyes, flame retardants, plasticizers, antistatic agents, lubricants, fillers and the like. Examples of the pigment include titanium dioxide, carbon black and the like. Examples of the filler include organic materials such as melamine resin, inorganic materials such as fumed silica, and metallic materials such as nickel particles. The content of such additives is not particularly limited, but it is preferable to keep the content within a range in which the base material can exhibit a desired function.
 基材は、第一の基材面及び第二の基材面の少なくともいずれかに積層される粘着剤層との密着性を向上させる目的で、所望により片面または両面に、表面処理、またはプライマー処理が施されていてもよい。表面処理としては、酸化法、及び凹凸化法等が挙げられる。プライマー処理としては、基材表面にプライマー層を形成する方法が挙げられる。酸化法としては、例えば、コロナ放電処理、プラズマ放電処理、クロム酸化処理(湿式)、火炎処理、熱風処理、オゾン処理、及び紫外線照射処理等が挙げられる。凹凸化法としては、例えば、サンドブラスト法、及び溶射処理法等が挙げられる。 The substrate is surface-treated or primer on one or both sides, if desired, for the purpose of improving adhesion to the pressure-sensitive adhesive layer laminated on at least one of the first substrate surface and the second substrate surface. It may be treated. Examples of the surface treatment include an oxidation method and an unevenness method. Examples of the primer treatment include a method of forming a primer layer on the surface of the base material. Examples of the oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone treatment, ultraviolet irradiation treatment and the like. Examples of the unevenness method include a sandblasting method and a thermal spraying treatment method.
 粘着剤層がエネルギー線硬化性粘着剤を含有する場合、基材は、エネルギー線に対する透過性を有することが好ましい。エネルギー線として紫外線を用いる場合には、基材は、紫外線に対して透過性を有することが好ましい。エネルギー線として電子線を用いる場合には、基材は、電子線の透過性を有することが好ましい。 When the pressure-sensitive adhesive layer contains an energy ray-curable pressure-sensitive adhesive, the base material preferably has permeability to energy rays. When ultraviolet rays are used as energy rays, the base material preferably has transparency to ultraviolet rays. When an electron beam is used as the energy ray, the base material preferably has the transparency of the electron beam.
 基材の厚さは、粘着シートが所望の工程において適切に機能できる限り、限定されない。基材の厚さは、20μm以上であることが好ましく、40μm以上であることがより好ましい。また、基材の厚さは、250μm以下であることが好ましく、200μm以下であることがより好ましい。 The thickness of the base material is not limited as long as the adhesive sheet can function properly in the desired process. The thickness of the base material is preferably 20 μm or more, and more preferably 40 μm or more. The thickness of the base material is preferably 250 μm or less, more preferably 200 μm or less.
 また、基材の第一の基材面または第二の基材面の面内方向において2cm間隔で複数箇所の厚さを測定した際の、基材の厚さの標準偏差は、2μm以下であることが好ましく、1.5μm以下であることがより好ましく、1μm以下であることがさらに好ましい。当該標準偏差が2μm以下であることで、粘着シートは、精度の高い厚さを有しており、粘着シートを均一に延伸することが可能となる。 Further, the standard deviation of the thickness of the base material is 2 μm or less when the thickness of a plurality of places is measured at intervals of 2 cm in the in-plane direction of the first base material surface or the second base material surface of the base material. It is preferably 1.5 μm or less, more preferably 1 μm or less. When the standard deviation is 2 μm or less, the pressure-sensitive adhesive sheet has a highly accurate thickness, and the pressure-sensitive adhesive sheet can be uniformly stretched.
 23℃において基材のMD方向及びCD方向の引張弾性率が、それぞれ10MPa以上、350MPa以下であり、23℃において基材のMD方向及びCD方向の100%応力が、それぞれ3MPa以上、20MPa以下であることが好ましい。
 引張弾性率及び100%応力が上記範囲であることで、粘着シートを大きく延伸することが可能となる。
 基材の100%応力は、次のようにして得られる値である。100mm(長さ方向)×15mm(幅方向)の大きさの試験片を基材から切り出す。切り出した試験片の長さ方向の両端を、掴み具間の長さが50mmとなるように掴み具でつかむ。掴み具で試験片をつかんだ後、速度200mm/minで長さ方向に引張り、掴み具間の長さが100mmとなったときの引張力の測定値を読み取る。基材の100%応力は、読み取った引張力の測定値を、基材の断面積で除算することで得られる値である。基材の断面積は、幅方向長さ15mm×基材(試験片)の厚みで算出される。当該切り出しは、基材の製造時における流れ方向(MD方向)またはMD方向に直交する方向(CD方向)と、試験片の長さ方向とが一致するように行う。なお、この引張試験において、試験片の厚さは特別に制限されず、試験の対象とする基材の厚さと同じであってよい。
The tensile elastic modulus in the MD direction and the CD direction of the base material at 23 ° C. is 10 MPa or more and 350 MPa or less, respectively, and the 100% stress in the MD direction and the CD direction of the base material at 23 ° C. is 3 MPa or more and 20 MPa or less, respectively. It is preferable to have.
When the tensile elastic modulus and 100% stress are in the above ranges, the pressure-sensitive adhesive sheet can be greatly stretched.
The 100% stress of the base material is a value obtained as follows. A test piece having a size of 100 mm (length direction) x 15 mm (width direction) is cut out from the base material. Grasp both ends of the cut out test piece in the length direction with a gripper so that the length between the grippers is 50 mm. After grasping the test piece with the gripping tool, the test piece is pulled in the length direction at a speed of 200 mm / min, and the measured value of the tensile force when the length between the gripping tools becomes 100 mm is read. The 100% stress of the base material is a value obtained by dividing the read measured value of the tensile force by the cross-sectional area of the base material. The cross-sectional area of the base material is calculated by the length in the width direction of 15 mm × the thickness of the base material (test piece). The cutting is performed so that the flow direction (MD direction) or the direction orthogonal to the MD direction (CD direction) at the time of manufacturing the base material coincides with the length direction of the test piece. In this tensile test, the thickness of the test piece is not particularly limited and may be the same as the thickness of the base material to be tested.
 23℃において基材のMD方向及びCD方向の破断伸度が、それぞれ100%以上であることが好ましい。
 基材のMD方向及びCD方向の破断伸度が、それぞれ100%以上であることで、破断が生じることなく、粘着シートを大きく延伸することが可能となる。
It is preferable that the elongation at break in the MD direction and the CD direction of the base material at 23 ° C. is 100% or more, respectively.
When the breaking elongation of the base material in the MD direction and the breaking elongation in the CD direction is 100% or more, the pressure-sensitive adhesive sheet can be greatly stretched without breaking.
 基材の引張弾性率(MPa)及び基材の破断伸度(%)は、次のようにして測定できる。基材を15mm×140mmに裁断して試験片を得る。当該試験片について、JIS K7161:2014及びJIS K7127:1999に準拠して、23℃における破断伸度及び引張弾性率を測定する。具体的には、上記試験片を、引張試験機(株式会社島津製作所製,製品名「オートグラフAG-IS 500N」)にて、チャック間距離100mmに設定した後、200mm/minの速度で引張試験を行い、破断伸度(%)及び引張弾性率(MPa)を測定する。なお、測定は、基材の製造時の流れ方向(MD)及びこれに直角の方向(CD)の双方で行う。 The tensile elastic modulus (MPa) of the base material and the breaking elongation (%) of the base material can be measured as follows. The base material is cut into 15 mm × 140 mm to obtain a test piece. For the test piece, the elongation at break and the tensile elastic modulus at 23 ° C. are measured in accordance with JIS K7161: 2014 and JIS K7127: 1999. Specifically, the above test piece is pulled at a speed of 200 mm / min after setting the distance between chucks to 100 mm with a tensile tester (manufactured by Shimadzu Corporation, product name "Autograph AG-IS 500N"). Perform the test and measure the elongation at break (%) and the tensile elastic modulus (MPa). The measurement is performed in both the flow direction (MD) at the time of manufacturing the base material and the direction perpendicular to the flow direction (CD).
(粘着剤層)
 本実施形態に係る粘着シートにおいて、粘着剤層は、前述した数式(数1A)の関係を満たす限り、特に限定されない。前述した数式(数1A)の関係の範囲を満たすように、粘着剤層を構成する材料を、例えば、以下に説明する材料の中から適宜選択して配合することができる。
 例えば、粘着剤層に用いる粘着剤としては、例えば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤及びウレタン系粘着剤が挙げられる。
(Adhesive layer)
In the pressure-sensitive adhesive sheet according to the present embodiment, the pressure-sensitive adhesive layer is not particularly limited as long as the relationship of the above-mentioned mathematical formula (Equation 1A) is satisfied. The materials constituting the pressure-sensitive adhesive layer can be appropriately selected and blended from, for example, the materials described below so as to satisfy the range of the relationship of the above-mentioned mathematical formula (Equation 1A).
For example, examples of the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer include rubber-based pressure-sensitive adhesives, acrylic-based pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, polyester-based pressure-sensitive adhesives, and urethane-based pressure-sensitive adhesives.
 本実施形態に係る粘着シートにおいて、粘着剤層は、アクリル系粘着剤を含有することが好ましい。 In the pressure-sensitive adhesive sheet according to the present embodiment, the pressure-sensitive adhesive layer preferably contains an acrylic pressure-sensitive adhesive.
・エネルギー線硬化性樹脂(a1)
 粘着剤層は、エネルギー線硬化性樹脂(a1)を含有することが好ましい。エネルギー線硬化性樹脂(a1)は、分子内に、エネルギー線硬化性の二重結合を有する。
 エネルギー線硬化性樹脂を含有する粘着剤層は、エネルギー線照射により硬化して粘着力が低下する。被着体と粘着シートとを分離したい場合、エネルギー線を粘着剤層に照射することにより、容易に分離できる。
-Energy ray curable resin (a1)
The pressure-sensitive adhesive layer preferably contains an energy ray-curable resin (a1). The energy ray-curable resin (a1) has an energy ray-curable double bond in the molecule.
The pressure-sensitive adhesive layer containing the energy ray-curable resin is cured by energy ray irradiation, and the adhesive strength is reduced. When it is desired to separate the adherend and the pressure-sensitive adhesive sheet, the pressure-sensitive adhesive layer can be easily separated by irradiating the pressure-sensitive adhesive layer with energy rays.
 エネルギー線硬化性樹脂(a1)は、(メタ)アクリル系樹脂であることが好ましい。 The energy ray-curable resin (a1) is preferably a (meth) acrylic resin.
 エネルギー線硬化性樹脂(a1)は、紫外線硬化性樹脂であることが好ましく、紫外線硬化性の(メタ)アクリル系樹脂であることがより好ましい。 The energy ray-curable resin (a1) is preferably an ultraviolet curable resin, and more preferably an ultraviolet curable (meth) acrylic resin.
 エネルギー線硬化性樹脂(a1)は、エネルギー線の照射を受けると重合硬化する樹脂である。エネルギー線としては、例えば、紫外線、及び電子線等が挙げられる。
 エネルギー線硬化性樹脂(a1)の例としては、エネルギー線重合性基を有する低分子量化合物(単官能のモノマー、多官能のモノマー、単官能のオリゴマー、及び多官能のオリゴマー)が挙げられる。エネルギー線硬化性樹脂(a1)は、具体的には、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、1,4-ブチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート等のアクリレート、ジシクロペンタジエンジメトキシジアクリレート、イソボルニルアクリレート等の環状脂肪族骨格含有アクリレート、ポリエチレングリコールジアクリレート、オリゴエステルアクリレート、ウレタンアクリレートオリゴマー、エポキシ変性アクリレート、ポリエーテルアクリレート、イタコン酸オリゴマー等のアクリレート系化合物が用いられる。
The energy ray-curable resin (a1) is a resin that polymerizes and cures when irradiated with energy rays. Examples of the energy ray include ultraviolet rays and electron beams.
Examples of the energy ray-curable resin (a1) include low molecular weight compounds having an energy ray-polymerizable group (monofunctional monomer, polyfunctional monomer, monofunctional oligomer, and polyfunctional oligomer). Specifically, the energy ray-curable resin (a1) includes trimethyl propantriacrylate, tetramethylolmethanetetraacrylate, pentaerythritol triacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, 1,4-. Butylene glycol diacrylate, acrylates such as 1,6-hexanediol diacrylate, cyclic aliphatic skeleton-containing acrylates such as dicyclopentadiene dimethoxydiacrylate and isobornyl acrylate, polyethylene glycol diacrylates, oligoester acrylates, urethane acrylate oligomers, Acrylate-based compounds such as epoxy-modified acrylates, polyether acrylates, and itaconic acid oligomers are used.
 エネルギー線硬化性樹脂(a1)の分子量は、通常、100以上30000以下であり、300以上10000以下程度であることが好ましい。 The molecular weight of the energy ray-curable resin (a1) is usually 100 or more and 30,000 or less, and preferably 300 or more and 10,000 or less.
・(メタ)アクリル系共重合体(b1)
 本実施形態に係る粘着剤層は、(メタ)アクリル系共重合体(b1)をさらに含んでいることが好ましい。(メタ)アクリル系共重合体は、前述したエネルギー線硬化性樹脂(a1)とは異なる。
-(Meta) acrylic copolymer (b1)
The pressure-sensitive adhesive layer according to the present embodiment preferably further contains a (meth) acrylic copolymer (b1). The (meth) acrylic copolymer is different from the energy ray-curable resin (a1) described above.
 (メタ)アクリル系共重合体(b1)は、エネルギー線硬化性の炭素-炭素二重結合を有することが好ましい。すなわち、本実施形態において、粘着剤層は、エネルギー線硬化性樹脂(a1)と、エネルギー線硬化性の(メタ)アクリル系共重合体(b1)とを含有することが好ましい。 The (meth) acrylic copolymer (b1) preferably has an energy ray-curable carbon-carbon double bond. That is, in the present embodiment, the pressure-sensitive adhesive layer preferably contains an energy ray-curable resin (a1) and an energy ray-curable (meth) acrylic copolymer (b1).
 本実施形態に係る粘着剤層は、(メタ)アクリル系共重合体(b1)100質量部に対し、エネルギー線硬化性樹脂(a1)を10質量部以上の割合で含有することが好ましく、20質量部以上の割合で含有することがより好ましく、25質量%以上の割合で含有することがさらに好ましい。
 本実施形態に係る粘着剤層は、(メタ)アクリル系共重合体(b1)100質量部に対し、エネルギー線硬化性樹脂(a1)を80質量部以下の割合で含有することが好ましく、70質量部以下の割合で含有することがより好ましく、60質量部以下の割合で含有することがさらに好ましい。
The pressure-sensitive adhesive layer according to the present embodiment preferably contains the energy ray-curable resin (a1) in a proportion of 10 parts by mass or more with respect to 100 parts by mass of the (meth) acrylic copolymer (b1). It is more preferably contained in a proportion of parts by mass or more, and further preferably contained in a proportion of 25% by mass or more.
The pressure-sensitive adhesive layer according to the present embodiment preferably contains the energy ray-curable resin (a1) in a proportion of 80 parts by mass or less with respect to 100 parts by mass of the (meth) acrylic copolymer (b1). It is more preferably contained in a proportion of parts by mass or less, and further preferably contained in a proportion of 60 parts by mass or less.
 (メタ)アクリル系共重合体(b1)の重量平均分子量(Mw)は、1万以上であることが好ましく、15万以上であることがより好ましく、20万以上であることがさらに好ましい。
 また、(メタ)アクリル系共重合体(b1)の重量平均分子量(Mw)は、150万以下であることが好ましく、100万以下であることがより好ましい。
 なお、本明細書における重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法(GPC法)により測定した標準ポリスチレン換算の値である。
The weight average molecular weight (Mw) of the (meth) acrylic copolymer (b1) is preferably 10,000 or more, more preferably 150,000 or more, and even more preferably 200,000 or more.
The weight average molecular weight (Mw) of the (meth) acrylic copolymer (b1) is preferably 1.5 million or less, more preferably 1 million or less.
The weight average molecular weight (Mw) in the present specification is a standard polystyrene-equivalent value measured by a gel permeation chromatography method (GPC method).
 (メタ)アクリル系共重合体(b1)は、側鎖にエネルギー線硬化性を有する官能基(エネルギー線硬化性基)が導入された(メタ)アクリル酸エステル重合体(b2)(以下「エネルギー線硬化性重合体(b2)」という場合がある。)であることが好ましい。 The (meth) acrylic copolymer (b1) is a (meth) acrylic acid ester polymer (b2) in which a functional group (energy ray-curable group) having energy ray curability is introduced into the side chain (hereinafter, "energy"). It may be referred to as "line curable polymer (b2)").
 エネルギー線硬化性重合体(b2)は、官能基含有モノマー単位を有するアクリル系共重合体(b21)と、その官能基に結合する官能基を有する不飽和基含有化合物(b22)とを反応させて得られる共重合体であることが好ましい。なお、本明細書において、(メタ)アクリル酸エステルとは、アクリル酸エステル及びメタクリル酸エステルの両方を意味する。他の類似用語も同様である。 In the energy ray-curable polymer (b2), an acrylic copolymer (b21) having a functional group-containing monomer unit is reacted with an unsaturated group-containing compound (b22) having a functional group bonded to the functional group. It is preferable that the copolymer is obtained. In addition, in this specification, (meth) acrylic acid ester means both acrylic acid ester and methacrylic acid ester. The same applies to other similar terms.
 アクリル系共重合体(b21)は、官能基含有モノマーから導かれる構成単位と、(メタ)アクリル酸エステルモノマー、または(メタ)アクリル酸エステルモノマーの誘導体から導かれる構成単位とを含むことが好ましい。 The acrylic copolymer (b21) preferably contains a structural unit derived from a functional group-containing monomer and a structural unit derived from a (meth) acrylic acid ester monomer or a derivative of the (meth) acrylic acid ester monomer. ..
 アクリル系共重合体(b21)の構成単位としての官能基含有モノマーは、重合性の二重結合と、官能基と、を分子内に有するモノマーであることが好ましい。官能基は、ヒドロキシ基、カルボキシ基、アミノ基、置換アミノ基、及びエポキシ基等からなる群から選択される少なくともいずれかの官能基であることが好ましい。 The functional group-containing monomer as a constituent unit of the acrylic copolymer (b21) is preferably a monomer having a polymerizable double bond and a functional group in the molecule. The functional group is preferably at least one functional group selected from the group consisting of a hydroxy group, a carboxy group, an amino group, a substituted amino group, an epoxy group and the like.
 ヒドロキシ基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、及び4-ヒドロキシブチル(メタ)アクリレート等が挙げられる。ヒドロキシ基含有モノマーは、単独でまたは2種以上を組み合わせて用いられる。 Examples of the hydroxy group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl ( Examples thereof include meta) acrylate and 4-hydroxybutyl (meth) acrylate. The hydroxy group-containing monomer may be used alone or in combination of two or more.
 カルボキシ基含有モノマーとしては、例えば、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸、及びシトラコン酸等のエチレン性不飽和カルボン酸が挙げられる。カルボキシ基含有モノマーは、単独でまたは2種以上を組み合わせて用いられる。 Examples of the carboxy group-containing monomer include ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, and citraconic acid. The carboxy group-containing monomer may be used alone or in combination of two or more.
 アミノ基含有モノマーまたは置換アミノ基含有モノマーとしては、例えば、アミノエチル(メタ)アクリレート、及びn-ブチルアミノエチル(メタ)アクリレート等が挙げられる。アミノ基含有モノマーまたは置換アミノ基含有モノマーは、単独でまたは2種以上を組み合わせて用いられる。 Examples of the amino group-containing monomer or the substituted amino group-containing monomer include aminoethyl (meth) acrylate and n-butylaminoethyl (meth) acrylate. The amino group-containing monomer or the substituted amino group-containing monomer may be used alone or in combination of two or more.
 アクリル系共重合体(b21)を構成する(メタ)アクリル酸エステルモノマーとしては、アルキル基の炭素数が1以上20以下であるアルキル(メタ)アクリレートの他、例えば、分子内に脂環式構造を有するモノマー(脂環式構造含有モノマー)が好ましく用いられる。 The (meth) acrylic acid ester monomer constituting the acrylic copolymer (b21) includes an alkyl (meth) acrylate having an alkyl group having 1 or more and 20 or less carbon atoms, and for example, an alicyclic structure in the molecule. (Alicyclic structure-containing monomer) having the above is preferably used.
 アルキル(メタ)アクリレートとしては、アルキル基の炭素数が1以上18以下であるアルキル(メタ)アクリレートが好ましい。アルキル(メタ)アクリレートは、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、及び2-エチルヘキシル(メタ)アクリレート等がより好ましい。アルキル(メタ)アクリレートは、単独でまたは2種以上を組み合わせて用いられる。 As the alkyl (meth) acrylate, an alkyl (meth) acrylate having an alkyl group having 1 or more and 18 or less carbon atoms is preferable. As the alkyl (meth) acrylate, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and the like are more preferable. Alkyl (meth) acrylates may be used alone or in combination of two or more.
 脂環式構造含有モノマーとしては、例えば、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンテニル、及び(メタ)アクリル酸ジシクロペンテニルオキシエチル等が好ましく用いられる。脂環式構造含有モノマーは、単独でまたは2種以上を組み合わせて用いられる。 Examples of the alicyclic structure-containing monomer include cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, adamantyl (meth) acrylate, isobornyl (meth) acrylate, and dicyclopentenyl (meth) acrylate. , And dicyclopentenyloxyethyl (meth) acrylate and the like are preferably used. The alicyclic structure-containing monomer may be used alone or in combination of two or more.
 アクリル系共重合体(b21)は、上記官能基含有モノマーから導かれる構成単位を、1質量%以上の割合で含有することが好ましく、5質量%以上の割合で含有することがより好ましく、10質量%以上の割合で含有することがさらに好ましい。
 また、アクリル系共重合体(b21)は、上記官能基含有モノマーから導かれる構成単位を、35質量%以下の割合で含有することが好ましく、30質量%以下の割合で含有することがより好ましく、25質量%以下の割合で含有することがさらに好ましい。
The acrylic copolymer (b21) preferably contains the structural unit derived from the functional group-containing monomer in a proportion of 1% by mass or more, and more preferably in a proportion of 5% by mass or more. It is more preferable to contain it in a proportion of mass% or more.
Further, the acrylic copolymer (b21) preferably contains the structural unit derived from the functional group-containing monomer in a proportion of 35% by mass or less, and more preferably in a proportion of 30% by mass or less. , 25% by mass or less is more preferable.
 さらに、アクリル系共重合体(b21)は、(メタ)アクリル酸エステルモノマーまたはその誘導体から導かれる構成単位を、50質量%以上の割合で含有することが好ましく、60質量%以上の割合で含有することがより好ましく、70質量%以上の割合で含有することがさらに好ましい。
 また、アクリル系共重合体(b21)は、(メタ)アクリル酸エステルモノマーまたはその誘導体から導かれる構成単位を、99質量%以下の割合で含有することが好ましく、95質量%以下の割合で含有することがより好ましく、90質量%以下の割合で含有することがさらに好ましい。
Further, the acrylic copolymer (b21) preferably contains a structural unit derived from the (meth) acrylic acid ester monomer or a derivative thereof in a proportion of 50% by mass or more, and preferably in a proportion of 60% by mass or more. It is more preferable that the content is 70% by mass or more.
Further, the acrylic copolymer (b21) preferably contains a structural unit derived from the (meth) acrylic acid ester monomer or a derivative thereof in a proportion of 99% by mass or less, and preferably in a proportion of 95% by mass or less. It is more preferable that the content is 90% by mass or less.
 アクリル系共重合体(b21)は、上記のような官能基含有モノマーと、(メタ)アクリル酸エステルモノマーまたはその誘導体とを常法で共重合することにより得られる。
 アクリル系共重合体(b21)は、上述のモノマーの他にも、ジメチルアクリルアミド、蟻酸ビニル、酢酸ビニル、及びスチレン等からなる群から選択される少なくともいずれかの構成単位を含有していてもよい。
The acrylic copolymer (b21) can be obtained by copolymerizing a functional group-containing monomer as described above with a (meth) acrylic acid ester monomer or a derivative thereof by a conventional method.
The acrylic copolymer (b21) may contain at least one structural unit selected from the group consisting of dimethylacrylamide, vinyl formate, vinyl acetate, styrene and the like, in addition to the above-mentioned monomers. ..
 上記官能基含有モノマー単位を有するアクリル系共重合体(b21)を、その官能基に結合する官能基を有する不飽和基含有化合物(b22)と反応させることにより、エネルギー線硬化性重合体(b2)が得られる。 By reacting the acrylic copolymer (b21) having the functional group-containing monomer unit with the unsaturated group-containing compound (b22) having a functional group bonded to the functional group, the energy ray-curable polymer (b2) ) Is obtained.
 不飽和基含有化合物(b22)が有する官能基は、アクリル系共重合体(b21)が有する官能基含有モノマー単位の官能基の種類に応じて、適宜選択することができる。例えば、アクリル系共重合体(b21)が有する官能基がヒドロキシ基、アミノ基または置換アミノ基の場合、不飽和基含有化合物(b22)が有する官能基としてはイソシアネート基またはエポキシ基が好ましく、アクリル系共重合体(b21)が有する官能基がエポキシ基の場合、不飽和基含有化合物(b22)が有する官能基としてはアミノ基、カルボキシ基またはアジリジニル基が好ましい。 The functional group of the unsaturated group-containing compound (b22) can be appropriately selected depending on the type of functional group of the functional group-containing monomer unit of the acrylic copolymer (b21). For example, when the functional group of the acrylic copolymer (b21) is a hydroxy group, an amino group or a substituted amino group, the functional group of the unsaturated group-containing compound (b22) is preferably an isocyanate group or an epoxy group, and acrylic. When the functional group of the system copolymer (b21) is an epoxy group, the functional group of the unsaturated group-containing compound (b22) is preferably an amino group, a carboxy group or an aziridinyl group.
 不飽和基含有化合物(b22)は、エネルギー線重合性の炭素-炭素二重結合を、1分子中に少なくとも1個含み、1個以上6個以下含むことが好ましく、1個以上4個以下含むことがより好ましい。 The unsaturated group-containing compound (b22) contains at least one energy ray-polymerizable carbon-carbon double bond in one molecule, preferably one or more and six or less, and preferably contains one or more and four or less. Is more preferable.
 不飽和基含有化合物(b22)としては、例えば、2-メタクリロイルオキシエチルイソシアネート(2-イソシアナートエチルメタクリレート)、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、メタクリロイルイソシアネート、アリルイソシアネート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート;ジイソシアネート化合物またはポリイソシアネート化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;ジイソシアネート化合物またはポリイソシアネート化合物と、ポリオール化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;グリシジル(メタ)アクリレート;(メタ)アクリル酸、2-(1-アジリジニル)エチル(メタ)アクリレート、2-ビニル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン等が挙げられる。 Examples of the unsaturated group-containing compound (b22) include 2-methacryloyloxyethyl isocyanate (2-isocyanatoethyl methacrylate), meta-isopropenyl-α, α-dimethylbenzyl isocyanate, methacryloyl isocyanate, and allyl isocyanate, 1,1 -(Bisocyanyloxymethyl) ethyl isocyanate; acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth) acrylate; a diisocyanate compound or polyisocyanate compound, a polyol compound, and hydroxyethyl ( Acryloyl monoisocyanate compound obtained by reaction with meta) acrylate; glycidyl (meth) acrylate; (meth) acrylic acid, 2- (1-aziridinyl) ethyl (meth) acrylate, 2-vinyl-2-oxazoline, 2-iso Propenyl-2-oxazoline and the like can be mentioned.
 不飽和基含有化合物(b22)は、アクリル系共重合体(b21)の官能基含有モノマーのモル数に対して、50モル%以上の割合(付加率)で用いられることが好ましく、60モル%以上の割合で用いられることがより好ましく、70モル%以上の割合で用いられることが更に好ましい。
 また、不飽和基含有化合物(b22)は、アクリル系共重合体(b21)の官能基含有モノマーモル数に対して、95モル%以下の割合で用いられることが好ましく、93モル%以下の割合で用いられることがより好ましく、90モル%以下の割合で用いられることがさらに好ましい。
The unsaturated group-containing compound (b22) is preferably used at a ratio (addition rate) of 50 mol% or more, preferably 60 mol%, based on the number of moles of the functional group-containing monomer of the acrylic copolymer (b21). It is more preferably used in the above ratio, and further preferably used in the ratio of 70 mol% or more.
The unsaturated group-containing compound (b22) is preferably used in a proportion of 95 mol% or less, preferably 93 mol% or less, based on the number of moles of the functional group-containing monomer of the acrylic copolymer (b21). It is more preferably used, and further preferably used in a proportion of 90 mol% or less.
 アクリル系共重合体(b21)と不飽和基含有化合物(b22)との反応においては、アクリル系共重合体(b21)が有する官能基と不飽和基含有化合物(b22)が有する官能基との組合せに応じて、反応の温度、圧力、溶媒、時間、触媒の有無、及び触媒の種類を適宜選択することができる。これにより、アクリル系共重合体(b21)が有する官能基と、不飽和基含有化合物(b22)が有する官能基とが反応し、不飽和基がアクリル系共重合体(b21)の側鎖に導入され、エネルギー線硬化性重合体(b2)が得られる。 In the reaction between the acrylic copolymer (b21) and the unsaturated group-containing compound (b22), the functional group of the acrylic copolymer (b21) and the functional group of the unsaturated group-containing compound (b22) are used. Depending on the combination, the reaction temperature, pressure, solvent, time, presence / absence of catalyst, and type of catalyst can be appropriately selected. As a result, the functional group of the acrylic copolymer (b21) reacts with the functional group of the unsaturated group-containing compound (b22), and the unsaturated group becomes a side chain of the acrylic copolymer (b21). Introduced to give the energy ray-curable polymer (b2).
 エネルギー線硬化性重合体(b2)の重量平均分子量(Mw)は、1万以上であることが好ましく、15万以上であることがより好ましく、20万以上であることがさらに好ましい。
 また、エネルギー線硬化性重合体(b2)の重量平均分子量(Mw)は、150万以下であることが好ましく、100万以下であることがより好ましい。
The weight average molecular weight (Mw) of the energy ray-curable polymer (b2) is preferably 10,000 or more, more preferably 150,000 or more, and even more preferably 200,000 or more.
The weight average molecular weight (Mw) of the energy ray-curable polymer (b2) is preferably 1.5 million or less, more preferably 1 million or less.
・光重合開始剤(C)
 粘着剤層が紫外線硬化性の化合物(例えば、紫外線硬化性樹脂)を含有する場合、粘着剤層は、光重合開始剤(C)を含有することが好ましい。
 粘着剤層が光重合開始剤(C)を含有することにより、重合硬化時間及び光線照射量を少なくすることができる。
-Photopolymerization initiator (C)
When the pressure-sensitive adhesive layer contains a UV-curable compound (for example, a UV-curable resin), the pressure-sensitive adhesive layer preferably contains a photopolymerization initiator (C).
Since the pressure-sensitive adhesive layer contains the photopolymerization initiator (C), the polymerization curing time and the amount of light irradiation can be reduced.
 光重合開始剤(C)としては、具体的には、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサンソン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、β-クロールアンスラキノン、(2,4,6-トリメチルベンジルジフェニル)フォスフィンオキサイド、2-ベンゾチアゾール-N,N-ジエチルジチオカルバメート、オリゴ{2-ヒドロキシ-2-メチル-1-[4-(1-プロペニル)フェニル]プロパノン}、及び2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等が挙げられる。これらは単独で用いてもよいし、2種以上を併用してもよい。 Specific examples of the photopolymerization initiator (C) include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, and benzoin dimethyl ketal. 2,4-Diethylthioxanthone, 1-hydroxycyclohexylphenylketone, benzyldiphenylsulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, β-chloranthraquinone, (2,4) 6-trimethylbenzyldiphenyl) phosphine oxide, 2-benzothiazole-N, N-diethyldithiocarbamate, oligo {2-hydroxy-2-methyl-1- [4- (1-propenyl) phenyl] propanone}, and 2 , 2-Dimethoxy-1,2-diphenylethane-1-one and the like. These may be used alone or in combination of two or more.
 光重合開始剤(C)は、粘着剤層にエネルギー線硬化性樹脂(a1)、及び(メタ)アクリル系共重合体(b1)を配合する場合には、エネルギー線硬化性樹脂(a1)、及び(メタ)アクリル系共重合体(b1)の合計量100質量部に対して0.1質量部以上の量で用いられることが好ましく、0.5質量部以上の量で用いられることがより好ましい。
 また、光重合開始剤(C)は、粘着剤層にエネルギー線硬化性樹脂(a1)、及び(メタ)アクリル系共重合体(b1)を配合する場合には、エネルギー線硬化性樹脂(a1)、及び(メタ)アクリル系共重合体(b1)の合計量100質量部に対して10質量部以下の量で用いられることが好ましく、6質量部以下の量で用いられることがより好ましい。
When the energy ray-curable resin (a1) and the (meth) acrylic copolymer (b1) are blended in the pressure-sensitive adhesive layer, the photopolymerization initiator (C) is an energy ray-curable resin (a1). The total amount of the (meth) acrylic copolymer (b1) is preferably 0.1 parts by mass or more, and more preferably 0.5 parts by mass or more. preferable.
Further, the photopolymerization initiator (C) is an energy ray-curable resin (a1) when the energy ray-curable resin (a1) and the (meth) acrylic copolymer (b1) are blended in the pressure-sensitive adhesive layer. ) And the (meth) acrylic copolymer (b1) in an amount of 10 parts by mass or less, more preferably 6 parts by mass or less, based on 100 parts by mass of the total amount.
 粘着剤層は、上記成分以外にも、適宜他の成分を配合してもよい。他の成分としては、例えば、架橋剤(E)等が挙げられる。 The pressure-sensitive adhesive layer may contain other components as appropriate in addition to the above components. Examples of other components include a cross-linking agent (E) and the like.
・架橋剤(E)
 架橋剤(E)としては、(メタ)アクリル系共重合体(b1)等が有する官能基との反応性を有する多官能性化合物を用いることができる。このような多官能性化合物の例としては、イソシアネート化合物、エポキシ化合物、アミン化合物、メラミン化合物、アジリジン化合物、ヒドラジン化合物、アルデヒド化合物、オキサゾリン化合物、金属アルコキシド化合物、金属キレート化合物、金属塩、アンモニウム塩、及び反応性フェノール樹脂等を挙げることができる。
・ Crosslinking agent (E)
As the cross-linking agent (E), a polyfunctional compound having reactivity with a functional group of the (meth) acrylic copolymer (b1) or the like can be used. Examples of such polyfunctional compounds include isocyanate compounds, epoxy compounds, amine compounds, melamine compounds, aziridine compounds, hydrazine compounds, aldehyde compounds, oxazoline compounds, metal alkoxide compounds, metal chelate compounds, metal salts, ammonium salts, etc. And reactive phenolic resins and the like.
 架橋剤(E)の配合量は、(メタ)アクリル系共重合体(b1)100質量部に対して、0.01質量部以上であることが好ましく、0.03質量部以上であることがより好ましく、0.04質量部以上であることがさらに好ましい。
 また、架橋剤(E)の配合量は、(メタ)アクリル系共重合体(b1)100質量部に対して、8質量部以下であることが好ましく、5質量部以下であることがより好ましく、3.5質量部以下であることがさらに好ましい。
The blending amount of the cross-linking agent (E) is preferably 0.01 part by mass or more, and preferably 0.03 part by mass or more with respect to 100 parts by mass of the (meth) acrylic copolymer (b1). More preferably, it is 0.04 parts by mass or more.
The amount of the cross-linking agent (E) to be blended is preferably 8 parts by mass or less, and more preferably 5 parts by mass or less, based on 100 parts by mass of the (meth) acrylic copolymer (b1). , 3.5 parts by mass or less is more preferable.
 粘着剤層の厚さは、特に限定されない。粘着剤層の厚さは、例えば、10μm以上であることが好ましく、20μm以上であることがより好ましい。また、粘着剤層の厚さは、150μm以下であることが好ましく、100μm以下であることがより好ましい。 The thickness of the adhesive layer is not particularly limited. The thickness of the pressure-sensitive adhesive layer is, for example, preferably 10 μm or more, and more preferably 20 μm or more. The thickness of the pressure-sensitive adhesive layer is preferably 150 μm or less, and more preferably 100 μm or less.
(剥離シート)
 本実施形態に係る粘着シートは、その粘着面を被着体(例えば、半導体チップ等)に貼付するまでの間、粘着面を保護する目的で、粘着面に剥離シートが積層されていてもよい。剥離シートの構成は任意である。剥離シートの例としては、剥離剤等により剥離処理したプラスチックフィルムが例示される。
 プラスチックフィルムの具体例としては、ポリエステルフィルム、及びポリオレフィンフィルムが挙げられる。ポリエステルフィルムとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、又はポリエチレンナフタレート等のフィルムが挙げられる。ポリオレフィンフィルムとしては、例えば、ポリプロピレン、又はポリエチレン等のフィルムが挙げられる。
 剥離剤としては、シリコーン系、フッ素系、及び長鎖アルキル系等を用いることができる。これら剥離剤の中で、安価で安定した性能が得られるシリコーン系が好ましい。
 剥離シートの厚さについては、特に限定されない。剥離シートの厚さは、通常、20μm以上、250μm以下である。
(Release sheet)
The adhesive sheet according to the present embodiment may have a release sheet laminated on the adhesive surface for the purpose of protecting the adhesive surface until the adhesive surface is attached to an adherend (for example, a semiconductor chip or the like). .. The structure of the release sheet is arbitrary. Examples of the release sheet include a plastic film that has been peeled off with a release agent or the like.
Specific examples of the plastic film include a polyester film and a polyolefin film. Examples of the polyester film include films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate. Examples of the polyolefin film include a film such as polypropylene or polyethylene.
As the release agent, silicone-based, fluorine-based, long-chain alkyl-based, and the like can be used. Among these release agents, a silicone type that can obtain stable performance at low cost is preferable.
The thickness of the release sheet is not particularly limited. The thickness of the release sheet is usually 20 μm or more and 250 μm or less.
[粘着シートの製造方法]
 本実施形態に係る粘着シートは、従来の粘着シートと同様に製造できる。
 粘着シートの製造方法は、前述の粘着剤層を基材の一の面に積層できれば、特に詳細には限定されない。
 粘着シートの製造方法の一例としては、次のような方法が挙げられる。まず、粘着剤層を構成する粘着性組成物、及び所望によりさらに溶媒または分散媒を含有する塗工液を調製する。次に、塗工液を、基材の一の面上に、塗布手段により塗布して塗膜を形成する。塗布手段としては、例えば、ダイコーター、カーテンコーター、スプレーコーター、スリットコーター、及びナイフコーター等が挙げられる。次に、当該塗膜を乾燥させることにより、粘着剤層を形成できる。塗工液は、塗布を行うことが可能であれば、その性状は特に限定されない。塗工液は、粘着剤層を形成するための成分を溶質として含有する場合もあれば、粘着剤層を形成するための成分を分散質として含有する場合もある。
[Manufacturing method of adhesive sheet]
The pressure-sensitive adhesive sheet according to this embodiment can be manufactured in the same manner as the conventional pressure-sensitive adhesive sheet.
The method for producing the pressure-sensitive adhesive sheet is not particularly limited as long as the above-mentioned pressure-sensitive adhesive layer can be laminated on one surface of the base material.
The following methods can be mentioned as an example of the method for manufacturing the adhesive sheet. First, a pressure-sensitive composition constituting the pressure-sensitive adhesive layer and, if desired, a coating liquid further containing a solvent or a dispersion medium are prepared. Next, the coating liquid is applied onto one surface of the base material by the coating means to form a coating film. Examples of the coating means include a die coater, a curtain coater, a spray coater, a slit coater, a knife coater and the like. Next, the pressure-sensitive adhesive layer can be formed by drying the coating film. The properties of the coating liquid are not particularly limited as long as it can be applied. The coating liquid may contain a component for forming the pressure-sensitive adhesive layer as a solute, or may contain a component for forming the pressure-sensitive adhesive layer as a dispersoid.
 また、粘着シートの製造方法の別の一例としては、次のような方法が挙げられる。まず、前述の剥離シートの剥離面上に塗工液を塗布して塗膜を形成する。次に、塗膜を乾燥させて粘着剤層と剥離シートとからなる積層体を形成する。次に、この積層体の粘着剤層における剥離シート側の面と反対側の面に、基材を貼付して、粘着シートと剥離シートとの積層体を得てもよい。この積層体における剥離シートは、工程材料として剥離してもよいし、粘着剤層に被着体(例えば、半導体チップ、及び半導体ウエハ等)が貼付されるまで、粘着剤層を保護していてもよい。 Further, as another example of the method for manufacturing the adhesive sheet, the following method can be mentioned. First, a coating liquid is applied on the peeled surface of the above-mentioned peeling sheet to form a coating film. Next, the coating film is dried to form a laminate composed of an adhesive layer and a release sheet. Next, a base material may be attached to the surface of the pressure-sensitive adhesive layer of the laminated body opposite to the surface on the release sheet side to obtain a laminate of the pressure-sensitive adhesive sheet and the release sheet. The release sheet in this laminate may be peeled off as a process material, or protects the pressure-sensitive adhesive layer until an adherend (for example, a semiconductor chip, a semiconductor wafer, etc.) is attached to the pressure-sensitive adhesive layer. May be good.
 塗工液が架橋剤を含有する場合には、塗膜の乾燥の条件(例えば、温度、及び時間等)を変えることにより、または加熱処理を、別途、行うことにより、塗膜内の(メタ)アクリル系共重合体(b1)と架橋剤との架橋反応を進行させ、粘着剤層内に所望の存在密度で架橋構造を形成させればよい。この架橋反応を十分に進行させるために、上述の方法等によって基材に粘着剤層を積層させた後、得られた粘着シートを、例えば、23℃、相対湿度50%の環境に数日間静置するといった養生を行ってもよい。 When the coating liquid contains a cross-linking agent, it is possible to change the drying conditions (for example, temperature, time, etc.) of the coating film, or by separately performing a heat treatment (meta) in the coating film. ) The cross-linking reaction between the acrylic copolymer (b1) and the cross-linking agent may be allowed to proceed to form a cross-linked structure in the pressure-sensitive adhesive layer at a desired abundance density. In order to allow this cross-linking reaction to proceed sufficiently, after laminating the pressure-sensitive adhesive layer on the base material by the above-mentioned method or the like, the obtained pressure-sensitive adhesive sheet is allowed to stand in an environment of, for example, 23 ° C. and a relative humidity of 50% for several days. You may perform curing such as placing.
 本実施形態に係る粘着シートの厚さは、30μm以上であることが好ましく、50μm以上であることがより好ましい。また、粘着シートの厚さは、400μm以下であることが好ましく、300μm以下であることがより好ましい。 The thickness of the pressure-sensitive adhesive sheet according to this embodiment is preferably 30 μm or more, and more preferably 50 μm or more. The thickness of the pressure-sensitive adhesive sheet is preferably 400 μm or less, and more preferably 300 μm or less.
[粘着シートの使用方法]
 本実施形態に係る粘着シートは、様々な被着体に貼着できるため、本実施形態に係る粘着シートを適用できる被着体は、特に限定されない。例えば、被着体としては、半導体チップ、及び半導体ウエハであることが好ましい。
[How to use the adhesive sheet]
Since the pressure-sensitive adhesive sheet according to the present embodiment can be attached to various adherends, the adherend to which the pressure-sensitive adhesive sheet according to the present embodiment can be applied is not particularly limited. For example, the adherend is preferably a semiconductor chip and a semiconductor wafer.
 本実施形態に係る粘着シートは、例えば、半導体加工用に用いることができる。
 半導体装置の製造工程中、複数の半導体チップ同士の間隔を拡張するためのエキスパンド工程に使用されることが好ましい。
 複数の半導体チップは、粘着シートの中央部に貼着されていることが好ましい。
 また、複数の半導体チップは、半導体ウエハをダイシングして得た半導体チップであることが好ましい。例えば、ダイシングシートに貼着された半導体ウエハをダイシングして、複数の半導体チップに分割し、分割して得た複数の半導体チップを本実施形態に係る粘着シートに、直接、転写してもよいし、他の粘着シートに転写してから、当該他の粘着シートから本実施形態に係る粘着シートに転写してもよい。
The pressure-sensitive adhesive sheet according to this embodiment can be used, for example, for semiconductor processing.
During the manufacturing process of a semiconductor device, it is preferably used in an expanding process for expanding the distance between a plurality of semiconductor chips.
The plurality of semiconductor chips are preferably attached to the central portion of the pressure-sensitive adhesive sheet.
Further, the plurality of semiconductor chips are preferably semiconductor chips obtained by dicing a semiconductor wafer. For example, the semiconductor wafer attached to the dicing sheet may be diced, divided into a plurality of semiconductor chips, and the plurality of semiconductor chips obtained by the division may be directly transferred to the adhesive sheet according to the present embodiment. Then, it may be transferred to another pressure-sensitive adhesive sheet and then transferred from the other pressure-sensitive adhesive sheet to the pressure-sensitive adhesive sheet according to the present embodiment.
 複数の半導体チップの拡張間隔は、半導体チップのサイズに依存するため、特に制限されない。本実施形態に係る粘着シートは、粘着シートの片面に貼着された複数の半導体チップにおける、隣り合う半導体チップの相互の間隔を、200μm以上拡げるために使用することが好ましい。なお、当該半導体チップの相互の間隔の上限は、特に制限されない。当該半導体チップの相互の間隔の上限は、例えば、6000μmであってもよい。 The expansion interval of a plurality of semiconductor chips depends on the size of the semiconductor chips, and is not particularly limited. The pressure-sensitive adhesive sheet according to the present embodiment is preferably used to widen the distance between adjacent semiconductor chips in a plurality of semiconductor chips attached to one side of the pressure-sensitive adhesive sheet by 200 μm or more. The upper limit of the distance between the semiconductor chips is not particularly limited. The upper limit of the distance between the semiconductor chips may be, for example, 6000 μm.
 また、本実施形態に係る粘着シートは、少なくとも2軸延伸によって、粘着シートの片面に積層された複数の半導体チップの間隔を拡げる場合にも使用することができる。この場合、粘着シートは、例えば、互いに直交するX軸及びY軸における、+X軸方向、-X軸方向、+Y軸方向、及び-Y軸方向の4方向に張力を付与して引き延ばされ、より具体的には、基材におけるMD方向及びCD方向にそれぞれ引き延ばされる。 Further, the pressure-sensitive adhesive sheet according to the present embodiment can also be used when the distance between a plurality of semiconductor chips laminated on one side of the pressure-sensitive adhesive sheet is widened by at least biaxial stretching. In this case, the adhesive sheet is stretched by applying tension in four directions of + X-axis direction, -X-axis direction, + Y-axis direction, and -Y-axis direction, for example, in the X-axis and Y-axis orthogonal to each other. More specifically, it is stretched in the MD direction and the CD direction of the base material, respectively.
 上記のような2軸延伸は、例えば、X軸方向、及びY軸方向に張力を付与する離間装置を使用して行うことができる。ここで、X軸及びY軸は直交するものとし、X軸に平行な方向のうちの1つを+X軸方向、当該+X軸方向に反対の方向を-X軸方向、Y軸に平行な方向のうちの1つを+Y軸方向、当該+Y軸方向に反対の方向を-Y軸方向とする。 Biaxial stretching as described above can be performed using, for example, a separation device that applies tension in the X-axis direction and the Y-axis direction. Here, it is assumed that the X-axis and the Y-axis are orthogonal to each other, one of the directions parallel to the X-axis is the + X-axis direction, the direction opposite to the + X-axis direction is the -X-axis direction, and the direction parallel to the Y-axis. One of them is defined as the + Y-axis direction, and the direction opposite to the + Y-axis direction is defined as the −Y-axis direction.
 上記離間装置は、粘着シートに対して、+X軸方向、-X軸方向、+Y軸方向、及び-Y軸方向の4方向に張力を付与し、この4方向のそれぞれについて、複数の保持手段と、それらに対応する複数の張力付与手段とを備えることが好ましい。各方向における、保持手段及び張力付与手段の数は、粘着シートの大きさにもよるが、例えば、3個以上、10個以下程度であってもよい。 The separating device applies tension to the adhesive sheet in four directions of + X-axis direction, -X-axis direction, + Y-axis direction, and -Y-axis direction, and with a plurality of holding means in each of the four directions. , It is preferable to provide a plurality of tension applying means corresponding to them. The number of holding means and tension applying means in each direction depends on the size of the pressure-sensitive adhesive sheet, but may be, for example, about 3 or more and 10 or less.
 ここで、例えば+X軸方向に張力を付与するために備えられた、複数の保持手段と複数の張力付与手段とを含む群において、それぞれの保持手段は、粘着シートを保持する保持部材を備え、それぞれの張力付与手段は、当該張力付与手段に対応した保持部材を+X軸方向に移動させて粘着シートに張力を付与することが好ましい。そして、複数の張力付与手段は、それぞれ独立に、保持手段を+X軸方向に移動させるように設けられていることが好ましい。また、-X軸方向、+Y軸方向及び-Y軸方向にそれぞれ張力を付与するために備えられた、複数の保持手段と複数の張力付与手段とを含む3つの群においても、同様の構成を有することが好ましい。これにより、上記離間装置は、各方向に直交する方向の領域ごとに、粘着シートに対して異なる大きさの張力を付与することができる。 Here, for example, in a group including a plurality of holding means and a plurality of tension applying means provided for applying tension in the + X axis direction, each holding means includes a holding member for holding the adhesive sheet. It is preferable that each tension applying means applies tension to the pressure-sensitive adhesive sheet by moving the holding member corresponding to the tension applying means in the + X-axis direction. Then, it is preferable that the plurality of tension applying means are independently provided so as to move the holding means in the + X axis direction. Further, the same configuration is also applied to three groups including a plurality of holding means and a plurality of tension applying means provided for applying tension in the −X axis direction, the + Y axis direction, and the −Y axis direction, respectively. It is preferable to have. As a result, the separation device can apply a different magnitude of tension to the pressure-sensitive adhesive sheet for each region in the direction orthogonal to each direction.
 一般に、4つの保持部材を用いて粘着シートを、+X軸方向、-X軸方向、+Y軸方向及び-Y軸方向の4方向からそれぞれ保持し、当該4方向に延伸する場合、粘着シートにはこれら4方向に加え、これらの合成方向(例えば、+X軸方向と+Y軸方向との合成方向、+Y軸方向と-X軸方向との合成方向、-X軸方向と-Y軸方向との合成方向及び-Y軸方向と+X軸方向との合成方向)にも張力が付与される。その結果、粘着シートの内側領域における半導体チップの間隔と外側領域における半導体チップとの間隔に違いが生じることがある。 Generally, when the pressure-sensitive adhesive sheet is held from four directions of + X-axis direction, -X-axis direction, + Y-axis direction and -Y-axis direction by using four holding members and stretched in the four directions, the pressure-sensitive adhesive sheet is formed. In addition to these four directions, these composite directions (for example, the composite direction of the + X-axis direction and the + Y-axis direction, the composite direction of the + Y-axis direction and the -X-axis direction, and the composite of the -X-axis direction and the -Y-axis direction). Tension is also applied in the direction and the combined direction of the −Y axis direction and the + X axis direction). As a result, there may be a difference between the distance between the semiconductor chips in the inner region of the pressure-sensitive adhesive sheet and the distance between the semiconductor chips in the outer region.
 しかしながら、上述した離間装置では、+X軸方向、-X軸方向、+Y軸方向及び-Y軸方向のそれぞれの方向において、複数の張力付与手段がそれぞれ独立に粘着シートに張力を付与することができるため、上述したような粘着シートの内側と外側との間隔の違いが解消されるように、粘着シートを延伸することができる。
 その結果、半導体チップの間隔を正確に調整することができる。
However, in the separation device described above, a plurality of tension applying means can independently apply tension to the pressure-sensitive adhesive sheet in each of the + X-axis direction, the −X-axis direction, the + Y-axis direction, and the −Y-axis direction. Therefore, the pressure-sensitive adhesive sheet can be stretched so that the difference in the distance between the inside and the outside of the pressure-sensitive adhesive sheet as described above is eliminated.
As a result, the distance between the semiconductor chips can be adjusted accurately.
 上記離間装置は、半導体チップの相互間隔を測定する測定手段をさらに備えることが好ましい。ここにおいて、上記張力付与手段は、測定手段の測定結果を基に、複数の保持部材を個別に移動可能に設けられていることが好ましい。上記離間装置が測定手段を備えることにより、上記測定手段による半導体チップの間隔の測定結果に基づいて、当該間隔をさらに調整することが可能となる結果、半導体チップの間隔をより正確に調整することが可能となる。 It is preferable that the separation device further includes a measuring means for measuring the mutual distance between the semiconductor chips. Here, it is preferable that the tension applying means is provided so that a plurality of holding members can be individually moved based on the measurement results of the measuring means. When the separation device is provided with the measuring means, the distance can be further adjusted based on the measurement result of the distance between the semiconductor chips by the measuring means, and as a result, the distance between the semiconductor chips can be adjusted more accurately. Is possible.
 なお、上記離間装置において、保持手段としては、チャック手段、及び減圧手段が挙げられる。チャック手段としては、例えば、メカチャック、及びチャックシリンダ等が挙げられる。減圧手段としては、例えば、減圧ポンプ、及び真空エジェクタ等が挙げられる。また、上記離間装置において、保持手段としては、接着剤、もしくは磁力等で粘着シートを支持する構成であってもよい。また、チャック手段における保持部材としては、例えば、粘着シートを下から支持する下支持部材と、下支持部材に支持された駆動機器と、駆動機器の出力軸に支持され、駆動機器が駆動することで粘着シートを上から押さえつけることが可能な上支持部材とを備えた構成を有する保持部材を使用することができる。当該駆動機器としては、例えば、電動機器、及びアクチュエータ等が挙げられる。電動機器としては、例えば、回動モータ、直動モータ、リニアモータ、単軸ロボット、及び多関節ロボット等が挙げられる。アクチュエータとしては、例えば、エアシリンダ、油圧シリンダ、ロッドレスシリンダ、及びロータリシリンダ等が挙げられる。 In the separation device, examples of the holding means include a chucking means and a depressurizing means. Examples of the chucking means include a mechanical chuck and a chuck cylinder. Examples of the decompression means include a decompression pump, a vacuum ejector, and the like. Further, in the separation device, the holding means may be configured to support the pressure-sensitive adhesive sheet with an adhesive, a magnetic force, or the like. Further, as the holding member in the chuck means, for example, a lower support member that supports the adhesive sheet from below, a drive device that is supported by the lower support member, and a drive device that is supported by the output shaft of the drive device to drive the drive device. A holding member having a structure including an upper support member capable of pressing the adhesive sheet from above can be used. Examples of the drive device include an electric device, an actuator, and the like. Examples of the electric device include a rotary motor, a linear motor, a linear motor, a single-axis robot, an articulated robot, and the like. Examples of the actuator include an air cylinder, a hydraulic cylinder, a rodless cylinder, a rotary cylinder, and the like.
 また、上記離間装置において、張力付与手段は、駆動機器を備え、当該駆動機器により保持部材を移動させてもよい。張力付与手段が備える駆動機器としては、上述した保持部材が備える駆動機器と同様の駆動機器を使用することができる。例えば、張力付与手段は、駆動機器としての直動モータと、直動モータと保持部材との間に介在する出力軸とを備え、駆動した直動モータが出力軸を介して保持部材を移動させる構成であってよい。 Further, in the separation device, the tension applying means may include a drive device, and the holding member may be moved by the drive device. As the drive device included in the tension applying means, the same drive device as the drive device included in the holding member described above can be used. For example, the tension applying means includes a linear motor as a drive device and an output shaft interposed between the linear motor and the holding member, and the driven linear motor moves the holding member via the output shaft. It may be a configuration.
 本実施形態に係る粘着シートを用いて半導体チップの間隔を拡げる場合、半導体チップ同士が接触した状態、または半導体チップの間隔が殆ど拡げられていない状態からその間隔を拡げてもよく、あるいは、半導体チップ同士の間隔が既に所定の間隔まで拡げられた状態から、さらにその間隔を拡げてもよい。 When the distance between the semiconductor chips is widened by using the adhesive sheet according to the present embodiment, the distance may be widened from the state where the semiconductor chips are in contact with each other or the distance between the semiconductor chips is hardly widened, or the semiconductor. The distance between the chips may be further increased from the state in which the distance between the chips has already been increased to a predetermined distance.
 半導体チップ同士が接触した状態、または半導体チップの間隔が殆ど拡げられていない状態からその間隔を拡げる場合としては、例えば、ダイシングシート上において半導体ウエハを分割することで複数の半導体チップを得た後、当該ダイシングシートから本実施形態に係る粘着シートに複数の半導体チップを転写し、続いて、当該半導体チップの間隔を拡げることができる。あるいは、本実施形態に係る粘着シート上において半導体ウエハを分割して複数の半導体チップを得た後、当該半導体チップの間隔を拡げることもできる。 When the distance between the semiconductor chips is increased from the state where the semiconductor chips are in contact with each other or the distance between the semiconductor chips is hardly widened, for example, after obtaining a plurality of semiconductor chips by dividing the semiconductor wafer on a dicing sheet. , A plurality of semiconductor chips can be transferred from the dicing sheet to the pressure-sensitive adhesive sheet according to the present embodiment, and subsequently, the distance between the semiconductor chips can be widened. Alternatively, after the semiconductor wafer is divided on the pressure-sensitive adhesive sheet according to the present embodiment to obtain a plurality of semiconductor chips, the distance between the semiconductor chips can be widened.
 半導体チップ同士の間隔が既に所定の間隔まで拡げられた状態から、さらにその間隔を拡げる場合としては、その他の粘着シート、好ましくは本実施形態に係る粘着シート(第一延伸用粘着シート)を用いて半導体チップ同士の間隔を所定の間隔まで拡げた後、当該シート(第一延伸用粘着シート)から本実施形態に係る粘着シート(第二延伸用粘着シート)に半導体チップを転写し、続いて、本実施形態に係る粘着シート(第二延伸用粘着シート)を延伸することで、半導体チップの間隔をさらに拡げることができる。なお、このような半導体チップの転写と粘着シートの延伸は、半導体チップの間隔が所望の距離となるまで複数回繰り返してもよい。 When the distance between the semiconductor chips has already been widened to a predetermined distance and the distance is further widened, another pressure-sensitive adhesive sheet, preferably the pressure-sensitive adhesive sheet according to the present embodiment (first stretching pressure-sensitive adhesive sheet) is used. After expanding the distance between the semiconductor chips to a predetermined distance, the semiconductor chips are transferred from the sheet (adhesive sheet for first stretching) to the adhesive sheet (adhesive sheet for second stretching) according to the present embodiment, and subsequently. By stretching the pressure-sensitive adhesive sheet (the pressure-sensitive adhesive sheet for second stretching) according to the present embodiment, the distance between the semiconductor chips can be further increased. The transfer of the semiconductor chip and the stretching of the pressure-sensitive adhesive sheet may be repeated a plurality of times until the distance between the semiconductor chips reaches a desired distance.
〔第2実施形態〕
[粘着シート]
 本実施形態に係る粘着シートは、第1実施形態に係る粘着シートと同様、基材及び粘着剤層を有する。
 本実施形態に係る粘着剤層は、エネルギー線硬化性樹脂を含有する点、並びに粘着剤層の幅方向両端部におけるエネルギー線硬化性樹脂が硬化された硬化部と、エネルギー線硬化性樹脂が硬化されていない未硬化部と、を有する点で、第1実施形態に係る粘着シートと相違する。
 本実施形態に係る粘着シートは、当該粘着シートの未硬化部から作製した第一の試験片及び第二の試験片を、引張試験機で測定した引張強度の比が所定の範囲を満たす。
 以下の説明では、第1実施形態との相違に係る部分を主に説明し、重複する説明については省略又は簡略化する。第1実施形態と同様の構成には同一の符号を付して説明を省略又は簡略化する。
[Second Embodiment]
[Adhesive sheet]
The pressure-sensitive adhesive sheet according to the present embodiment has a base material and a pressure-sensitive adhesive layer like the pressure-sensitive adhesive sheet according to the first embodiment.
The pressure-sensitive adhesive layer according to the present embodiment contains an energy ray-curable resin, a cured portion where the energy ray-curable resin is cured at both ends in the width direction of the pressure-sensitive adhesive layer, and a cured portion where the energy ray-curable resin is cured. It differs from the pressure-sensitive adhesive sheet according to the first embodiment in that it has an uncured portion that has not been cured.
In the pressure-sensitive adhesive sheet according to the present embodiment, the ratio of the tensile strength of the first test piece and the second test piece prepared from the uncured portion of the pressure-sensitive adhesive sheet measured by a tensile tester satisfies a predetermined range.
In the following description, the parts related to the differences from the first embodiment will be mainly described, and the overlapping description will be omitted or simplified. The same reference numerals are given to the same configurations as those in the first embodiment, and the description thereof will be omitted or simplified.
 本実施形態に係る粘着シートも、基材と、粘着剤層と、を有する。粘着シートの形状は、例えば、テープ状(長尺の形態)、及びラベル状(枚葉の形態)等、あらゆる形状をとり得る。 The pressure-sensitive adhesive sheet according to this embodiment also has a base material and a pressure-sensitive adhesive layer. The shape of the adhesive sheet can be any shape such as a tape shape (long form) and a label shape (single leaf shape).
 図4には、本実施形態に係る粘着シート1Aの断面概略図が示されている。
 粘着シート1Aは、基材10と、粘着剤層20と、を有する。粘着剤層20は、エネルギー線硬化性樹脂を含有する。粘着剤層20は、エネルギー線硬化性樹脂が硬化された硬化部22と、エネルギー線硬化性樹脂が硬化されていない未硬化部21と、を有する。硬化部22は、図4に示すように、粘着シート1Aの粘着剤層20の幅方向両端部に形成されている。幅方向の一端側の硬化部22と、他端側の硬化部22との間に、未硬化部21がある。
FIG. 4 shows a schematic cross-sectional view of the pressure-sensitive adhesive sheet 1A according to the present embodiment.
The pressure-sensitive adhesive sheet 1A has a base material 10 and a pressure-sensitive adhesive layer 20. The pressure-sensitive adhesive layer 20 contains an energy ray-curable resin. The pressure-sensitive adhesive layer 20 has a cured portion 22 in which the energy ray-curable resin is cured and an uncured portion 21 in which the energy ray-curable resin is not cured. As shown in FIG. 4, the cured portions 22 are formed at both ends in the width direction of the pressure-sensitive adhesive layer 20 of the pressure-sensitive adhesive sheet 1A. There is an uncured portion 21 between the cured portion 22 on one end side in the width direction and the cured portion 22 on the other end side.
 粘着シート1Aの幅方向で向かい合う2辺がエネルギー線で硬化され、粘着シート1Aの幅方向両端部に硬化部22が形成されていることで、当該硬化部22は、未硬化部21の粘着剤が粘着シート1Aの幅方向の端部からシート外部に染み出すことを抑制する。 The two sides of the pressure-sensitive adhesive sheet 1A facing each other in the width direction are cured by energy rays, and the cured portions 22 are formed at both ends in the width direction of the pressure-sensitive adhesive sheet 1A. Suppresses oozing out from the widthwise end of the adhesive sheet 1A to the outside of the sheet.
 硬化部22の断面形状は、図4において矩形であるが、矩形に限定されず、粘着剤の染み出しを抑制できる形状であれば、特に限定されない。 The cross-sectional shape of the cured portion 22 is rectangular in FIG. 4, but is not limited to a rectangular shape, and is not particularly limited as long as it can suppress the exudation of the adhesive.
 硬化部22は、粘着シート1Aの幅方向両端部に沿って連続して形成されていることが好ましい。硬化部22が粘着シート1Aの長手方向に亘って連続して形成されていることによって、未硬化部21から粘着剤がシート幅方向端部からシート外部に染み出すことをさらに抑制し易い。硬化部22が不連続に形成されている場合には、硬化部22が形成されていない箇所から粘着剤が染み出すおそれがある。 It is preferable that the cured portion 22 is continuously formed along both ends in the width direction of the pressure-sensitive adhesive sheet 1A. Since the cured portion 22 is continuously formed in the longitudinal direction of the pressure-sensitive adhesive sheet 1A, it is easier to prevent the adhesive from seeping out from the end portion in the width direction of the sheet from the uncured portion 21. If the cured portion 22 is formed discontinuously, the adhesive may seep out from the portion where the cured portion 22 is not formed.
 粘着シート1Aが長尺状のシートである場合、硬化部22は、粘着シート1Aの長手方向に亘って連続して形成されていることが好ましい。硬化部22が粘着シート1Aの長手方向に亘って連続して形成されていることによって、未硬化部21から粘着剤がシート幅方向端部からシート外部に染み出すことをさらに抑制し易い。 When the adhesive sheet 1A is a long sheet, it is preferable that the cured portion 22 is continuously formed in the longitudinal direction of the adhesive sheet 1A. Since the cured portion 22 is continuously formed in the longitudinal direction of the pressure-sensitive adhesive sheet 1A, it is easier to prevent the adhesive from seeping out from the end portion in the width direction of the sheet from the uncured portion 21.
 図5には、ロール状に巻き取られた長尺状の粘着シート1Aを示す概略斜視図が示されている。なお、図5においては、ロールから粘着シート1Aを一部繰り出した状態が示されている。
 図5に示すように、粘着シート1Aの幅方向両端部には、硬化部22が形成され、幅方向の一端側の硬化部22と、他端側の硬化部22との間に、未硬化部21がある。硬化部22は、それぞれ、粘着シート1Aの長手方向に亘って連続して形成されている。なお、図5に示すような長尺状の粘着シート1Aが巻き取られたロールは、ロールの幅方向が載置面に対して垂直になるように保管される場合が多い。そのため、粘着シート1Aの幅方向両端部に硬化部22が連続して形成されていることで、ロール保管時における未硬化部21からの粘着剤の染み出しを抑制し易い。
FIG. 5 shows a schematic perspective view showing a long adhesive sheet 1A wound in a roll shape. Note that FIG. 5 shows a state in which the adhesive sheet 1A is partially extended from the roll.
As shown in FIG. 5, cured portions 22 are formed at both ends in the width direction of the pressure-sensitive adhesive sheet 1A, and are uncured between the cured portions 22 on one end side in the width direction and the cured portions 22 on the other end side. There is a part 21. Each of the cured portions 22 is continuously formed in the longitudinal direction of the pressure-sensitive adhesive sheet 1A. The roll on which the long adhesive sheet 1A as shown in FIG. 5 is wound is often stored so that the width direction of the roll is perpendicular to the mounting surface. Therefore, since the cured portions 22 are continuously formed at both ends of the pressure-sensitive adhesive sheet 1A in the width direction, it is easy to suppress the seepage of the adhesive from the uncured portions 21 during roll storage.
 硬化部22の幅は、それぞれ独立に、0.5mm以上であることが好ましい。硬化部22の幅が0.5mm以上であれば、未硬化部21から粘着剤がシート幅方向端部からシート外部に染み出すことをさらに抑制し易い。硬化部22が幅方向端部に沿って連続的に形成されている場合においては、硬化部22の幅は、長手方向に亘って一定でなくてもよく、長手方向に亘って0.5mm以上の幅で形成されていることが好ましい。
 硬化部22の幅は、それぞれ独立に、10mm以下であることが好ましい。硬化部22が幅方向端部に沿って連続的に形成されている場合においては、硬化部22の幅は、長手方向に亘って10mm以下の幅で形成されていることが好ましい。
 なお、硬化部22の幅が大きければ粘着剤の染み出しを抑制し易くなる一方で、未硬化部21の面積が狭くなるため、粘着剤の染み出しを抑制する効果と、粘着シートとしての粘着力を有する未硬化部21の面積の確保との観点から、硬化部22の幅の上限を設定することが好ましい。
The width of the cured portion 22 is preferably 0.5 mm or more independently of each other. When the width of the cured portion 22 is 0.5 mm or more, it is easier to prevent the adhesive from seeping out from the sheet width direction end portion from the uncured portion 21 to the outside of the sheet. When the cured portion 22 is continuously formed along the end portion in the width direction, the width of the cured portion 22 does not have to be constant in the longitudinal direction, and is 0.5 mm or more in the longitudinal direction. It is preferably formed with the width of.
The width of the cured portion 22 is preferably 10 mm or less independently of each other. When the cured portion 22 is continuously formed along the end portion in the width direction, the width of the cured portion 22 is preferably formed to be 10 mm or less in the longitudinal direction.
If the width of the cured portion 22 is large, it becomes easier to suppress the seepage of the adhesive, but since the area of the uncured portion 21 becomes narrow, the effect of suppressing the seepage of the adhesive and the adhesion as an adhesive sheet are obtained. From the viewpoint of securing the area of the uncured portion 21 having the force, it is preferable to set the upper limit of the width of the cured portion 22.
(第一の試験片)
 第一の試験片は、本実施形態に係る粘着シート1Aの未硬化部21の領域から作製される。第一の試験片の幅は、25mmである。
 本実施形態における第一の試験片を把持した状態は、第1実施形態で示した図2と同様である。第一の試験片の一端側における基材10及び粘着剤層20の未硬化部21を引張試験機の第一の掴み具110で把持し、第一の試験片の他端側における基材10及び粘着剤層20の未硬化部21を引張試験機の第二の掴み具120で把持する。
(First test piece)
The first test piece is produced from the region of the uncured portion 21 of the pressure-sensitive adhesive sheet 1A according to the present embodiment. The width of the first test piece is 25 mm.
The state in which the first test piece is gripped in this embodiment is the same as in FIG. 2 shown in the first embodiment. The base material 10 on one end side of the first test piece and the uncured portion 21 of the adhesive layer 20 are gripped by the first gripper 110 of the tensile tester, and the base material 10 on the other end side of the first test piece. And the uncured portion 21 of the pressure-sensitive adhesive layer 20 is gripped by the second gripper 120 of the tensile tester.
(第二の試験片)
 第二の試験片は、本実施形態に係る粘着シート1Aから作製された第一の試験片に2つの半導体チップを貼着することにより作製される。本実施形態においては、この2つの半導体チップは、第一の半導体チップ及び第二の半導体チップである。第一の半導体チップ及び第二の半導体チップは、いずれも、縦寸法が45mmであり、横寸法が35mmであり、厚さ寸法が0.625mmである。
 第一の半導体チップ及び第二の半導体チップの縦寸法が45mmである辺を、第一の試験片の長手方向に沿わせて貼着する。
 第一の半導体チップは、第一の試験片の長手方向の一端側に貼着される。第二の半導体チップは、第一の試験片の長手方向の他端側に貼着される。第一の試験片に貼着された第一の半導体チップと第二の半導体チップとの間隔を35μmとする。
(Second test piece)
The second test piece is produced by attaching two semiconductor chips to the first test piece produced from the pressure-sensitive adhesive sheet 1A according to the present embodiment. In the present embodiment, the two semiconductor chips are a first semiconductor chip and a second semiconductor chip. Both the first semiconductor chip and the second semiconductor chip have a vertical dimension of 45 mm, a horizontal dimension of 35 mm, and a thickness dimension of 0.625 mm.
The sides of the first semiconductor chip and the second semiconductor chip having a vertical dimension of 45 mm are attached along the longitudinal direction of the first test piece.
The first semiconductor chip is attached to one end side in the longitudinal direction of the first test piece. The second semiconductor chip is attached to the other end side in the longitudinal direction of the first test piece. The distance between the first semiconductor chip and the second semiconductor chip attached to the first test piece is 35 μm.
 本実施形態における第二の試験片を把持した状態は、第1実施形態で示した図3と同様である。第二の試験片の一端側における基材10、粘着剤層20の未硬化部21及び第一の半導体チップCP1を引張試験機の第一の掴み具110で把持し、第二の試験片の他端側における基材10、粘着剤層20の未硬化部21及び第二の半導体チップCP2を引張試験機の第二の掴み具120で把持する。 The state in which the second test piece is gripped in this embodiment is the same as in FIG. 3 shown in the first embodiment. The base material 10 on one end side of the second test piece, the uncured portion 21 of the adhesive layer 20, and the first semiconductor chip CP1 are gripped by the first gripper 110 of the tensile tester, and the second test piece is subjected to. The base material 10, the uncured portion 21 of the adhesive layer 20, and the second semiconductor chip CP2 on the other end side are gripped by the second gripper 120 of the tensile tester.
(引張強度)
 本実施形態に係る粘着シート1Aも、引張試験機を用いて測定した第一の試験片及び第二の試験片の引張強度が、下記数式(数1A)の関係を満たす。
   FB1/FA1≦30 …(数1A)
(Tensile strength)
In the pressure-sensitive adhesive sheet 1A according to the present embodiment, the tensile strengths of the first test piece and the second test piece measured using the tensile tester satisfy the relationship of the following mathematical formula (Equation 1A).
F B1 / F A1 ≤ 30 ... (Equation 1A)
 前記数式(数1A)において、引張強度FA1は、第一の試験片の長手方向のそれぞれの両端における基材及び粘着剤層を掴み具で把持して引張試験機による0.5mm引張り時の強度である。 In the above formula (Equation 1A), the tensile strength FA1 is when the base material and the pressure-sensitive adhesive layer at both ends in the longitudinal direction of the first test piece are gripped with a gripper and pulled by a tensile tester by 0.5 mm. Strength.
 前記数式(数1A)において、引張強度FB1は、第二の試験片の長手方向のそれぞれの両端における基材、粘着剤層及び半導体チップを掴み具で把持して引張試験機による0.5mm引張り時の強度である。 In the above formula (Equation 1A), the tensile strength FB1 is 0.5 mm by a tensile tester by grasping the base material, the pressure-sensitive adhesive layer and the semiconductor chip at both ends in the longitudinal direction of the second test piece with a gripper. It is the strength at the time of tension.
 エネルギー線硬化性樹脂が硬化された硬化部22を含むように、粘着シート1Aの長尺方向に沿って長さ150mm、幅25mmのサイズに切り出して第三の試験片を作製し、当該第三の試験片を一対のチャックでチャック間距離100mmとして把持し、速度5mm/secで、チャック間距離が200mmになるまで伸長させた際、硬化部22と基材10との界面に浮きが発生しないことが好ましい。
 粘着シートの硬化部を伸長させた際(例えば、粘着シートをエキスパンドした際)に硬化部と基材との界面に浮きが発生すると、浮き上がった硬化部が粘着剤層から破断し、破断した硬化部が飛散して、粘着シートに貼着した被着体及びエキスパンド装置に付着して汚染するおそれがある。しかしながら、本実施形態に係る粘着シート1Aは、第三の試験片を用いた引張試験において、硬化部22と基材10との界面で浮きが発生しないので、上述のような破断した硬化部による被着体及びエキスパンド装置の汚染を抑制し易い。硬化部22と基材10との界面で浮きが発生しないようにするには、例えば、エネルギー線硬化性樹脂の硬化度を制御する方法が挙げられる。
A third test piece was prepared by cutting out the pressure-sensitive adhesive sheet 1A into a size of 150 mm in length and 25 mm in width along the elongated direction of the pressure-sensitive adhesive sheet 1A so as to include the cured portion 22 in which the energy ray-curable resin was cured. When the test piece of No. 1 was grasped by a pair of chucks with a chuck-to-chuck distance of 100 mm and extended to a chuck-to-chuck distance of 200 mm at a speed of 5 mm / sec, no floating occurred at the interface between the cured portion 22 and the base material 10. Is preferable.
When the cured portion of the pressure-sensitive adhesive sheet is stretched (for example, when the pressure-sensitive adhesive sheet is expanded), if a float occurs at the interface between the cured portion and the base material, the lifted cured portion breaks from the pressure-sensitive adhesive layer and the broken cured portion is broken. There is a risk that the part will scatter and adhere to the adherend and expanding device attached to the adhesive sheet and contaminate it. However, the pressure-sensitive adhesive sheet 1A according to the present embodiment does not float at the interface between the cured portion 22 and the base material 10 in the tensile test using the third test piece, and therefore is based on the broken cured portion as described above. It is easy to suppress contamination of the adherend and the expanding device. In order to prevent floating from occurring at the interface between the cured portion 22 and the base material 10, for example, a method of controlling the degree of curing of the energy ray-curable resin can be mentioned.
 本実施形態に係る粘着シート1Aを、第一方向、前記第一方向とは反対方向である第二方向、前記第一方向に対して垂直方向である第三方向、及び前記第三方向とは反対方向である第四方向に伸長させて、伸長前の粘着シート1Aの面積S1と、伸長後の粘着シート1Aの面積S2との面積比(S2/S1)×100が381%であるときに、粘着剤層20の硬化部22が基材10との界面で剥がれないことが好ましい。
 第一方向、第二方向、第三方向及び第四方向は、それぞれ、例えば、後述する2軸延伸の+X軸方向、-X軸方向、+Y軸方向、及び-Y軸方向の4方向と対応していることが好ましい。4方向に伸長させるための装置としては、例えば、後述するエキスパンド装置が挙げられる。
 本実施形態に係る粘着シート1Aは、4方向に伸長させて、伸長前後の面積比(S2/S1)×100が381%であるときに粘着剤層20の硬化部22が基材10との界面で剥がれないので、粘着シート1Aを高伸長率のエキスパンド工程で使用しても、破断した硬化部による被着体及びエキスパンド装置の汚染を抑制し易い。
The adhesive sheet 1A according to the present embodiment has a first direction, a second direction opposite to the first direction, a third direction perpendicular to the first direction, and the third direction. When the area ratio (S2 / S1) × 100 of the area S1 of the pressure-sensitive adhesive sheet 1A before stretching and the area S2 of the pressure-sensitive adhesive sheet 1A after stretching is 381% after being stretched in the fourth direction, which is the opposite direction. It is preferable that the cured portion 22 of the pressure-sensitive adhesive layer 20 does not peel off at the interface with the base material 10.
The first direction, the second direction, the third direction, and the fourth direction correspond to, for example, the four directions of the biaxial stretching + X-axis direction, -X-axis direction, + Y-axis direction, and -Y-axis direction, which will be described later, respectively. It is preferable to do so. Examples of the device for extending in four directions include an expanding device described later.
The pressure-sensitive adhesive sheet 1A according to the present embodiment is stretched in four directions, and when the area ratio (S2 / S1) × 100 before and after stretching is 381%, the cured portion 22 of the pressure-sensitive adhesive layer 20 is with the base material 10. Since it does not peel off at the interface, even if the adhesive sheet 1A is used in the expanding step having a high elongation rate, it is easy to suppress contamination of the adherend and the expanding device due to the broken hardened portion.
[粘着シートの製造方法]
 本実施形態に係る粘着シート1Aの製造方法は、以下の工程(P1)~(P3)を有する。
(P1)基材10の上に、エネルギー線硬化性樹脂を含有する粘着剤組成物を塗布して、粘着剤層20を形成する工程。
(P2)粘着剤層20の幅方向の両端部にエネルギー線UVを照射して、エネルギー線硬化性樹脂を硬化させて硬化部22を形成する工程。
(P3)エネルギー線硬化性樹脂を硬化させていない未硬化部21の幅方向両端部よりも外側に硬化部22の全部を残すか、又は硬化部22の一部を残して、硬化部22よりも外側を裁断する工程。
[Manufacturing method of adhesive sheet]
The method for producing the pressure-sensitive adhesive sheet 1A according to the present embodiment includes the following steps (P1) to (P3).
(P1) A step of applying a pressure-sensitive adhesive composition containing an energy ray-curable resin onto a base material 10 to form a pressure-sensitive adhesive layer 20.
(P2) A step of irradiating both ends of the pressure-sensitive adhesive layer 20 in the width direction with energy rays UV to cure the energy ray-curable resin to form a cured portion 22.
(P3) From the cured portion 22 by leaving the entire cured portion 22 outside the widthwise both ends of the uncured portion 21 in which the energy ray-curable resin is not cured, or leaving a part of the cured portion 22. The process of cutting the outside.
 本実施形態に係る粘着シート1Aは、例えば、次のようにして製造できる。
 まず、工程(P1)として、基材10の上に粘着剤層20を形成する。本実施形態において、粘着剤層20は、例えば、第1実施形態と同様に形成することができる。
The pressure-sensitive adhesive sheet 1A according to the present embodiment can be manufactured, for example, as follows.
First, as a step (P1), the pressure-sensitive adhesive layer 20 is formed on the base material 10. In the present embodiment, the pressure-sensitive adhesive layer 20 can be formed, for example, in the same manner as in the first embodiment.
 図6Aは、粘着シート1Aの幅方向両端部に硬化部22を形成する工程(P2)を説明する断面概略図である。
 粘着剤層20は、エネルギー線硬化性樹脂を含有するので、幅方向両端部にエネルギー線UVを照射して硬化部22を形成する。エネルギー線硬化性樹脂が紫外線硬化性樹脂である場合は、エネルギー線として紫外線を照射する。
 硬化部22は、粘着シート1Aとして使用する際に必要な硬化部22の幅よりも大きな幅で形成することが好ましい。
FIG. 6A is a schematic cross-sectional view illustrating a step (P2) of forming the cured portions 22 at both ends in the width direction of the pressure-sensitive adhesive sheet 1A.
Since the pressure-sensitive adhesive layer 20 contains an energy ray-curable resin, both ends in the width direction are irradiated with energy rays UV to form a cured portion 22. When the energy ray-curable resin is an ultraviolet curable resin, it is irradiated with ultraviolet rays as energy rays.
The cured portion 22 is preferably formed with a width larger than the width of the cured portion 22 required for use as the pressure-sensitive adhesive sheet 1A.
 図6Bは、エネルギー線を照射して硬化部22を形成した後に、粘着シート1Aの幅方向両端部を、硬化部22が残るように裁断する工程(P3)を説明する断面概略図である。
 図6Bにおいては、粘着シート1Aとして使用する際に必要な幅よりも大きな幅で形成された硬化部22の位置C1及び位置C2に切込みを入れて裁断する。硬化部22に切込みを入れて裁断することにより、裁断刃に粘着剤が付着するのを防止できる。切込みは、硬化部22のシート長手方向に沿って入れる。
 未硬化部21の幅方向両端部よりも外側に残す硬化部22の幅(断面視で、未硬化部21と硬化部22との境界から位置C1又は位置C2までの距離)は、それぞれ独立に、0.5mm以上であることが好ましい。
FIG. 6B is a schematic cross-sectional view illustrating a step (P3) of irradiating energy rays to form the cured portion 22 and then cutting both ends of the pressure-sensitive adhesive sheet 1A in the width direction so that the cured portion 22 remains.
In FIG. 6B, cuts are made at positions C1 and C2 of the cured portion 22 formed with a width larger than the width required for use as the pressure-sensitive adhesive sheet 1A. By making a notch in the hardened portion 22 and cutting, it is possible to prevent the adhesive from adhering to the cutting blade. The cut is made along the sheet longitudinal direction of the hardened portion 22.
The width of the cured portion 22 (the distance from the boundary between the uncured portion 21 and the cured portion 22 to the position C1 or C2 in cross-sectional view) left outside the both ends in the width direction of the uncured portion 21 is independent of each other. , 0.5 mm or more is preferable.
 図6Cには、工程(P3)によって裁断後に、幅方向両端部にそれぞれ硬化部22が形成された粘着シート1Aと、端材1aとが示されている。 FIG. 6C shows an adhesive sheet 1A in which hardened portions 22 are formed at both ends in the width direction after cutting by the step (P3), and scraps 1a.
 硬化部22よりも外側を裁断する工程(P3)の後に、裁断後の粘着シート1Aをロール状に巻き取る工程をさらに有することが好ましい。 After the step (P3) of cutting the outside of the cured portion 22, it is preferable to further have a step of winding the cut adhesive sheet 1A into a roll shape.
[粘着シートの使用方法]
 本実施形態に係る粘着シート1Aも、第1実施形態に係る粘着シートと同様の使用方法に適用できる。
[How to use the adhesive sheet]
The pressure-sensitive adhesive sheet 1A according to the present embodiment can also be applied to the same usage method as the pressure-sensitive adhesive sheet according to the first embodiment.
 本実施形態に係る粘着シート1Aは、例えば、半導体加工用に用いることができる。粘着シート1Aは、半導体装置の製造工程中、複数の半導体チップ同士の間隔を拡張するためのエキスパンド工程に使用されることが好ましい。
 複数の半導体チップは、粘着シート1Aの中央部(未硬化部21)に貼着されていることが好ましい。
 エキスパンド工程においては、粘着シート1Aの硬化部22を離間装置の保持手段で保持することが好ましい。
The pressure-sensitive adhesive sheet 1A according to this embodiment can be used, for example, for semiconductor processing. The pressure-sensitive adhesive sheet 1A is preferably used in an expanding step for expanding the distance between a plurality of semiconductor chips during the manufacturing process of the semiconductor device.
The plurality of semiconductor chips are preferably attached to the central portion (uncured portion 21) of the pressure-sensitive adhesive sheet 1A.
In the expanding step, it is preferable to hold the cured portion 22 of the pressure-sensitive adhesive sheet 1A by the holding means of the separating device.
 本実施形態に係る粘着シート1Aは、粘着剤の染み出しを抑制し、かつエキスパンド工程で粘着シートを展延させて半導体チップ間の距離を拡張させる際に、粘着シートの面内方向での伸び量の差を小さくでき、拡張性に優れる。 The pressure-sensitive adhesive sheet 1A according to the present embodiment stretches in the in-plane direction of the pressure-sensitive adhesive sheet when the pressure-sensitive adhesive is suppressed from seeping out and the pressure-sensitive adhesive sheet is expanded in the expanding step to extend the distance between semiconductor chips. The difference in quantity can be reduced, and it has excellent expandability.
[実施形態の変形]
 本発明は、上述の実施形態に何ら限定されない。本発明は、本発明の目的を達成できる範囲で、上述の実施形態を変形した態様などを含む。
[Modification of Embodiment]
The present invention is not limited to the above-described embodiment. The present invention includes aspects obtained by modifying the above-described embodiment to the extent that the object of the present invention can be achieved.
 以下、実施例を挙げて本発明をさらに詳細に説明する。本発明はこれら実施例に何ら限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to these examples.
(粘着シートの作製)
[実施例1]
 ブチルアクリレート(BA)62質量部、メタクリル酸メチル(MMA)10質量部、及び2-ヒドロキシエチルアクリレート(2HEA)28質量部を共重合してアクリル系共重合体を得た。このアクリル系共重合体に対して、2-イソシアナートエチルメタクリレート(昭和電工株式会社製、製品名「カレンズMOI」(登録商標))を付加した樹脂(アクリルA)の溶液(粘着剤主剤、固形分35.0質量%)を調製した。付加率は、アクリル系共重合体の2HEA100モル%に対して、2-イソシアナートエチルメタクリレートを80モル%とした。
 得られた樹脂(アクリルA)の重量平均分子量(Mw)は、9万、Mw/Mnは4.5であった。ゲルパーミエーションクロマトグラフィー(GPC)法により、標準ポリスチレン換算の重量平均分子量Mw、及び数平均分子量Mnを測定し、それぞれの測定値から分子量分布(Mw/Mn)を求めた。
 この粘着剤主剤に、UV樹脂A(10官能ウレタンアクリレート、日本合成化学工業株式会社製、製品名「UV-5806」、Mw=1740、光重合開始剤を含む。)、及び架橋剤としてのトリレンジイソシアネート系架橋剤(日本ポリウレタン工業株式会社製、製品名「コロネートL」)を添加した。粘着剤主剤中の固形分100質量部に対して、UV樹脂Aを50質量部添加し、架橋剤を0.2質量部添加した。添加後、30分間攪拌して、粘着剤組成物A1を調製した。
 次いで、調製した粘着剤組成物A1の溶液をポリエチレンテレフタレート(PET)系剥離フィルム(リンテック株式会社製、製品名「SP-PET381031」、厚さ38μm)に塗布して乾燥させ、厚さ40μmの粘着剤層を剥離フィルム上に形成した。
 当該粘着剤層に、基材としてのポリエステル系ポリウレタンエラストマーシート(シーダム株式会社製,製品名「ハイグレスDUS202」,厚さ100μm)を貼り合わせた後、幅方向における端部の不要部分を裁断除去して粘着シートを作製した。
(Making an adhesive sheet)
[Example 1]
An acrylic copolymer was obtained by copolymerizing 62 parts by mass of butyl acrylate (BA), 10 parts by mass of methyl methacrylate (MMA), and 28 parts by mass of 2-hydroxyethyl acrylate (2HEA). A solution of a resin (acrylic A) to which 2-isocyanate ethyl methacrylate (manufactured by Showa Denko KK, product name "Karenzu MOI" (registered trademark)) is added to this acrylic copolymer (adhesive main agent, solid). Minutes 35.0% by mass) were prepared. The addition rate was 80 mol% of 2-isocyanate ethyl methacrylate with respect to 100 mol% of 2HEA of the acrylic copolymer.
The weight average molecular weight (Mw) of the obtained resin (acrylic A) was 90,000, and Mw / Mn was 4.5. The weight average molecular weight Mw and the number average molecular weight Mn in terms of standard polystyrene were measured by gel permeation chromatography (GPC) method, and the molecular weight distribution (Mw / Mn) was obtained from each measured value.
This pressure-sensitive adhesive main agent contains UV resin A (10-functional urethane acrylate, manufactured by Nippon Polyurethane Industry Co., Ltd., product name "UV-5806", Mw = 1740, including photopolymerization initiator), and a bird as a cross-linking agent. A range isocyanate-based cross-linking agent (manufactured by Nippon Polyurethane Industry Co., Ltd., product name "Coronate L") was added. 50 parts by mass of UV resin A was added and 0.2 parts by mass of a cross-linking agent was added with respect to 100 parts by mass of the solid content in the pressure-sensitive adhesive main agent. After the addition, the pressure-sensitive adhesive composition A1 was prepared by stirring for 30 minutes.
Next, the prepared solution of the pressure-sensitive adhesive composition A1 was applied to a polyethylene terephthalate (PET) -based release film (manufactured by Lintec Corporation, product name "SP-PET38131", thickness 38 μm), dried, and adhered to a thickness of 40 μm. The agent layer was formed on the release film.
A polyester polyurethane elastomer sheet (manufactured by Seadam Co., Ltd., product name "Higres DUS202", thickness 100 μm) as a base material is attached to the pressure-sensitive adhesive layer, and then unnecessary portions at the ends in the width direction are cut and removed. To prepare an adhesive sheet.
[実施例2]
 ブチルアクリレート(BA)52質量部、メタクリル酸メチル(MMA)20質量部、及び2-ヒドロキシエチルアクリレート(2HEA)28質量部を共重合してアクリル系共重合体を得た。このアクリル系共重合体に対して、2-イソシアナートエチルメタクリレート(昭和電工株式会社製、製品名「カレンズMOI」(登録商標))を付加した樹脂(アクリルA2)の溶液(粘着剤主剤)を調製した。付加率は、アクリル系共重合体の2HEA100モル%に対して、2-イソシアナートエチルメタクリレートを90モル%とした。
 得られた樹脂(アクリルA2)の重量平均分子量(Mw)は、60万、Mw/Mnは4.5であった。ゲルパーミエーションクロマトグラフィー(GPC)法により、標準ポリスチレン換算の重量平均分子量Mw、及び数平均分子量Mnを測定し、それぞれの測定値から分子量分布(Mw/Mn)を求めた。
 この粘着剤主剤に、エネルギー線硬化性樹脂A(阪本薬品工業株式会社製、製品名「SA-TE60」)、光重合開始剤(IGM Resins B.V.製、製品名「Omnirad 127D」)及び架橋剤(トーヨーケム株式会社製、TMP-TDI(トリレンジイソシアネートのトリメチロールプロパンアダクト体)を添加した。粘着剤主剤中の固形分100質量部に対して、エネルギー線硬化性樹脂Aを18質量部添加し、光重合開始剤を1.3質量部添加し、架橋剤を0.2質量部添加し、酢酸エチルを添加した後、30分間攪拌して、固形分35.0質量%の粘着剤組成物A1を調製した。
 次いで、調製した粘着剤組成物A1の溶液をポリエチレンテレフタレート(PET)系剥離フィルム(リンテック株式会社製、製品名「PET752150」)に塗布して、塗膜を90℃で90秒間乾燥させ、さらに100℃で90秒間乾燥させて、厚さ30μmの粘着剤層を剥離フィルム上に形成した。
 当該粘着剤層に、ウレタン基材(倉敷紡績株式会社製,製品名「U-1490」,厚さ100μm,硬度90度(A型))を貼り合わせて、粘着テープを作製した。
 この粘着テープを幅300mmに裁断する際、その裁断部を跨ぐようにLED-UVユニットを、裁断部一か所につき2灯設置した。LED-UVユニットのレンズ先端部とテープとの距離は10mmとした。LED-UVユニットの出力について、2灯とも出力50%でUV照射して、粘着剤層に硬化部を形成した。形成した硬化部に沿って粘着テープを裁断し、幅方向両端部に硬化部を有する粘着シート(幅300mm)を作製した。シート幅方向両端部の硬化部の幅は、表2に示すように、それぞれ、1.00mmとした。裁断時のスリットの速度は、10m/minとした。また、LED-UVユニットの出力と、LED-UVユニット1灯当たりの光量及び照度との関係を表2に示す。
[Example 2]
An acrylic copolymer was obtained by copolymerizing 52 parts by mass of butyl acrylate (BA), 20 parts by mass of methyl methacrylate (MMA), and 28 parts by mass of 2-hydroxyethyl acrylate (2HEA). A solution (adhesive main agent) of a resin (acrylic A2) to which 2-isocyanate ethyl methacrylate (manufactured by Showa Denko KK, product name "Karenzu MOI" (registered trademark)) is added to this acrylic copolymer. Prepared. The addition rate was 90 mol% of 2-isocyanate ethyl methacrylate with respect to 100 mol% of 2HEA of the acrylic copolymer.
The weight average molecular weight (Mw) of the obtained resin (acrylic A2) was 600,000, and Mw / Mn was 4.5. The weight average molecular weight Mw and the number average molecular weight Mn in terms of standard polystyrene were measured by gel permeation chromatography (GPC) method, and the molecular weight distribution (Mw / Mn) was obtained from each measured value.
Energy ray curable resin A (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd., product name "SA-TE60"), photopolymerization initiator (manufactured by IGM Resins BV, product name "Omnirad 127D") and A cross-linking agent (TMP-TDI (trimethylol propan adduct of tolylene diisocyanate) manufactured by Toyochem Co., Ltd.) was added. 18 parts by mass of energy ray curable resin A with respect to 100 parts by mass of solid content in the adhesive main agent. Add 1.3 parts by mass of photopolymerization initiator, 0.2 parts by mass of cross-linking agent, add ethyl acetate, and then stir for 30 minutes to obtain a pressure-sensitive adhesive having a solid content of 35.0% by mass. Composition A1 was prepared.
Next, the prepared solution of the pressure-sensitive adhesive composition A1 was applied to a polyethylene terephthalate (PET) -based release film (manufactured by Lintec Corporation, product name "PET752150"), the coating film was dried at 90 ° C. for 90 seconds, and further 100. Drying at ° C. for 90 seconds formed a 30 μm thick pressure-sensitive adhesive layer on the release film.
A urethane base material (manufactured by Kurabo Industries Ltd., product name "U-1490", thickness 100 μm, hardness 90 degrees (A type)) was bonded to the pressure-sensitive adhesive layer to prepare an pressure-sensitive adhesive tape.
When cutting this adhesive tape to a width of 300 mm, two LED-UV units were installed at one cutting portion so as to straddle the cutting portion. The distance between the tip of the lens of the LED-UV unit and the tape was 10 mm. Regarding the output of the LED-UV unit, both lamps were irradiated with UV at an output of 50% to form a cured portion in the adhesive layer. The adhesive tape was cut along the formed cured portion to prepare an adhesive sheet (width 300 mm) having cured portions at both ends in the width direction. As shown in Table 2, the widths of the cured portions at both ends in the sheet width direction were set to 1.00 mm, respectively. The speed of the slit at the time of cutting was set to 10 m / min. Table 2 shows the relationship between the output of the LED-UV unit and the amount of light and illuminance per LED-UV unit.
 実施例2で使用したLED-UVユニットの説明は以下のとおりである。
・LED-UVユニット
 HOYA CANDEO OPTRONICS社製
 制御部=H-1 VC II
 発光部=H-1 VH4
 レンズ=HO-03L
The description of the LED-UV unit used in Example 2 is as follows.
・ LED-UV unit HOYA CANDEO OPTRONICS control unit = H-1 VC II
Light emitting part = H-1 VH4
Lens = HO-03L
[実施例3]
 実施例3の粘着シートは、実施例2に係る粘着シートの作製におけるLED-UVユニットの出力を40%に変更したこと、並びにシート幅方向両端部の硬化部の幅を表2に示すようにそれぞれ0.50mmとした以外、実施例2と同様にして作製した。
[Example 3]
As for the adhesive sheet of Example 3, the output of the LED-UV unit in the production of the adhesive sheet according to Example 2 was changed to 40%, and the widths of the cured portions at both ends in the sheet width direction are shown in Table 2. It was produced in the same manner as in Example 2 except that each was set to 0.50 mm.
[実施例4]
 実施例4の粘着シートは、実施例2に係る粘着シートの作製におけるLED-UVユニットの出力を90%に変更したこと、並びにシート幅方向両端部の硬化部の幅を表2に示すようにそれぞれ1.25mmとした以外、実施例2と同様にして作製した。
[Example 4]
As for the adhesive sheet of Example 4, the output of the LED-UV unit in the production of the adhesive sheet according to Example 2 was changed to 90%, and the widths of the cured portions at both ends in the sheet width direction are shown in Table 2. It was produced in the same manner as in Example 2 except that each was set to 1.25 mm.
[実施例5]
 実施例5の粘着シートは、実施例2に係る粘着シートの作製における基材を上質紙(坪量:60g/m)に変更したこと以外、実施例2と同様にして作製した。
[Example 5]
The pressure-sensitive adhesive sheet of Example 5 was produced in the same manner as in Example 2 except that the base material in the production of the pressure-sensitive adhesive sheet according to Example 2 was changed to woodfree paper (basis weight: 60 g / m 2).
[実施例6]
 実施例6の粘着シートは、実施例2に係る粘着シートの作製における基材をポリエチレンテレフタレートフィルム(厚さ:50μm)に変更したこと以外、実施例2と同様にして作製した。
[Example 6]
The pressure-sensitive adhesive sheet of Example 6 was produced in the same manner as in Example 2 except that the base material in the production of the pressure-sensitive adhesive sheet according to Example 2 was changed to a polyethylene terephthalate film (thickness: 50 μm).
[比較例1]
 粘着剤主剤を下記に変更した以外は実施例1と同様に粘着シートを作製した。
 ブチルアクリレート(BA)52質量部、メタクリル酸メチル(MMA)20質量部、及び2-ヒドロキシエチルアクリレート(2HEA)28質量部を共重合してアクリル系共重合体を得た。このアクリル系共重合体に対して、2-イソシアナートエチルメタクリレート(昭和電工株式会社製、製品名「カレンズMOI」(登録商標))を付加した樹脂(アクリルB)の溶液(粘着剤主剤、固形分35.0質量%)を調製した。付加率は、アクリル系共重合体の2HEA100モル%に対して、2-イソシアナートエチルメタクリレートを90モル%とした。
 得られた樹脂(アクリルB)の重量平均分子量(Mw)は、60万、Mw/Mnは4.5であった。比較例1に係る樹脂(アクリルB)の重量平均分子量Mw及び分子量分布(Mw/Mn)は、実施例1と同様にして求めた。
[Comparative Example 1]
An adhesive sheet was produced in the same manner as in Example 1 except that the adhesive main agent was changed to the following.
An acrylic copolymer was obtained by copolymerizing 52 parts by mass of butyl acrylate (BA), 20 parts by mass of methyl methacrylate (MMA), and 28 parts by mass of 2-hydroxyethyl acrylate (2HEA). A solution of a resin (acrylic B) to which 2-isocyanate ethyl methacrylate (manufactured by Showa Denko KK, product name "Karenzu MOI" (registered trademark)) is added to this acrylic copolymer (adhesive main agent, solid). Minutes 35.0% by mass) were prepared. The addition rate was 90 mol% of 2-isocyanate ethyl methacrylate with respect to 100 mol% of 2HEA of the acrylic copolymer.
The weight average molecular weight (Mw) of the obtained resin (acrylic B) was 600,000, and Mw / Mn was 4.5. The weight average molecular weight Mw and the molecular weight distribution (Mw / Mn) of the resin (acrylic B) according to Comparative Example 1 were determined in the same manner as in Example 1.
[比較例2]
 比較例2の粘着シートは、実施例2に係る粘着シートの作製においてUVを照射しなかったこと以外、実施例2と同様にして作製した。
[Comparative Example 2]
The pressure-sensitive adhesive sheet of Comparative Example 2 was produced in the same manner as in Example 2 except that UV was not irradiated in the production of the pressure-sensitive adhesive sheet according to Example 2.
[粘着シートの評価]
 作製した粘着シートについて、以下の評価を行った。評価結果を表1及び表2に示す。
[Evaluation of adhesive sheet]
The prepared adhesive sheet was evaluated as follows. The evaluation results are shown in Tables 1 and 2.
<測定方法>
(引張強度の測定方法)
 引張強度を測定するための引張試験機としては、株式会社島津製作所製のオートグラフAG-ISを用いた。
 粘着シートから幅25mmの第一の試験片を作製した。硬化部と未硬化部とを有する粘着シートについては、粘着シートの未硬化部に対応する領域から第一の試験片を作製した。
 第一の試験片に第一の半導体チップ及び第二の半導体チップを貼着して、第二の試験片を作製した。第一の半導体チップ及び第二の半導体チップとして、いずれも、縦寸法が45mmであり、横寸法が35mmであり、厚さ寸法が0.625mmである半導体チップを用いた。
 第一の半導体チップ及び第二の半導体チップの縦寸法が45mmである辺を、第一の試験片の長手方向に沿って貼着した。
 第一の半導体チップは、第一の試験片の長手方向の一端側に貼着した。第二の半導体チップは、第一の試験片の長手方向の他端側に貼着した。第一の試験片に貼着された第一の半導体チップと第二の半導体チップとの間隔を35μmとした。
<Measurement method>
(Measurement method of tensile strength)
As a tensile tester for measuring the tensile strength, Autograph AG-IS manufactured by Shimadzu Corporation was used.
A first test piece having a width of 25 mm was prepared from the pressure-sensitive adhesive sheet. For the pressure-sensitive adhesive sheet having a cured portion and an uncured portion, a first test piece was prepared from a region corresponding to the uncured portion of the pressure-sensitive adhesive sheet.
A first semiconductor chip and a second semiconductor chip were attached to the first test piece to prepare a second test piece. As the first semiconductor chip and the second semiconductor chip, a semiconductor chip having a vertical dimension of 45 mm, a horizontal dimension of 35 mm, and a thickness dimension of 0.625 mm was used.
The sides of the first semiconductor chip and the second semiconductor chip having a vertical dimension of 45 mm were attached along the longitudinal direction of the first test piece.
The first semiconductor chip was attached to one end side in the longitudinal direction of the first test piece. The second semiconductor chip was attached to the other end side in the longitudinal direction of the first test piece. The distance between the first semiconductor chip and the second semiconductor chip attached to the first test piece was set to 35 μm.
 第一の試験片の長手方向のそれぞれの両端における基材及び粘着剤層を掴み具で把持して引張試験機で引張強度を測定した。第一の試験片の0.5mm引張り時(引張距離が0.5mmの時)の引張強度FA1を表1に示す。
 第二の試験片の長手方向のそれぞれの両端における基材、粘着剤層及び半導体チップを掴み具で把持して引張試験機で引張強度を測定した。第二の試験片の0.5mm引張り時(引張距離が0.5mmの時)の引張強度FB1を表1に示す。
 引張強度の単位は、Nである。
 引張試験時のその他の条件は、以下の通りである。
  掴み具間の距離:50mm
  引張速度   :50mm/分
The base material and the pressure-sensitive adhesive layer at both ends of the first test piece in the longitudinal direction were grasped with a gripper, and the tensile strength was measured with a tensile tester. The tensile strength F A1 when pulling 0.5mm of the first test piece (when pulling distance is 0.5mm) shown in Table 1.
The base material, the pressure-sensitive adhesive layer and the semiconductor chip at both ends of the second test piece in the longitudinal direction were grasped with a gripper, and the tensile strength was measured with a tensile tester. The tensile strength F B1 when pulling 0.5mm second specimen (when pulling distance is 0.5mm) shown in Table 1.
The unit of tensile strength is N.
Other conditions at the time of the tensile test are as follows.
Distance between grippers: 50 mm
Tensile speed: 50 mm / min
(ヤング率の測定方法)
 JIS K7161及びJIS K7127に準拠して、万能試験機(株式会社島津製作所製「オートグラフAG-IS500N」)を用いて引張試験を行った。引張試験において、第一の試験片および第二の試験片を固定し、引張速度50mm/分で引張試験を行った。そして、このときの応力ひずみ曲線を作成して、試験初期の応力ひずみ曲線の傾きからヤング率を算出した。
 実施例1、実施例2及び比較例1に係る粘着シートのヤング率の測定結果を表1に示す。
(Measurement method of Young's modulus)
A tensile test was conducted using a universal testing machine (“Autograph AG-IS500N” manufactured by Shimadzu Corporation) in accordance with JIS K7161 and JIS K7127. In the tensile test, the first test piece and the second test piece were fixed, and the tensile test was performed at a tensile speed of 50 mm / min. Then, a stress-strain curve at this time was created, and Young's modulus was calculated from the slope of the stress-strain curve at the initial stage of the test.
Table 1 shows the measurement results of Young's modulus of the adhesive sheet according to Example 1, Example 2 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1及び実施例2に係る粘着シートは、FB1/FA1が30以下であり、粘着シートの半導体チップが貼着されていない部位の引張強度と、半導体チップが貼着されている部位の引張強度との比FB1/FA1が、比較例1よりも小さかった。そのため、実施例1及び実施例2に係る粘着シートによれば、エキスパンド工程で粘着シートを展延させて半導体チップ間の距離を拡張させる際に、粘着シートの面内方向での伸び量の差が小さくなり、拡張性に優れ、半導体チップ間の距離のばらつきを小さくできる。 As shown in Table 1, the pressure-sensitive adhesive sheets according to Examples 1 and 2 have FB1 / FA1 of 30 or less, the tensile strength of the portion of the pressure-sensitive adhesive sheet to which the semiconductor chip is not attached, and the semiconductor chip. There the ratio F B1 / F A1 and tensile strength of the portion is affixed is smaller than Comparative example 1. Therefore, according to the pressure-sensitive adhesive sheets according to Examples 1 and 2, when the pressure-sensitive adhesive sheet is expanded in the expanding step to extend the distance between the semiconductor chips, the difference in the amount of elongation of the pressure-sensitive adhesive sheet in the in-plane direction is obtained. Is small, the expandability is excellent, and the variation in the distance between semiconductor chips can be reduced.
(粘着剤の染み出し抑制の評価方法)
 幅方向両端部に硬化部を形成した幅300mmの粘着シートを巻き取ってロールを作製した。ロールを40℃で保管して3日経過後に、ロール端部に粘着剤の染み出しがあるか、目視あるいは顕微鏡で確認した。染み出し抑制の評価基準は、次のように設定した。本実施例においては、評価Aを合格と判定した。
 ・染み出し抑制の評価基準
  評価A:ロール端部に外観変化なし
  評価B:ロール端部に外観変化があり
(Evaluation method for suppressing the seepage of adhesive)
A roll was produced by winding an adhesive sheet having a width of 300 mm having hardened portions formed at both ends in the width direction. After 3 days after storing the roll at 40 ° C., it was confirmed visually or with a microscope whether or not the adhesive had exuded at the end of the roll. The evaluation criteria for exudation suppression were set as follows. In this embodiment, the evaluation A was judged to be acceptable.
・ Evaluation criteria for suppressing seepage Evaluation A: No change in appearance at the end of the roll Evaluation B: Change in appearance at the end of the roll
(ばらつきの評価方法)
 実施例及び比較例で作製した粘着シートを210mm×210mmのサイズに切断して、試験用粘着シートを得た。このとき、裁断後のシートの各辺が、粘着シートにおける基材のMD方向と平行または垂直となるように裁断した。
 シリコンウエハをダイシングして、3mm×3mmのサイズのチップがX軸方向に7列、及びY軸方向に7列となるように、計49個のチップを切り出した。
 試験用粘着シートの剥離フィルムを剥離し、露出した粘着剤層の中心部に、上述の通り切り出した計49個のチップを貼付した。このとき、チップがX軸方向に7列、及びY軸方向に7列で並んでおり、チップ間の距離は、X軸方向およびY軸方向ともに35μmだった。
(Evaluation method of variation)
The pressure-sensitive adhesive sheets produced in Examples and Comparative Examples were cut into a size of 210 mm × 210 mm to obtain a test pressure-sensitive adhesive sheet. At this time, each side of the sheet after cutting was cut so as to be parallel or perpendicular to the MD direction of the base material in the adhesive sheet.
The silicon wafer was diced, and a total of 49 chips were cut out so that the chips having a size of 3 mm × 3 mm had 7 rows in the X-axis direction and 7 rows in the Y-axis direction.
The release film of the test pressure-sensitive adhesive sheet was peeled off, and a total of 49 chips cut out as described above were attached to the center of the exposed pressure-sensitive adhesive layer. At this time, the chips were arranged in 7 rows in the X-axis direction and 7 rows in the Y-axis direction, and the distance between the chips was 35 μm in both the X-axis direction and the Y-axis direction.
 次に、チップが貼付された試験用粘着シートを、2軸延伸可能なエキスパンド装置(離間装置)に設置した。図7には、当該エキスパンド装置100を説明する平面図が示される。図7中、X軸及びY軸は、互いに直交する関係にあり、当該X軸の正の方向を+X軸方向、当該X軸の負の方向を-X軸方向、当該Y軸の正の方向を+Y軸方向、当該Y軸の負の方向を-Y軸方向とする。試験用粘着シート200は、各辺がX軸またはY軸と平行となるように、エキスパンド装置100に設置した。その結果、試験用粘着シート200における基材のMD方向は、X軸またはY軸と平行となる。なお、図7中、チップは省略されている。 Next, the test adhesive sheet to which the chip was attached was installed in a biaxially stretchable expanding device (separation device). FIG. 7 shows a plan view illustrating the expanding device 100. In FIG. 7, the X-axis and the Y-axis are orthogonal to each other, the positive direction of the X-axis is the + X-axis direction, the negative direction of the X-axis is the −X-axis direction, and the positive direction of the Y-axis. Is the + Y-axis direction, and the negative direction of the Y-axis is the −Y-axis direction. The test adhesive sheet 200 was installed in the expanding device 100 so that each side was parallel to the X-axis or the Y-axis. As a result, the MD direction of the base material in the test pressure-sensitive adhesive sheet 200 is parallel to the X-axis or the Y-axis. In FIG. 7, the chip is omitted.
 図7に示されるように、エキスパンド装置100は、+X軸方向、-X軸方向、+Y軸方向及び-Y軸方向のそれぞれに5つの保持手段101(計20個の保持手段101)を備える。各方向における5つの保持手段101のうち、保持手段101Aは、両端に位置し、保持手段101Cは、中央に位置し、保持手段101Bは、保持手段101Aと保持手段101Cとの間に位置する。試験用粘着シート200の各辺を、これらの保持手段101によって把持させた。 As shown in FIG. 7, the expanding device 100 includes five holding means 101 (a total of 20 holding means 101) in each of the + X-axis direction, the −X-axis direction, the + Y-axis direction, and the −Y-axis direction. Of the five holding means 101 in each direction, the holding means 101A is located at both ends, the holding means 101C is located at the center, and the holding means 101B is located between the holding means 101A and the holding means 101C. Each side of the test adhesive sheet 200 was gripped by these holding means 101.
 ここで、図7に示されるように、試験用粘着シート200の一辺は210mmである。また、各辺における保持手段101同士の間隔は40mmである。また、試験用粘着シート200の一辺における端部(シートの頂点)と、当該辺に存在し、当該端部に最も近い保持手段101Aとの間隔は25mmである。 Here, as shown in FIG. 7, one side of the test adhesive sheet 200 is 210 mm. Further, the distance between the holding means 101 on each side is 40 mm. Further, the distance between the end portion (the apex of the sheet) on one side of the test adhesive sheet 200 and the holding means 101A existing on the side and closest to the end portion is 25 mm.
・第1エキスパンド試験
 続いて、保持手段101のそれぞれに対応する、図示されていない複数の張力付与手段を駆動させて、保持手段101をそれぞれ独立に移動させた。試験用粘着シートの四辺をつかみ治具で固定し、X軸方向、及びY軸方向にそれぞれ5mm/sの速度で、200mmの拡張量で試験用粘着シートをエキスパンドした。第1エキスパンド試験の結果、試験用粘着シートの面積は、エキスパンド前に対して381%に拡張された。本実施例においては、この拡張量200mmのエキスパンド試験を、第1エキスパンド試験と称する場合がある。実施例5及び実施例6の粘着シートは、拡張できなかった。
First Expanding Test Subsequently, a plurality of tension applying means (not shown) corresponding to each of the holding means 101 were driven to move the holding means 101 independently. The four sides of the test adhesive sheet were fixed with a gripping jig, and the test adhesive sheet was expanded at a speed of 5 mm / s in the X-axis direction and the Y-axis direction with an expansion amount of 200 mm. As a result of the first expanding test, the area of the adhesive sheet for testing was expanded to 381% compared to before expanding. In this example, this expansion test having an expansion amount of 200 mm may be referred to as a first expansion test. The adhesive sheets of Examples 5 and 6 could not be expanded.
 第1エキスパンド試験によって試験用粘着シートを拡張した後、リングフレームにより試験用粘着シート200の拡張状態を保持した。
 拡張状態を保持した状態で、チップ同士の位置関係に基づいて標準偏差を算出することにより、ばらつきを評価した。試験用粘着シート上のチップの位置は、CNC画像測定機(株式会社ミツトヨ製、製品名「Vision ACCEL」)を用いて測定した。標準偏差は、JMP社製のデータ分析ソフトウェアJMP13を用いて算出した。ばらつきの評価基準は、次のように設定した。本実施例においては、評価A又は評価Bを合格と判定した。
 ・ばらつきの評価基準
  評価A:標準偏差が100μm以下であった。
  評価B:標準偏差が200μm以下であった。
  評価C:標準偏差が201μm以上であった。
After expanding the test pressure-sensitive adhesive sheet by the first expanding test, the expanded state of the test pressure-sensitive adhesive sheet 200 was maintained by a ring frame.
The variation was evaluated by calculating the standard deviation based on the positional relationship between the chips while maintaining the expanded state. The position of the chip on the test adhesive sheet was measured using a CNC image measuring machine (manufactured by Mitutoyo Co., Ltd., product name "Vision ACCEL"). The standard deviation was calculated using JMP13, a data analysis software manufactured by JMP. The evaluation criteria for variation were set as follows. In this example, evaluation A or evaluation B was judged to be acceptable.
-Evaluation criteria for variation Evaluation A: The standard deviation was 100 μm or less.
Evaluation B: The standard deviation was 200 μm or less.
Evaluation C: The standard deviation was 201 μm or more.
(伸度100%時の粘着剤浮きの評価方法)
 エネルギー線硬化性樹脂が硬化された硬化部を含むように、粘着シートの長尺方向に沿って長さ150mm、幅25mmのサイズに切り出した第三の試験片を作製した。当該第三の試験片を、引張試験機の一対のチャックで把持した。引張試験機としては、株式会社島津製作所製のオートグラフAG-ISを用いた。第三の試験片を把持したチャック間距離を100mmとした。速度5mm/secで、チャック間距離が200mmになるまで伸長させた際に、粘着剤層の硬化部が基材との界面で剥がれて、浮きが発生しているか目視で確認した。伸度100%時の粘着剤浮きの評価基準は、次のように設定した。本実施例においては、評価Aを合格と判定した。
・伸度100%時の粘着剤浮きの評価基準
  評価A:伸度100%時に粘着剤層の硬化部の浮きが発生しなかった
  評価B:伸度100%時に粘着剤層の硬化部の浮きが1箇所以上発生した
(Evaluation method of adhesive floating when elongation is 100%)
A third test piece cut out to a size of 150 mm in length and 25 mm in width along the elongated direction of the pressure-sensitive adhesive sheet was prepared so as to include the cured portion in which the energy ray-curable resin was cured. The third test piece was gripped by a pair of chucks of a tensile tester. As the tensile tester, Autograph AG-IS manufactured by Shimadzu Corporation was used. The distance between the chucks holding the third test piece was set to 100 mm. When the adhesive layer was stretched at a speed of 5 mm / sec until the distance between the chucks reached 200 mm, it was visually confirmed whether the cured portion of the pressure-sensitive adhesive layer was peeled off at the interface with the base material and floating was generated. The evaluation criteria for the adhesive floating when the elongation was 100% were set as follows. In this embodiment, the evaluation A was judged to be acceptable.
-Evaluation criteria for adhesive floating at 100% elongation Evaluation A: No floating of the hardened part of the adhesive layer occurred at 100% elongation Evaluation B: Lifting of the hardened part of the adhesive layer at 100% elongation Occurred in one or more places
(面積拡張性の評価方法)
 前述の第1エキスパンド試験の際に、粘着剤層の硬化部が基材との界面で剥がれて、浮きが発生しているか目視で確認した。面積拡張性の評価基準は、次のように設定した。本実施例においては、評価Aを合格と判定した。実施例5及び実施例6の粘着シートは、拡張できなかったため、評価できなかった。
 ・面積拡張性の評価基準
  評価A:第1エキスパンド試験の際に粘着剤層の硬化部の浮きが発生しなかった。
  評価B:第1エキスパンド試験の際に粘着剤層の硬化部の浮きが1箇所以上発生した。
(Evaluation method of area expandability)
At the time of the above-mentioned first expansion test, it was visually confirmed whether the cured portion of the pressure-sensitive adhesive layer was peeled off at the interface with the base material and the floating was generated. The evaluation criteria for area expandability were set as follows. In this embodiment, the evaluation A was judged to be acceptable. The adhesive sheets of Examples 5 and 6 could not be evaluated because they could not be expanded.
-Evaluation Criteria for Area Expandability Evaluation A: No floating of the cured portion of the pressure-sensitive adhesive layer occurred during the first expansion test.
Evaluation B: During the first expanding test, one or more floating portions of the cured portion of the pressure-sensitive adhesive layer occurred.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例2~6に係る粘着シートは、幅方向両端部に硬化部を有していたため、粘着剤の染み出しを抑制できた。また、実施例2及び実施例3に係る粘着シートにおいては、伸度100%時及び第1エキスパンド試験の際の粘着剤の浮きが発生しなかった。実施例2及び実施例3に係る粘着シートの硬化部は、出力が40%~50%程度のUV照射によって形成されており、当該硬化部の硬化度が適切に制御されていたためと考えられる。 Since the adhesive sheets according to Examples 2 to 6 had hardened portions at both ends in the width direction, the seepage of the adhesive could be suppressed. Further, in the pressure-sensitive adhesive sheets according to Examples 2 and 3, the adhesive did not float when the elongation was 100% and during the first expanding test. It is probable that the cured portion of the pressure-sensitive adhesive sheet according to Examples 2 and 3 was formed by UV irradiation having an output of about 40% to 50%, and the degree of curing of the cured portion was appropriately controlled.
 1…粘着シート、10…基材、20… 粘着剤層、CP1…第一の半導体チップ、CP2…第二の半導体チップ。 1 ... Adhesive sheet, 10 ... Base material, 20 ... Adhesive layer, CP1 ... First semiconductor chip, CP2 ... Second semiconductor chip.

Claims (12)

  1.  粘着シートであって、
     基材と、粘着剤層と、を有し、
     前記粘着剤層は、エネルギー線硬化性樹脂を含有し、
     前記粘着剤層は、前記粘着剤層の幅方向両端部における前記エネルギー線硬化性樹脂が硬化された硬化部と、前記エネルギー線硬化性樹脂が硬化されていない未硬化部と、を有し、
     前記未硬化部に対応する領域の前記粘着シートから幅25mmの第一の試験片を作製して、前記第一の試験片の長手方向のそれぞれの両端における前記基材及び前記粘着剤層の前記未硬化部を掴み具で把持して引張試験機による0.5mm引張り時の引張強度FA1と、
     縦寸法が45mmであり、横寸法が35mmであり、厚さ寸法が0.625mmである第一の半導体チップ及び第二の半導体チップを前記第一の半導体チップ及び第二の半導体チップの縦寸法が45mmである辺を、前記第一の試験片の長手方向に沿わせ、前記第一の半導体チップと前記第二の半導体チップとの間隔を35μmとして、前記第一の試験片の長手方向の一端側の前記未硬化部の粘着剤層に前記第一の半導体チップを貼着し、前記第一の試験片の長手方向の他端側の前記未硬化部の粘着剤層に前記第二の半導体チップを貼着して第二の試験片を作製して、前記第二の試験片の長手方向のそれぞれの両端における前記基材、前記未硬化部の粘着剤層及び前記半導体チップを掴み具で把持して引張試験機による0.5mm引張り時の引張強度FB1と、が、下記数式(数1A)の関係を満たす、
     粘着シート。
       FB1/FA1≦30 …(数1A)
    Adhesive sheet
    It has a base material and an adhesive layer,
    The pressure-sensitive adhesive layer contains an energy ray-curable resin and contains
    The pressure-sensitive adhesive layer has a cured portion in which the energy ray-curable resin is cured at both ends in the width direction of the pressure-sensitive adhesive layer, and an uncured portion in which the energy ray-curable resin is not cured.
    A first test piece having a width of 25 mm is prepared from the pressure-sensitive adhesive sheet in the region corresponding to the uncured portion, and the base material and the pressure-sensitive adhesive layer at both ends of the first test piece in the longitudinal direction. and the tensile strength F A1 when pulling 0.5mm by gripping to a tensile tester uncured portions in the jaws,
    The first semiconductor chip and the second semiconductor chip having a vertical dimension of 45 mm, a horizontal dimension of 35 mm, and a thickness dimension of 0.625 mm are the vertical dimensions of the first semiconductor chip and the second semiconductor chip. Is 45 mm along the longitudinal direction of the first test piece, and the distance between the first semiconductor chip and the second semiconductor chip is 35 μm, in the longitudinal direction of the first test piece. The first semiconductor chip is attached to the pressure-sensitive adhesive layer of the uncured portion on one end side, and the second semiconductor chip is attached to the pressure-sensitive adhesive layer of the uncured portion on the other end side in the longitudinal direction of the first test piece. A semiconductor chip is attached to prepare a second test piece, and the base material, the pressure-sensitive adhesive layer of the uncured portion, and the semiconductor chip at both ends in the longitudinal direction of the second test piece are gripped. in the tensile strength F B1 when gripped by the tensile 0.5mm by a tensile tester, but satisfies the following equation (equation 1A),
    Adhesive sheet.
    F B1 / F A1 ≤ 30 ... (Equation 1A)
  2.  前記エネルギー線硬化性樹脂が硬化された硬化部を含むように、前記粘着シートの長尺方向に沿って長さ150mm、幅25mmのサイズに切り出した第三の試験片を作製し、当該第三の試験片をチャック間距離を100mmとして一対のチャックで把持し、速度5mm/secで、チャック間距離が200mmになるまで伸長させた際、前記硬化部と前記基材との界面に浮きが発生しない、
     請求項1に記載の粘着シート。
    A third test piece cut out to a size of 150 mm in length and 25 mm in width along the elongated direction of the pressure-sensitive adhesive sheet was prepared so as to include a cured portion in which the energy ray-curable resin was cured, and the third test piece was prepared. When the test piece of No. 1 was gripped by a pair of chucks with a distance between chucks of 100 mm and extended at a speed of 5 mm / sec until the distance between chucks reached 200 mm, floating occurred at the interface between the cured portion and the base material. do not,
    The adhesive sheet according to claim 1.
  3.  請求項1又は請求項2に記載の粘着シートにおいて、
     前記粘着シートを、第一方向、前記第一方向とは反対方向である第二方向、前記第一方向に対して垂直方向である第三方向、及び前記第三方向とは反対方向である第四方向に伸長させて、伸長前の前記粘着シートの面積S1と、伸長後の前記粘着シートの面積S2との面積比(S2/S1)×100が381%であるときに、前記粘着剤層の前記硬化部が前記基材との界面で剥がれない、
     粘着シート。
    In the adhesive sheet according to claim 1 or 2.
    The adhesive sheet is placed in the first direction, the second direction opposite to the first direction, the third direction perpendicular to the first direction, and the direction opposite to the third direction. When the area ratio (S2 / S1) × 100 of the area S1 of the pressure-sensitive adhesive sheet before stretching and the area S2 of the pressure-sensitive adhesive sheet after stretching is 381%, the pressure-sensitive adhesive layer is stretched in four directions. The cured portion of the above does not peel off at the interface with the base material.
    Adhesive sheet.
  4.  請求項1から請求項3のいずれか一項に記載の粘着シートにおいて、
     前記引張強度FA1と、前記引張強度FB1と、が、下記数式(数1B)の関係を満たす、
     粘着シート。
       1≦FB1/FA1≦30 …(数1B)
    In the adhesive sheet according to any one of claims 1 to 3,
    The tensile strength F A1 and the tensile strength F B1 satisfy the relationship of the following mathematical formula (Equation 1B).
    Adhesive sheet.
    1 ≤ F B1 / F A1 ≤ 30 ... (Equation 1B)
  5.  請求項1から請求項4のいずれか一項に記載の粘着シートにおいて、
     前記第一の試験片のヤング率YA1と、前記第二の試験片のヤング率YB1と、が、下記数式(数2A)の関係を満たす、
     粘着シート。
       YB1/YA1≦19 …(数2A)
    In the adhesive sheet according to any one of claims 1 to 4.
    The Young's modulus Y A1 of the first test piece and the Young 's modulus Y B1 of the second test piece satisfy the relationship of the following mathematical formula (Equation 2A).
    Adhesive sheet.
    Y B1 / Y A1 ≤ 19 ... (Equation 2A)
  6.  請求項1から請求項5のいずれか一項に記載の粘着シートにおいて、
     前記粘着剤層は、アクリル系粘着剤を含有する、
     粘着シート。
    In the adhesive sheet according to any one of claims 1 to 5.
    The pressure-sensitive adhesive layer contains an acrylic pressure-sensitive adhesive.
    Adhesive sheet.
  7.  請求項1から請求項6のいずれか一項に記載の粘着シートにおいて、
     前記基材は、ウレタン系エラストマーを含有する、
     粘着シート。
    In the adhesive sheet according to any one of claims 1 to 6,
    The base material contains a urethane-based elastomer.
    Adhesive sheet.
  8.  半導体装置の製造工程中、複数の半導体チップ同士の間隔を拡張するためのエキスパンド工程に使用される、
     請求項1から請求項7のいずれか一項に記載の粘着シート。
    Used in the expanding process for expanding the distance between multiple semiconductor chips during the manufacturing process of semiconductor devices.
    The adhesive sheet according to any one of claims 1 to 7.
  9.  請求項1から請求項8のいずれか一項に記載の粘着シートにおいて、
     前記粘着シートは、長尺状であり、ロール状に巻き取られている、
     粘着シート。
    In the adhesive sheet according to any one of claims 1 to 8.
    The adhesive sheet has a long shape and is wound in a roll shape.
    Adhesive sheet.
  10.  粘着シートの製造方法であって、
     基材の上に、エネルギー線硬化性樹脂を含有する粘着剤組成物を塗布して、粘着剤層を形成する工程と、
     前記粘着剤層の幅方向の両端部にエネルギー線を照射して、前記エネルギー線硬化性樹脂を硬化させて硬化部を形成する工程と、
     前記エネルギー線硬化性樹脂を硬化させていない未硬化部の幅方向両端部よりも外側に前記硬化部の全部を残すか、又は前記硬化部の一部を残して、前記硬化部よりも外側を裁断する工程と、を有する、
     粘着シートの製造方法。
    It is a method of manufacturing an adhesive sheet.
    A step of applying a pressure-sensitive adhesive composition containing an energy ray-curable resin onto a base material to form a pressure-sensitive adhesive layer,
    A step of irradiating both ends of the pressure-sensitive adhesive layer in the width direction with energy rays to cure the energy ray-curable resin to form a cured portion.
    The entire cured portion is left outside the both ends in the width direction of the uncured portion in which the energy ray-curable resin is not cured, or a part of the cured portion is left outside the cured portion. Has a cutting process,
    Adhesive sheet manufacturing method.
  11.  請求項10に記載の粘着シートの製造方法において、
     前記未硬化部の幅方向両端部よりも外側に残す前記硬化部の幅は、それぞれ独立に、0.5mm以上である、
     粘着シートの製造方法。
    In the method for manufacturing an adhesive sheet according to claim 10,
    The width of the cured portion left outside the both ends in the width direction of the uncured portion is 0.5 mm or more independently.
    Adhesive sheet manufacturing method.
  12.  請求項10又は請求項11に記載の粘着シートの製造方法において、
     前記硬化部よりも外側を裁断する工程の後に、裁断後の粘着シートをロール状に巻き取る工程をさらに有する、
     粘着シートの製造方法。
    In the method for manufacturing an adhesive sheet according to claim 10 or 11.
    After the step of cutting the outside of the cured portion, there is further a step of winding the cut adhesive sheet into a roll shape.
    Adhesive sheet manufacturing method.
PCT/JP2020/020327 2019-10-04 2020-05-22 Adhesive sheet and method for producing adhesive sheet WO2021065070A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021551128A JPWO2021065070A1 (en) 2019-10-04 2020-05-22
KR1020227011032A KR20220075341A (en) 2019-10-04 2020-05-22 Adhesive sheet and manufacturing method of adhesive sheet
CN202080069927.4A CN114502679A (en) 2019-10-04 2020-05-22 Adhesive sheet and method for producing adhesive sheet
TW109119420A TW202122533A (en) 2019-10-04 2020-06-10 Pressure-sensitive-adhesive sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019183566 2019-10-04
JP2019-183566 2019-10-04

Publications (1)

Publication Number Publication Date
WO2021065070A1 true WO2021065070A1 (en) 2021-04-08

Family

ID=75337973

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/JP2020/020328 WO2021065071A1 (en) 2019-10-04 2020-05-22 Pressure-sensitive-adhesive sheet
PCT/JP2020/020331 WO2021065074A1 (en) 2019-10-04 2020-05-22 Adhesive sheet
PCT/JP2020/020327 WO2021065070A1 (en) 2019-10-04 2020-05-22 Adhesive sheet and method for producing adhesive sheet
PCT/JP2020/020330 WO2021065073A1 (en) 2019-10-04 2020-05-22 Pressure-sensitive adhesive sheet
PCT/JP2020/020329 WO2021065072A1 (en) 2019-10-04 2020-05-22 Adhesive sheet

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/020328 WO2021065071A1 (en) 2019-10-04 2020-05-22 Pressure-sensitive-adhesive sheet
PCT/JP2020/020331 WO2021065074A1 (en) 2019-10-04 2020-05-22 Adhesive sheet

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/020330 WO2021065073A1 (en) 2019-10-04 2020-05-22 Pressure-sensitive adhesive sheet
PCT/JP2020/020329 WO2021065072A1 (en) 2019-10-04 2020-05-22 Adhesive sheet

Country Status (5)

Country Link
JP (5) JPWO2021065072A1 (en)
KR (3) KR20220080093A (en)
CN (3) CN114514295B (en)
TW (5) TW202116947A (en)
WO (5) WO2021065071A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7188658B1 (en) * 2021-09-27 2022-12-13 昭和電工マテリアルズ株式会社 Semiconductor device manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311469A (en) * 1996-05-21 1997-12-02 Nitto Denko Corp Adhesive sheets for removing resist and method for removing resist
WO2012124389A1 (en) * 2011-03-17 2012-09-20 リンテック株式会社 Energy-ray-curable adhesive agent and adhesive sheet
WO2018105413A1 (en) * 2016-12-07 2018-06-14 三菱ケミカル株式会社 Pressure-sensitive adhesive sheet and production method therefor
WO2018181511A1 (en) * 2017-03-31 2018-10-04 リンテック株式会社 Method for delaminating adhesive sheet
JP2018159014A (en) * 2017-03-23 2018-10-11 リンテック株式会社 Adhesive film and method for producing the same
WO2019172219A1 (en) * 2018-03-07 2019-09-12 リンテック株式会社 Adhesive sheet
WO2019181732A1 (en) * 2018-03-20 2019-09-26 リンテック株式会社 Adhesive tape, and method for producing semiconductor device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152072A (en) * 2004-11-26 2006-06-15 Teijin Chem Ltd Anti-static film for producing semiconductor and method for producing the same
JP2009064975A (en) * 2007-09-06 2009-03-26 Nitto Denko Corp Dicing adhesive sheet and dicing method
JP5069662B2 (en) * 2007-11-12 2012-11-07 リンテック株式会社 Adhesive sheet
WO2010058646A1 (en) 2008-11-21 2010-05-27 インターナショナル・ビジネス・マシーンズ・コーポレーション Semiconductor package and method for manufacturing same
JP2010229342A (en) * 2009-03-27 2010-10-14 Lintec Corp Adhesive for optical use, adhesive sheet for optical use, and optical member with adhesive
JP2014043548A (en) * 2012-07-31 2014-03-13 Nitto Denko Corp Adhesive composition, adhesive layer, adhesive sheet and optical film
JP6207192B2 (en) * 2013-03-25 2017-10-04 リンテック株式会社 Adhesive sheet for semiconductor processing
JP6377322B2 (en) * 2013-05-30 2018-08-22 住友化学株式会社 Optical film laminate and composite polarizing plate using the same
MY176995A (en) * 2013-07-05 2020-08-31 Lintec Corp Dicing sheet
JP6424205B2 (en) * 2014-03-03 2018-11-14 リンテック株式会社 Semiconductor-related member processing sheet and chip manufacturing method using the sheet
JP6156443B2 (en) * 2014-08-13 2017-07-05 Jsr株式会社 LAMINATE AND SUBSTRATE PROCESSING METHOD
JP6656222B2 (en) * 2015-03-03 2020-03-04 リンテック株式会社 Semiconductor processing sheet
WO2018003312A1 (en) 2016-06-30 2018-01-04 リンテック株式会社 Semiconductor processing sheet
JP6350845B1 (en) * 2018-01-29 2018-07-04 サイデン化学株式会社 Pressure-sensitive adhesive composition, pressure-sensitive adhesive sheet, and method for producing pressure-sensitive adhesive
JP2018115331A (en) * 2018-03-20 2018-07-26 リンテック株式会社 Pressure-sensitive adhesive tape and production method of semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311469A (en) * 1996-05-21 1997-12-02 Nitto Denko Corp Adhesive sheets for removing resist and method for removing resist
WO2012124389A1 (en) * 2011-03-17 2012-09-20 リンテック株式会社 Energy-ray-curable adhesive agent and adhesive sheet
WO2018105413A1 (en) * 2016-12-07 2018-06-14 三菱ケミカル株式会社 Pressure-sensitive adhesive sheet and production method therefor
JP2018159014A (en) * 2017-03-23 2018-10-11 リンテック株式会社 Adhesive film and method for producing the same
WO2018181511A1 (en) * 2017-03-31 2018-10-04 リンテック株式会社 Method for delaminating adhesive sheet
WO2019172219A1 (en) * 2018-03-07 2019-09-12 リンテック株式会社 Adhesive sheet
WO2019181732A1 (en) * 2018-03-20 2019-09-26 リンテック株式会社 Adhesive tape, and method for producing semiconductor device

Also Published As

Publication number Publication date
KR20220080093A (en) 2022-06-14
JPWO2021065074A1 (en) 2021-04-08
TW202122532A (en) 2021-06-16
CN114514296A (en) 2022-05-17
JPWO2021065071A1 (en) 2021-04-08
TW202116947A (en) 2021-05-01
JPWO2021065072A1 (en) 2021-04-08
WO2021065072A1 (en) 2021-04-08
CN114514295A (en) 2022-05-17
TW202115214A (en) 2021-04-16
JPWO2021065070A1 (en) 2021-04-08
CN114514296B (en) 2024-03-29
CN114502679A (en) 2022-05-13
TW202122534A (en) 2021-06-16
WO2021065073A1 (en) 2021-04-08
KR20220075341A (en) 2022-06-08
WO2021065071A1 (en) 2021-04-08
CN114514295B (en) 2024-02-06
WO2021065074A1 (en) 2021-04-08
KR20220080092A (en) 2022-06-14
JPWO2021065073A1 (en) 2021-04-08
TW202122533A (en) 2021-06-16

Similar Documents

Publication Publication Date Title
TWI782802B (en) Sheet for semiconductor processing and method for manufacturing semiconductor device
JP5603757B2 (en) Laser dicing adhesive sheet and method for manufacturing semiconductor device
KR101215105B1 (en) An adhesive sheet for a stealth dicing and a production method of a semiconductor wafer device
JP7256788B2 (en) Adhesive sheet
WO2015146254A1 (en) Laminate for resin film formation sheet
WO2020003919A1 (en) Semiconductor processing adhesive tape and method of manufacturing semiconductor device
JP7256787B2 (en) Adhesive sheet
WO2021065070A1 (en) Adhesive sheet and method for producing adhesive sheet
TW202031856A (en) Workpiece processing sheet
JP7256786B2 (en) Adhesive sheet
JP7267990B2 (en) EXPANDING METHOD, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, AND ADHESIVE SHEET
WO2020158770A1 (en) Expansion method and semiconductor device production method
TW202344393A (en) Adhesive sheet and manufacturing method of the same characterized by suppressing the occurrence of cutting chips and adhesive retention
JP2023148352A (en) Adhesive sheet and method for producing adhesive sheet
TW202405108A (en) Adhesive sheet, and manufacturing method of adhesive sheet
TW202336852A (en) Method for manufacturing protective sheet for workpiece processing and workpiece individualized article wherein protective sheet for workpiece processing includes a buffer layer whose stress relaxation rate at 23 DEG C is 50% or less, and whose Young&#39;s modulus at 23 DEG C is 400 MPa or more

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551128

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20873069

Country of ref document: EP

Kind code of ref document: A1