WO2015146254A1 - Laminate for resin film formation sheet - Google Patents

Laminate for resin film formation sheet Download PDF

Info

Publication number
WO2015146254A1
WO2015146254A1 PCT/JP2015/051660 JP2015051660W WO2015146254A1 WO 2015146254 A1 WO2015146254 A1 WO 2015146254A1 JP 2015051660 W JP2015051660 W JP 2015051660W WO 2015146254 A1 WO2015146254 A1 WO 2015146254A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
sheet
film forming
layer
pressure
Prior art date
Application number
PCT/JP2015/051660
Other languages
French (fr)
Japanese (ja)
Inventor
泰紀 柄澤
正憲 山岸
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to KR1020167011744A priority Critical patent/KR20160137506A/en
Priority to CN201580002966.1A priority patent/CN105793035B/en
Priority to JP2016510079A priority patent/JP6600297B2/en
Priority to KR1020217021516A priority patent/KR102544301B1/en
Publication of WO2015146254A1 publication Critical patent/WO2015146254A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/40Adhesives in the form of films or foils characterised by release liners
    • C09J7/403Adhesives in the form of films or foils characterised by release liners characterised by the structure of the release feature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • H01L2221/68386Separation by peeling
    • H01L2221/6839Separation by peeling using peeling wedge or knife or bar

Definitions

  • the present invention relates to a resin film forming sheet laminate in which the resin film forming sheet can be easily attached to a workpiece.
  • chip a semiconductor chip having electrodes such as bumps on a circuit surface
  • the electrodes are bonded to a substrate.
  • the surface (chip back surface) opposite to the circuit surface of the chip may be exposed.
  • the exposed chip back surface may be protected by an organic film.
  • a chip having a protective film made of an organic film is obtained by applying a liquid resin to the back surface of a wafer by spin coating, drying and curing, and cutting the protective film together with the wafer.
  • the thickness accuracy of the protective film formed in this way is not sufficient, the product yield may be lowered.
  • a protective film forming sheet in which a film for forming a semiconductor back surface protective film is laminated on an adhesive layer of an adhesive sheet having an adhesive layer may be used.
  • a semiconductor wafer manufactured in a large diameter state may be cut and separated (diced) into element pieces (semiconductor chips) and then transferred to the next bonding process.
  • the semiconductor wafer is subjected to dicing, cleaning, drying, expanding, and pick-up processes in a state of being adhered to the adhesive sheet in advance, and then transferred to the next bonding process.
  • various dicing / die bonding adhesive sheets having both a wafer fixing function and a die bonding function have been proposed in order to simplify the pick-up process and the bonding process.
  • the adhesive sheet by using the adhesive sheet, it is possible to obtain a semiconductor chip having an adhesive layer attached to the back surface, and direct die bonding such as between an organic substrate and a chip, between a lead frame and a chip, and between a chip and a chip is possible. It becomes.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-350520 describes an adhesive sheet having a structure in which a release substrate, an adhesive layer, an adhesive layer, and a substrate film are sequentially laminated as an adhesive sheet for dicing and die bonding. ing.
  • a resin film forming sheet having a resin film forming layer such as a film for forming a semiconductor back surface protective film or an adhesive layer is attached to a workpiece such as a semiconductor wafer.
  • the resin film forming sheet is used when the end of the resin film forming sheet is not smoothly fed out from the release substrate (release sheet).
  • release sheet Sometimes it was impossible. In other words, the drawn-out resin film forming sheet itself is bent and adhered in the overlapping direction, or the resin film-forming sheet fed out from the release sheet is in close contact (transferred) to the release sheet, or the resin film-forming sheet is In some cases, the sheet could not be fed out from the release sheet.
  • an object of the present invention is to provide a resin film-forming sheet laminate in which the resin film-forming sheet can be easily fed out from the release sheet and can be stably attached to a workpiece.
  • the present inventors have controlled the above-mentioned object by controlling the peeling force of the release sheet and the adhesive force against SUS at the end (outer peripheral part) of the resin film-forming sheet. It was found that the above can be achieved, and the present invention has been completed.
  • the present invention includes the following gist.
  • a release sheet is laminated on a resin film forming layer of a resin film forming sheet including a support sheet and a resin film forming layer, The peeling force of the release sheet at the outer periphery of the resin film forming sheet is 0.05 N / 25 mm or less, A resin film-forming sheet laminate in which the adhesive strength to SUS is 1.0 N / 25 mm or less at the outer peripheral portion of the resin film-forming sheet.
  • a cut portion is formed along the outer periphery of the resin film forming sheet from the surface on the resin film forming layer side,
  • a cut portion is formed along the outer periphery of the resin film forming sheet from the surface on the resin film forming layer side,
  • the resin film-forming sheet laminate of the present invention when the resin film-forming sheet is fed out from the release sheet, the drawn-out resin film-forming sheet itself is bent and adhered in the overlapping direction, or the resin film-forming sheet Can be prevented from being transferred to the release sheet.
  • FIG. 4 is a series of process diagrams for performing an operation of attaching a resin film forming sheet 10 including a support sheet 11 and a resin film forming layer 12 to a semiconductor wafer 32.
  • FIG. 4 is a series of process diagrams for performing an operation of attaching a resin film forming sheet 10 including a support sheet 11 and a resin film forming layer 12 to a semiconductor wafer 32.
  • FIG. 4 is a series of process diagrams for performing an operation of attaching a resin film forming sheet 10 including a support sheet 11 and a resin film forming layer 12 to a semiconductor wafer 32.
  • FIG. 4 is a series of process diagrams for performing an operation of attaching a resin film forming sheet 10 including a support sheet 11 and a resin film forming layer 12 to a semiconductor wafer 32.
  • FIG. 4 is a series of process diagrams for performing an operation of attaching a resin film forming sheet 10 including a support sheet 11 and a resin film forming layer 12 to a semiconductor wafer 32.
  • seat laminated body for resin film formation which concerns on this invention is shown.
  • FIG. 2 shows a schematic cross-sectional view (the resin film forming sheet of the first embodiment) when the resin film forming sheet shown in FIG. 1 is cut along the line AA.
  • seat for resin film formation of a 2nd aspect is shown.
  • seat for resin film formation of a 3rd aspect is shown.
  • seat for resin film formation of a 4th aspect is shown.
  • FIG. 11 is a series of process diagrams for performing a conventional operation of attaching a laminated body including a support sheet and a resin film forming layer to a semiconductor wafer 32.
  • the sheet laminate for resin film formation according to the present invention is an embodiment in which a release sheet is laminated on a resin film formation layer of a resin film formation sheet including a support sheet and a resin film formation layer.
  • the peeling force of the release sheet at the outer periphery of the resin film formation sheet is 0.05 N / 25 mm or less
  • the adhesion to SUS at the outer periphery of the resin film formation sheet The force is 1.0 N / 25 mm or less.
  • the laminated sheet for resin film formation according to the present invention it becomes easy to feed out the sheet 10 for resin film formation from the release sheet 13 even in the workpiece pasting step shown in FIG. Since the sticking to the workpiece 32 can be performed stably, the above problem can be solved.
  • the release sheet 13 has a cut portion along the outer periphery of the resin film forming sheet 10 from the surface on the resin film forming layer side. D1 is formed, and the cut depth d1 of the cut portion D1 is preferably more than 1/2 of the thickness of the release sheet, and more preferably 3/5 to 4/5.
  • the cut portion D1 having a predetermined depth, it becomes easy to create a peeling start point at the interface between the resin film forming sheet 10 and the peeling sheet 13.
  • the feeding property of the resin film forming sheet is improved.
  • the resin film forming sheet can be reliably cut into a predetermined shape in the manufacturing process of the resin film forming sheet laminate. Moreover, by forming the cut portion D1 having a predetermined depth in the release sheet, for example, even when the thickness of the release sheet is 50 ⁇ m or more, the resin film-forming sheet laminate can be easily wound into a roll shape, Excellent storage during storage.
  • stress is applied to the peeling sheet in the longitudinal direction (flow direction). If the cut portion D1 is not formed in the release sheet, the stress may propagate to the resin film forming layer and the resin film forming layer may extend in the flow direction. The deformation (elongation) of the resin film forming layer reduces the thickness accuracy. As a result, the reliability of a semiconductor device obtained using the resin film forming layer may be reduced. By forming a cut portion having a predetermined depth in the release sheet, stress applied to the resin film forming layer can be relaxed, and deformation of the resin film forming layer can be suppressed.
  • the release sheet becomes stronger and tends to be difficult to bend.
  • the stiffness of the resin film-forming sheet tends to be weaker than that of the release sheet. Therefore, in the workpiece pasting step, the peel plate 64 shown in FIG. 1 is applied to the release sheet 13 of the resin film forming sheet laminate 100 and the release sheet 13 is not bent at an acute angle toward the peel plate 64 side. It may be difficult to create a peeling start point at the interface between the sheet 10 and the release sheet 13, and the resin film forming sheet may not be fed out.
  • a peeling sheet having a thickness of 50 ⁇ m or more is difficult to bend to the peel plate side at an acute angle due to its thickness even when a peel plate is used. As shown in FIG. Is difficult.
  • the release sheet can be used even when the thickness of the release sheet is 50 ⁇ m or more.
  • the resin film forming sheet 10 can be easily fed out from the sheet 13, and the resin film forming sheet can be stably attached to the workpiece.
  • the peeling force of the release sheet at the outer peripheral portion of the resin film forming sheet is preferably 0.001 to 0.05 N / 25 mm, more preferably 0.01 to 0.04 N / 25 mm.
  • the adhesive strength against SUS at the outer periphery of the forming sheet is preferably 0.01 to 1.0 N / 25 mm, more preferably 0.1 to 0.8 N / 25 mm.
  • the cut depth d1 of the cut portion D1 is preferably more than 25 ⁇ m. Specifically, when the thickness of the release sheet is 50 ⁇ m, the cut depth d1 of the cut portion D1 is preferably more than 25 ⁇ m, more preferably 30 to 40 ⁇ m, and the thickness of the release sheet is 100 ⁇ m. The cut depth d1 of the cut portion D1 is preferably more than 50 ⁇ m, more preferably 60 to 80 ⁇ m.
  • the cutting depth in this invention measures the depth of the thickness direction of the peeling sheet of the notch
  • Embodiment of Resin Film Forming Sheet Laminate Support sheet 11 and resin film forming layer 12 are cut into a desired planar shape and partially laminated on release sheet 13.
  • the desired planar shape in the support sheet 11 and the resin film forming layer 12 is a state in which the support sheet 11 and the resin film forming layer 12 are partially laminated on the release sheet 13 as shown in FIG. If it becomes the shape used as it, it will not specifically limit.
  • the planar shape of the support sheet 11 is preferably a shape that can be easily attached to a jig such as a ring frame used in the manufacturing process of a semiconductor device to be described later.
  • a circular shape, a substantially circular shape, a rectangular shape, a pentagonal shape, a hexagonal shape examples thereof include a rectangular shape, an octagonal shape, and a wafer shape (a shape in which a part of the outer periphery of the circle is a straight line).
  • a circular shape or a wafer shape is preferable.
  • the planar shape of the resin film forming layer 12 is preferably a shape that matches the planar shape of a workpiece such as a semiconductor wafer.
  • a circular shape, a substantially circular shape, a quadrangular shape, a pentagonal shape, a hexagonal shape, an octagonal shape, a wafer shape It is preferable that the shape be easy to stick to the workpiece, such as (a shape in which a part of the outer periphery of the circle is a straight line).
  • a circular shape or a wafer shape is preferable in order to reduce useless portions other than the portion attached to the workpiece.
  • FIG. 2 is a plan view showing a first embodiment of the resin film-forming sheet laminate 100 according to the present invention
  • FIG. 3 shows the resin film-forming sheet laminate 100 shown in FIG. It is a schematic sectional drawing at the time of cutting along.
  • the diameter of the support sheet 11 is larger than the diameter of the resin film forming layer 12.
  • the support sheet 11 is a pressure-sensitive adhesive sheet composed of a base material 11a and a pressure-sensitive adhesive layer 11b.
  • a cut portion D ⁇ b> 2 may be formed along the outer periphery of the resin film forming layer 12 in addition to the cut portion D ⁇ b> 1.
  • the depth of cut d2 of the cut portion D2 is not particularly limited, and may be the same as, larger or smaller than the depth of cut d1 of the cut portion D1, but the thickness of the release sheet It is preferably more than 1/2 of the above, more preferably 3/5 to 4/5. Moreover, when the thickness of a peeling sheet is 50 micrometers or more, it is preferable that the cutting depth d2 of the cutting part D2 is more than 25 micrometers. Specifically, when the thickness of the release sheet is 50 ⁇ m, the cut depth d2 of the cut portion D2 is preferably more than 25 ⁇ m, more preferably 30 to 40 ⁇ m, and the thickness of the release sheet is 100 ⁇ m.
  • the cut depth d2 of the cut portion D2 is preferably more than 50 ⁇ m, more preferably 60 to 80 ⁇ m.
  • the adhesiveness to the release sheet may be increased, and the resin film forming layer may not be fed out in the work pasting process. Even in such a case, by providing the cut portion D2 having a predetermined depth, it is possible to create a peeling start point at the interface between the resin film forming layer 12 and the peeling sheet 13, so that the resin film forming layer 12 Extendability is improved.
  • the cut portion D2 having a predetermined depth, it becomes easy to suppress deformation of the resin film forming layer due to stress applied in the longitudinal direction (flow direction) of the release sheet during the work pasting process.
  • 1st aspect WHEREIN The peeling force of the peeling sheet in the outer peripheral part of the sheet
  • These physical property values in the first aspect can be controlled by adjusting components constituting the pressure-sensitive adhesive layer 11b described later and the thickness of the pressure-sensitive adhesive layer 11b.
  • the said physical-property value in a 1st aspect WHEREIN When an energy-beam curable compound (B) and an energy-beam curable polymer (AB) are included as a component which comprises the adhesive layer 11b, it is before energy beam irradiation. It is a physical property value.
  • FIG. 4 is a schematic cross-sectional view of the resin film forming sheet laminate 100 of the second embodiment.
  • the support sheet 11 and the resin film forming layer 12 in the plan view have the same shape.
  • an adhesive sheet composed of a base material 11a and an adhesive layer 11b may be used as a support sheet, or only the base material 11a may be used as a support sheet.
  • the peeling force of the peeling sheet in the outer peripheral part of the resin film formation sheet or the adhesive force with respect to SUS is a physical-property value measured in the interface of the outer peripheral part of the resin film forming layer 12, and the peeling sheet 13. is there.
  • These physical property values in the second aspect are obtained by using an energy ray curable compound (B) or an energy ray curable polymer (AB) as a component constituting the resin film forming layer, and only on the outer peripheral portion of the resin film forming layer. It can be controlled by means such as irradiation with energy rays.
  • an energy ray shielding layer is provided by printing or the like on the inner peripheral portion of the support sheet, and energy beam irradiation is performed from the support sheet side to the resin film formation layer, or the outer periphery of the resin film formation layer in advance.
  • Examples include a method of irradiating only the part with energy rays and then laminating with a support sheet.
  • FIG. 5 is a schematic cross-sectional view of the resin film forming sheet laminate 100 of the third aspect.
  • the support sheet 11 and the resin film forming layer 12 in the plan view have the same shape.
  • a jig adhesive layer 14 is provided between the release sheet 13 and the resin film forming layer 12 in the outer peripheral portion of the resin film forming sheet 10.
  • a cut portion D ⁇ b> 3 may be formed along the inner periphery of the annular jig adhesive layer 14 in addition to the cut portion D ⁇ b> 1.
  • an adhesive sheet composed of a base material 11a and an adhesive layer 11b may be used as a support sheet, or only the base material 11a may be used as a support sheet.
  • the depth of cut d3 of the cut portion D3 is not particularly limited, and may be the same as, larger or smaller than the depth of cut d1 of the cut portion D1, but the thickness of the release sheet It is preferably more than 1/2 of the above, more preferably 3/5 to 4/5. Moreover, when the thickness of a peeling sheet is 50 micrometers or more, it is preferable that the cutting depth d3 of the cutting part D3 is more than 25 micrometers. Specifically, when the thickness of the release sheet is 50 ⁇ m, the cut depth d3 of the cut portion D3 is preferably more than 25 ⁇ m, more preferably 30 to 40 ⁇ m, and the thickness of the release sheet is 100 ⁇ m.
  • the cut depth d3 of the cut portion D3 is preferably more than 50 ⁇ m, more preferably 60 to 80 ⁇ m.
  • the said physical-property value in a 3rd aspect is an energy-beam irradiating compound (AB) and an energy-beam curable polymer (AB) as a component which comprises a jig
  • FIG. 6 is a schematic cross-sectional view of the resin film forming sheet laminate 100 of the fourth aspect.
  • the diameter of the support sheet 11 is larger than the diameter of the resin film forming layer 12 in plan view.
  • a jig adhesive layer 14 is provided between the release sheet 13 and the support sheet 11 on the outer peripheral portion of the resin film forming sheet.
  • a cut portion D ⁇ b> 2 may be formed along the outer periphery of the resin film forming layer 12 in addition to the cut portion D ⁇ b> 1.
  • a cut portion D3 may be formed in the release sheet 13 along the inner periphery of the annular jig adhesive layer 14.
  • the cut depth d2 of the cut portion D2, the cut depth d3 of the cut portion D3, and the effects resulting from these are as described in the first mode and the third mode.
  • the jig adhesive layer 14 is the same as that in the third aspect, and the configuration thereof will be described later.
  • the pressure-sensitive adhesive sheet composed of the base material 11a and the pressure-sensitive adhesive layer 11b may be used as a support sheet, or only the base material 11a may be used as a support sheet as shown in FIG.
  • seat for resin film formation are a physical-property value measured in the interface of the jig
  • FIG. These physical property values in the fourth aspect can be controlled by adjusting components constituting the jig bonding layer described later and the thickness of the jig bonding layer.
  • the said physical-property value in a 4th aspect WHEREIN When an energy-beam curable compound (B) and an energy-beam curable polymer (AB) are included as a component which comprises a jig
  • a resin film forming sheet laminate according to the present invention is obtained by laminating a release sheet on a resin film forming layer of a resin film forming sheet including a support sheet and a resin film forming layer.
  • the resin film forming sheet may include a jig adhesive layer.
  • seat laminated body for resin film formation is demonstrated.
  • Support sheet examples include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polyethylene naphthalate film, polybutylene terephthalate film, Polyurethane film, ethylene vinyl acetate copolymer film, ionomer resin film, ethylene / (meth) acrylic acid copolymer film, ethylene / (meth) acrylic acid ester copolymer film, polystyrene film, polycarbonate film, polyimide film, fluorine A resin film or the like is used. These crosslinked films are also used. Furthermore, these laminated films may be sufficient.
  • an adhesive sheet composed of a base material 11a and an adhesive layer 11b can be used as the support sheet 11.
  • the resin film forming layer is laminated on the pressure-sensitive adhesive layer provided on the base material.
  • the substrate include the films exemplified as the support sheet.
  • the pressure-sensitive adhesive layer can be formed of various conventionally known pressure-sensitive adhesives.
  • the pressure-sensitive adhesive usually contains a polymer (A).
  • A polymer
  • B energy ray-curable compound
  • the energy ray-curable compound (B) contains an energy ray-polymerizable group and has a function of being polymerized and cured when irradiated with energy rays such as ultraviolet rays and electron beams and reducing the adhesiveness of the pressure-sensitive adhesive.
  • the energy beam polymerizable group in the present invention is a functional group having a polymerizable carbon-carbon double bond, and specific examples thereof include a vinyl group, an allyl group, a (meth) acryloyl group, and the like. (Meth) acryloyl group is mentioned.
  • the energy beam polymerizable group in the present invention does not mean a double bond having no polymerizability because it generates a radical in the presence of a radical and easily causes a polyaddition reaction.
  • each component constituting the energy ray-curable pressure-sensitive adhesive may contain an aromatic ring, but the unsaturated structure of the aromatic ring does not mean the energy ray polymerizable group in the present invention.
  • Such an energy beam curable polymer (AB) has the property of having both a function as a polymer and energy beam curability.
  • the energy ray-curable pressure-sensitive adhesive is not particularly limited, but will be specifically described with an acrylic pressure-sensitive adhesive as an example.
  • the acrylic pressure-sensitive adhesive contains an acrylic polymer (A1) as the polymer (A).
  • the acrylic polymer (A1) a conventionally known acrylic polymer can be used.
  • the weight average molecular weight (Mw) of the acrylic polymer (A1) is preferably 10,000 to 2,000,000, more preferably 100,000 to 1,500,000.
  • the glass transition temperature (Tg) of the acrylic polymer (A1) is preferably in the range of ⁇ 70 to 30 ° C., more preferably in the range of ⁇ 60 to 20 ° C.
  • the monomer constituting the acrylic polymer (A1) includes at least one (meth) acrylic acid ester monomer or a derivative thereof. Specifically, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl ( Alkyl groups such as (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, tetradecyl (meth) acrylate, octadecyl (meth) acrylate and the like have 1 carbon atom Alkyl (meth) acrylate which is -18; cycloalkyl (meth)
  • (meth) acryl may be used in the meaning including both acryl and methacryl.
  • the acrylic polymer (A1) may be cross-linked.
  • the acrylic polymer (A1) before being crosslinked has a crosslinkable functional group such as a hydroxyl group, and in the composition for forming the pressure-sensitive adhesive layer Add a cross-linking agent.
  • the acrylic polymer (A1) is crosslinked by the reaction between the crosslinkable functional group and the functional group of the crosslinking agent. By crosslinking the acrylic polymer (A1), the cohesive force of the pressure-sensitive adhesive layer can be adjusted.
  • crosslinking agent examples include organic polyvalent isocyanate compounds and organic polyvalent imine compounds.
  • organic polyvalent isocyanate compounds include aromatic polyvalent isocyanate compounds, aliphatic polyvalent isocyanate compounds, alicyclic polyvalent isocyanate compounds, trimers of these organic polyvalent isocyanate compounds, and these organic polyvalent isocyanate compounds.
  • examples thereof include terminal isocyanate urethane prepolymers obtained by reacting with a polyol compound.
  • organic polyvalent isocyanate compound examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylene diisocyanate, diphenylmethane-4,4′-.
  • Examples thereof include polyhydric alcohol adducts (for example, trimethylolpropane adduct tolylene diisocyanate).
  • organic polyvalent imine compounds include N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), trimethylolpropane-tri- ⁇ -aziridinylpropionate, tetramethylol. Mention may be made of methane-tri- ⁇ -aziridinylpropionate and N, N′-toluene-2,4-bis (1-aziridinecarboxamide) triethylenemelamine.
  • the crosslinking agent is usually blended at a ratio of 0.01 to 20 parts by weight, preferably 0.1 to 15 parts by weight, more preferably 0.5 to 12 parts by weight with respect to 100 parts by weight of the acrylic polymer before crosslinking. Is done.
  • the blending amount of the crosslinking agent is increased, the above-described peeling force and adhesive strength are lowered, and when the blending amount of the crosslinking agent is decreased, the peeling force and the tackiness tend to increase.
  • the content of the component constituting the pressure-sensitive adhesive layer is determined based on the content of the acrylic polymer
  • the acrylic polymer is a crosslinked acrylic polymer
  • the standard The content of is the content of the acrylic polymer before being crosslinked.
  • the energy ray-curable compound (B) is a compound that is polymerized and cured when irradiated with energy rays such as ultraviolet rays and electron beams.
  • energy ray curable compounds include low molecular weight compounds (monofunctional and polyfunctional monomers and oligomers) having an energy ray polymerizable group, and specifically include trimethylolpropane triacrylate and tetramethylolmethane.
  • Acrylates such as tetraacrylate, pentaerythritol triacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, 1,4-butylene glycol diacrylate, 1,6-hexanediol diacrylate, dicyclopentadiene dimethoxydiacrylate, Cyclic aliphatic skeleton-containing acrylates such as isobornyl acrylate, polyethylene glycol diacrylate, oligoester acrylate, urethane acrylate Goma, epoxy-modified acrylates, polyether acrylates, acrylate compounds such as itaconic acid oligomer is used.
  • Such a compound has an energy ray polymerizable group in the molecule and usually has a molecular weight of about 100 to 30,000, preferably about 300 to 10,000.
  • the amount of the low molecular weight compound having an energy ray polymerizable group is preferably 0 to 200 parts by mass relative to 100 parts by mass of the component (A) (including the energy ray curable polymer (AB) described later).
  • the ratio is preferably 1 to 100 parts by mass, more preferably about 1 to 30 parts by mass.
  • the energy beam curable polymer (AB) having the properties of the components (A) and (B) is formed by bonding an energy beam polymerizable group to the main chain, side chain or terminal of the polymer.
  • the energy ray curable polymer bonded to the main chain, side chain or terminal of the energy ray curable polymer is an alkylene group, alkyleneoxy group or polyalkyleneoxy group via the main chain or side chain of the energy ray curable polymer. Or you may couple
  • the weight average molecular weight (Mw) of the energy beam curable polymer (AB) is preferably 10,000 to 2,000,000, and more preferably 100,000 to 1,500,000.
  • the glass transition temperature (Tg) of the energy beam curable polymer (AB) is preferably in the range of ⁇ 70 to 30 ° C., more preferably ⁇ 60 to 20 ° C.
  • Tg is a polymerizable group. It is Tg of the acrylic polymer before making it react with a containing compound.
  • the energy ray curable polymer (AB) includes, for example, an acrylic polymer containing a functional group such as a hydroxy group, a carboxyl group, an amino group, a substituted amino group, and an epoxy group, and a substituent that reacts with the functional group. It is obtained by reacting a polymerizable group-containing compound having 1 to 5 energy beam polymerizable carbon-carbon double bonds per molecule.
  • the acrylic polymer includes a (meth) acrylic acid ester monomer having a functional group such as a hydroxy group, a carboxyl group, an amino group, a substituted amino group, and an epoxy group or a derivative thereof, and a monomer constituting the component (A) described above.
  • a copolymer consisting of Examples of the polymerizable group-containing compound include (meth) acryloyloxyethyl isocyanate, meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, (meth) acryloyl isocyanate, allyl isocyanate, glycidyl (meth) acrylate, and (meth) acrylic acid. Etc.
  • the energy ray curable polymer (AB) When the energy ray curable polymer (AB) is obtained by reacting an acrylic polymer containing a functional group such as a hydroxy group with a polymerizable group-containing compound, the energy ray curable polymer (AB) is Like the above-mentioned acrylic polymer (A1), it may be crosslinked.
  • the acrylic pressure-sensitive adhesive containing the acrylic polymer (A1), the energy ray curable compound (B) and / or the energy ray curable polymer (AB) as described above is cured by irradiation with energy rays. Specifically, ultraviolet rays, electron beams, etc. are used as the energy rays.
  • the polymerization curing time can be shortened and the amount of light irradiation can be decreased.
  • photopolymerization initiators examples include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin benzoic acid methyl, benzoin dimethyl ketal, 2,4-diethyl Thioxanthone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, benzyldiphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl 1,2-diphenylmethane, 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone, 2,4,6-trimethylbenzoy Diphenyl phosphine oxide and ⁇
  • the blending ratio of the photopolymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass in total of the energy beam curable compound (B) and the energy beam curable polymer (AB). More preferably, 5 parts by mass is included. If the blending ratio of the photopolymerization initiator is less than 0.1 parts by mass, satisfactory curability may not be obtained due to insufficient photopolymerization, and if it exceeds 10 parts by mass, a residue that does not contribute to photopolymerization is generated. May cause malfunctions.
  • the thickness of the support sheet is usually 10 to 500 ⁇ m, preferably 15 to 300 ⁇ m, more preferably 20 to 250 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer is preferably 2 to 20 ⁇ m in the support sheet, more preferably 3 to 15 ⁇ m, still more preferably 4 to 10 ⁇ m. If the thickness of the pressure-sensitive adhesive layer is too small, sufficient peel strength or pressure-sensitive adhesive strength may not be expressed. If the thickness of the pressure-sensitive adhesive layer is too large, the peel strength or pressure-sensitive adhesive strength increases, and the effect of the present invention. May not be possible.
  • the resin film forming layer in the present invention is appropriately selected from resins having various functions such as a film adhesive, an adhesive layer, and a protective film forming layer, which will be described later, according to the use of the sheet.
  • the resin film forming layer may be a film adhesive.
  • film adhesives are frequently used in the die bonding process of chips in recent years.
  • a film adhesive is preferably an epoxy adhesive or polyimide adhesive formed into a film and semi-cured (B-stage state), and is formed to be peelable on the above support sheet.
  • the film adhesive is affixed to the workpiece.
  • an adhesive-attached chip is obtained, which is picked up from the support sheet, and the chip is fixed to a predetermined position via the adhesive. It is preferable to perform expansion when picking up the chip with adhesive.
  • the sheet for forming a resin film in the present invention may be a dicing / die-bonding sheet having both a wafer fixing function during dicing and a die bonding function during die bonding.
  • the resin film forming layer holds a work or a chip obtained by separating the work in the dicing process, and is cut together with the work during dicing and has the same shape as the chip.
  • a resin film forming layer is formed.
  • the resin film forming layer is peeled off from the support sheet together with the chip.
  • the resin film forming layer functions as an adhesive for fixing the chip during die bonding.
  • a chip with a resin film forming layer is placed on a substrate, heated, etc., and the chip and an adherend such as a substrate or another chip are bonded via the resin film forming layer.
  • an adhesive having a pressure-sensitive adhesive property as a resin film forming layer on the support sheet and having a die bonding function A layer is formed.
  • the resin film forming layer having both the wafer fixing function and the die bonding function includes, for example, the above-described acrylic polymer (A1) and an epoxy adhesive, and, if necessary, an energy ray curable compound. (B), an energy beam curable polymer (AB), a curing aid and the like.
  • A1 acrylic polymer
  • B an energy beam curable polymer
  • AB energy beam curable polymer
  • the resin film forming layer is a protective film for forming the protective film on the back surface of the chip. It may be a forming layer.
  • a work is stuck on the protective film forming layer, the protective film forming layer is cured to form a protective film, and then the work and the protective film are diced to obtain a chip with a protective film.
  • Such a protective film forming sheet has an adhesive resin layer (protective film forming layer) serving as a protective film as a resin film forming layer on the support sheet.
  • the resin film forming layer serving as such a protective film includes, for example, the above-described acrylic polymer (A1), an epoxy adhesive and a curing aid, and, if necessary, an energy ray curable compound (B), An energy beam curable polymer (AB), a filler, or the like may be contained.
  • the thickness of the resin film-forming layer varies depending on the application, but is approximately 1 to 300 ⁇ m, preferably 10 to 200 ⁇ m, particularly preferably 20 to 100 ⁇ m.
  • the jig adhesive layer As a jig
  • the jig adhesive layer is, for example, an annular shape (ring shape), has a hollow portion (internal opening), and has a size that can be fixed to a jig such as a ring frame.
  • the inner diameter of the ring frame is smaller than the outer diameter of the jig adhesive layer. Further, the inner diameter of the ring frame is slightly larger than the inner diameter of the jig adhesive layer.
  • the ring frame is usually a molded body of metal or plastic.
  • the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is not particularly limited, but for example, it is made of an acrylic pressure-sensitive adhesive, a rubber pressure-sensitive adhesive, or a silicone pressure-sensitive adhesive. Is preferred.
  • the acrylic containing the acrylic polymer (A1) described above is taken into consideration in the outer peripheral portion of the resin film forming sheet in consideration of the peeling force of the release sheet, the adhesive strength against SUS, and the removability from the ring frame.
  • System adhesives are preferred.
  • the said adhesive may be used independently or may be used in mixture of 2 or more types.
  • the thickness of the pressure-sensitive adhesive layer constituting the jig adhesion layer is preferably 2 to 20 ⁇ m, more preferably 3 to 15 ⁇ m, and further preferably 4 to 10 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer is less than 2 ⁇ m, sufficient peeling force or adhesive force may not be exhibited.
  • the thickness of the pressure-sensitive adhesive layer exceeds 20 ⁇ m, the peeling force and the pressure-sensitive adhesive force are increased, and the effect of the present invention cannot be exhibited, or a residue of the pressure-sensitive adhesive remains on the ring frame when peeling from the ring frame, May contaminate the ring frame.
  • the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is the same as the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer in the pressure-sensitive adhesive member composed of the above pressure-sensitive adhesive layer alone. The same applies to the thickness of the pressure-sensitive adhesive layer.
  • the base material constituting the jig adhesive layer is not particularly limited.
  • examples thereof include polyolefin films such as acrylate copolymer films and ionomer resin films, polyvinyl chloride films, and polyethylene terephthalate films.
  • a polyethylene film and a polyvinyl chloride film are preferable, and a polyvinyl chloride film is more preferable.
  • the thickness of the base material constituting the jig adhesion layer is preferably 15 to 200 ⁇ m, more preferably 30 to 150 ⁇ m, and still more preferably 40 to 100 ⁇ m.
  • the double-sided pressure-sensitive adhesive member When a double-sided pressure-sensitive adhesive member having a core material is used as a jig adhesive layer, the double-sided pressure-sensitive adhesive member is formed on the core material, a laminating pressure-sensitive adhesive layer formed on one surface thereof, and the other surface. It consists of an adhesive layer for fixing.
  • the pressure-sensitive adhesive layer for laminating is the pressure-sensitive adhesive layer on the side attached to the resin film-forming layer in the third aspect, and is the pressure-sensitive adhesive layer on the side attached to the support sheet in the fourth aspect.
  • the fixing pressure-sensitive adhesive layer is a pressure-sensitive adhesive layer on the side attached to the release sheet.
  • the core material of the double-sided pressure-sensitive adhesive member the same material as the base material of the pressure-sensitive adhesive member can be mentioned.
  • polyolefin film and plasticized polyvinyl chloride film are preferred in view of expandability.
  • the thickness of the core material is usually 15 to 200 ⁇ m, preferably 30 to 150 ⁇ m, more preferably 40 to 100 ⁇ m.
  • the double-sided pressure-sensitive adhesive layer and the fixing pressure-sensitive adhesive layer may be the same pressure-sensitive adhesive layer or different pressure-sensitive adhesive layers.
  • the pressure-sensitive adhesive constituting the fixing pressure-sensitive adhesive layer is formed so that the peeling force of the release sheet and the pressure-sensitive adhesive force against SUS are within a predetermined range at the outer peripheral portion of the resin film-forming sheet, and the pressure-sensitive adhesive layer for fixing and the ring frame Is suitably selected so that the adhesive strength between the resin film forming layer or the support sheet and the adhesive layer for lamination is smaller.
  • pressure-sensitive adhesives include acrylic pressure-sensitive adhesives, rubber-based pressure-sensitive adhesives, and silicone pressure-sensitive adhesives.
  • an acrylic pressure-sensitive adhesive containing the above-mentioned acrylic polymer (A1) is preferable.
  • the pressure-sensitive adhesive forming the fixing pressure-sensitive adhesive layer may be used alone or in combination of two or more.
  • the pressure-sensitive adhesive constituting the lamination pressure-sensitive adhesive layer is not particularly limited, and examples thereof include an acrylic pressure-sensitive adhesive, a rubber pressure-sensitive adhesive, and a silicone pressure-sensitive adhesive.
  • the acrylic pressure-sensitive adhesive containing the above-mentioned acrylic polymer (A1) is preferable from the viewpoint of easy control of the adhesive force with the resin film forming layer or the support sheet.
  • stacking may be used independently, or 2 or more types may be mixed and used for it.
  • the thickness of the laminating pressure-sensitive adhesive layer and the fixing pressure-sensitive adhesive layer is the same as the thickness of the pressure-sensitive adhesive layer of the pressure-sensitive adhesive member.
  • the jig adhesive layer By providing the jig adhesive layer, it becomes easy to bond the resin film forming sheet to a jig such as a ring frame.
  • the release sheet serves as a carrier film when the resin film-forming sheet is used, and the film exemplified as the support sheet described above can be used.
  • the surface tension of the surface in contact with the resin film forming layer of the release sheet is preferably 40 mN / m or less, more preferably 37 mN / m or less, and particularly preferably 35 mN / m or less.
  • the lower limit is usually about 25 mN / m.
  • Such a release sheet having a relatively low surface tension can be obtained by appropriately selecting the material, and can also be obtained by applying a release agent to the surface of the release sheet and performing a release treatment. .
  • alkyd, silicone, fluorine, unsaturated polyester, polyolefin, wax, and the like are used as the release agent used for the release treatment.
  • alkyd, silicone, and fluorine release agents are heat resistant. This is preferable.
  • the release agent can be used without any solvent, or can be diluted or emulsified in a solvent to obtain a gravure coater, Mayer bar coater, air knife coater.
  • the release sheet coated with a release coater may be applied at room temperature or under heating, or may be cured with an electron beam to form a release agent layer.
  • the surface tension of the release sheet may be adjusted by laminating films by wet lamination, dry lamination, hot melt lamination, melt extrusion lamination, coextrusion processing, or the like. That is, a film in which the surface tension of at least one surface is in a preferable range as the surface in contact with the resin film forming layer of the release sheet described above is set so that the surface is in contact with the resin film forming layer. It is good also as a peeling sheet by manufacturing the laminated body laminated
  • the thickness of the release sheet is not particularly limited, but is preferably 50 ⁇ m or more, more preferably 50 to 200 ⁇ m.
  • the release film is less than 50 ⁇ m, when the resin film-forming sheet is wound into a roll, winding marks may occur in the resin film-forming layer.
  • the thickness accuracy of the resin film forming layer is lowered, and in the air biting when the resin film forming layer is attached to the workpiece or in the method of manufacturing a semiconductor device described later, the chip is attached to the resin film. This may cause a decrease in adhesiveness and void generation when bonded to a chip mounting portion (a substrate or another chip) via the formation layer.
  • the resin film forming layer is used as a protective film for protecting the back surface of the chip, the traces of the resin film forming layer cause an appearance defect in addition to the above.
  • the sheet laminate for forming a resin film having the above-described configuration / configuration is obtained by removing the release sheet, and then attaching the resin film forming layer to the work. Applied. Then, the support film is peeled off while the resin film forming layer remains fixed to the workpiece. That is, it is used in a process including a step of transferring a resin film forming layer from a support sheet to a workpiece.
  • the workpiece applicable in the present invention is not limited to the material, and examples thereof include various articles such as a semiconductor wafer, a glass substrate, a ceramic substrate, an organic material substrate such as an FPC, or a metal material such as precision parts. .
  • the shape of the resin film-forming sheet laminate can be a belt-like shape in which a resin film-forming sheet including a support sheet and a resin film-forming layer is laminated on a long release sheet, which can be rolled up.
  • a form in which a resin film forming sheet including a support sheet and a resin film forming layer cut out in accordance with a desired shape is laminated on a long release sheet so as to be peeled at regular intervals.
  • the shape of the resin film-forming sheet laminate can also be a single wafer.
  • a resin film including a support sheet and a resin film forming layer cut out in accordance with a desired shape is laminated on a long release sheet so as to be peeled at regular intervals.
  • the thickness of the sheet laminate for resin film formation becomes nonuniform between the portion where the sheet for application is laminated and the portion where the sheet for resin film formation is not laminated.
  • the thickness becomes non-uniform, the non-uniform winding pressure may occur, and the roll may collapse. Therefore, it is preferable to make the thickness uniform in the sheet laminate for forming a resin film in such a form.
  • the peripheral tape 14 having the same thickness as the resin film forming sheet is bonded.
  • the distance between the resin film forming sheet and the peripheral tape 14 is preferably about 1 to 20 mm, and particularly preferably about 2 to 10 mm. The peripheral tape 14 makes it easier to avoid the above problems by eliminating the uneven thickness.
  • a resin film-forming sheet laminate in which a resin film-forming sheet cut out in accordance with a desired shape is laminated on a long release sheet so as to be peeled at regular intervals.
  • the manufacturing method of the body will be described by taking the first mode shown in FIG. 3 and the third mode shown in FIG. 5 as an example.
  • the resin film forming sheet of the present invention is obtained by such a manufacturing method. It is not limited.
  • the resin film forming layer on the release sheet is half-cut into a desired shape.
  • first long release sheet two long release sheets
  • second long release sheet is the release sheet 13 in FIG. 3.
  • a resin film forming layer formed in advance in a film shape may be sandwiched between two long release sheets, and a resin film forming composition for forming a resin film forming layer is used as one long release sheet.
  • the laminate may be formed by coating, drying, and pasting the other long release sheet on the coating film.
  • the first long release sheet is removed.
  • the resin film forming layer is completely cut into a desired shape, and the resin film forming layer is die-cut (half cut) so as to reach the second long release sheet 13.
  • Die cutting is performed by a general-purpose apparatus (rotary blade or flat blade) and method such as die cutting.
  • the cutting depth at this time is the total depth of the thickness of the resin film forming layer and the cutting depth d2 in order to completely cut the resin film forming layer and form the cutting portion D2 having the cutting depth d2. Cut in. For this reason, the cut part D2 of the cut depth d2 is formed in the surface of a 2nd elongate peeling sheet.
  • an adhesive tape for peeling is applied in the longitudinal direction of the resin film forming layer. Then, by removing the peeling adhesive tape, the resin film forming layer 12 having a desired shape is left on the second long release sheet 13, and the remaining resin film forming layer is removed. The remaining portions other than the resin film forming layer having a desired shape are continuous. For this reason, when the interface between the second long release sheet and the resin film forming layer is a starting point of peeling, the remaining resin film forming layer is removed, and the resin film forming layer 12 having a desired shape is formed into the second long film. It remains on the scale release sheet 13. As a result, a laminated body in which the resin film forming layers 12 having a desired shape are arranged on the second long release sheet 13 is obtained.
  • the support sheet 11 is attached to the surface of the second long release sheet 13 having the resin film forming layer 12 so as to be in contact with the second long release sheet 13 and the resin film forming layer 12.
  • the support sheet 11 is a pressure-sensitive adhesive sheet composed of a base material 11a and a pressure-sensitive adhesive layer 11b.
  • the method for forming the pressure-sensitive adhesive layer 11b on the base material 11a is not particularly limited.
  • a method for forming the pressure-sensitive adhesive layer 11b on the base material 11a by applying and drying the composition (pressure-sensitive adhesive) Examples include a method in which an adhesive is provided on a release sheet different from the release sheet, and the adhesive is transferred to the base material 11a.
  • the support sheet is die-cut into a desired shape that is larger than the inner diameter of the ring frame and smaller than the outer diameter.
  • the resin film forming layer 12 is punched so that the center point of the resin film forming layer 12 coincides with the center point of the support sheet 11 after punching.
  • the cut depth is cut by the total depth of the thickness of the support sheet and the cut depth d1. For this reason, the cut part D1 of the cut depth d1 is formed in the surface of a 2nd elongate peeling sheet.
  • the support sheet 11 having a desired shape is left on the second long release sheet 13 and the remaining support sheet is removed.
  • the resin film forming sheet laminate according to the first aspect in which a resin film forming sheet including a resin film forming layer having a desired shape and the support sheet 11 is laminated on the second long release sheet 13. Is obtained.
  • the support sheet when the support sheet is die cut, the support sheet is cut into a desired shape, and a small interval is provided outside the support sheet 11 of the shape so as to form the second long release sheet. It is preferable to perform die cutting so that the supporting sheet as the peripheral tape 14 remains along both edges 15 in the short direction. Thereafter, the support sheet 11 and the peripheral tape 14 having a desired shape are left on the second long release sheet 13 and the remaining support sheet is removed, thereby including the support sheet 11 and the resin film forming layer 12.
  • the resin film forming sheet laminate 100 in a form in which the resin film forming sheet 10 and the peripheral tape 14 are continuously bonded onto the long release sheet 13 is obtained.
  • the pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer (laminating pressure-sensitive adhesive layer and fixing pressure-sensitive adhesive layer) of the jig adhesive layer is prepared.
  • the pressure-sensitive adhesive constituting the lamination pressure-sensitive adhesive layer is referred to as “laminating pressure-sensitive adhesive”
  • the pressure-sensitive adhesive for forming the fixation pressure-sensitive adhesive layer is referred to as “fixation pressure-sensitive adhesive”.
  • the lamination pressure-sensitive adhesive is applied onto a long release sheet (hereinafter referred to as a third long release sheet) and dried to form a lamination pressure-sensitive adhesive layer.
  • a third long release sheet a long release sheet
  • the pressure-sensitive adhesive layer for lamination is bonded to the core material to obtain a laminate in which the core material, the pressure-sensitive adhesive layer for lamination, and the third long release sheet are laminated in this order.
  • the fixing adhesive is applied onto a long release sheet (hereinafter referred to as a fourth long release sheet.
  • the fourth long release sheet is the release sheet 13 in FIG. 5) and dried.
  • a fixing pressure-sensitive adhesive layer is formed.
  • the pressure-sensitive adhesive layer for lamination is bonded to the core material of the laminate obtained above, and the third long release sheet, the pressure-sensitive adhesive layer for lamination, the core material, the pressure-sensitive adhesive layer for fixation, and the fourth long-length material.
  • a laminate in which release sheets are laminated in this order (a jig adhesive layer sandwiched between long release sheets) is obtained.
  • the laminate in which the jig adhesive layer and the fourth long release sheet are laminated in this order is cut into a desired shape, and the laminate is die-cut (half-cut) so as to reach the fourth long release sheet.
  • Die cutting is performed by a general-purpose apparatus (rotary blade or flat blade) and method such as die cutting.
  • the depth of cut is that the laminate is completely cut to form a cut portion D3 having a depth of cut d3. .
  • the cutting part D3 of the cutting depth d3 is formed in the surface of a 4th elongate peeling sheet.
  • an adhesive tape for peeling is applied in the longitudinal direction of the jig adhesive layer. Then, the jig adhesive layer having a desired shape is removed from the fourth long release sheet 13 by removing the peeling adhesive tape. As a result, a laminated body is obtained in which a jig adhesive layer having an internal opening of a desired shape is laminated on the fourth long release sheet 13.
  • the support sheet 11 in which the adhesive layer 11b is formed on the base material 11a is prepared.
  • the method for obtaining the support sheet is as described in the first aspect.
  • the method for forming the resin film forming layer 12 on the pressure-sensitive adhesive layer 11b is not particularly limited.
  • a method for forming the resin film-forming composition on the pressure-sensitive adhesive layer 11b by applying and drying, or a method for forming a resin film examples include a method of forming the composition on a release sheet different from the release sheet and transferring the composition to the pressure-sensitive adhesive layer 11b. In this way, a laminate composed of the support sheet 11 and the resin film forming layer 12 is obtained.
  • the support sheet 11 and the resin film forming layer 12 are formed so that the surface of the fourth long release sheet 13 having the jig adhesive layer is in contact with the fourth long release sheet 13 and the jig adhesive layer.
  • the resin film forming layer 12 of the laminate is affixed, and the resin film forming sheet 10 is formed on the fourth long release sheet 13.
  • the resin film forming sheet 10 is die-cut into a desired shape that is not less than the inner diameter of the ring frame and not more than the outer diameter.
  • the die is cut so that the center point of the internal opening of the jig adhesive layer coincides with the center point of the resin film forming sheet 10 after die cutting.
  • the depth of cut is the total depth of the thickness of the resin film forming sheet and the depth of cut d1 in order to completely cut the resin film formed sheet and form the cut portion D1 of the depth of cut d1. Cut in. For this reason, the cut part D1 of the cut depth d1 is formed in the surface of a 4th elongate peeling sheet.
  • the resin film forming sheet 10 having a desired shape is left on the fourth long release sheet 13 and the remaining resin film forming sheet is removed.
  • the resin film forming sheet laminate of the third aspect in which the resin film forming sheet 10 having a desired shape is laminated on the fourth long release sheet 13 is obtained.
  • the resin film forming sheet laminate of the first embodiment shown in FIGS. 2 and 3 is applied to the semiconductor device manufacturing method. This will be described as an example.
  • a method of manufacturing a semiconductor device using a resin film-forming sheet laminate The resin film-forming layer of the laminate is attached to a work, and the work is diced into chips. It is preferable that the method includes a step of leaving the resin film forming layer fixedly remaining on the surface and peeling the resin film from the support sheet, and placing the chip on the die pad portion or another chip via the resin film forming layer. .
  • the formation of a circuit on the wafer surface can be performed by various methods including conventionally used methods such as an etching method and a lift-off method.
  • the opposite surface (back surface) of the circuit surface of the wafer is ground.
  • the grinding method is not particularly limited, and grinding may be performed by a known means using a grinder or the like.
  • an adhesive sheet called a surface protection sheet is attached to the circuit surface in order to protect the circuit on the surface.
  • the circuit surface side (that is, the surface protection sheet side) of the wafer is fixed by a chuck table or the like, and the back surface side on which no circuit is formed is ground by a grinder.
  • the thickness of the wafer after grinding is not particularly limited, but is usually about 50 to 500 ⁇ m.
  • the crushed layer generated during back grinding is removed.
  • the crushed layer is removed by chemical etching, plasma etching, or the like.
  • the resin film forming layer of the resin film forming sheet laminate is pasted on the back surface of the wafer.
  • the attaching method is not particularly limited.
  • the resin film forming layer is attached to the semiconductor wafer in the step shown in FIG.
  • FIGS. 1A to 1D are a series of process diagrams in which the operation of attaching the resin film forming sheet 10 to the semiconductor wafer 32 is performed.
  • the release sheet 13 plays the role of a carrier film, while being supported by two rolls 62 and 66 and a peel plate 64,
  • the first roll 42 is wound with one end connected to the cylindrical core 44
  • the second roll 52 is wound with the other end connected to the cylindrical core 54.
  • a core driving motor (not shown) for rotating the core 54 is connected to the core 54 of the second roll 52, and the resin film forming sheet 10 is peeled off.
  • the release sheet 13 is wound at a predetermined speed.
  • the winding core driving motor rotates
  • the winding core 54 of the second roll 52 rotates and the resin film forming sheet 100 is wound around the winding core 44 of the first roll 42.
  • the sheet 10 is pulled out of the first roll 42.
  • the drawn resin film forming sheet 10 is guided onto a disk-shaped semiconductor wafer 32 disposed on a movable stage and a ring frame 34 disposed so as to surround the semiconductor wafer 32.
  • the resin film forming sheet 10 is peeled from the release sheet 13.
  • the peel plate 64 is applied from the peeling sheet 13 side of the sheet
  • the resin film forming sheet can be easily fed out.
  • the peeling sheet 13 is bend
  • air may be blown to the boundary surface between the release sheet 13 and the resin film forming sheet 10 so that the release start point is more efficiently created. As a result, the feeding of the resin film forming sheet 10 is further facilitated.
  • the resin film forming sheet 10 is attached so that the resin film forming sheet 10 is in close contact with the ring frame 34 and the semiconductor wafer 32. At this time, the resin film forming sheet 10 is pressed against the semiconductor wafer 32 by the roll 68. Then, as shown in FIG. 1D, the attachment of the resin film forming sheet 10 onto the semiconductor wafer 32 is completed, and a semiconductor wafer with a resin film forming sheet is obtained.
  • the resin film forming sheet 10 can be attached to the semiconductor wafer 32 continuously in an automated process.
  • An example of an apparatus for performing the operation of attaching the resin film forming sheet 10 to the semiconductor wafer 32 is RAD-2500 (trade name) manufactured by Lintec Corporation.
  • the resin film forming sheet 10 is attached to the semiconductor wafer 32 by such a process, the resin film forming sheet is used by using the resin film forming sheet laminate having desired physical properties according to the present invention.
  • the resin film-forming sheet is released from the release sheet at the outer periphery and is fed out.
  • the resin film forming layer When the resin film forming layer does not have tackiness at room temperature, it may be heated appropriately (although it is not limited, 40 to 80 ° C. is preferable).
  • the resin film forming layer is irradiated with energy rays from the support sheet side, and the resin is formed.
  • the layer-forming layer may be preliminarily cured to increase the cohesive force of the resin film-forming layer and reduce the adhesive force between the resin film-forming layer and the support sheet.
  • the cutting depth at this time is a depth that takes into account the sum of the thickness of the semiconductor wafer and the thickness of the resin film forming layer and the amount of wear of the dicing saw.
  • the energy beam irradiation may be performed at any stage after the semiconductor wafer is pasted and before the semiconductor chip is peeled off (pickup).
  • the irradiation may be performed after dicing or after the following expanding step. Although it is good, it is preferably performed after the semiconductor wafer is attached and before dicing. Further, the energy beam irradiation may be performed in a plurality of times.
  • the resin film forming sheet is expanded, the interval between the semiconductor chips is expanded, and the semiconductor chips can be picked up more easily. At this time, a deviation occurs between the resin film forming layer and the support sheet, the adhesive force between the resin film forming layer and the support sheet is reduced, and the pick-up property of the semiconductor chip is improved. When the semiconductor chip is picked up in this manner, the cut resin film forming layer can be adhered to the back surface of the semiconductor chip and peeled off from the support sheet.
  • the semiconductor chip is placed on the die pad of the lead frame or on the surface of another semiconductor chip (lower chip) through the resin film forming layer (hereinafter, the die pad or lower chip surface on which the chip is mounted is referred to as “chip mounting portion”. ).
  • the pressure when mounting is usually 1 kPa to 200 MPa.
  • the chip mounting portion may be heated before mounting the semiconductor chip or heated immediately after mounting.
  • the heating temperature is usually 80 to 200 ° C., preferably 100 to 180 ° C.
  • the heating time is usually 0.1 seconds to 5 minutes, preferably 0.5 seconds to 3 minutes.
  • the heating conditions at this time are in the above heating temperature range, and the heating time is usually 1 to 180 minutes, preferably 10 to 120 minutes.
  • the resin film forming layer may be cured by using a heat in resin sealing that is normally performed in package manufacturing, without temporarily performing the heat treatment after placement.
  • the resin film formation layer hardens
  • the resin film forming layer of the resin film forming sheet is pasted on the back surface of the semiconductor wafer having a circuit formed on the surface, and then the resin film is applied on the back surface. It is preferable to obtain a semiconductor chip having the same.
  • the resin film is a protective film for a semiconductor chip.
  • the method for manufacturing a semiconductor device according to the present invention preferably further includes the following steps (1) to (3), wherein the steps (1) to (3) are performed in an arbitrary order. Step (1): peeling the resin film forming layer or resin film and the support sheet, Step (2): The resin film forming layer is cured to obtain a resin film. Step (3): dicing the semiconductor wafer and the resin film forming layer or resin film.
  • the resin film forming layer of the resin film forming sheet is attached to the back surface of the semiconductor wafer. This step is the same as the attaching step in the first method for manufacturing a semiconductor device.
  • steps (1) to (3) are performed in an arbitrary order.
  • the steps (1) to (3) are performed in the order of steps (1), (2), (3), the steps (2), (1), (3), the steps (2), (3),
  • the order is (1), steps (3), (2), (1), or steps (3), (1), (2). Details of this process are described in detail in JP-A-2002-280329. As an example, the case where it performs in order of process (1), (2), (3) is demonstrated.
  • a resin film forming layer of a resin film forming sheet is attached to the back surface of a semiconductor wafer having a circuit formed on the front surface.
  • the support sheet is peeled from the resin film forming layer to obtain a laminate of the semiconductor wafer and the resin film forming layer.
  • the resin film forming layer is cured to form a resin film on the entire surface of the wafer.
  • the resin film forming layer contains an epoxy adhesive, the resin film forming layer is cured by thermosetting.
  • the resin film forming layer can be cured by energy ray irradiation, and an epoxy adhesive, energy
  • curing by heating and energy beam irradiation may be performed simultaneously or sequentially.
  • the energy rays to be irradiated include ultraviolet rays (UV) and electron beams (EB), and preferably ultraviolet rays are used.
  • a resin film made of a cured resin is formed on the back surface of the wafer, and the strength is improved as compared with the case of the wafer alone, so that damage during handling of the thinned wafer can be reduced. Further, compared with a coating method in which a coating solution for a resin film is directly applied to the back surface of a wafer or chip, the thickness of the resin film is excellent.
  • the laminated body of the semiconductor wafer and the resin film is diced for each circuit formed on the wafer surface. Dicing is performed so as to cut both the wafer and the resin film.
  • the wafer is diced by a conventional method using a dicing sheet. As a result, a semiconductor chip having a resin film on the back surface is obtained.
  • Laser printing can be performed on the resin film.
  • Laser printing is performed by a laser marking method, and the surface of the protective film is scraped off by laser light irradiation to mark a product number or the like on the protective film.
  • Laser printing can also be performed before the resin film forming layer is cured.
  • a semiconductor chip having a resin film on the back surface can be obtained.
  • the semiconductor device can be manufactured by mounting the semiconductor chip on a predetermined base by the face-down method.
  • a semiconductor device can be manufactured by bonding a semiconductor chip having a resin film on the back surface to another member (on a chip mounting portion) such as a die pad portion or another semiconductor chip. According to the present invention, a highly uniform resin film can be easily formed on the back surface of the chip, and cracks after the dicing process and packaging are less likely to occur.
  • the resin film formation sheet serves as a dicing sheet.
  • the semiconductor wafer is bonded to the inner peripheral portion of the resin film forming sheet via the resin film forming layer, and the outer peripheral portion of the resin film forming sheet is bonded to another jig such as a ring frame, A resin film forming sheet affixed to the semiconductor wafer is fixed to the apparatus, and dicing is performed.
  • a semiconductor chip having a resin film forming layer on the back surface is mounted on a predetermined base by a face-down method, and is usually used in package manufacturing.
  • the resin film forming layer can also be cured by utilizing heating in the resin sealing performed.
  • Adhesion between support sheets or resin film-forming layers and transfer to release sheet Adhesion between support sheets or resin film forming layers (hereinafter referred to as adhesion evaluation) and transfer to a release sheet (hereinafter referred to as transfer evaluation) were performed as follows. When removing the release sheet from the resin film-forming sheet laminate, the support sheets of the resin film-forming sheets or the resin film-forming layers are bent in close contact with each other, or the resin film-forming sheet is attached to the release sheet. It was confirmed visually whether or not the transfer was performed.
  • a MEK solution (solid content concentration 25%) is prepared by adding 8 parts by mass of trimethylolpropane adduct tolylene diisocyanate and 3 parts by mass of 1-hydroxycyclohexyl phenyl ketone to 100 parts by mass of the solid content of the energy ray curable polymer. And the adhesive for forming the adhesive layer of the support sheet A was obtained.
  • an adhesive layer might be set to 10 micrometers on the peeling process surface of PET film (thickness: 50 micrometers) which peel-processed said adhesive. Then, the base material and the adhesive layer were bonded together and the support sheet A was obtained.
  • Methacryloyloxyethyl isocyanate 50 mol per 100 mol of 2-hydroxyethyl acrylate unit
  • Trimethylolpropane adduct tolylene diisocyanate, 2,2-dimethoxy-1,2-diphenylethane-1-one, and 1-hydroxycyclohexyl phenyl ketone are added to 100 parts by mass of the solid content of the energy ray curable polymer.
  • the MEK solution (solid content concentration 25%) to which 1 part by mass of each was added was prepared, and an adhesive for forming the adhesive layer of the support sheet B was obtained.
  • Example 1 Preparation of Jig Adhesive Layer A release-treated PET film (thickness: 50 ⁇ m) was prepared as a long release sheet. The pressure-sensitive adhesive for lamination was applied on the release-treated surface of the release sheet so that the thickness of the pressure-sensitive adhesive layer for lamination was 5 ⁇ m. Next, the pressure-sensitive adhesive layer for lamination and the core material (polypropylene base material, thickness: 40 ⁇ m) were bonded together.
  • the core material polypropylene base material, thickness: 40 ⁇ m
  • a fixing pressure-sensitive adhesive layer having a thickness of 5 ⁇ m is formed on the release-treated surface of another release sheet, and bonded to the core material, and then the release sheet, the pressure-sensitive adhesive layer for lamination, and the core material Then, a laminate (laminate for jig adhesive layer) in which the fixing adhesive layer and the release sheet were laminated in this order was obtained.
  • the release sheet on the laminating pressure-sensitive adhesive layer side was removed from the laminated body for bonding jig adhesive layer, and the mold was punched from the laminating pressure-sensitive adhesive layer side into a circle having a diameter of 330 mm.
  • the die cutting was performed so that the pressure-sensitive adhesive layer for lamination, the core material, and the pressure-sensitive adhesive layer for fixing were completely cut, and 30 ⁇ m was cut into the release sheet on the side of the pressure-sensitive adhesive layer for fixing. That is, a cut portion D3 having a cut depth d3 of 30 ⁇ m was formed.
  • the laminate composed of the pressure-sensitive adhesive layer for lamination cut into a circle, the core material, and the pressure-sensitive adhesive layer for fixing was removed, a circular internal opening was formed, and a jig adhesive layer was produced on the release sheet.
  • the thickness of a resin film formation layer might be set to 20 micrometers on the peeling process surface of PET film (thickness: 50 micrometers) which peel-processed said composition for resin film formation. Thereafter, the resin film-forming layer and the pressure-sensitive adhesive layer of the support sheet A obtained above were bonded together to obtain a laminate composed of the support sheet A and the resin film-forming layer.
  • a resin film forming layer of a laminate composed of the support sheet A and the resin film forming layer was attached to the jig adhesive layer on the release sheet, and a resin film forming sheet was formed on the release sheet.
  • the resin film forming sheet is die-cut into a circular shape with a diameter of 370 mm concentrically with the circular inner opening of the jig adhesive layer, unnecessary portions are removed, and the resin film forming sheet stack of the third aspect is laminated.
  • the die cutting was performed so that the resin film-forming sheet was completely cut and 30 ⁇ m was cut into the release sheet. That is, a cut portion D1 having a cut depth d1 of 30 ⁇ m was formed.
  • Each evaluation was performed using this sheet laminate for resin film formation. The results are shown in Table 1.
  • Example 2 A sheet laminate for forming a resin film was obtained in the same manner as in Example 1 except that the cut depth of the cut portion D1 was set to 35 ⁇ m, and each evaluation was performed. The results are shown in Table 1.
  • Example 3 Production of Resin Film Forming Sheet Laminate
  • a release-treated PET film (thickness: 50 ⁇ m) was prepared as a long release sheet.
  • the above resin film-forming composition is applied onto the release-treated surface of the release sheet so that the thickness of the resin film-forming layer is 20 ⁇ m, and another release sheet (PET film, thickness: 50 ⁇ m) is applied to the resin film. Laminated on the forming layer.
  • one release sheet was removed, and the resin film forming layer was die-cut into a circle having a diameter of 330 mm.
  • the die cutting was performed so that the resin film forming layer was completely cut and 30 ⁇ m was cut into the release sheet. That is, a cut portion D2 having a cut depth d2 of 30 ⁇ m was formed. Thereafter, the remaining resin film forming layer was removed to obtain a circular resin film forming layer on the release sheet.
  • the pressure-sensitive adhesive layer of the support sheet A was pasted on the resin film forming layer on the release sheet to form a resin film forming sheet on the release sheet.
  • the resin film forming layer was cut into a circle having a diameter of 370 mm concentrically with the circular resin film forming layer, and unnecessary portions were removed to obtain the resin film forming sheet laminate of the first aspect. .
  • the die cutting was performed so that the resin film-forming sheet was completely cut and 30 ⁇ m was cut into the release sheet. That is, a cut portion D1 having a cut depth d1 of 30 ⁇ m was formed.
  • Each evaluation was performed using this sheet laminate for resin film formation. The results are shown in Table 1.
  • Example 4 Except having made the cutting depth of the cutting part D1 into 35 micrometers, it carried out similarly to Example 3, and obtained the sheet
  • Example 1 A sheet laminate for forming a resin film was obtained in the same manner as in Example 3 except that the support sheet B was used instead of the support sheet A, and each evaluation was performed. The results are shown in Table 1.
  • Example 2 A sheet laminate for forming a resin film was obtained in the same manner as in Example 4 except that the support sheet B was used instead of the support sheet A, and each evaluation was performed. The results are shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Dicing (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The present invention makes it possible to provide a laminate for a resin film formation sheet with which it is easy to dispense the resin film formation sheet from the release sheet and application on a workpiece can be performed stably. This laminate for a resin film formation sheet is obtained by laminating a release sheet on the resin film-forming layer of a resin film formation sheet comprising a support sheet and a resin film-forming layer. Peel force of the release sheet at the periphery of the resin film formation sheet is not more than 0.05 N/25 mm. Force of adhesion to SUS at the periphery of the resin film formation sheet is not more than 1.0 N/25 mm.

Description

樹脂膜形成用シート積層体Sheet laminate for resin film formation
 本発明は、ワークに対する樹脂膜形成用シートの貼付が容易な樹脂膜形成用シート積層体に関する。 The present invention relates to a resin film forming sheet laminate in which the resin film forming sheet can be easily attached to a workpiece.
 近年、いわゆるフェースダウン(face down)方式と呼ばれる実装法を用いた半導体装置の製造が行われている。フェースダウン方式においては、回路面上にバンプなどの電極を有する半導体チップ(以下、単に「チップ」ともいう。)が用いられ、該電極が基板と接合される。このため、チップの回路面とは反対側の面(チップ裏面)は剥き出しとなることがある。 In recent years, semiconductor devices have been manufactured using a so-called “face-down” mounting method. In the face-down method, a semiconductor chip (hereinafter simply referred to as “chip”) having electrodes such as bumps on a circuit surface is used, and the electrodes are bonded to a substrate. For this reason, the surface (chip back surface) opposite to the circuit surface of the chip may be exposed.
 この剥き出しとなったチップ裏面は、有機膜により保護されることがある。従来、この有機膜からなる保護膜を有するチップは、液状の樹脂をスピンコート法によりウエハ裏面に塗布し、乾燥し、硬化してウエハとともに保護膜を切断して得られる。しかしながら、このようにして形成される保護膜の厚み精度は充分でないため、製品の歩留まりが低下することがあった。 The exposed chip back surface may be protected by an organic film. Conventionally, a chip having a protective film made of an organic film is obtained by applying a liquid resin to the back surface of a wafer by spin coating, drying and curing, and cutting the protective film together with the wafer. However, since the thickness accuracy of the protective film formed in this way is not sufficient, the product yield may be lowered.
 このような問題を解決するために、粘着剤層を有する粘着シートの粘着剤層上に半導体裏面保護膜形成用フィルムが積層された、保護膜形成用シートが用いられることがある。 In order to solve such a problem, a protective film forming sheet in which a film for forming a semiconductor back surface protective film is laminated on an adhesive layer of an adhesive sheet having an adhesive layer may be used.
 また、大径の状態で製造される半導体ウエハは、素子小片(半導体チップ)に切断分離(ダイシング)された後に、次工程であるボンディング工程に移されることもある。この際、半導体ウエハは予め接着シートに貼着された状態でダイシング、洗浄、乾燥、エキスパンディングおよびピックアップの各工程が加えられた後、次工程のボンディング工程に移送される。 In addition, a semiconductor wafer manufactured in a large diameter state may be cut and separated (diced) into element pieces (semiconductor chips) and then transferred to the next bonding process. At this time, the semiconductor wafer is subjected to dicing, cleaning, drying, expanding, and pick-up processes in a state of being adhered to the adhesive sheet in advance, and then transferred to the next bonding process.
 これらの工程の中で、ピックアップ工程およびボンディング工程のプロセスを簡略化するため、ウエハ固定機能とダイ接着機能とを同時に兼ね備えたダイシング・ダイボンディング用接着シートが種々提案されている。例えば、前記接着シートを用いることにより、裏面に接着剤層が貼付された半導体チップを得ることができ、有機基板-チップ間、リードフレーム-チップ間、チップ-チップ間などのダイレクトダイボンディングが可能となる。 Among these processes, various dicing / die bonding adhesive sheets having both a wafer fixing function and a die bonding function have been proposed in order to simplify the pick-up process and the bonding process. For example, by using the adhesive sheet, it is possible to obtain a semiconductor chip having an adhesive layer attached to the back surface, and direct die bonding such as between an organic substrate and a chip, between a lead frame and a chip, and between a chip and a chip is possible. It becomes.
 特許文献1(特開2005-350520号公報)には、ダイシング・ダイボンディング用接着シートとして、剥離基材、接着層、粘着層及び基材フィルムが順次積層された構成を有する接着シートが記載されている。 Patent Document 1 (Japanese Patent Application Laid-Open No. 2005-350520) describes an adhesive sheet having a structure in which a release substrate, an adhesive layer, an adhesive layer, and a substrate film are sequentially laminated as an adhesive sheet for dicing and die bonding. ing.
特開2005-350520号公報JP 2005-350520 A
 半導体装置の製造工程においては、上記の半導体裏面保護膜形成用フィルムや接着層等の樹脂膜形成層を有する樹脂膜形成用シートを半導体ウエハ等のワークに貼付する。しかしながら、樹脂膜形成用シートをワークに貼付する工程では、樹脂膜成型用シートの端部において剥離基材(剥離シート)からの繰り出しが円滑に行われない場合に、樹脂膜形成用シートが使用不能となることがあった。つまり、繰り出した樹脂膜形成用シート自体が、重なり合う方向に折れ曲がって密着したり、剥離シートから繰り出した樹脂膜形成用シートがまた剥離シートに密着(転着)したり、樹脂膜形成用シートが剥離シートから繰り出せないことがあった。 In the manufacturing process of a semiconductor device, a resin film forming sheet having a resin film forming layer such as a film for forming a semiconductor back surface protective film or an adhesive layer is attached to a workpiece such as a semiconductor wafer. However, in the process of attaching the resin film forming sheet to the workpiece, the resin film forming sheet is used when the end of the resin film forming sheet is not smoothly fed out from the release substrate (release sheet). Sometimes it was impossible. In other words, the drawn-out resin film forming sheet itself is bent and adhered in the overlapping direction, or the resin film-forming sheet fed out from the release sheet is in close contact (transferred) to the release sheet, or the resin film-forming sheet is In some cases, the sheet could not be fed out from the release sheet.
 本発明は、上記課題を解決することを目的とする。すなわち、本発明は、剥離シートから樹脂膜形成用シートを繰り出すことが容易であり、ワークへの貼付を安定して行うことができる樹脂膜形成用シート積層体を提供することを目的とする。 The present invention aims to solve the above problems. That is, an object of the present invention is to provide a resin film-forming sheet laminate in which the resin film-forming sheet can be easily fed out from the release sheet and can be stably attached to a workpiece.
 本発明者らは、上記目的を達成するために鋭意研究した結果、樹脂膜形成用シートの端部(外周部)における、剥離シートの剥離力およびSUSに対する粘着力を制御することで、上記目的を達成できることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventors have controlled the above-mentioned object by controlling the peeling force of the release sheet and the adhesive force against SUS at the end (outer peripheral part) of the resin film-forming sheet. It was found that the above can be achieved, and the present invention has been completed.
 本発明は、以下の要旨を含む。
〔1〕支持シートと樹脂膜形成層とを含む樹脂膜形成用シートの樹脂膜形成層上に剥離シートを積層してなり、
 樹脂膜形成用シートの外周部における、剥離シートの剥離力が0.05N/25mm以下であり、
 樹脂膜形成用シートの外周部における、SUSに対する粘着力が1.0N/25mm以下である樹脂膜形成用シート積層体。
The present invention includes the following gist.
[1] A release sheet is laminated on a resin film forming layer of a resin film forming sheet including a support sheet and a resin film forming layer,
The peeling force of the release sheet at the outer periphery of the resin film forming sheet is 0.05 N / 25 mm or less,
A resin film-forming sheet laminate in which the adhesive strength to SUS is 1.0 N / 25 mm or less at the outer peripheral portion of the resin film-forming sheet.
〔2〕剥離シートには、樹脂膜形成層側の面から樹脂膜形成用シートの外周に沿って切込部が形成されており、
 切込部の切込深さが剥離シートの厚さの1/2超である〔1〕に記載の樹脂膜形成用シート積層体。
[2] In the release sheet, a cut portion is formed along the outer periphery of the resin film forming sheet from the surface on the resin film forming layer side,
The sheet laminate for forming a resin film according to [1], wherein a cut depth of the cut portion is more than ½ of the thickness of the release sheet.
〔3〕剥離シートの厚さが50μm以上である〔1〕または〔2〕に記載の樹脂膜形成用シート積層体。 [3] The resin film-forming sheet laminate according to [1] or [2], wherein the release sheet has a thickness of 50 μm or more.
〔4〕剥離シートには、樹脂膜形成層側の面から樹脂膜形成用シートの外周に沿って切込部が形成されており、
 切込部の切込深さが25μm超である〔3〕に記載の樹脂膜形成用シート積層体。
[4] In the release sheet, a cut portion is formed along the outer periphery of the resin film forming sheet from the surface on the resin film forming layer side,
The sheet laminate for forming a resin film according to [3], wherein the cut depth of the cut portion is greater than 25 μm.
 本発明の樹脂膜形成用シート積層体によれば、剥離シートから樹脂膜形成用シートを繰り出す際に、繰り出した樹脂膜形成用シート自体が重なり合う方向に折れ曲がって密着したり、樹脂膜形成用シートが剥離シートに転着することを防止できる。 According to the resin film-forming sheet laminate of the present invention, when the resin film-forming sheet is fed out from the release sheet, the drawn-out resin film-forming sheet itself is bent and adhered in the overlapping direction, or the resin film-forming sheet Can be prevented from being transferred to the release sheet.
支持シート11と樹脂膜形成層12とを含む樹脂膜形成用シート10を半導体ウエハ32に貼り付ける作業を行う一連の工程図である。FIG. 4 is a series of process diagrams for performing an operation of attaching a resin film forming sheet 10 including a support sheet 11 and a resin film forming layer 12 to a semiconductor wafer 32. 支持シート11と樹脂膜形成層12とを含む樹脂膜形成用シート10を半導体ウエハ32に貼り付ける作業を行う一連の工程図である。FIG. 4 is a series of process diagrams for performing an operation of attaching a resin film forming sheet 10 including a support sheet 11 and a resin film forming layer 12 to a semiconductor wafer 32. 支持シート11と樹脂膜形成層12とを含む樹脂膜形成用シート10を半導体ウエハ32に貼り付ける作業を行う一連の工程図である。FIG. 4 is a series of process diagrams for performing an operation of attaching a resin film forming sheet 10 including a support sheet 11 and a resin film forming layer 12 to a semiconductor wafer 32. 支持シート11と樹脂膜形成層12とを含む樹脂膜形成用シート10を半導体ウエハ32に貼り付ける作業を行う一連の工程図である。FIG. 4 is a series of process diagrams for performing an operation of attaching a resin film forming sheet 10 including a support sheet 11 and a resin film forming layer 12 to a semiconductor wafer 32. 本発明に係る樹脂膜形成用シート積層体の平面図を示す。The top view of the sheet | seat laminated body for resin film formation which concerns on this invention is shown. 図1に示す樹脂膜形成用シートを、A-A線に沿って切断した場合の模式断面図(第1の態様の樹脂膜形成用シート)を示す。FIG. 2 shows a schematic cross-sectional view (the resin film forming sheet of the first embodiment) when the resin film forming sheet shown in FIG. 1 is cut along the line AA. 第2の態様の樹脂膜形成用シートの模式断面図を示す。The schematic cross section of the sheet | seat for resin film formation of a 2nd aspect is shown. 第3の態様の樹脂膜形成用シートの模式断面図を示す。The schematic cross section of the sheet | seat for resin film formation of a 3rd aspect is shown. 第4の態様の樹脂膜形成用シートの模式断面図を示す。The schematic cross section of the sheet | seat for resin film formation of a 4th aspect is shown. 従来の、支持シートと樹脂膜形成層とからなる積層体を半導体ウエハ32に貼り付ける作業を行う一連の工程図である。FIG. 11 is a series of process diagrams for performing a conventional operation of attaching a laminated body including a support sheet and a resin film forming layer to a semiconductor wafer 32.
 以下、本発明に係る樹脂膜形成用シート積層体の詳細を説明する。
 本発明に係る樹脂膜形成用シート積層体は、支持シートと樹脂膜形成層とを含む樹脂膜形成用シートの樹脂膜形成層上に剥離シートを積層した態様である。このような構成の樹脂膜形成用シート積層体において、樹脂膜形成用シートの外周部における剥離シートの剥離力は0.05N/25mm以下であり、樹脂膜形成用シートの外周部におけるSUSに対する粘着力は1.0N/25mm以下である。
Hereinafter, the detail of the sheet | seat laminated body for resin film formation which concerns on this invention is demonstrated.
The sheet laminate for resin film formation according to the present invention is an embodiment in which a release sheet is laminated on a resin film formation layer of a resin film formation sheet including a support sheet and a resin film formation layer. In the sheet laminate for resin film formation having such a configuration, the peeling force of the release sheet at the outer periphery of the resin film formation sheet is 0.05 N / 25 mm or less, and the adhesion to SUS at the outer periphery of the resin film formation sheet The force is 1.0 N / 25 mm or less.
 樹脂膜形成用シートの外周部における剥離シートの剥離力が0.05N/25mmを超える場合、及び/または、樹脂膜形成用シートの外周部におけるSUSに対する粘着力が1.0N/25mmを超える場合には、図1に示す、樹脂膜形成用シート積層体100の樹脂膜形成用シート10をワーク32に貼付する工程(以下、「ワーク貼付工程」と記載することがある。)において剥離シートから樹脂膜形成用シートを繰り出す際に、繰り出した樹脂膜形成用シートの支持シート同士または樹脂膜形成層同士が重なり合う方向に折れ曲がって密着したり、樹脂膜形成用シートが剥離シートに転着してしまう。その結果、樹脂膜形成用シートが使用不能となる。この問題は、図1に示すワーク貼付工程によらずに、ワークに樹脂膜形成用シート積層体の樹脂膜形成用シートを貼付する場合(例えば、手作業にて樹脂膜形成用シート積層体の剥離シートを除去し、樹脂膜形成用シートをワークに貼付する場合など)にも同様に起こる問題である。 When the peel force of the release sheet at the outer periphery of the resin film forming sheet exceeds 0.05 N / 25 mm and / or when the adhesive force against SUS at the outer periphery of the resin film forming sheet exceeds 1.0 N / 25 mm In FIG. 1, from the release sheet in the step of sticking the resin film-forming sheet 10 of the resin film-forming sheet laminate 100 to the work 32 (hereinafter sometimes referred to as “work sticking step”). When feeding out the resin film forming sheet, the support sheets of the drawn out resin film forming sheets or the resin film forming layers are bent and adhered in the overlapping direction, or the resin film forming sheet is transferred to the release sheet. End up. As a result, the resin film forming sheet becomes unusable. This problem occurs when the resin film forming sheet laminate of the resin film forming sheet laminate is affixed to the workpiece (for example, manually by the manual operation). This also occurs when the release sheet is removed and the resin film forming sheet is affixed to the workpiece.
 本発明に係る樹脂膜形成用シート積層体によれば、図1に示すワーク貼付工程や、例えば手作業によるワーク貼付工程においても、剥離シート13から樹脂膜形成用シート10を繰り出すことが容易となり、ワーク32への貼付を安定して行うことができるため、上記問題を解消できる。 According to the laminated sheet for resin film formation according to the present invention, it becomes easy to feed out the sheet 10 for resin film formation from the release sheet 13 even in the workpiece pasting step shown in FIG. Since the sticking to the workpiece 32 can be performed stably, the above problem can be solved.
 また、図2~図6に示すように、樹脂膜形成用シート積層体100において、剥離シート13には、樹脂膜形成層側の面から樹脂膜形成用シート10の外周に沿って切込部D1が形成されており、切込部D1の切込深さd1は剥離シートの厚さの1/2超であることが好ましく、より好ましくは3/5~4/5である。所定深さの切込部D1を設けることで、樹脂膜形成用シート10と剥離シート13との界面に剥離起点を作り出すことが容易になる。その結果、樹脂膜形成用シートの繰出し性が向上する。また、切込部D1を所定深さとすることで、ワーク貼付工程中に剥離シートの長手方向(流れ方向)にかかる応力に起因して剥離シートが破断することを防止できる。 Further, as shown in FIGS. 2 to 6, in the resin film forming sheet laminate 100, the release sheet 13 has a cut portion along the outer periphery of the resin film forming sheet 10 from the surface on the resin film forming layer side. D1 is formed, and the cut depth d1 of the cut portion D1 is preferably more than 1/2 of the thickness of the release sheet, and more preferably 3/5 to 4/5. By providing the cut portion D1 having a predetermined depth, it becomes easy to create a peeling start point at the interface between the resin film forming sheet 10 and the peeling sheet 13. As a result, the feeding property of the resin film forming sheet is improved. Moreover, it can prevent that a peeling sheet fractures | ruptures by making the notch part D1 into predetermined depth resulting from the stress concerning the longitudinal direction (flow direction) of a peeling sheet during a workpiece | work sticking process.
 また、切込部D1を形成することで、樹脂膜形成用シート積層体の製造工程において樹脂膜形成用シートを所定の形状に確実に切断できる。また、剥離シートに所定深さの切込部D1を形成することで、例えば剥離シートの厚さが50μm以上の場合であっても、樹脂膜形成用シート積層体をロール状に巻きやすくなり、保管時の収納性に優れる。 Further, by forming the cut portion D1, the resin film forming sheet can be reliably cut into a predetermined shape in the manufacturing process of the resin film forming sheet laminate. Moreover, by forming the cut portion D1 having a predetermined depth in the release sheet, for example, even when the thickness of the release sheet is 50 μm or more, the resin film-forming sheet laminate can be easily wound into a roll shape, Excellent storage during storage.
 また、図1に示すワーク貼付工程においては、剥離シートにはその長手方向(流れ方向)に応力がかかる。剥離シートに切込部D1が形成されていないと、該応力が樹脂膜形成層に伝播し、樹脂膜形成層が流れ方向に伸びることがある。樹脂膜形成層の変形(伸び)は、その厚み精度を低下させる。その結果、該樹脂膜形成層を用いて得られる半導体装置の信頼性を低下させる原因となることがある。剥離シートに所定の深さの切込部を形成することで、樹脂膜形成層にかかる応力を緩和することができ、樹脂膜形成層の変形を抑制できる。 Moreover, in the workpiece | work sticking process shown in FIG. 1, stress is applied to the peeling sheet in the longitudinal direction (flow direction). If the cut portion D1 is not formed in the release sheet, the stress may propagate to the resin film forming layer and the resin film forming layer may extend in the flow direction. The deformation (elongation) of the resin film forming layer reduces the thickness accuracy. As a result, the reliability of a semiconductor device obtained using the resin film forming layer may be reduced. By forming a cut portion having a predetermined depth in the release sheet, stress applied to the resin film forming layer can be relaxed, and deformation of the resin film forming layer can be suppressed.
 また、剥離シートの厚さが50μm以上の場合には、剥離シートのコシが強くなり、剥離シートを折り曲げにくくなる傾向にある。また、一般に樹脂膜形成用シートのコシは剥離シートに比べ弱い傾向にある。そのため、ワーク貼付工程においては、図1に示すピールプレート64を樹脂膜形成用シート積層体100の剥離シート13に当て、剥離シート13をピールプレート64側に鋭角に曲げないと、樹脂膜形成用シート10と剥離シート13との界面に剥離起点を作り出すことが困難となり、樹脂膜形成用シートを繰り出すことができないことがある。しかし、50μm以上の厚さの剥離シートは、ピールプレートを用いる場合であっても、その厚みに起因してピールプレート側に鋭角に曲げ難く、図7に示すように樹脂膜形成用シートの繰り出しが困難である。 In addition, when the thickness of the release sheet is 50 μm or more, the release sheet becomes stronger and tends to be difficult to bend. In general, the stiffness of the resin film-forming sheet tends to be weaker than that of the release sheet. Therefore, in the workpiece pasting step, the peel plate 64 shown in FIG. 1 is applied to the release sheet 13 of the resin film forming sheet laminate 100 and the release sheet 13 is not bent at an acute angle toward the peel plate 64 side. It may be difficult to create a peeling start point at the interface between the sheet 10 and the release sheet 13, and the resin film forming sheet may not be fed out. However, a peeling sheet having a thickness of 50 μm or more is difficult to bend to the peel plate side at an acute angle due to its thickness even when a peel plate is used. As shown in FIG. Is difficult.
 本発明においては、樹脂膜形成用シートの外周部における、剥離シートの剥離力とSUSに対する粘着力を上記範囲とすることで、剥離シートの厚さが50μm以上の場合であっても、剥離シート13からの樹脂膜形成用シート10の繰り出しを容易にし、樹脂膜形成用シートをワークへ安定して貼付できる。上記の観点から、樹脂膜形成用シートの外周部における剥離シートの剥離力は、好ましくは0.001~0.05N/25mm、より好ましくは0.01~0.04N/25mmであり、樹脂膜形成用シートの外周部におけるSUSに対する粘着力は、好ましくは0.01~1.0N/25mm、より好ましくは0.1~0.8N/25mmである。 In the present invention, by setting the peel strength of the release sheet and the adhesive strength to SUS at the outer peripheral portion of the resin film forming sheet within the above range, the release sheet can be used even when the thickness of the release sheet is 50 μm or more. The resin film forming sheet 10 can be easily fed out from the sheet 13, and the resin film forming sheet can be stably attached to the workpiece. From the above viewpoint, the peeling force of the release sheet at the outer peripheral portion of the resin film forming sheet is preferably 0.001 to 0.05 N / 25 mm, more preferably 0.01 to 0.04 N / 25 mm. The adhesive strength against SUS at the outer periphery of the forming sheet is preferably 0.01 to 1.0 N / 25 mm, more preferably 0.1 to 0.8 N / 25 mm.
 剥離シートの厚さが50μm以上の場合には、切込部D1の切込深さd1は25μm超であることが好ましい。具体的には、剥離シートの厚さが50μmの場合、切込部D1の切込深さd1は、好ましくは25μm超、より好ましくは30~40μmであり、剥離シートの厚さが100μmの場合、切込部D1の切込深さd1は、好ましくは50μm超、より好ましくは60~80μmである。なお、本発明における切込み深さは、剥離シートに形成された切込部の剥離シートの厚さ方向の深さを光学顕微鏡により倍率300倍で任意に4点測定し、これを平均することで算出している。 When the thickness of the release sheet is 50 μm or more, the cut depth d1 of the cut portion D1 is preferably more than 25 μm. Specifically, when the thickness of the release sheet is 50 μm, the cut depth d1 of the cut portion D1 is preferably more than 25 μm, more preferably 30 to 40 μm, and the thickness of the release sheet is 100 μm. The cut depth d1 of the cut portion D1 is preferably more than 50 μm, more preferably 60 to 80 μm. In addition, the cutting depth in this invention measures the depth of the thickness direction of the peeling sheet of the notch | incision part formed in the peeling sheet arbitrarily by the optical microscope with a magnification of 300, and averages this. Calculated.
樹脂膜形成用シート積層体の態様
 支持シート11と樹脂膜形成層12は、所望の平面形状に切断されており、剥離シート13上に部分的に積層されている。ここで、支持シート11や樹脂膜形成層12における所望の平面形状とは、例えば図2に示すように、剥離シート13上に支持シート11や樹脂膜形成層12が部分的に積層された状態となる形状であれば特に限定されない。
Embodiment of Resin Film Forming Sheet Laminate Support sheet 11 and resin film forming layer 12 are cut into a desired planar shape and partially laminated on release sheet 13. Here, the desired planar shape in the support sheet 11 and the resin film forming layer 12 is a state in which the support sheet 11 and the resin film forming layer 12 are partially laminated on the release sheet 13 as shown in FIG. If it becomes the shape used as it, it will not specifically limit.
 支持シート11の平面形状としては、後述する半導体装置の製造工程において用いられるリングフレーム等の治具への貼付が容易な形状であることが好ましく、例えば、円形、略円形、四角形、五角形、六角形、八角形、ウエハ形状(円の外周の一部が直線である形状)等が挙げられる。これらの中でも、リングフレームに貼付される部分以外の無駄な部分を少なくするために、円形やウエハ形状が好ましい。 The planar shape of the support sheet 11 is preferably a shape that can be easily attached to a jig such as a ring frame used in the manufacturing process of a semiconductor device to be described later. For example, a circular shape, a substantially circular shape, a rectangular shape, a pentagonal shape, a hexagonal shape, Examples thereof include a rectangular shape, an octagonal shape, and a wafer shape (a shape in which a part of the outer periphery of the circle is a straight line). Among these, in order to reduce useless parts other than the part attached to the ring frame, a circular shape or a wafer shape is preferable.
 また、樹脂膜形成層12の平面形状としては、半導体ウエハ等のワークの平面形状に合致する形状であることが好ましく、例えば、円形、略円形、四角形、五角形、六角形、八角形、ウエハ形状(円の外周の一部が直線である形状)等の、ワークへの貼付が容易な形状であることが好ましい。これらの中でも、ワークに貼付される部分以外の無駄な部分を少なくするために、円形やウエハ形状が好ましい。 The planar shape of the resin film forming layer 12 is preferably a shape that matches the planar shape of a workpiece such as a semiconductor wafer. For example, a circular shape, a substantially circular shape, a quadrangular shape, a pentagonal shape, a hexagonal shape, an octagonal shape, a wafer shape. It is preferable that the shape be easy to stick to the workpiece, such as (a shape in which a part of the outer periphery of the circle is a straight line). Among these, a circular shape or a wafer shape is preferable in order to reduce useless portions other than the portion attached to the workpiece.
(第1の態様)
 図2は、本発明に係る樹脂膜形成用シート積層体100の第1の態様を示す平面図であり、図3は、図2に示す樹脂膜形成用シート積層体100をA-A線に沿って切断した場合の略式断面図である。
(First aspect)
FIG. 2 is a plan view showing a first embodiment of the resin film-forming sheet laminate 100 according to the present invention, and FIG. 3 shows the resin film-forming sheet laminate 100 shown in FIG. It is a schematic sectional drawing at the time of cutting along.
 図2及び図3に示すように、第1の態様に係る樹脂膜形成用シート積層体100は、支持シート11の直径が樹脂膜形成層12の直径よりも大きい。また、支持シート11は、基材11aと粘着剤層11bとからなる粘着シートである。また、剥離シート13には、切込部D1の他に、樹脂膜形成層12の外周に沿って切込部D2が形成されてもよい。 2 and 3, in the resin film forming sheet laminate 100 according to the first aspect, the diameter of the support sheet 11 is larger than the diameter of the resin film forming layer 12. The support sheet 11 is a pressure-sensitive adhesive sheet composed of a base material 11a and a pressure-sensitive adhesive layer 11b. Further, in the release sheet 13, a cut portion D <b> 2 may be formed along the outer periphery of the resin film forming layer 12 in addition to the cut portion D <b> 1.
 第1の態様において、切込部D2の切込深さd2は特に限定されず、切込部D1の切込み深さd1と同じでも、大きくても、小さくてもよいが、剥離シートの厚さの1/2超であることが好ましく、より好ましくは3/5~4/5である。また、剥離シートの厚さが50μm以上の場合には、切込部D2の切込深さd2は25μm超であることが好ましい。具体的には、剥離シートの厚さが50μmの場合、切込部D2の切込深さd2は、好ましくは25μm超、より好ましくは30~40μmであり、剥離シートの厚さが100μmの場合、切込部D2の切込深さd2は、好ましくは50μm超、より好ましくは60~80μmである。樹脂膜形成層の組成によっては、剥離シートとの接着性が高くなり、ワーク貼付工程において、樹脂膜形成層を繰り出すことができないことがある。このような場合であっても、所定深さの切込部D2を設けることで、樹脂膜形成層12と剥離シート13との界面に剥離起点を作り出すことができるため、樹脂膜形成層12の繰出し性が向上する。 In the first aspect, the depth of cut d2 of the cut portion D2 is not particularly limited, and may be the same as, larger or smaller than the depth of cut d1 of the cut portion D1, but the thickness of the release sheet It is preferably more than 1/2 of the above, more preferably 3/5 to 4/5. Moreover, when the thickness of a peeling sheet is 50 micrometers or more, it is preferable that the cutting depth d2 of the cutting part D2 is more than 25 micrometers. Specifically, when the thickness of the release sheet is 50 μm, the cut depth d2 of the cut portion D2 is preferably more than 25 μm, more preferably 30 to 40 μm, and the thickness of the release sheet is 100 μm. The cut depth d2 of the cut portion D2 is preferably more than 50 μm, more preferably 60 to 80 μm. Depending on the composition of the resin film forming layer, the adhesiveness to the release sheet may be increased, and the resin film forming layer may not be fed out in the work pasting process. Even in such a case, by providing the cut portion D2 having a predetermined depth, it is possible to create a peeling start point at the interface between the resin film forming layer 12 and the peeling sheet 13, so that the resin film forming layer 12 Extendability is improved.
 また、所定深さの切込部D2を設けることで、ワーク貼付工程中に剥離シートの長手方向(流れ方向)にかかる応力に起因する樹脂膜形成層の変形を抑制することが容易になる。 Also, by providing the cut portion D2 having a predetermined depth, it becomes easy to suppress deformation of the resin film forming layer due to stress applied in the longitudinal direction (flow direction) of the release sheet during the work pasting process.
 第1の態様において、樹脂膜形成用シートの外周部における、剥離シートの剥離力やSUSに対する粘着力は、粘着剤層11bの外周部と剥離シート13との界面で測定される物性値である。第1の態様におけるこれらの物性値は、後述する粘着剤層11bを構成する成分や粘着剤層11bの厚みを調整することで制御できる。なお、第1の態様における上記物性値は、粘着剤層11bを構成する成分としてエネルギー線硬化性化合物(B)やエネルギー線硬化型重合体(AB)を含む場合には、エネルギー線照射前の物性値である。 1st aspect WHEREIN: The peeling force of the peeling sheet in the outer peripheral part of the sheet | seat for resin film formation, or the adhesive force with respect to SUS is a physical-property value measured in the interface of the outer peripheral part of the adhesive layer 11b and the peeling sheet 13. FIG. . These physical property values in the first aspect can be controlled by adjusting components constituting the pressure-sensitive adhesive layer 11b described later and the thickness of the pressure-sensitive adhesive layer 11b. In addition, the said physical-property value in a 1st aspect WHEREIN: When an energy-beam curable compound (B) and an energy-beam curable polymer (AB) are included as a component which comprises the adhesive layer 11b, it is before energy beam irradiation. It is a physical property value.
(第2の態様)
 図4は、第2の態様の樹脂膜形成用シート積層体100の略式断面図である。第2の態様に係る樹脂膜形成用シート積層体100の樹脂膜形成用シート10においては、平面視における支持シート11と樹脂膜形成層12とが同形状である。
(Second aspect)
FIG. 4 is a schematic cross-sectional view of the resin film forming sheet laminate 100 of the second embodiment. In the resin film forming sheet 10 of the resin film forming sheet laminate 100 according to the second aspect, the support sheet 11 and the resin film forming layer 12 in the plan view have the same shape.
 図4に示すように、基材11aと粘着剤層11bとからなる粘着シートを支持シートとして用いてもよいし、基材11aのみを支持シートとして用いてもよい。 As shown in FIG. 4, an adhesive sheet composed of a base material 11a and an adhesive layer 11b may be used as a support sheet, or only the base material 11a may be used as a support sheet.
 第2の態様において、樹脂膜形成用シートの外周部における、剥離シートの剥離力やSUSに対する粘着力は、樹脂膜形成層12の外周部と剥離シート13との界面で測定される物性値である。第2の態様におけるこれらの物性値は、樹脂膜形成層を構成する成分としてエネルギー線硬化性化合物(B)やエネルギー線硬化型重合体(AB)を用い、樹脂膜形成層の外周部のみにエネルギー線を照射する等の手段により制御することができる。このような手段としては、例えば、支持シートの内周部に印刷等によりエネルギー線遮蔽層を設け、支持シート側から樹脂膜形成層にエネルギー線照射を行う方法や、予め樹脂膜形成層の外周部のみにエネルギー線照射を行い、その後、支持シートと積層する方法などが挙げられる。 2nd aspect WHEREIN: The peeling force of the peeling sheet in the outer peripheral part of the resin film formation sheet or the adhesive force with respect to SUS is a physical-property value measured in the interface of the outer peripheral part of the resin film forming layer 12, and the peeling sheet 13. is there. These physical property values in the second aspect are obtained by using an energy ray curable compound (B) or an energy ray curable polymer (AB) as a component constituting the resin film forming layer, and only on the outer peripheral portion of the resin film forming layer. It can be controlled by means such as irradiation with energy rays. As such means, for example, an energy ray shielding layer is provided by printing or the like on the inner peripheral portion of the support sheet, and energy beam irradiation is performed from the support sheet side to the resin film formation layer, or the outer periphery of the resin film formation layer in advance. Examples include a method of irradiating only the part with energy rays and then laminating with a support sheet.
(第3の態様)
 図5は、第3の態様の樹脂膜形成用シート積層体100の略式断面図である。第3の態様に係る樹脂膜形成用シート積層体100の樹脂膜形成用シート10においては、平面視における支持シート11と樹脂膜形成層12とが同形状である。また、樹脂膜形成用シート10の外周部であって、剥離シート13と樹脂膜形成層12との間に治具接着層14が設けられている。また、剥離シート13には、切込部D1の他に、環状の治具接着層14の内周に沿って切込部D3が形成されてもよい。
(Third aspect)
FIG. 5 is a schematic cross-sectional view of the resin film forming sheet laminate 100 of the third aspect. In the resin film forming sheet 10 of the resin film forming sheet laminate 100 according to the third aspect, the support sheet 11 and the resin film forming layer 12 in the plan view have the same shape. Further, a jig adhesive layer 14 is provided between the release sheet 13 and the resin film forming layer 12 in the outer peripheral portion of the resin film forming sheet 10. Further, in the release sheet 13, a cut portion D <b> 3 may be formed along the inner periphery of the annular jig adhesive layer 14 in addition to the cut portion D <b> 1.
 図5に示すように、基材11aと粘着剤層11bとからなる粘着シートを支持シートとして用いてもよいし、基材11aのみを支持シートとして用いてもよい。 As shown in FIG. 5, an adhesive sheet composed of a base material 11a and an adhesive layer 11b may be used as a support sheet, or only the base material 11a may be used as a support sheet.
 第3の態様において、切込部D3の切込深さd3は特に限定されず、切込部D1の切込み深さd1と同じでも、大きくても、小さくてもよいが、剥離シートの厚さの1/2超であることが好ましく、より好ましくは3/5~4/5である。また、剥離シートの厚さが50μm以上の場合には、切込部D3の切込深さd3は25μm超であることが好ましい。具体的には、剥離シートの厚さが50μmの場合、切込部D3の切込深さd3は、好ましくは25μm超、より好ましくは30~40μmであり、剥離シートの厚さが100μmの場合、切込部D3の切込深さd3は、好ましくは50μm超、より好ましくは60~80μmである。所定深さの切込部D3を設けることで、ワーク貼付工程中に剥離シートの長手方向(流れ方向)にかかる応力に起因する樹脂膜形成層の変形を抑制することが容易になる。 In the third aspect, the depth of cut d3 of the cut portion D3 is not particularly limited, and may be the same as, larger or smaller than the depth of cut d1 of the cut portion D1, but the thickness of the release sheet It is preferably more than 1/2 of the above, more preferably 3/5 to 4/5. Moreover, when the thickness of a peeling sheet is 50 micrometers or more, it is preferable that the cutting depth d3 of the cutting part D3 is more than 25 micrometers. Specifically, when the thickness of the release sheet is 50 μm, the cut depth d3 of the cut portion D3 is preferably more than 25 μm, more preferably 30 to 40 μm, and the thickness of the release sheet is 100 μm. The cut depth d3 of the cut portion D3 is preferably more than 50 μm, more preferably 60 to 80 μm. By providing the cut portion D3 having a predetermined depth, it becomes easy to suppress the deformation of the resin film forming layer due to the stress applied in the longitudinal direction (flow direction) of the release sheet during the work sticking process.
 第3の態様において、樹脂膜形成用シートの外周部における、剥離シートの剥離力やSUSに対する粘着力は、治具接着層14と剥離シート13との界面で測定される物性値である。第3の態様におけるこれらの物性値は、後述する治具接着層を構成する成分や治具接着層の厚みを調整することで制御できる。なお、第3の態様における上記物性値は、治具接着層を構成する成分としてエネルギー線硬化性化合物(B)やエネルギー線硬化型重合体(AB)を含む場合には、エネルギー線照射前の物性値である。 3rd aspect WHEREIN: The peeling force of the peeling sheet and the adhesive force with respect to SUS in the outer peripheral part of the sheet | seat for resin film formation are a physical-property value measured in the interface of the jig | tool adhesion layer 14 and the peeling sheet 13. FIG. These physical property values in the third aspect can be controlled by adjusting the components constituting the jig bonding layer described later and the thickness of the jig bonding layer. In addition, the said physical-property value in a 3rd aspect is an energy-beam irradiating compound (AB) and an energy-beam curable polymer (AB) as a component which comprises a jig | tool adhesion layer, before energy-beam irradiation. It is a physical property value.
(第4の態様)
 図6は、第4の態様の樹脂膜形成用シート積層体100の略式断面図である。第4の態様に係る樹脂膜形成用シート積層体100は、平面視において支持シート11の直径が樹脂膜形成層12の直径よりも大きい。また、樹脂膜形成用シートの外周部であって、剥離シート13と支持シート11との間に治具接着層14が設けられている。また、剥離シート13には、切込部D1の他に、樹脂膜形成層12の外周に沿って切込部D2が形成されてもよい。さらに、剥離シート13には、環状の治具接着層14の内周に沿って切込部D3が形成されてもよい。切込部D2の切込深さd2、切込部D3の切込深さd3や、これらに起因した効果は、第1の態様や第3の態様において説明したとおりである。また、治具接着層14としては、第3の態様と同様であり、その構成については後述する。
(Fourth aspect)
FIG. 6 is a schematic cross-sectional view of the resin film forming sheet laminate 100 of the fourth aspect. In the resin film forming sheet laminate 100 according to the fourth aspect, the diameter of the support sheet 11 is larger than the diameter of the resin film forming layer 12 in plan view. Further, a jig adhesive layer 14 is provided between the release sheet 13 and the support sheet 11 on the outer peripheral portion of the resin film forming sheet. Further, in the release sheet 13, a cut portion D <b> 2 may be formed along the outer periphery of the resin film forming layer 12 in addition to the cut portion D <b> 1. Furthermore, a cut portion D3 may be formed in the release sheet 13 along the inner periphery of the annular jig adhesive layer 14. The cut depth d2 of the cut portion D2, the cut depth d3 of the cut portion D3, and the effects resulting from these are as described in the first mode and the third mode. The jig adhesive layer 14 is the same as that in the third aspect, and the configuration thereof will be described later.
 基材11aと粘着剤層11bとからなる粘着シートを支持シートとして用いてもよいし、図6に示すように、基材11aのみを支持シートとして用いてもよい。 The pressure-sensitive adhesive sheet composed of the base material 11a and the pressure-sensitive adhesive layer 11b may be used as a support sheet, or only the base material 11a may be used as a support sheet as shown in FIG.
 第4の態様において、樹脂膜形成用シートの外周部における、剥離シートの剥離力やSUSに対する粘着力は、治具接着層14と剥離シート13との界面で測定される物性値である。第4の態様におけるこれらの物性値は、後述する治具接着層を構成する成分や治具接着層の厚みを調整することで制御できる。なお、第4の態様における上記物性値は、治具接着層を構成する成分としてエネルギー線硬化性化合物(B)やエネルギー線硬化型重合体(AB)を含む場合には、エネルギー線照射前の物性値である。 4th aspect WHEREIN: The peeling force of the peeling sheet and the adhesive force with respect to SUS in the outer peripheral part of the sheet | seat for resin film formation are a physical-property value measured in the interface of the jig | tool adhesion layer 14 and the peeling sheet 13. FIG. These physical property values in the fourth aspect can be controlled by adjusting components constituting the jig bonding layer described later and the thickness of the jig bonding layer. In addition, the said physical-property value in a 4th aspect WHEREIN: When an energy-beam curable compound (B) and an energy-beam curable polymer (AB) are included as a component which comprises a jig | tool adhesion layer, before an energy beam irradiation. It is a physical property value.
樹脂膜形成用シート積層体の構成
 本発明に係る樹脂膜形成用シート積層体は、支持シートと樹脂膜形成層とを含む樹脂膜形成用シートの樹脂膜形成層上に剥離シートを積層してなる。また、第3の態様や第4の態様において説明したように、樹脂膜形成用シートは治具接着層を含むこともある。以下、樹脂膜形成用シート積層体を構成する各層について説明する。
Configuration of Resin Film Forming Sheet Laminate A resin film forming sheet laminate according to the present invention is obtained by laminating a release sheet on a resin film forming layer of a resin film forming sheet including a support sheet and a resin film forming layer. Become. Further, as described in the third aspect and the fourth aspect, the resin film forming sheet may include a jig adhesive layer. Hereinafter, each layer which comprises the sheet | seat laminated body for resin film formation is demonstrated.
(支持シート)
 支持シートとしては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン酢酸ビニル共重合体フィルム、アイオノマー樹脂フィルム、エチレン・(メタ)アクリル酸共重合体フィルム、エチレン・(メタ)アクリル酸エステル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、ポリイミドフィルム、フッ素樹脂フィルム等が用いられる。またこれらの架橋フィルムも用いられる。さらにこれらの積層フィルムであってもよい。
(Support sheet)
Examples of the support sheet include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polyethylene naphthalate film, polybutylene terephthalate film, Polyurethane film, ethylene vinyl acetate copolymer film, ionomer resin film, ethylene / (meth) acrylic acid copolymer film, ethylene / (meth) acrylic acid ester copolymer film, polystyrene film, polycarbonate film, polyimide film, fluorine A resin film or the like is used. These crosslinked films are also used. Furthermore, these laminated films may be sufficient.
 また、図3~5に示すように、支持シート11として、基材11aと粘着剤層11bとからなる粘着シートを用いることもできる。 Further, as shown in FIGS. 3 to 5, as the support sheet 11, an adhesive sheet composed of a base material 11a and an adhesive layer 11b can be used.
 支持シートとして粘着シートを用いる場合には、樹脂膜形成用シート上でワークにダイシング等の所要の加工を施すことが容易になる。この態様においては、樹脂膜形成層は、基材上に設けられた粘着剤層に積層される。基材としては、支持シートとして例示した上記のフィルムが挙げられる。 When an adhesive sheet is used as the support sheet, it becomes easy to perform necessary processing such as dicing on the workpiece on the resin film forming sheet. In this embodiment, the resin film forming layer is laminated on the pressure-sensitive adhesive layer provided on the base material. Examples of the substrate include the films exemplified as the support sheet.
 粘着剤層は、従来より公知の種々の粘着剤により形成され得る。粘着剤は、通常重合体(A)を含有する。本発明においては、エネルギー線硬化性粘着剤を用いることが好ましいため、重合体(A)の他にエネルギー線硬化性化合物(B)を含有することが好ましい。 The pressure-sensitive adhesive layer can be formed of various conventionally known pressure-sensitive adhesives. The pressure-sensitive adhesive usually contains a polymer (A). In the present invention, since it is preferable to use an energy ray-curable pressure-sensitive adhesive, it is preferable to contain an energy ray-curable compound (B) in addition to the polymer (A).
 エネルギー線硬化性化合物(B)は、エネルギー線重合性基を含み、紫外線、電子線等のエネルギー線の照射を受けると重合硬化し、粘着剤の粘着性を低下させる機能を有する。本発明におけるエネルギー線重合性基は、重合性の炭素-炭素二重結合を有する官能基であり、具体的な例としてはビニル基、アリル基、(メタ)アクリロイル基などが挙げられ、好ましくは(メタ)アクリロイル基が挙げられる。本発明におけるエネルギー線重合性基は、ラジカル存在下でラジカルを生成して重付加反応を容易に起こすため、重合性を有しない二重結合を意味しない。たとえば、エネルギー線硬化性粘着剤を構成する各成分には芳香環が含まれていてもよいが、芳香環の不飽和構造は本発明におけるエネルギー線重合性基を意味しない。 The energy ray-curable compound (B) contains an energy ray-polymerizable group and has a function of being polymerized and cured when irradiated with energy rays such as ultraviolet rays and electron beams and reducing the adhesiveness of the pressure-sensitive adhesive. The energy beam polymerizable group in the present invention is a functional group having a polymerizable carbon-carbon double bond, and specific examples thereof include a vinyl group, an allyl group, a (meth) acryloyl group, and the like. (Meth) acryloyl group is mentioned. The energy beam polymerizable group in the present invention does not mean a double bond having no polymerizability because it generates a radical in the presence of a radical and easily causes a polyaddition reaction. For example, each component constituting the energy ray-curable pressure-sensitive adhesive may contain an aromatic ring, but the unsaturated structure of the aromatic ring does not mean the energy ray polymerizable group in the present invention.
 また、上記成分(A)および(B)の性質を兼ね備えるものとして、主鎖または側鎖に、エネルギー線重合性基が結合されてなるエネルギー線硬化型重合体(以下、成分(AB)と記載する場合がある)を用いることもできる。このようなエネルギー線硬化型重合体(AB)は、重合体としての機能とエネルギー線硬化性とを兼ね備える性質を有する。 Moreover, as what has the property of said component (A) and (B), it describes as an energy-beam curable polymer (henceforth component (AB)) by which an energy-beam polymeric group is couple | bonded with the principal chain or the side chain. May be used). Such an energy beam curable polymer (AB) has the property of having both a function as a polymer and energy beam curability.
 エネルギー線硬化性粘着剤としては特に限定されないが、アクリル系粘着剤を例として具体的に説明する。アクリル系粘着剤は、重合体(A)として、アクリル系重合体(A1)を含有する。 The energy ray-curable pressure-sensitive adhesive is not particularly limited, but will be specifically described with an acrylic pressure-sensitive adhesive as an example. The acrylic pressure-sensitive adhesive contains an acrylic polymer (A1) as the polymer (A).
 アクリル系重合体(A1)としては、従来公知のアクリル系重合体を用いることができる。アクリル系重合体(A1)の重量平均分子量(Mw)は、1万~200万であることが好ましく、10万~150万であることがより好ましい。また、アクリル系重合体(A1)のガラス転移温度(Tg)は、好ましくは-70~30℃、さらに好ましくは-60~20℃の範囲にある。アクリル系重合体(A1)の重量平均分子量やガラス転移温度を高くすると、上述した剥離力や粘着力が低下し、重量平均分子量やガラス転移温度を低くすると該剥離力や該粘着力が上昇する傾向にある。 As the acrylic polymer (A1), a conventionally known acrylic polymer can be used. The weight average molecular weight (Mw) of the acrylic polymer (A1) is preferably 10,000 to 2,000,000, more preferably 100,000 to 1,500,000. The glass transition temperature (Tg) of the acrylic polymer (A1) is preferably in the range of −70 to 30 ° C., more preferably in the range of −60 to 20 ° C. When the weight average molecular weight and glass transition temperature of the acrylic polymer (A1) are increased, the above-described peeling force and adhesive force are decreased, and when the weight average molecular weight and glass transition temperature are decreased, the peeling force and the adhesive force are increased. There is a tendency.
 アクリル系重合体(A1)を構成するモノマーには、少なくとも一種の(メタ)アクリル酸エステルモノマーまたはその誘導体が含まれる。
 具体的には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、へプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、テトラデシル(メタ)アクリレート、オクタデシル(メタ)アクリレートなどのアルキル基の炭素数が1~18であるアルキル(メタ)アクリレート;シクロアルキル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イミド(メタ)アクリレートなどの環状骨格を有する(メタ)アクリレート;ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレートなどの水酸基含有(メタ)アクリレート;グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレートなどのエポキシ基含有(メタ)アクリレート;モノメチルアミノ(メタ)アクリレート、モノエチルアミノ(メタ)アクリレート、ジエチルアミノ(メタ)アクリレートなどのアミノ基含有(メタ)アクリレート;2-(メタ)アクリロイロキシエチルフタレート、2-(メタ)アクリロイロキシプロピルフタレートなどのカルボキシル基含有(メタ)アクリレート;が挙げられる。
 また、(メタ)アクリル酸、イタコン酸、酢酸ビニル、(メタ)アクリロニトリル、スチレン等が共重合されていてもよい。
 これらは1種単独で用いてもよく、2種以上を併用してもよい。
The monomer constituting the acrylic polymer (A1) includes at least one (meth) acrylic acid ester monomer or a derivative thereof.
Specifically, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl ( Alkyl groups such as (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, tetradecyl (meth) acrylate, octadecyl (meth) acrylate and the like have 1 carbon atom Alkyl (meth) acrylate which is -18; cycloalkyl (meth) acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (Meth) acrylates having a cyclic skeleton such as (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, imide (meth) acrylate; hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl Hydroxyl group-containing (meth) acrylates such as (meth) acrylate and 2-hydroxybutyl (meth) acrylate; Epoxy group-containing (meth) acrylates such as glycidyl (meth) acrylate and 3,4-epoxycyclohexylmethyl (meth) acrylate; monomethyl Amino group-containing (meth) acrylates such as amino (meth) acrylate, monoethylamino (meth) acrylate, diethylamino (meth) acrylate; 2- (meth) acryloyloxyethyl phthalate And carboxyl group-containing (meth) acrylates such as 2- (meth) acryloyloxypropyl phthalate.
Further, (meth) acrylic acid, itaconic acid, vinyl acetate, (meth) acrylonitrile, styrene or the like may be copolymerized.
These may be used alone or in combination of two or more.
 なお、本明細書で(メタ)アクリルは、アクリルおよびメタクリルの両者を包含する意味で用いることがある。 In addition, in this specification, (meth) acryl may be used in the meaning including both acryl and methacryl.
 アクリル系重合体(A1)は架橋されていてもよい。アクリル系重合体(A1)を架橋する場合は、架橋される前のアクリル系重合体(A1)が水酸基等の架橋性官能基を有しており、粘着剤層を形成するための組成物中に架橋剤を添加する。架橋性官能基と架橋剤の有する官能基が反応することでアクリル系重合体(A1)が架橋される。アクリル系重合体(A1)を架橋することにより、粘着剤層の凝集力を調節することが可能となる。 The acrylic polymer (A1) may be cross-linked. In the case of crosslinking the acrylic polymer (A1), the acrylic polymer (A1) before being crosslinked has a crosslinkable functional group such as a hydroxyl group, and in the composition for forming the pressure-sensitive adhesive layer Add a cross-linking agent. The acrylic polymer (A1) is crosslinked by the reaction between the crosslinkable functional group and the functional group of the crosslinking agent. By crosslinking the acrylic polymer (A1), the cohesive force of the pressure-sensitive adhesive layer can be adjusted.
 架橋剤としては有機多価イソシアネート化合物、有機多価イミン化合物などが挙げられる。 Examples of the crosslinking agent include organic polyvalent isocyanate compounds and organic polyvalent imine compounds.
 有機多価イソシアネート化合物としては、芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物、脂環族多価イソシアネート化合物およびこれらの有機多価イソシアネート化合物の三量体、ならびにこれら有機多価イソシアネート化合物とポリオール化合物とを反応させて得られる末端イソシアネートウレタンプレポリマー等を挙げることができる。 Examples of organic polyvalent isocyanate compounds include aromatic polyvalent isocyanate compounds, aliphatic polyvalent isocyanate compounds, alicyclic polyvalent isocyanate compounds, trimers of these organic polyvalent isocyanate compounds, and these organic polyvalent isocyanate compounds. Examples thereof include terminal isocyanate urethane prepolymers obtained by reacting with a polyol compound.
 有機多価イソシアネート化合物として、具体的には、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-2,4’-ジイソシアネート、3-メチルジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ジシクロヘキシルメタン-2,4’-ジイソシアネート、リジンイソシアネート、およびこれらの多価アルコールアダクト体(例えば、トリメチロールプロパンアダクトトリレンジイソシアネート)が挙げられる。 Specific examples of the organic polyvalent isocyanate compound include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylene diisocyanate, diphenylmethane-4,4′-. Diisocyanate, diphenylmethane-2,4′-diisocyanate, 3-methyldiphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, dicyclohexylmethane-2,4′-diisocyanate, and lysine isocyanates thereof Examples thereof include polyhydric alcohol adducts (for example, trimethylolpropane adduct tolylene diisocyanate).
 有機多価イミン化合物として、具体的には、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、テトラメチロールメタン-トリ-β-アジリジニルプロピオネートおよびN,N’-トルエン-2,4-ビス(1-アジリジンカルボキシアミド)トリエチレンメラミン等を挙げることができる。 Specific examples of organic polyvalent imine compounds include N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), trimethylolpropane-tri-β-aziridinylpropionate, tetramethylol. Mention may be made of methane-tri-β-aziridinylpropionate and N, N′-toluene-2,4-bis (1-aziridinecarboxamide) triethylenemelamine.
 架橋剤は架橋する前のアクリル系重合体100質量部に対して通常0.01~20質量部、好ましくは0.1~15質量部、より好ましくは0.5~12質量部の比率で配合される。架橋剤の配合量を多くすると上述した剥離力や粘着力が低下し、架橋剤の配合量を少なくすると該剥離力や該粘着力が上昇する傾向にある。 The crosslinking agent is usually blended at a ratio of 0.01 to 20 parts by weight, preferably 0.1 to 15 parts by weight, more preferably 0.5 to 12 parts by weight with respect to 100 parts by weight of the acrylic polymer before crosslinking. Is done. When the blending amount of the crosslinking agent is increased, the above-described peeling force and adhesive strength are lowered, and when the blending amount of the crosslinking agent is decreased, the peeling force and the tackiness tend to increase.
 本発明において、粘着剤層を構成する成分の含有量の態様について、アクリル系重合体の含有量を基準として定める場合、アクリル系重合体が架橋されたアクリル系重合体であるときは、その基準とする含有量は、架橋される前のアクリル系重合体の含有量である。 In the present invention, when the content of the component constituting the pressure-sensitive adhesive layer is determined based on the content of the acrylic polymer, when the acrylic polymer is a crosslinked acrylic polymer, the standard The content of is the content of the acrylic polymer before being crosslinked.
 エネルギー線硬化性化合物(B)は、紫外線、電子線等のエネルギー線の照射を受けると重合硬化する化合物である。このエネルギー線硬化性化合物の例としては、エネルギー線重合性基を有する低分子量化合物(単官能、多官能のモノマーおよびオリゴマー)が挙げられ、具体的には、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、1,4-ブチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレートなどのアクリレート、ジシクロペンタジエンジメトキシジアクリレート、イソボルニルアクリレートなどの環状脂肪族骨格含有アクリレート、ポリエチレングリコールジアクリレート、オリゴエステルアクリレート、ウレタンアクリレートオリゴマー、エポキシ変性アクリレート、ポリエーテルアクリレート、イタコン酸オリゴマーなどのアクリレート系化合物が用いられる。このような化合物は、分子内にエネルギー線重合性基を有し、通常は、分子量が100~30000、好ましくは300~10000程度である。 The energy ray-curable compound (B) is a compound that is polymerized and cured when irradiated with energy rays such as ultraviolet rays and electron beams. Examples of the energy ray curable compounds include low molecular weight compounds (monofunctional and polyfunctional monomers and oligomers) having an energy ray polymerizable group, and specifically include trimethylolpropane triacrylate and tetramethylolmethane. Acrylates such as tetraacrylate, pentaerythritol triacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, 1,4-butylene glycol diacrylate, 1,6-hexanediol diacrylate, dicyclopentadiene dimethoxydiacrylate, Cyclic aliphatic skeleton-containing acrylates such as isobornyl acrylate, polyethylene glycol diacrylate, oligoester acrylate, urethane acrylate Goma, epoxy-modified acrylates, polyether acrylates, acrylate compounds such as itaconic acid oligomer is used. Such a compound has an energy ray polymerizable group in the molecule and usually has a molecular weight of about 100 to 30,000, preferably about 300 to 10,000.
 一般的には成分(A)(後述するエネルギー線硬化型重合体(AB)を含む)100質量部に対して、エネルギー線重合性基を有する低分子量化合物は好ましくは0~200質量部、より好ましくは1~100質量部、さらに好ましくは、1~30質量部程度の割合で用いられる。 In general, the amount of the low molecular weight compound having an energy ray polymerizable group is preferably 0 to 200 parts by mass relative to 100 parts by mass of the component (A) (including the energy ray curable polymer (AB) described later). The ratio is preferably 1 to 100 parts by mass, more preferably about 1 to 30 parts by mass.
 上記成分(A)および(B)の性質を兼ね備えるエネルギー線硬化型重合体(AB)は、重合体の主鎖、側鎖または末端に、エネルギー線重合性基が結合されてなる。 The energy beam curable polymer (AB) having the properties of the components (A) and (B) is formed by bonding an energy beam polymerizable group to the main chain, side chain or terminal of the polymer.
 エネルギー線硬化型重合体の主鎖、側鎖または末端に結合するエネルギー線重合性基は、アルキレン基、アルキレンオキシ基、ポリアルキレンオキシ基を介してエネルギー線硬化型重合体の主鎖、側鎖または末端に結合していてもよい。 The energy ray curable polymer bonded to the main chain, side chain or terminal of the energy ray curable polymer is an alkylene group, alkyleneoxy group or polyalkyleneoxy group via the main chain or side chain of the energy ray curable polymer. Or you may couple | bond with the terminal.
 エネルギー線硬化型重合体(AB)の重量平均分子量(Mw)は、1万~200万であることが好ましく、10万~150万であることがより好ましい。また、エネルギー線硬化型重合体(AB)のガラス転移温度(Tg)は、好ましくは-70~30℃、より好ましくは-60~20℃の範囲にある。なお、後述するヒドロキシ基等の官能基を含有するアクリル系重合体と、重合性基含有化合物とを反応させて得たエネルギー線硬化型重合体(AB)の場合には、Tgは重合性基含有化合物と反応させる前のアクリル系重合体のTgである。エネルギー線硬化型重合体(AB)の重量平均分子量やガラス転移温度を高くすると、上述した剥離力や粘着力が低下し、重量平均分子量やガラス転移温度を低くすると該剥離力や該粘着力が上昇する傾向にある。 The weight average molecular weight (Mw) of the energy beam curable polymer (AB) is preferably 10,000 to 2,000,000, and more preferably 100,000 to 1,500,000. The glass transition temperature (Tg) of the energy beam curable polymer (AB) is preferably in the range of −70 to 30 ° C., more preferably −60 to 20 ° C. In the case of an energy ray curable polymer (AB) obtained by reacting an acrylic polymer containing a functional group such as a hydroxy group described later with a polymerizable group-containing compound, Tg is a polymerizable group. It is Tg of the acrylic polymer before making it react with a containing compound. When the weight average molecular weight and glass transition temperature of the energy ray curable polymer (AB) are increased, the above-described peeling force and adhesive force are lowered, and when the weight average molecular weight and glass transition temperature are lowered, the peeling force and the adhesive force are reduced. It tends to rise.
 エネルギー線硬化型重合体(AB)は、例えば、ヒドロキシ基、カルボキシル基、アミノ基、置換アミノ基、エポキシ基等の官能基を含有するアクリル系重合体と、該官能基と反応する置換基とエネルギー線重合性炭素-炭素二重結合を1分子毎に1~5個を有する重合性基含有化合物とを反応させて得られる。アクリル系重合体は、ヒドロキシ基、カルボキシル基、アミノ基、置換アミノ基、エポキシ基等の官能基を有する(メタ)アクリル酸エステルモノマーまたはその誘導体と、前述した成分(A)を構成するモノマーとからなる共重合体であることが好ましい。該重合性基含有化合物としては、(メタ)アクリロイルオキシエチルイソシアネート、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、(メタ)アクリロイルイソシアネート、アリルイソシアネート、グリシジル(メタ)アクリレート、(メタ)アクリル酸等が挙げられる。 The energy ray curable polymer (AB) includes, for example, an acrylic polymer containing a functional group such as a hydroxy group, a carboxyl group, an amino group, a substituted amino group, and an epoxy group, and a substituent that reacts with the functional group. It is obtained by reacting a polymerizable group-containing compound having 1 to 5 energy beam polymerizable carbon-carbon double bonds per molecule. The acrylic polymer includes a (meth) acrylic acid ester monomer having a functional group such as a hydroxy group, a carboxyl group, an amino group, a substituted amino group, and an epoxy group or a derivative thereof, and a monomer constituting the component (A) described above. A copolymer consisting of Examples of the polymerizable group-containing compound include (meth) acryloyloxyethyl isocyanate, meta-isopropenyl-α, α-dimethylbenzyl isocyanate, (meth) acryloyl isocyanate, allyl isocyanate, glycidyl (meth) acrylate, and (meth) acrylic acid. Etc.
 エネルギー線硬化型重合体(AB)を、ヒドロキシ基等の官能基を含有するアクリル系重合体と、重合性基含有化合物とを反応させて得た場合、エネルギー線硬化型重合体(AB)は、上述のアクリル系重合体(A1)同様、架橋されていてもよい。 When the energy ray curable polymer (AB) is obtained by reacting an acrylic polymer containing a functional group such as a hydroxy group with a polymerizable group-containing compound, the energy ray curable polymer (AB) is Like the above-mentioned acrylic polymer (A1), it may be crosslinked.
 上記のようなアクリル系重合体(A1)、エネルギー線硬化性化合物(B)及び/又は、エネルギー線硬化型重合体(AB)を含むアクリル系粘着剤は、エネルギー線照射により硬化する。エネルギー線としては、具体的には、紫外線、電子線等が用いられる。 The acrylic pressure-sensitive adhesive containing the acrylic polymer (A1), the energy ray curable compound (B) and / or the energy ray curable polymer (AB) as described above is cured by irradiation with energy rays. Specifically, ultraviolet rays, electron beams, etc. are used as the energy rays.
 また、エネルギー線硬化性化合物(B)や、エネルギー線硬化型重合体(AB)に光重合開始剤を組み合わせることで、重合硬化時間を短くし、ならびに光線照射量を少なくすることができる。 Also, by combining a photopolymerization initiator with the energy beam curable compound (B) or the energy beam curable polymer (AB), the polymerization curing time can be shortened and the amount of light irradiation can be decreased.
 このような光重合開始剤としては、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサンソン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、1,2-ジフェニルメタン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイドおよびβ-クロールアンスラキノンなどが挙げられる。光重合開始剤は1種類単独で、または2種類以上を組み合わせて用いることができる。 Examples of such photopolymerization initiators include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin benzoic acid methyl, benzoin dimethyl ketal, 2,4-diethyl Thioxanthone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, benzyldiphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl 1,2-diphenylmethane, 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone, 2,4,6-trimethylbenzoy Diphenyl phosphine oxide and β- crawl anthraquinone and the like. A photoinitiator can be used individually by 1 type or in combination of 2 or more types.
 光重合開始剤の配合割合は、エネルギー線硬化性化合物(B)やエネルギー線硬化型重合体(AB)の合計100質量部に対して0.1~10質量部含まれることが好ましく、1~5質量部含まれることがより好ましい。
 光重合開始剤の配合割合が0.1質量部未満であると光重合の不足で満足な硬化性が得られないことがあり、10質量部を超えると光重合に寄与しない残留物が生成し、不具合の原因となることがある。
The blending ratio of the photopolymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass in total of the energy beam curable compound (B) and the energy beam curable polymer (AB). More preferably, 5 parts by mass is included.
If the blending ratio of the photopolymerization initiator is less than 0.1 parts by mass, satisfactory curability may not be obtained due to insufficient photopolymerization, and if it exceeds 10 parts by mass, a residue that does not contribute to photopolymerization is generated. May cause malfunctions.
 支持シートの厚さは、通常は10~500μm、好ましくは15~300μm、より好ましくは20~250μmである。粘着剤層を設ける場合には、支持シート中、2~20μmが粘着剤層の厚さであることが好ましく、より好ましくは3~15μm、さらに好ましくは4~10μmである。粘着剤層の厚さが小さすぎると、十分な剥離力や粘着力が発現しないことがあり、また粘着剤層の厚さが大きすぎると、剥離力や粘着力が高くなり、本発明の効果を発揮できないことがある。 The thickness of the support sheet is usually 10 to 500 μm, preferably 15 to 300 μm, more preferably 20 to 250 μm. When the pressure-sensitive adhesive layer is provided, the thickness of the pressure-sensitive adhesive layer is preferably 2 to 20 μm in the support sheet, more preferably 3 to 15 μm, still more preferably 4 to 10 μm. If the thickness of the pressure-sensitive adhesive layer is too small, sufficient peel strength or pressure-sensitive adhesive strength may not be expressed. If the thickness of the pressure-sensitive adhesive layer is too large, the peel strength or pressure-sensitive adhesive strength increases, and the effect of the present invention. May not be possible.
(樹脂膜形成層)
 本発明における樹脂膜形成層は、シートの用途に応じて、後述するフィルム状接着剤、接着剤層、保護膜形成層など様々な機能を有する樹脂の中から適宜に選択される。
(Resin film forming layer)
The resin film forming layer in the present invention is appropriately selected from resins having various functions such as a film adhesive, an adhesive layer, and a protective film forming layer, which will be described later, according to the use of the sheet.
<フィルム状接着剤>
 樹脂膜形成層は、フィルム状接着剤であってもよい。このようなフィルム状接着剤は、チップのダイボンド工程において近年多用されている。このようなフィルム状接着剤は、好ましくはエポキシ系接着剤またはポリイミド系接着剤を製膜、半硬化したもの(B-ステージ状態)であり、上述した支持シート上に剥離可能に形成される。
<Film adhesive>
The resin film forming layer may be a film adhesive. Such film adhesives are frequently used in the die bonding process of chips in recent years. Such a film adhesive is preferably an epoxy adhesive or polyimide adhesive formed into a film and semi-cured (B-stage state), and is formed to be peelable on the above support sheet.
 フィルム状接着剤は、ワークに貼付される。そのワークとフィルム状接着剤とをチップサイズにダイシングすることで、接着剤付チップが得られ、これを支持シートからピックアップし、接着剤を介して、所定の位置にチップを固着する。なお、接着剤付チップのピックアップ時には、エキスパンドを行うことが好ましい。 The film adhesive is affixed to the workpiece. By dicing the workpiece and the film-like adhesive into a chip size, an adhesive-attached chip is obtained, which is picked up from the support sheet, and the chip is fixed to a predetermined position via the adhesive. It is preferable to perform expansion when picking up the chip with adhesive.
<接着剤層>
 本発明における樹脂膜形成用シートは、ダイシング時のウエハ固定機能とダイボンド時のダイ接着機能とを同時に兼ね備えたダイシング・ダイボンド兼用シートであってもよい。
<Adhesive layer>
The sheet for forming a resin film in the present invention may be a dicing / die-bonding sheet having both a wafer fixing function during dicing and a die bonding function during die bonding.
 樹脂膜形成用シートが、ダイシング・ダイボンド兼用シートある場合、樹脂膜形成層は、ダイシング工程においてワークやワークを個片化したチップを保持し、ダイシング時には、ワークとともに切断され、チップと同形状の樹脂膜形成層が形成される。そして、ダイシング終了後、チップのピックアップを行うと、樹脂膜形成層は、チップとともに支持シートから剥離する。樹脂膜形成層はダイボンド時にはチップを固着するための接着剤として機能する。樹脂膜形成層を伴ったチップを基板に載置し、加熱等を行い、チップと、基板や他のチップ等の被着体とを樹脂膜形成層を介して接着する。 When the resin film forming sheet is a sheet for both dicing and die bonding, the resin film forming layer holds a work or a chip obtained by separating the work in the dicing process, and is cut together with the work during dicing and has the same shape as the chip. A resin film forming layer is formed. When the chip is picked up after the dicing is completed, the resin film forming layer is peeled off from the support sheet together with the chip. The resin film forming layer functions as an adhesive for fixing the chip during die bonding. A chip with a resin film forming layer is placed on a substrate, heated, etc., and the chip and an adherend such as a substrate or another chip are bonded via the resin film forming layer.
 樹脂膜形成用シートが、このようなダイシング・ダイボンド兼用シートである場合は、支持シート上に、樹脂膜形成層として、感圧接着性を有し、かつダイ接着機能とを兼ね備えた、接着剤層が形成されてなる。このようなウエハ固定機能とダイ接着機能とを兼ね備えた樹脂膜形成層は、例えば、前記したアクリル系重合体(A1)と、エポキシ系接着剤を含み、また必要に応じ、エネルギー線硬化性化合物(B)、エネルギー線硬化型重合体(AB)や硬化助剤等を含む。なお、接着剤層付チップのピックアップ時には、前記と同様にエキスパンドを行うことが好ましい。 When the resin film forming sheet is such a dicing / die bonding sheet, an adhesive having a pressure-sensitive adhesive property as a resin film forming layer on the support sheet and having a die bonding function A layer is formed. The resin film forming layer having both the wafer fixing function and the die bonding function includes, for example, the above-described acrylic polymer (A1) and an epoxy adhesive, and, if necessary, an energy ray curable compound. (B), an energy beam curable polymer (AB), a curing aid and the like. In addition, when picking up the chip | tip with an adhesive layer, it is preferable to expand like the above.
<保護膜形成層>
 さらに、樹脂膜形成用シートがチップの裏面に保護膜を形成するための保護膜形成用シートとして用いられる場合には、樹脂膜形成層は、チップの裏面に保護膜を形成するための保護膜形成層であってもよい。
 この場合、保護膜形成層にワークを貼付し、保護膜形成層を硬化させ、保護膜とし、その後、ワークと保護膜をダイシングし、保護膜付チップを得ることができる。また、保護膜形成層にワークを貼付し、ワークと保護膜形成層とをダイシングし、保護膜形成層付チップを得、その後、保護膜形成層を硬化して保護膜付チップを得てもよい。
 このような保護膜形成用シートは、支持シート上に樹脂膜形成層として、保護膜となる接着性の樹脂層(保護膜形成層)を有する。このような保護膜となる樹脂膜形成層は、例えば、前記したアクリル系重合体(A1)と、エポキシ接着剤および硬化助剤を含み、また必要に応じ、エネルギー線硬化性化合物(B)、エネルギー線硬化型重合体(AB)やフィラー等が含まれていてもよい。
<Protective film forming layer>
Further, when the resin film forming sheet is used as a protective film forming sheet for forming a protective film on the back surface of the chip, the resin film forming layer is a protective film for forming the protective film on the back surface of the chip. It may be a forming layer.
In this case, a work is stuck on the protective film forming layer, the protective film forming layer is cured to form a protective film, and then the work and the protective film are diced to obtain a chip with a protective film. In addition, even if a workpiece is attached to the protective film forming layer, the workpiece and the protective film forming layer are diced to obtain a chip with a protective film forming layer, and then the protective film forming layer is cured to obtain a chip with a protective film. Good.
Such a protective film forming sheet has an adhesive resin layer (protective film forming layer) serving as a protective film as a resin film forming layer on the support sheet. The resin film forming layer serving as such a protective film includes, for example, the above-described acrylic polymer (A1), an epoxy adhesive and a curing aid, and, if necessary, an energy ray curable compound (B), An energy beam curable polymer (AB), a filler, or the like may be contained.
 樹脂膜形成層の厚みは、その用途により様々であるが、おおよそ1~300μm、好ましくは10~200μm、特に好ましくは20~100μmである。 The thickness of the resin film-forming layer varies depending on the application, but is approximately 1 to 300 μm, preferably 10 to 200 μm, particularly preferably 20 to 100 μm.
(治具接着層)
 治具接着層としては、粘着剤層単体からなる粘着部材、基材と粘着剤層から構成される粘着部材や、芯材を有する両面粘着部材を採用することができる。治具接着層は、例えば環状(リング状)であり、空洞部(内部開口)を有し、リングフレーム等の治具に固定可能な大きさを有する。具体的には、リングフレームの内径は、治具接着層の外径よりも小さい。また、リングフレームの内径は、治具接着層の内径よりも多少大きい。なお、リングフレームは、通常金属またはプラスチックの成形体である。
(Jig adhesive layer)
As a jig | tool adhesion layer, the adhesive member which consists of an adhesive layer single-piece | unit, the adhesive member comprised from a base material and an adhesive layer, and the double-sided adhesive member which has a core material are employable. The jig adhesive layer is, for example, an annular shape (ring shape), has a hollow portion (internal opening), and has a size that can be fixed to a jig such as a ring frame. Specifically, the inner diameter of the ring frame is smaller than the outer diameter of the jig adhesive layer. Further, the inner diameter of the ring frame is slightly larger than the inner diameter of the jig adhesive layer. The ring frame is usually a molded body of metal or plastic.
 粘着剤層単体からなる粘着部材を治具接着層とする場合、粘着剤層を形成する粘着剤としては特に制限されないが、たとえばアクリル系粘着剤、ゴム系粘着剤、またはシリコーン粘着剤からなることが好ましい。これらのうちで、樹脂膜形成用シートの外周部における、剥離シートの剥離力やSUSに対する粘着力、及びリングフレームからの再剥離性を考慮すると、上述したアクリル系重合体(A1)を含むアクリル系粘着剤が好ましい。なお、上記粘着剤は、単独で用いても、二種以上混合して用いてもよい。 When a pressure-sensitive adhesive member made of a single pressure-sensitive adhesive layer is used as a jig bonding layer, the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is not particularly limited, but for example, it is made of an acrylic pressure-sensitive adhesive, a rubber pressure-sensitive adhesive, or a silicone pressure-sensitive adhesive. Is preferred. Among these, the acrylic containing the acrylic polymer (A1) described above is taken into consideration in the outer peripheral portion of the resin film forming sheet in consideration of the peeling force of the release sheet, the adhesive strength against SUS, and the removability from the ring frame. System adhesives are preferred. In addition, the said adhesive may be used independently or may be used in mixture of 2 or more types.
 治具接着層を構成する粘着剤層の厚さは、好ましくは2~20μm、より好ましくは3~15μm、さらに好ましくは4~10μmである。粘着剤層の厚さが2μm未満のときは、十分な剥離力や粘着力が発現しないことがある。粘着剤層の厚さが20μmを超えるときは、剥離力や粘着力が高くなり、本発明の効果を発揮できないことや、リングフレームから剥離する際にリングフレームに粘着剤の残渣物が残り、リングフレームを汚染することがある。 The thickness of the pressure-sensitive adhesive layer constituting the jig adhesion layer is preferably 2 to 20 μm, more preferably 3 to 15 μm, and further preferably 4 to 10 μm. When the thickness of the pressure-sensitive adhesive layer is less than 2 μm, sufficient peeling force or adhesive force may not be exhibited. When the thickness of the pressure-sensitive adhesive layer exceeds 20 μm, the peeling force and the pressure-sensitive adhesive force are increased, and the effect of the present invention cannot be exhibited, or a residue of the pressure-sensitive adhesive remains on the ring frame when peeling from the ring frame, May contaminate the ring frame.
 基材と粘着剤層から構成される粘着部材を治具接着層とする場合には、粘着部材を構成する粘着剤層と剥離シートとが積層される。
 粘着剤層を形成する粘着剤としては、上記の粘着剤層単体からなる粘着部材における粘着剤層を形成する粘着剤と同様である。また、粘着剤層の厚さも同様である。
When the adhesive member composed of the base material and the adhesive layer is used as the jig adhesive layer, the adhesive layer and the release sheet constituting the adhesive member are laminated.
The pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is the same as the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer in the pressure-sensitive adhesive member composed of the above pressure-sensitive adhesive layer alone. The same applies to the thickness of the pressure-sensitive adhesive layer.
 治具接着層を構成する基材としては、特に制限されないが、たとえばポリエチレンフィルム、ポリプロピレンフィルム、エチレン-酢酸ビニル共重合体フィルム、エチレン-(メタ)アクリル酸共重合体フィルム、エチレン-(メタ)アクリル酸エステル共重合体フィルム、アイオノマー樹脂フィルム等のポリオレフィンフィルム、ポリ塩化ビニルフィルム、ポリエチレンテレフタレートフィルムなどが挙げられる。これらのうちで、エキスパンド性を考慮するとポリエチレンフィルムおよびポリ塩化ビニルフィルムが好ましく、ポリ塩化ビニルフィルムがより好ましい。 The base material constituting the jig adhesive layer is not particularly limited. For example, polyethylene film, polypropylene film, ethylene-vinyl acetate copolymer film, ethylene- (meth) acrylic acid copolymer film, ethylene- (meth) Examples thereof include polyolefin films such as acrylate copolymer films and ionomer resin films, polyvinyl chloride films, and polyethylene terephthalate films. Among these, in consideration of expandability, a polyethylene film and a polyvinyl chloride film are preferable, and a polyvinyl chloride film is more preferable.
 治具接着層を構成する基材の厚さは、好ましくは15~200μm、より好ましくは30~150μm、さらに好ましくは40~100μmである。 The thickness of the base material constituting the jig adhesion layer is preferably 15 to 200 μm, more preferably 30 to 150 μm, and still more preferably 40 to 100 μm.
 また、芯材を有する両面粘着部材を治具接着層とする場合には、両面粘着部材は、芯材と、その一方の面に形成される積層用粘着剤層と、その他方の面に形成される固定用粘着剤層からなる。積層用粘着剤層は、第3の態様においては樹脂膜形成層に貼付される側の粘着剤層であり、第4の態様においては支持シートに貼付される側の粘着剤層である。また、固定用粘着剤層は、剥離シートに貼付される側の粘着剤層である。 When a double-sided pressure-sensitive adhesive member having a core material is used as a jig adhesive layer, the double-sided pressure-sensitive adhesive member is formed on the core material, a laminating pressure-sensitive adhesive layer formed on one surface thereof, and the other surface. It consists of an adhesive layer for fixing. The pressure-sensitive adhesive layer for laminating is the pressure-sensitive adhesive layer on the side attached to the resin film-forming layer in the third aspect, and is the pressure-sensitive adhesive layer on the side attached to the support sheet in the fourth aspect. Further, the fixing pressure-sensitive adhesive layer is a pressure-sensitive adhesive layer on the side attached to the release sheet.
 両面粘着部材の芯材としては、上記粘着部材の基材と同様のものが挙げられる。これらのうちで、エキスパンド性を考慮するとポリオレフィンフィルムおよび可塑化したポリ塩化ビニルフィルムが好ましい。 As the core material of the double-sided pressure-sensitive adhesive member, the same material as the base material of the pressure-sensitive adhesive member can be mentioned. Of these, polyolefin film and plasticized polyvinyl chloride film are preferred in view of expandability.
 芯材の厚さは、通常15~200μm、好ましくは30~150μm、より好ましくは40~100μmである。 The thickness of the core material is usually 15 to 200 μm, preferably 30 to 150 μm, more preferably 40 to 100 μm.
 両面粘着部材の積層用粘着剤層および固定用粘着剤層は、同じ粘着剤からなる層であっても異なる粘着剤からなる層であってもよい。 The double-sided pressure-sensitive adhesive layer and the fixing pressure-sensitive adhesive layer may be the same pressure-sensitive adhesive layer or different pressure-sensitive adhesive layers.
 固定用粘着剤層を構成する粘着剤は、樹脂膜形成用シートの外周部における、剥離シートの剥離力やSUSに対する粘着力が所定範囲となるように、かつ、固定用粘着剤層とリングフレームとの接着力が、樹脂膜形成層または支持シートと積層用粘着剤層との接着力よりも小さくなるように適宜選択する。このような粘着剤としては、たとえばアクリル系粘着剤、 ゴム系粘着剤、シリコーン粘着剤が挙げられ、樹脂膜形成用シートの外周部における、剥離シートの剥離力やSUSに対する粘着力、及びリングフレームからの再剥離性を考慮すると、上述したアクリル系重合体(A1)を含むアクリル系粘着剤が好ましい。また、固定用粘着剤層を形成する粘着剤は、単独で用いても、二種以上混合して用いてもよい。 The pressure-sensitive adhesive constituting the fixing pressure-sensitive adhesive layer is formed so that the peeling force of the release sheet and the pressure-sensitive adhesive force against SUS are within a predetermined range at the outer peripheral portion of the resin film-forming sheet, and the pressure-sensitive adhesive layer for fixing and the ring frame Is suitably selected so that the adhesive strength between the resin film forming layer or the support sheet and the adhesive layer for lamination is smaller. Examples of such pressure-sensitive adhesives include acrylic pressure-sensitive adhesives, rubber-based pressure-sensitive adhesives, and silicone pressure-sensitive adhesives. In the outer peripheral portion of the resin film-forming sheet, the peel strength of the release sheet, the adhesive strength against SUS, and the ring frame In view of the removability from the above, an acrylic pressure-sensitive adhesive containing the above-mentioned acrylic polymer (A1) is preferable. Moreover, the pressure-sensitive adhesive forming the fixing pressure-sensitive adhesive layer may be used alone or in combination of two or more.
 積層用粘着剤層を構成する粘着剤は特に限定されず、たとえばアクリル系粘着剤、ゴム系粘着剤、シリコーン粘着剤が挙げられる。これらの中でも、樹脂膜形成層または支持シートとの接着力の制御が容易であるという観点から、上述したアクリル系重合体(A1)を含むアクリル系粘着剤が好ましい。また、積層用粘着剤層を形成する粘着剤は、単独で用いても、二種以上混合して用いてもよい。 The pressure-sensitive adhesive constituting the lamination pressure-sensitive adhesive layer is not particularly limited, and examples thereof include an acrylic pressure-sensitive adhesive, a rubber pressure-sensitive adhesive, and a silicone pressure-sensitive adhesive. Among these, the acrylic pressure-sensitive adhesive containing the above-mentioned acrylic polymer (A1) is preferable from the viewpoint of easy control of the adhesive force with the resin film forming layer or the support sheet. Moreover, the adhesive which forms the adhesive layer for lamination | stacking may be used independently, or 2 or more types may be mixed and used for it.
 積層用粘着剤層および固定用粘着剤層の厚さは、上記粘着部材の粘着剤層の厚さと同様である。 The thickness of the laminating pressure-sensitive adhesive layer and the fixing pressure-sensitive adhesive layer is the same as the thickness of the pressure-sensitive adhesive layer of the pressure-sensitive adhesive member.
 治具接着層を設けることで、樹脂膜形成用シートをリングフレーム等の治具に接着することが容易になる。 By providing the jig adhesive layer, it becomes easy to bond the resin film forming sheet to a jig such as a ring frame.
(剥離シート)
 剥離シートは、樹脂膜形成用シートの使用時にキャリアフィルムとしての役割を果たすものであり、上述した支持シートとして例示したフィルムを用いることができる。
(Peeling sheet)
The release sheet serves as a carrier film when the resin film-forming sheet is used, and the film exemplified as the support sheet described above can be used.
 剥離シートの樹脂膜形成層に接する面の表面張力は、好ましくは40mN/m以下、さらに好ましくは37mN/m以下、特に好ましくは35mN/m以下である。下限値は通常25mN/m程度である。このような表面張力が比較的低い剥離シートは、材質を適宜に選択して得ることが可能であるし、また剥離シートの表面に剥離剤を塗布して剥離処理を施すことで得ることもできる。 The surface tension of the surface in contact with the resin film forming layer of the release sheet is preferably 40 mN / m or less, more preferably 37 mN / m or less, and particularly preferably 35 mN / m or less. The lower limit is usually about 25 mN / m. Such a release sheet having a relatively low surface tension can be obtained by appropriately selecting the material, and can also be obtained by applying a release agent to the surface of the release sheet and performing a release treatment. .
 剥離処理に用いられる剥離剤としては、アルキッド系、シリコーン系、フッ素系、不飽和ポリエステル系、ポリオレフィン系、ワックス系などが用いられるが、特にアルキッド系、シリコーン系、フッ素系の剥離剤が耐熱性を有するので好ましい。 As the release agent used for the release treatment, alkyd, silicone, fluorine, unsaturated polyester, polyolefin, wax, and the like are used. In particular, alkyd, silicone, and fluorine release agents are heat resistant. This is preferable.
 上記の剥離剤を用いて剥離シートの基体となるフィルム等の表面を剥離処理するためには、剥離剤をそのまま無溶剤で、または溶剤希釈やエマルション化して、グラビアコーター、メイヤーバーコーター、エアナイフコーター、ロールコーターなどにより塗布して、剥離剤が塗布された剥離シートを常温下または加熱下に供するか、または電子線により硬化させて剥離剤層を形成させればよい。 In order to release the surface of a film or the like as a substrate of a release sheet using the above release agent, the release agent can be used without any solvent, or can be diluted or emulsified in a solvent to obtain a gravure coater, Mayer bar coater, air knife coater. The release sheet coated with a release coater may be applied at room temperature or under heating, or may be cured with an electron beam to form a release agent layer.
 また、ウェットラミネーションやドライラミネーション、熱溶融ラミネーション、溶融押出ラミネーション、共押出加工などによりフィルムの積層を行うことにより剥離シートの表面張力を調整してもよい。すなわち、少なくとも一方の面の表面張力が、上述した剥離シートの樹脂膜形成層と接する面のものとして好ましい範囲内にあるフィルムを、当該面が樹脂膜形成層と接する面となるように、他のフィルムと積層した積層体を製造し、剥離シートとしてもよい。 Further, the surface tension of the release sheet may be adjusted by laminating films by wet lamination, dry lamination, hot melt lamination, melt extrusion lamination, coextrusion processing, or the like. That is, a film in which the surface tension of at least one surface is in a preferable range as the surface in contact with the resin film forming layer of the release sheet described above is set so that the surface is in contact with the resin film forming layer. It is good also as a peeling sheet by manufacturing the laminated body laminated | stacked with this film.
 剥離シートの厚さは特に限定されないが、好ましくは50μm以上、より好ましくは50~200μmである。剥離フィルムが50μm未満であると、樹脂膜形成用シートをロール状に巻いた時に、樹脂膜形成層に巻き痕が発生することがある。樹脂膜形成層に巻き痕が発生すると、樹脂膜形成層の厚み精度が低下し、樹脂膜形成層をワークに貼付する際のエア噛みや、後述する半導体装置の製造方法において、チップを樹脂膜形成層を介してチップ搭載部(基板や他のチップ等)に接着する際の接着性の低下や、ボイドの発生の原因となる。その結果、優れた信頼性を有する半導体装置を得ることが困難になる。また、樹脂膜形成層をチップの裏面を保護するための保護膜として用いる場合には、樹脂膜形成層の巻き痕は上述以外に外観不良の原因となる。剥離シートの厚さを上記範囲とすることで、上記の問題を解消できる。 The thickness of the release sheet is not particularly limited, but is preferably 50 μm or more, more preferably 50 to 200 μm. When the release film is less than 50 μm, when the resin film-forming sheet is wound into a roll, winding marks may occur in the resin film-forming layer. When a winding mark is generated in the resin film forming layer, the thickness accuracy of the resin film forming layer is lowered, and in the air biting when the resin film forming layer is attached to the workpiece or in the method of manufacturing a semiconductor device described later, the chip is attached to the resin film. This may cause a decrease in adhesiveness and void generation when bonded to a chip mounting portion (a substrate or another chip) via the formation layer. As a result, it becomes difficult to obtain a semiconductor device having excellent reliability. In addition, when the resin film forming layer is used as a protective film for protecting the back surface of the chip, the traces of the resin film forming layer cause an appearance defect in addition to the above. By making the thickness of the release sheet within the above range, the above problem can be solved.
 上記のような態様・構成を有する樹脂膜形成用シート積層体は、剥離シートを除去した後に、樹脂膜形成層をワークに貼付し、場合によっては、その後、ワークにダイシング等の所要の加工が施される。そして、樹脂膜形成層をワークに固着残存させて支持シートを剥離する。すなわち、樹脂膜形成層を、支持シートからワークに転写する工程を含むプロセスに使用される。 The sheet laminate for forming a resin film having the above-described configuration / configuration is obtained by removing the release sheet, and then attaching the resin film forming layer to the work. Applied. Then, the support film is peeled off while the resin film forming layer remains fixed to the workpiece. That is, it is used in a process including a step of transferring a resin film forming layer from a support sheet to a workpiece.
 本発明において適用可能なワークとしては、その素材に限定はなく、たとえば半導体ウエハ、ガラス基板、セラミック基板、FPC等の有機材料基板、又は精密部品等の金属材料など種々の物品を挙げることができる。 The workpiece applicable in the present invention is not limited to the material, and examples thereof include various articles such as a semiconductor wafer, a glass substrate, a ceramic substrate, an organic material substrate such as an FPC, or a metal material such as precision parts. .
 樹脂膜形成用シート積層体の形状は、長尺の剥離シート上に支持シートと樹脂膜形成層とを含む樹脂膜形成用シートを積層した帯状の形状とし、これを巻収することができる。特に、図2に示すように、所望の形状にあわせて切り抜いた支持シートと樹脂膜形成層とを含む樹脂膜形成用シートを、長尺の剥離シート上に剥離可能に一定間隔で積層した形態が好ましい。また、樹脂膜形成用シート積層体の形状を、枚葉の形状とすることもできる。 The shape of the resin film-forming sheet laminate can be a belt-like shape in which a resin film-forming sheet including a support sheet and a resin film-forming layer is laminated on a long release sheet, which can be rolled up. In particular, as shown in FIG. 2, a form in which a resin film forming sheet including a support sheet and a resin film forming layer cut out in accordance with a desired shape is laminated on a long release sheet so as to be peeled at regular intervals. Is preferred. Moreover, the shape of the resin film-forming sheet laminate can also be a single wafer.
 所望の形状にあわせて切り抜いた支持シートと樹脂膜形成層とを含む樹脂膜形成用シートを、長尺の剥離シート上に剥離可能に一定間隔で積層した形態とした場合には、樹脂膜形成用シートが積層された部分と、樹脂膜形成用シートが積層されていない部分とで、樹脂膜形成用シート積層体の厚みが不均一になる。このような厚みが不均一な樹脂膜形成用シート積層体をロール状に巻き取ると、厚みが不均一になって巻圧が不均一となり、ロールの巻崩れが起こることがある。したがって、このような形態の樹脂膜形成用シート積層体においては、厚みを均一にすることが好ましい。このため、所望の形状にあわせて切り抜いた樹脂膜形成用シートの外側には、図2に示すように、少し間隔を空け、長尺の剥離シート13の短手方向における両縁部15に沿って、樹脂膜形成用シートと同じ程度の厚さの周辺テープ14が貼合されることが好ましい。ここで、樹脂膜形成用シートと周辺テープ14との間隔は、1~20mm程度であることが好ましく、2~10mm程度であることが特に好ましい。周辺テープ14により、厚みの不均一を解消することで、上記の不具合を回避しやすくなる。 When a sheet for forming a resin film including a support sheet and a resin film forming layer cut out in accordance with a desired shape is laminated on a long release sheet so as to be peeled at regular intervals, a resin film is formed. The thickness of the sheet laminate for resin film formation becomes nonuniform between the portion where the sheet for application is laminated and the portion where the sheet for resin film formation is not laminated. When such a laminated sheet for forming a resin film having a non-uniform thickness is wound up in a roll shape, the thickness becomes non-uniform, the non-uniform winding pressure may occur, and the roll may collapse. Therefore, it is preferable to make the thickness uniform in the sheet laminate for forming a resin film in such a form. For this reason, on the outside of the resin film forming sheet cut out in accordance with a desired shape, as shown in FIG. 2, there is a little space along the both edges 15 in the short direction of the long release sheet 13. Thus, it is preferable that the peripheral tape 14 having the same thickness as the resin film forming sheet is bonded. Here, the distance between the resin film forming sheet and the peripheral tape 14 is preferably about 1 to 20 mm, and particularly preferably about 2 to 10 mm. The peripheral tape 14 makes it easier to avoid the above problems by eliminating the uneven thickness.
樹脂膜形成用シート積層体の製造
 次に、所望の形状にあわせて切り抜いた樹脂膜形成用シートを、長尺の剥離シート上に剥離可能に一定間隔で積層した形態の樹脂膜形成用シート積層体の製造方法について、図3に示す第1の態様と図5に示す第3の態様を例に説明するが、本発明の樹脂膜形成用シートは、このような製造方法により得られるものに限定されない。
Production of resin film-forming sheet laminate Next, a resin film-forming sheet laminate in which a resin film-forming sheet cut out in accordance with a desired shape is laminated on a long release sheet so as to be peeled at regular intervals. The manufacturing method of the body will be described by taking the first mode shown in FIG. 3 and the third mode shown in FIG. 5 as an example. The resin film forming sheet of the present invention is obtained by such a manufacturing method. It is not limited.
(第1の態様に係る樹脂膜形成用シート積層体の製造)
 まず、剥離シート上の樹脂膜形成層を所望の形状にハーフカットする。
(Manufacture of sheet laminate for resin film formation according to first aspect)
First, the resin film forming layer on the release sheet is half-cut into a desired shape.
 具体的には、2枚の長尺剥離シート(以下、第1の長尺剥離シート、第2の長尺剥離シートと呼ぶ。第2の長尺剥離シートが図3における剥離シート13である。)の間に樹脂膜形成層を有する積層体を準備する。予めフィルム状に製膜した樹脂膜形成層を、2枚の長尺剥離シートで挟み込んでもよく、また、樹脂膜形成層を形成するための樹脂膜形成用組成物を、一方の長尺剥離シートに塗工、乾燥し、塗膜上に他方の長尺剥離シートを貼合して積層体を形成してもよい。 Specifically, two long release sheets (hereinafter referred to as a first long release sheet and a second long release sheet. The second long release sheet is the release sheet 13 in FIG. 3. ) To prepare a laminate having a resin film forming layer. A resin film forming layer formed in advance in a film shape may be sandwiched between two long release sheets, and a resin film forming composition for forming a resin film forming layer is used as one long release sheet. The laminate may be formed by coating, drying, and pasting the other long release sheet on the coating film.
 次いで、第1の長尺剥離シートを除去する。そして、樹脂膜形成層を所望の形状に完全に切り込み、第2の長尺剥離シート13に達するように、樹脂膜形成層を型抜き(ハーフカット)する。型抜きは、ダイカットなどの汎用の装置(ロータリー刃もしくは平刃)、方法により行う。この際の切込深さは、樹脂膜形成層を完全に切り込み、切込深さd2の切込部D2を形成するため、樹脂膜形成層の厚さと切込深さd2の合計の深さで切り込む。このため、第2の長尺剥離シートの表面に、切込深さd2の切込部D2が形成される。 Next, the first long release sheet is removed. Then, the resin film forming layer is completely cut into a desired shape, and the resin film forming layer is die-cut (half cut) so as to reach the second long release sheet 13. Die cutting is performed by a general-purpose apparatus (rotary blade or flat blade) and method such as die cutting. The cutting depth at this time is the total depth of the thickness of the resin film forming layer and the cutting depth d2 in order to completely cut the resin film forming layer and form the cutting portion D2 having the cutting depth d2. Cut in. For this reason, the cut part D2 of the cut depth d2 is formed in the surface of a 2nd elongate peeling sheet.
 次いで、樹脂膜形成層の長手方向に剥離用粘着テープを貼付する。そして、剥離用粘着テープを除去することで、所望の形状の樹脂膜形成層12を第2の長尺剥離シート13上に残存させ、残余の樹脂膜形成層を除去する。所望の形状の樹脂膜形成層以外の残余部分は連続している。このため、第2の長尺剥離シートと樹脂膜形成層との界面を剥離起点とすると、残余部の樹脂膜形成層は除去され、所望の形状の樹脂膜形成層12が、第2の長尺剥離シート13上に残存する。この結果、第2の長尺剥離シート13上に、所望の形状の樹脂膜形成層12が整列した積層体が得られる。 Next, an adhesive tape for peeling is applied in the longitudinal direction of the resin film forming layer. Then, by removing the peeling adhesive tape, the resin film forming layer 12 having a desired shape is left on the second long release sheet 13, and the remaining resin film forming layer is removed. The remaining portions other than the resin film forming layer having a desired shape are continuous. For this reason, when the interface between the second long release sheet and the resin film forming layer is a starting point of peeling, the remaining resin film forming layer is removed, and the resin film forming layer 12 having a desired shape is formed into the second long film. It remains on the scale release sheet 13. As a result, a laminated body in which the resin film forming layers 12 having a desired shape are arranged on the second long release sheet 13 is obtained.
 次いで、第2の長尺剥離シート13の樹脂膜形成層12を有する面に、第2の長尺剥離シート13および樹脂膜形成層12に接するように支持シート11を貼付する。第1の態様においては、支持シート11は基材11aと粘着剤層11bとからなる粘着シートである。基材11a上に粘着剤層11bを形成する方法は特に限定されず、例えば、基材11a上に粘着剤層11bを構成する組成物(粘着剤)を塗布乾燥することで形成する方法や、粘着剤を上記剥離シートとは別の剥離シート上に設け、これを基材11aに転写することで形成する方法などが挙げられる。 Next, the support sheet 11 is attached to the surface of the second long release sheet 13 having the resin film forming layer 12 so as to be in contact with the second long release sheet 13 and the resin film forming layer 12. In the first aspect, the support sheet 11 is a pressure-sensitive adhesive sheet composed of a base material 11a and a pressure-sensitive adhesive layer 11b. The method for forming the pressure-sensitive adhesive layer 11b on the base material 11a is not particularly limited. For example, a method for forming the pressure-sensitive adhesive layer 11b on the base material 11a by applying and drying the composition (pressure-sensitive adhesive), Examples include a method in which an adhesive is provided on a release sheet different from the release sheet, and the adhesive is transferred to the base material 11a.
 そして、支持シートを、リングフレームの内径以上であり外径以下の大きさの所望の形状に型抜きする。この際に、樹脂膜形成層12の中心点と、型抜き後の支持シート11の中心点とが一致するように型抜きする。また、切込深さは、支持シートを完全に切り込み、切込深さd1の切込部D1を形成するため、支持シートの厚さと切込深さd1の合計の深さで切り込む。このため、第2の長尺剥離シートの表面に、切込深さd1の切込部D1が形成される。 Then, the support sheet is die-cut into a desired shape that is larger than the inner diameter of the ring frame and smaller than the outer diameter. At this time, the resin film forming layer 12 is punched so that the center point of the resin film forming layer 12 coincides with the center point of the support sheet 11 after punching. Moreover, in order to cut the support sheet completely and form the cut part D1 of the cut depth d1, the cut depth is cut by the total depth of the thickness of the support sheet and the cut depth d1. For this reason, the cut part D1 of the cut depth d1 is formed in the surface of a 2nd elongate peeling sheet.
 次いで、所望の形状の支持シート11を、第2の長尺剥離シート13上に残存させ、残余の支持シートを除去する。この結果、第2の長尺剥離シート13上に所望の形状の樹脂膜形成層と支持シート11とを含む樹脂膜形成用シートが積層された、第1の態様の樹脂膜形成用シート積層体が得られる。 Next, the support sheet 11 having a desired shape is left on the second long release sheet 13 and the remaining support sheet is removed. As a result, the resin film forming sheet laminate according to the first aspect, in which a resin film forming sheet including a resin film forming layer having a desired shape and the support sheet 11 is laminated on the second long release sheet 13. Is obtained.
 なお、上記において、支持シートの型抜きを行う際に、支持シートを所望の形状に切り込むとともに、該形状の支持シート11の外側に支持シートから少しの間隔を空け、第2の長尺剥離シートの短手方向の両縁部15に沿って周辺テープ14としての支持シートが残存するように型抜きすることが好ましい。その後、所望の形状の支持シート11および周辺テープ14を、第2の長尺剥離シート13上に残存させ、残余の支持シートを除去することで、支持シート11と樹脂膜形成層12とを含む樹脂膜形成用シート10と、周辺テープ14とが、長尺の剥離シート13上に、連続して貼合された形態の樹脂膜形成用シート積層体100が得られる。 In the above, when the support sheet is die cut, the support sheet is cut into a desired shape, and a small interval is provided outside the support sheet 11 of the shape so as to form the second long release sheet. It is preferable to perform die cutting so that the supporting sheet as the peripheral tape 14 remains along both edges 15 in the short direction. Thereafter, the support sheet 11 and the peripheral tape 14 having a desired shape are left on the second long release sheet 13 and the remaining support sheet is removed, thereby including the support sheet 11 and the resin film forming layer 12. The resin film forming sheet laminate 100 in a form in which the resin film forming sheet 10 and the peripheral tape 14 are continuously bonded onto the long release sheet 13 is obtained.
(第3の態様に係る樹脂膜形成用シート積層体の製造)
 治具接着層が、芯材を有する両面粘着部材の場合について説明する。
(Manufacture of sheet laminate for resin film formation according to the third aspect)
A case where the jig adhesive layer is a double-sided pressure-sensitive adhesive member having a core material will be described.
 まず、治具接着層の粘着剤層(積層用粘着剤層及び固定用粘着剤層)を形成するための粘着剤を準備する。なお、治具接着層において、積層用粘着剤層を形成するための粘着剤と、固定用粘着剤層を形成するための粘着剤とが異なる場合には、各粘着剤を準備する。以下においては、積層用粘着剤層を構成する粘着剤を「積層用粘着剤」と記載し、固定用粘着剤層を形成するための粘着剤を「固定用粘着剤」と記載する。積層用粘着剤と固定用粘着剤が同じである場合には、2種類の粘着剤を用意する必要がなく、また、治具接着層の両面の区別なく使用ができるので作業効率が向上する。 First, the pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer (laminating pressure-sensitive adhesive layer and fixing pressure-sensitive adhesive layer) of the jig adhesive layer is prepared. In addition, in the jig | tool adhesive layer, when the adhesive for forming the adhesive layer for lamination | stacking differs from the adhesive for forming the adhesive layer for fixation, each adhesive is prepared. In the following, the pressure-sensitive adhesive constituting the lamination pressure-sensitive adhesive layer is referred to as “laminating pressure-sensitive adhesive”, and the pressure-sensitive adhesive for forming the fixation pressure-sensitive adhesive layer is referred to as “fixation pressure-sensitive adhesive”. When the pressure-sensitive adhesive for lamination and the pressure-sensitive adhesive for fixing are the same, it is not necessary to prepare two types of pressure-sensitive adhesives, and the work efficiency can be improved because they can be used without distinguishing both surfaces of the jig adhesive layer.
 次いで、積層用粘着剤を長尺の剥離シート(以下、第3の長尺剥離シートと呼ぶ。)上に塗布、乾燥して積層用粘着剤層を形成する。その後、芯材に積層用粘着剤層を貼り合せ、芯材、積層用粘着剤層および第3の長尺剥離シートがこの順に積層された積層体を得る。
 また、固定用粘着剤を長尺の剥離シート(以下、第4の長尺剥離シートと呼ぶ。第4の長尺剥離シートが図5における剥離シート13である。)上に塗布、乾燥して固定用粘着剤層を形成する。その後、上記で得られた積層体の芯材に積層用粘着剤層を貼り合せ、第3の長尺剥離シート、積層用粘着剤層、芯材、固定用粘着剤層および第4の長尺剥離シートがこの順に積層された積層体(長尺剥離シートに挟持された治具接着層)を得る。
Next, the lamination pressure-sensitive adhesive is applied onto a long release sheet (hereinafter referred to as a third long release sheet) and dried to form a lamination pressure-sensitive adhesive layer. Thereafter, the pressure-sensitive adhesive layer for lamination is bonded to the core material to obtain a laminate in which the core material, the pressure-sensitive adhesive layer for lamination, and the third long release sheet are laminated in this order.
Further, the fixing adhesive is applied onto a long release sheet (hereinafter referred to as a fourth long release sheet. The fourth long release sheet is the release sheet 13 in FIG. 5) and dried. A fixing pressure-sensitive adhesive layer is formed. Thereafter, the pressure-sensitive adhesive layer for lamination is bonded to the core material of the laminate obtained above, and the third long release sheet, the pressure-sensitive adhesive layer for lamination, the core material, the pressure-sensitive adhesive layer for fixation, and the fourth long-length material. A laminate in which release sheets are laminated in this order (a jig adhesive layer sandwiched between long release sheets) is obtained.
 次いで、第3の長尺剥離シートを除去する。そして、治具接着層と第4の長尺剥離シートがこの順に積層された積層体を所望の形状に切り込み、第4の長尺剥離シートに達するように、当該積層体を型抜き(ハーフカット)する。型抜きは、ダイカットなどの汎用の装置(ロータリー刃もしくは平刃)、方法により行う。この際の切込深さは、当該積層体を完全に切り込み、切込深さd3の切込部D3を形成するため、当該積層体の厚さと切込深さd3の合計の深さで切り込む。このため、第4の長尺剥離シートの表面に、切込深さd3の切込部D3が形成される。 Next, the third long release sheet is removed. Then, the laminate in which the jig adhesive layer and the fourth long release sheet are laminated in this order is cut into a desired shape, and the laminate is die-cut (half-cut) so as to reach the fourth long release sheet. ) Die cutting is performed by a general-purpose apparatus (rotary blade or flat blade) and method such as die cutting. In this case, the depth of cut is that the laminate is completely cut to form a cut portion D3 having a depth of cut d3. . For this reason, the cutting part D3 of the cutting depth d3 is formed in the surface of a 4th elongate peeling sheet.
 次いで、治具接着層の長手方向に剥離用粘着テープを貼付する。そして、剥離用粘着テープを除去することで、所望の形状の治具接着層を第4の長尺剥離シート13上から除去する。この結果、第4の長尺剥離シート13上に、所望の形状の内部開口を有する治具接着層が積層した積層体が得られる。 Next, an adhesive tape for peeling is applied in the longitudinal direction of the jig adhesive layer. Then, the jig adhesive layer having a desired shape is removed from the fourth long release sheet 13 by removing the peeling adhesive tape. As a result, a laminated body is obtained in which a jig adhesive layer having an internal opening of a desired shape is laminated on the fourth long release sheet 13.
 また、基材11a上に粘着剤層11bが形成された支持シート11を準備する。この支持シートを得る方法は、第1の態様で説明したとおりである。 Moreover, the support sheet 11 in which the adhesive layer 11b is formed on the base material 11a is prepared. The method for obtaining the support sheet is as described in the first aspect.
 そして、支持シート11の粘着剤層11b上に樹脂膜形成層12を形成する。粘着剤層11b上に樹脂膜形成層12を形成する方法は特に限定されず、例えば、粘着剤層11b上に樹脂膜形成用組成物を塗布乾燥することで形成する方法や、樹脂膜形成用組成物を上記剥離シートとは別の剥離シート上に設け、これを粘着剤層11bに転写することで形成する方法などが挙げられる。このようにして、支持シート11と樹脂膜形成層12とからなる積層体が得られる。 Then, the resin film forming layer 12 is formed on the pressure-sensitive adhesive layer 11 b of the support sheet 11. The method for forming the resin film forming layer 12 on the pressure-sensitive adhesive layer 11b is not particularly limited. For example, a method for forming the resin film-forming composition on the pressure-sensitive adhesive layer 11b by applying and drying, or a method for forming a resin film. Examples include a method of forming the composition on a release sheet different from the release sheet and transferring the composition to the pressure-sensitive adhesive layer 11b. In this way, a laminate composed of the support sheet 11 and the resin film forming layer 12 is obtained.
 次いで、第4の長尺剥離シート13の治具接着層を有する面に、第4の長尺剥離シート13および治具接着層に接するように、支持シート11と樹脂膜形成層12とからなる積層体の樹脂膜形成層12を貼付し、第4の長尺剥離シート13上に樹脂膜形成用シート10を形成する。 Next, the support sheet 11 and the resin film forming layer 12 are formed so that the surface of the fourth long release sheet 13 having the jig adhesive layer is in contact with the fourth long release sheet 13 and the jig adhesive layer. The resin film forming layer 12 of the laminate is affixed, and the resin film forming sheet 10 is formed on the fourth long release sheet 13.
 そして、樹脂膜形成用シート10を、リングフレームの内径以上であり外径以下の大きさの所望の形状に型抜きする。この際に、治具接着層の内部開口の中心点と、型抜き後の樹脂膜形成用シート10の中心点とが一致するように型抜きする。また、切込深さは、樹脂膜形成用シートを完全に切り込み、切込深さd1の切込部D1を形成するため、樹脂膜形成用シートの厚さと切込深さd1の合計の深さで切り込む。このため、第4の長尺剥離シートの表面に、切込深さd1の切込部D1が形成される。 Then, the resin film forming sheet 10 is die-cut into a desired shape that is not less than the inner diameter of the ring frame and not more than the outer diameter. At this time, the die is cut so that the center point of the internal opening of the jig adhesive layer coincides with the center point of the resin film forming sheet 10 after die cutting. In addition, the depth of cut is the total depth of the thickness of the resin film forming sheet and the depth of cut d1 in order to completely cut the resin film formed sheet and form the cut portion D1 of the depth of cut d1. Cut in. For this reason, the cut part D1 of the cut depth d1 is formed in the surface of a 4th elongate peeling sheet.
 次いで、所望の形状の樹脂膜形成用シート10を、第4の長尺剥離シート13上に残存させ、残余の樹脂膜形成用シートを除去する。この結果、第4の長尺剥離シート13上に所望の形状の樹脂膜形成用シート10が積層された、第3の態様の樹脂膜形成用シート積層体が得られる。なお、樹脂膜形成用シートの型抜きを行う際には、第1の態様と同様に、周辺テープ14が残存するように型抜きすることが好ましい。 Next, the resin film forming sheet 10 having a desired shape is left on the fourth long release sheet 13 and the remaining resin film forming sheet is removed. As a result, the resin film forming sheet laminate of the third aspect in which the resin film forming sheet 10 having a desired shape is laminated on the fourth long release sheet 13 is obtained. In addition, when performing the die cutting of the resin film forming sheet, it is preferable to perform the die cutting so that the peripheral tape 14 remains as in the first embodiment.
半導体装置の製造方法
 次に本発明に係る樹脂膜形成用シート積層体の利用方法について、図2及び図3に示す第1の態様の樹脂膜形成用シート積層体を半導体装置の製造方法に適用した場合を例にとって説明する。
Method for Manufacturing Semiconductor Device Next, as for the method of using the resin film forming sheet laminate according to the present invention, the resin film forming sheet laminate of the first embodiment shown in FIGS. 2 and 3 is applied to the semiconductor device manufacturing method. This will be described as an example.
 第1の態様の樹脂膜形成用シート積層体を用いた半導体装置の製造方法は、該積層体の樹脂膜形成層をワークに貼着し、該ワークをダイシングしてチップとし、該チップのいずれかの面に該樹脂膜形成層を固着残存させて支持シートから剥離し、該チップをダイパッド部上、または別のチップ上に該樹脂膜形成層を介して載置する工程を含むことが好ましい。 According to a first aspect of the present invention, there is provided a method of manufacturing a semiconductor device using a resin film-forming sheet laminate. The resin film-forming layer of the laminate is attached to a work, and the work is diced into chips. It is preferable that the method includes a step of leaving the resin film forming layer fixedly remaining on the surface and peeling the resin film from the support sheet, and placing the chip on the die pad portion or another chip via the resin film forming layer. .
 以下では、ワークとしてシリコンウエハを用いた例で説明する。 Hereinafter, an example using a silicon wafer as a workpiece will be described.
 ウエハ表面への回路の形成はエッチング法、リフトオフ法などの従来より汎用されている方法を含む様々な方法により行うことができる。次いで、ウエハの回路面の反対面(裏面)を研削する。研削法は特に限定はされず、グラインダーなどを用いた公知の手段で研削してもよい。裏面研削時には、表面の回路を保護するために回路面に、表面保護シートと呼ばれる粘着シートを貼付する。裏面研削は、ウエハの回路面側(すなわち表面保護シート側)をチャックテーブル等により固定し、回路が形成されていない裏面側をグラインダーにより研削する。ウエハの研削後の厚みは特に限定はされないが、通常は50~500μm程度である。 The formation of a circuit on the wafer surface can be performed by various methods including conventionally used methods such as an etching method and a lift-off method. Next, the opposite surface (back surface) of the circuit surface of the wafer is ground. The grinding method is not particularly limited, and grinding may be performed by a known means using a grinder or the like. At the time of back surface grinding, an adhesive sheet called a surface protection sheet is attached to the circuit surface in order to protect the circuit on the surface. In the back surface grinding, the circuit surface side (that is, the surface protection sheet side) of the wafer is fixed by a chuck table or the like, and the back surface side on which no circuit is formed is ground by a grinder. The thickness of the wafer after grinding is not particularly limited, but is usually about 50 to 500 μm.
 その後、必要に応じ、裏面研削時に生じた破砕層を除去する。破砕層の除去は、ケミカルエッチングや、プラズマエッチングなどにより行われる。 After that, if necessary, the crushed layer generated during back grinding is removed. The crushed layer is removed by chemical etching, plasma etching, or the like.
 回路形成および裏面研削に次いで、ウエハの裏面に樹脂膜形成用シート積層体の樹脂膜形成層を貼付する。貼付方法は特に限定されず、例えば、図1に示す工程で、樹脂膜形成層を半導体ウエハに貼付する。 After the circuit formation and back surface grinding, the resin film forming layer of the resin film forming sheet laminate is pasted on the back surface of the wafer. The attaching method is not particularly limited. For example, the resin film forming layer is attached to the semiconductor wafer in the step shown in FIG.
 図1(a)~(d)は、樹脂膜形成用シート10を半導体ウエハ32に貼り付ける作業を行う一連の工程図である。図1(a)に示すように、樹脂膜形成用シート積層体100は、剥離シート13がキャリアフィルムの役割を果たしており、2つのロール62及び66と、ピールプレート64とに支持されながら、その一端が円柱状の巻芯44に接続された状態で巻回され第1のロール42を形成し、他端が円柱状の巻芯54に接続された状態で巻回され第2のロール52を形成している。そして、第2のロール52の巻芯54には、当該巻芯54を回転させるための巻芯駆動用モータ(図示せず)が接続されており、樹脂膜形成用シート10が剥離された後の剥離シート13が所定の速度で巻回されるようになっている。 FIGS. 1A to 1D are a series of process diagrams in which the operation of attaching the resin film forming sheet 10 to the semiconductor wafer 32 is performed. As shown in FIG. 1A, in the sheet laminate 100 for forming a resin film, the release sheet 13 plays the role of a carrier film, while being supported by two rolls 62 and 66 and a peel plate 64, The first roll 42 is wound with one end connected to the cylindrical core 44, and the second roll 52 is wound with the other end connected to the cylindrical core 54. Forming. Then, a core driving motor (not shown) for rotating the core 54 is connected to the core 54 of the second roll 52, and the resin film forming sheet 10 is peeled off. The release sheet 13 is wound at a predetermined speed.
 まず、巻芯駆動用モータが回転すると、第2のロール52の巻芯54が回転し、第1のロール42の巻芯44に巻回されている樹脂膜形成用シート100から樹脂膜形成用シート10が第1のロール42の外部に引き出される。そして、引き出された樹脂膜形成用シート10は、移動式のステージ上に配置された円板状の半導体ウエハ32及びそれを囲むように配置されたリングフレーム34上に導かれる。 First, when the winding core driving motor rotates, the winding core 54 of the second roll 52 rotates and the resin film forming sheet 100 is wound around the winding core 44 of the first roll 42. The sheet 10 is pulled out of the first roll 42. The drawn resin film forming sheet 10 is guided onto a disk-shaped semiconductor wafer 32 disposed on a movable stage and a ring frame 34 disposed so as to surround the semiconductor wafer 32.
 次に、剥離シート13から、樹脂膜形成用シート10が剥離される。このとき、図1(a)に示すように、樹脂膜形成用シート10の剥離シート13側からピールプレート64が当てられている。本発明においては樹脂膜形成用シート10の外周部における、剥離シートの剥離力とSUSに対する粘着力が所定範囲であるため、樹脂膜形成用シートの繰り出しが容易である。また、図1(b)に示すように、切込部D1が形成されている場合には、剥離シート13はピールプレート64側へ切込部D1を起点に折り曲げられ、剥離シート13と樹脂膜形成用シート10との間に剥離起点が容易に作り出されることとなる。更に、剥離起点がより効率的に作り出されるように、剥離シート13と樹脂膜形成用シート10との境界面にエアを吹き付けてもよい。その結果、樹脂膜形成用シート10の繰り出しがさらに容易になる。 Next, the resin film forming sheet 10 is peeled from the release sheet 13. At this time, as shown to Fig.1 (a), the peel plate 64 is applied from the peeling sheet 13 side of the sheet | seat 10 for resin film formation. In the present invention, since the peeling force of the release sheet and the adhesive force to SUS at the outer peripheral portion of the resin film forming sheet 10 are within a predetermined range, the resin film forming sheet can be easily fed out. Moreover, as shown in FIG.1 (b), when the notch part D1 is formed, the peeling sheet 13 is bend | folded from the notch part D1 to the peel plate 64 side, and the peeling sheet 13 and resin film A peeling start point is easily created between the forming sheet 10 and the sheet. Furthermore, air may be blown to the boundary surface between the release sheet 13 and the resin film forming sheet 10 so that the release start point is more efficiently created. As a result, the feeding of the resin film forming sheet 10 is further facilitated.
 次いで、図1(c)に示すように、樹脂膜形成用シート10がリングフレーム34及び半導体ウエハ32と密着するように、樹脂膜形成用シート10の貼り付けが行われる。このとき、ロール68によって樹脂膜形成用シート10は半導体ウエハ32に圧着されることとなる。そして、図1(d)に示すように、半導体ウエハ32上への樹脂膜形成用シート10の貼り付けが完了し、樹脂膜形成用シート付半導体ウエハが得られる。 Next, as shown in FIG. 1C, the resin film forming sheet 10 is attached so that the resin film forming sheet 10 is in close contact with the ring frame 34 and the semiconductor wafer 32. At this time, the resin film forming sheet 10 is pressed against the semiconductor wafer 32 by the roll 68. Then, as shown in FIG. 1D, the attachment of the resin film forming sheet 10 onto the semiconductor wafer 32 is completed, and a semiconductor wafer with a resin film forming sheet is obtained.
 以上のような手順により、半導体ウエハ32への樹脂膜形成用シート10の貼り付けを、自動化された工程で連続して行うことができる。このような半導体ウエハ32への樹脂膜形成用シート10の貼り付け作業を行う装置としては、例えば、リンテック(株)製のRAD-2500(商品名)等が挙げられる。 By the procedure as described above, the resin film forming sheet 10 can be attached to the semiconductor wafer 32 continuously in an automated process. An example of an apparatus for performing the operation of attaching the resin film forming sheet 10 to the semiconductor wafer 32 is RAD-2500 (trade name) manufactured by Lintec Corporation.
 そして、このような工程により、樹脂膜形成用シート10を半導体ウエハ32に貼り付ける場合、本発明に係る、所望の物性を有する樹脂膜形成用シート積層体を用いることにより、樹脂膜形成用シート10の外周がピールプレートの先端に到達した際に、厚い剥離シートであっても、樹脂膜形成用シートが外周部において剥離シートから剥離し、繰り出される。その結果、繰り出した樹脂膜形成用シートの支持シート同士または樹脂膜形成層同士が重なり合う方向に折れ曲がって密着したり、樹脂膜形成用シートが剥離シートに転着するという問題を防止できる。 Then, when the resin film forming sheet 10 is attached to the semiconductor wafer 32 by such a process, the resin film forming sheet is used by using the resin film forming sheet laminate having desired physical properties according to the present invention. When the outer periphery of 10 reaches the tip of the peel plate, even if it is a thick release sheet, the resin film-forming sheet is released from the release sheet at the outer periphery and is fed out. As a result, it is possible to prevent a problem that the support sheets or the resin film forming layers of the drawn out resin film forming sheets are bent in close contact with each other or the resin film forming sheet is transferred to the release sheet.
 樹脂膜形成層が室温ではタック性を有しない場合は適宜加温してもよい(限定するものではないが、40~80℃が好ましい)。 When the resin film forming layer does not have tackiness at room temperature, it may be heated appropriately (although it is not limited, 40 to 80 ° C. is preferable).
 また、樹脂膜形成層にエネルギー線硬化性化合物(B)やエネルギー線硬化型重合体(AB)が配合されている場合には、樹脂膜形成層に支持シート側からエネルギー線を照射し、樹脂層形成層を予備的に硬化し、樹脂膜形成層の凝集力を上げ、樹脂膜形成層と支持シートとの間の接着力を低下させておいてもよい。 Further, when the energy ray curable compound (B) or the energy ray curable polymer (AB) is blended in the resin film forming layer, the resin film forming layer is irradiated with energy rays from the support sheet side, and the resin is formed. The layer-forming layer may be preliminarily cured to increase the cohesive force of the resin film-forming layer and reduce the adhesive force between the resin film-forming layer and the support sheet.
 その後、ダイシングソーなどの切断手段を用いて、上記の半導体ウエハを切断し半導体チップを得る。この際の切断深さは、半導体ウエハの厚みと、樹脂膜形成層の厚みとの合計およびダイシングソーの磨耗分を加味した深さにする。
 なお、エネルギー線照射は、半導体ウエハの貼付後、半導体チップの剥離(ピックアップ)前のいずれの段階で行ってもよく、たとえばダイシングの後に行ってもよく、また下記のエキスパンド工程の後に行ってもよいが、半導体ウエハの貼付後であってダイシング前に行うことが好ましい。さらにエネルギー線照射を複数回に分けて行ってもよい。
Thereafter, the semiconductor wafer is cut using a cutting means such as a dicing saw to obtain a semiconductor chip. The cutting depth at this time is a depth that takes into account the sum of the thickness of the semiconductor wafer and the thickness of the resin film forming layer and the amount of wear of the dicing saw.
The energy beam irradiation may be performed at any stage after the semiconductor wafer is pasted and before the semiconductor chip is peeled off (pickup). For example, the irradiation may be performed after dicing or after the following expanding step. Although it is good, it is preferably performed after the semiconductor wafer is attached and before dicing. Further, the energy beam irradiation may be performed in a plurality of times.
 次いで必要に応じ、樹脂膜形成用シートのエキスパンドを行うと、半導体チップ間隔が拡張し、半導体チップのピックアップをさらに容易に行えるようになる。この際、樹脂膜形成層と支持シートとの間にずれが発生することになり、樹脂膜形成層と支持シートとの間の接着力が減少し、半導体チップのピックアップ性が向上する。このようにして半導体チップのピックアップを行うと、切断された樹脂膜形成層を半導体チップ裏面に固着残存させて支持シートから剥離することができる。 Then, if necessary, when the resin film forming sheet is expanded, the interval between the semiconductor chips is expanded, and the semiconductor chips can be picked up more easily. At this time, a deviation occurs between the resin film forming layer and the support sheet, the adhesive force between the resin film forming layer and the support sheet is reduced, and the pick-up property of the semiconductor chip is improved. When the semiconductor chip is picked up in this manner, the cut resin film forming layer can be adhered to the back surface of the semiconductor chip and peeled off from the support sheet.
 次いで樹脂膜形成層を介して半導体チップを、リードフレームのダイパッド上または別の半導体チップ(下段チップ)表面に載置する(以下、チップが搭載されるダイパッドまたは下段チップ表面を「チップ搭載部」と記載する)。 Next, the semiconductor chip is placed on the die pad of the lead frame or on the surface of another semiconductor chip (lower chip) through the resin film forming layer (hereinafter, the die pad or lower chip surface on which the chip is mounted is referred to as “chip mounting portion”. ).
 載置するときの圧力は、通常1kPa~200MPaである。また、チップ搭載部は、半導体チップを載置する前に加熱するか載置直後に加熱されてもよい。加熱温度は、通常は80~200℃、好ましくは100~180℃であり、加熱時間は、通常は0.1秒~5分、好ましくは0.5秒~3分である。 The pressure when mounting is usually 1 kPa to 200 MPa. Further, the chip mounting portion may be heated before mounting the semiconductor chip or heated immediately after mounting. The heating temperature is usually 80 to 200 ° C., preferably 100 to 180 ° C., and the heating time is usually 0.1 seconds to 5 minutes, preferably 0.5 seconds to 3 minutes.
 半導体チップをチップ搭載部に載置した後、必要に応じさらに加熱を行ってもよい。この際の加熱条件は、上記加熱温度の範囲であって、加熱時間は通常1~180分、好ましくは10~120分である。 After the semiconductor chip is placed on the chip mounting portion, further heating may be performed as necessary. The heating conditions at this time are in the above heating temperature range, and the heating time is usually 1 to 180 minutes, preferably 10 to 120 minutes.
 また、載置後の加熱処理は行わずに仮接着状態としておき、パッケージ製造において通常行われる樹脂封止での加熱を利用して樹脂膜形成層を硬化させてもよい。このような工程を経ることで、樹脂膜形成層が硬化し、半導体チップとチップ搭載部とが強固に接着された半導体装置を得ることができる。樹脂膜形成層はダイボンド条件下では流動化しているため、チップ搭載部の凹凸にも十分に埋め込まれ、ボイドの発生を防止でき半導体装置の信頼性が高くなる。 Alternatively, the resin film forming layer may be cured by using a heat in resin sealing that is normally performed in package manufacturing, without temporarily performing the heat treatment after placement. By passing through such a process, the resin film formation layer hardens | cures and the semiconductor device with which the semiconductor chip and the chip mounting part were adhere | attached firmly can be obtained. Since the resin film forming layer is fluidized under die bonding conditions, the resin film forming layer is sufficiently embedded in the unevenness of the chip mounting portion, and generation of voids can be prevented and the reliability of the semiconductor device is improved.
 また、第2の本発明に係る半導体装置の製造方法は、表面に回路が形成された半導体ウエハの裏面に、樹脂膜形成用シートの樹脂膜形成層を貼付し、その後、裏面に樹脂膜を有する半導体チップを得ることが好ましい。該樹脂膜は、半導体チップの保護膜である。また、本発明に係る半導体装置の製造方法は、好ましくは、以下の工程(1)~(3)をさらに含み、工程(1)~(3)を任意の順で行うことを特徴としている。
 工程(1):樹脂膜形成層または樹脂膜と、支持シートとを剥離、
 工程(2):樹脂膜形成層を硬化し樹脂膜を得る、
 工程(3):半導体ウエハと、樹脂膜形成層または樹脂膜とをダイシング。
Further, in the method for manufacturing a semiconductor device according to the second aspect of the present invention, the resin film forming layer of the resin film forming sheet is pasted on the back surface of the semiconductor wafer having a circuit formed on the surface, and then the resin film is applied on the back surface. It is preferable to obtain a semiconductor chip having the same. The resin film is a protective film for a semiconductor chip. The method for manufacturing a semiconductor device according to the present invention preferably further includes the following steps (1) to (3), wherein the steps (1) to (3) are performed in an arbitrary order.
Step (1): peeling the resin film forming layer or resin film and the support sheet,
Step (2): The resin film forming layer is cured to obtain a resin film.
Step (3): dicing the semiconductor wafer and the resin film forming layer or resin film.
 まず、半導体ウエハの裏面に、樹脂膜形成用シートの樹脂膜形成層を貼付する。当該工程は、上記第1の半導体装置の製造方法における貼付工程と同様である。 First, the resin film forming layer of the resin film forming sheet is attached to the back surface of the semiconductor wafer. This step is the same as the attaching step in the first method for manufacturing a semiconductor device.
 その後、工程(1)~(3)を任意の順で行う。例えば、工程(1)~(3)を工程(1)、(2)、(3)の順、工程(2)、(1)、(3)の順、工程(2)、(3)、(1)の順、工程(3)、(2)、(1)の順、または工程(3)、(1)、(2)の順のいずれかの順序で行う。このプロセスの詳細については、特開2002-280329号公報に詳述されている。一例として、工程(1)、(2)、(3)の順で行う場合について説明する。 Thereafter, steps (1) to (3) are performed in an arbitrary order. For example, the steps (1) to (3) are performed in the order of steps (1), (2), (3), the steps (2), (1), (3), the steps (2), (3), The order is (1), steps (3), (2), (1), or steps (3), (1), (2). Details of this process are described in detail in JP-A-2002-280329. As an example, the case where it performs in order of process (1), (2), (3) is demonstrated.
 まず、表面に回路が形成された半導体ウエハの裏面に、樹脂膜形成用シートの樹脂膜形成層を貼付する。次いで樹脂膜形成層から支持シートを剥離し、半導体ウエハと樹脂膜形成層との積層体を得る。
 次いで樹脂膜形成層を硬化し、ウエハの全面に樹脂膜を形成する。樹脂膜形成層に、エポキシ接着剤を含む場合には、熱硬化により樹脂膜形成層を硬化する。エネルギー線硬化性化合物(B)やエネルギー線硬化型重合体(AB)が配合されている場合には、樹脂膜形成層の硬化を、エネルギー線照射により行うことができ、エポキシ接着剤と、エネルギー線硬化性化合物(B)やエネルギー線硬化型重合体(AB)とを併用する場合には、加熱およびエネルギー線照射による硬化を同時に行ってもよく、逐次的に行ってもよい。照射されるエネルギー線としては、紫外線(UV)または電子線(EB)等が挙げられ、好ましくは紫外線が用いられる。この結果、ウエハ裏面に硬化樹脂からなる樹脂膜が形成され、ウエハ単独の場合と比べて強度が向上するので、薄くなったウエハの取扱い時の破損を低減できる。また、ウエハやチップの裏面に直接樹脂膜用の塗布液を塗布・被膜化するコーティング法と比較して、樹脂膜の厚さの均一性に優れる。
First, a resin film forming layer of a resin film forming sheet is attached to the back surface of a semiconductor wafer having a circuit formed on the front surface. Next, the support sheet is peeled from the resin film forming layer to obtain a laminate of the semiconductor wafer and the resin film forming layer.
Next, the resin film forming layer is cured to form a resin film on the entire surface of the wafer. When the resin film forming layer contains an epoxy adhesive, the resin film forming layer is cured by thermosetting. When the energy ray curable compound (B) and the energy ray curable polymer (AB) are blended, the resin film forming layer can be cured by energy ray irradiation, and an epoxy adhesive, energy When the linear curable compound (B) and the energy beam curable polymer (AB) are used in combination, curing by heating and energy beam irradiation may be performed simultaneously or sequentially. Examples of the energy rays to be irradiated include ultraviolet rays (UV) and electron beams (EB), and preferably ultraviolet rays are used. As a result, a resin film made of a cured resin is formed on the back surface of the wafer, and the strength is improved as compared with the case of the wafer alone, so that damage during handling of the thinned wafer can be reduced. Further, compared with a coating method in which a coating solution for a resin film is directly applied to the back surface of a wafer or chip, the thickness of the resin film is excellent.
 その後、半導体ウエハと樹脂膜との積層体を、ウエハ表面に形成された回路毎にダイシングする。ダイシングは、ウエハと樹脂膜をともに切断するように行われる。ウエハのダイシングは、ダイシングシートを用いた常法により行われる。この結果、裏面に樹脂膜を有する半導体チップが得られる。 Thereafter, the laminated body of the semiconductor wafer and the resin film is diced for each circuit formed on the wafer surface. Dicing is performed so as to cut both the wafer and the resin film. The wafer is diced by a conventional method using a dicing sheet. As a result, a semiconductor chip having a resin film on the back surface is obtained.
 次いで、樹脂膜にレーザー印字することもできる。レーザー印字はレーザーマーキング法により行われ、レーザー光の照射により保護膜の表面を削り取ることで保護膜に品番等をマーキングする。なお、レーザー印字は、樹脂膜形成層を硬化させる前に行うこともできる。 Next, laser printing can be performed on the resin film. Laser printing is performed by a laser marking method, and the surface of the protective film is scraped off by laser light irradiation to mark a product number or the like on the protective film. Laser printing can also be performed before the resin film forming layer is cured.
 最後に、ダイシングされたチップをコレット等の汎用手段によりピックアップすることで、裏面に樹脂膜を有する半導体チップが得られる。そして、半導体チップをフェースダウン方式で所定の基台上に実装することで半導体装置を製造することができる。また、裏面に樹脂膜を有する半導体チップを、ダイパッド部または別の半導体チップなどの他の部材上(チップ搭載部上)に接着することで、半導体装置を製造することもできる。このような本発明によれば、厚みの均一性の高い樹脂膜を、チップ裏面に簡便に形成でき、ダイシング工程やパッケージングの後のクラックが発生しにくくなる。 Finally, by picking up the diced chip by a general means such as a collet, a semiconductor chip having a resin film on the back surface can be obtained. Then, the semiconductor device can be manufactured by mounting the semiconductor chip on a predetermined base by the face-down method. In addition, a semiconductor device can be manufactured by bonding a semiconductor chip having a resin film on the back surface to another member (on a chip mounting portion) such as a die pad portion or another semiconductor chip. According to the present invention, a highly uniform resin film can be easily formed on the back surface of the chip, and cracks after the dicing process and packaging are less likely to occur.
 なお、半導体ウエハの裏面に、樹脂膜形成用シートの樹脂膜形成層を貼付した後、工程(3)を工程(1)の前に行う場合、樹脂膜形成用シートがダイシングシートとしての役割を果たすことができる。つまり、ダイシング工程の最中に半導体ウエハを支持するためのシートとして用いることができる。この場合、樹脂膜形成用シートの内周部に樹脂膜形成層を介して半導体ウエハが貼着され、樹脂膜形成用シートの外周部がリングフレーム等の他の治具と接合することで、半導体ウエハに貼付された樹脂膜形成用シートが装置に固定され、ダイシングが行われる。 In addition, after sticking the resin film formation layer of the resin film formation sheet on the back surface of the semiconductor wafer, when performing the step (3) before the process (1), the resin film formation sheet serves as a dicing sheet. Can fulfill. That is, it can be used as a sheet for supporting the semiconductor wafer during the dicing process. In this case, the semiconductor wafer is bonded to the inner peripheral portion of the resin film forming sheet via the resin film forming layer, and the outer peripheral portion of the resin film forming sheet is bonded to another jig such as a ring frame, A resin film forming sheet affixed to the semiconductor wafer is fixed to the apparatus, and dicing is performed.
 また、工程(3)、(1)、(2)の順で行う場合には、裏面に樹脂膜形成層を有する半導体チップをフェースダウン方式で所定の基台上に実装後、パッケージ製造において通常行われる樹脂封止での加熱を利用して樹脂膜形成層を硬化させることもできる。 When the steps (3), (1), and (2) are performed in this order, a semiconductor chip having a resin film forming layer on the back surface is mounted on a predetermined base by a face-down method, and is usually used in package manufacturing. The resin film forming layer can also be cured by utilizing heating in the resin sealing performed.
 以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。本発明において採用した測定、評価方法は次のとおりである。 Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples. The measurement and evaluation methods employed in the present invention are as follows.
<剥離力>
 引張試験機(島津製作所製オートグラフAG-IS)を用い、樹脂膜形成用シートの外周部における、剥離シートの剥離力を、引張速度300mm/分、Tピール法、温度/湿度=23℃/50%RHの条件で測定した。
<Peeling force>
Using a tensile tester (Autograph AG-IS, manufactured by Shimadzu Corporation), the peeling force of the release sheet at the outer periphery of the resin film-forming sheet was measured using a tensile rate of 300 mm / min, a T peel method, and temperature / humidity = 23 ° C. / The measurement was performed under the condition of 50% RH.
<粘着力>
 樹脂膜形成用シートの外周部を15mm×25mmに裁断して試料とし、SUS(ステンレス板)に貼付した。次いで、引張試験機(島津製作所製オートグラフAG-IS)を用い、JIS Z0237:2009に準拠し、試料の粘着力を、引張速度300mm/分、180°ピール法、温度/湿度=23℃/50%RHの条件で測定した。
<Adhesive strength>
The outer peripheral portion of the resin film forming sheet was cut into 15 mm × 25 mm to obtain a sample, which was attached to SUS (stainless steel plate). Next, using a tensile testing machine (Autograph AG-IS manufactured by Shimadzu Corporation) in accordance with JIS Z0237: 2009, the adhesive strength of the sample was measured at a tensile speed of 300 mm / min, 180 ° peel method, temperature / humidity = 23 ° C. / The measurement was performed under the condition of 50% RH.
<支持シート同士または樹脂膜形成層同士の密着および剥離シートへの転着>
 支持シート同士または樹脂膜形成層同士の密着(以下、密着評価)および剥離シートへの転着(以下、転着評価)は以下のように行った。
 樹脂膜形成用シート積層体から剥離シートを除去する際に、樹脂膜形成用シートの支持シート同士または樹脂膜形成層同士が重なり合う方向に折れ曲がって密着したり、樹脂膜形成用シートが剥離シートに転着するか否かを目視にて確認した。
<Adhesion between support sheets or resin film-forming layers and transfer to release sheet>
Adhesion between support sheets or resin film forming layers (hereinafter referred to as adhesion evaluation) and transfer to a release sheet (hereinafter referred to as transfer evaluation) were performed as follows.
When removing the release sheet from the resin film-forming sheet laminate, the support sheets of the resin film-forming sheets or the resin film-forming layers are bent in close contact with each other, or the resin film-forming sheet is attached to the release sheet. It was confirmed visually whether or not the transfer was performed.
積層用粘着剤及び固定用粘着剤の調製
 アクリル系重合体(2-エチルヘキシルアクリレート/メチルメタクリレート/2-ヒドロキシエチルアクリレート=80/10/10(質量比)、重量平均分子量:80万)を主原料とし、該主原料の固形分100質量部に対して、トリメチロールプロパンアダクトトリレンジイソシアネート1質量部を添加したメチルエチルケトン(MEK)溶液(固形分濃度25%)を調整し、積層用粘着剤とした。
 また、固定用粘着剤として、積層用粘着剤と同じものを用意した。
Preparation of adhesive for lamination and adhesive for fixing Acrylic polymer (2-ethylhexyl acrylate / methyl methacrylate / 2-hydroxyethyl acrylate = 80/10/10 (mass ratio), weight average molecular weight: 800,000) And a methyl ethyl ketone (MEK) solution (solid content concentration 25%) added with 1 part by mass of trimethylolpropane adduct tolylene diisocyanate with respect to 100 parts by mass of the solid content of the main raw material to obtain a pressure-sensitive adhesive for lamination. .
Moreover, the same thing as the adhesive for lamination was prepared as an adhesive for fixing.
支持シートAの作製
 支持シートを構成する基材として、ポリオレフィン基材(厚さ:80μm)を用意した。
 また、アクリル系重合体(ラウリルアクリレート/2-ヒドロキシエチルアクリレート=80/20(質量比)、重量平均分子量:80万)に、該アクリル系重合体100g当たり21.4g(アクリル系重合体の2-ヒドロキシエチルアクリレート単位100モル当たり80モル)のメタクリロイルオキシエチルイソシアネートを反応させてエネルギー線硬化型重合体(重量平均分子量:70万)を得た。
Production of Support Sheet A A polyolefin base material (thickness: 80 μm) was prepared as a base material constituting the support sheet.
Further, an acrylic polymer (lauryl acrylate / 2-hydroxyethyl acrylate = 80/20 (mass ratio), weight average molecular weight: 800,000) is added to 21.4 g (acrylic polymer 2) per 100 g of the acrylic polymer. -Methacryloyloxyethyl isocyanate (80 moles per 100 moles of hydroxyethyl acrylate units) was reacted to obtain an energy ray curable polymer (weight average molecular weight: 700,000).
 エネルギー線硬化型重合体の固形分100質量部に対して、トリメチロールプロパンアダクトトリレンジイソシアネート8質量部、1-ヒドロキシシクロヘキシルフェニルケトン3質量部を添加したMEK溶液(固形分濃度25%)を調整し、支持シートAの粘着剤層を形成するための粘着剤を得た。 A MEK solution (solid content concentration 25%) is prepared by adding 8 parts by mass of trimethylolpropane adduct tolylene diisocyanate and 3 parts by mass of 1-hydroxycyclohexyl phenyl ketone to 100 parts by mass of the solid content of the energy ray curable polymer. And the adhesive for forming the adhesive layer of the support sheet A was obtained.
 次いで、上記の粘着剤を剥離処理したPETフィルム(厚さ:50μm)の剥離処理面上に、粘着剤層の厚みが10μmとなるように塗工した。
 その後、基材と粘着剤層とを貼り合せ、支持シートAを得た。
Subsequently, it coated so that the thickness of an adhesive layer might be set to 10 micrometers on the peeling process surface of PET film (thickness: 50 micrometers) which peel-processed said adhesive.
Then, the base material and the adhesive layer were bonded together and the support sheet A was obtained.
支持シートBの作製
 支持シートを構成する基材として、ポリオレフィン基材(厚さ:70μm)を用意した。
 また、アクリル系重合体(2-エチルヘキシルアクリレート/2-ヒドロキシエチルアクリレート=80/20(質量比)、重量平均分子量:80万)に、該アクリル系重合体100g当たり13.4g(アクリル系重合体の2-ヒドロキシエチルアクリレート単位100モル当たり50モル)のメタクリロイルオキシエチルイソシアネートを反応させてエネルギー線硬化型重合体(重量平均分子量:80万)を得た。
Production of Support Sheet B As a base material constituting the support sheet, a polyolefin base material (thickness: 70 μm) was prepared.
Further, an acrylic polymer (2-ethylhexyl acrylate / 2-hydroxyethyl acrylate = 80/20 (mass ratio), weight average molecular weight: 800,000) is added to 13.4 g (acrylic polymer) per 100 g of the acrylic polymer. Methacryloyloxyethyl isocyanate (50 mol per 100 mol of 2-hydroxyethyl acrylate unit) was reacted to obtain an energy ray curable polymer (weight average molecular weight: 800,000).
 エネルギー線硬化型重合体の固形分100質量部に対して、トリメチロールプロパンアダクトトリレンジイソシアネートと、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンと、1-ヒドロキシシクロヘキシルフェニルケトンをそれぞれ1質量部添加したMEK溶液(固形分濃度25%)を調整し、支持シートBの粘着剤層を形成するための粘着剤を得た。 Trimethylolpropane adduct tolylene diisocyanate, 2,2-dimethoxy-1,2-diphenylethane-1-one, and 1-hydroxycyclohexyl phenyl ketone are added to 100 parts by mass of the solid content of the energy ray curable polymer. The MEK solution (solid content concentration 25%) to which 1 part by mass of each was added was prepared, and an adhesive for forming the adhesive layer of the support sheet B was obtained.
 次いで、上記の粘着剤を剥離処理したPETフィルム(厚さ:50μm)の剥離処理面上に、粘着剤層の厚みが30μmとなるように塗工した。
 その後、基材と粘着剤層とを貼り合せ、支持シートBを得た。
Subsequently, it apply | coated so that the thickness of an adhesive layer might be set to 30 micrometers on the peeling process surface of PET film (thickness: 50 micrometers) which peel-processed said adhesive.
Then, the base material and the adhesive layer were bonded together, and the support sheet B was obtained.
樹脂膜形成用組成物の調製
 アクリル系重合体(ブチルアクリレート/メチルメタクリレート/グリシジルメタクリレート/2-ヒドロキシエチルアクリレート=55/10/20/15(質量比)、重量平均分子量:80万)15質量部、ビスフェノールA型エポキシ樹脂(日本触媒BPA328)25質量部、トリフェニレン型エポキシ樹脂(日本化薬EPPN-502H)25質量部、フェノール樹脂(昭和高分子BRG556)34質量部及びイミダゾール系化合物(四国化成2PHZ-PW)1質量部からなる樹脂膜形成用組成物を調整した。
Preparation of resin film-forming composition Acrylic polymer (butyl acrylate / methyl methacrylate / glycidyl methacrylate / 2-hydroxyethyl acrylate = 55/10/20/15 (mass ratio), weight average molecular weight: 800,000) 15 parts by mass , 25 parts by mass of bisphenol A type epoxy resin (Nippon Shokubai BPA328), 25 parts by mass of triphenylene type epoxy resin (Nippon Kayaku EPPN-502H), 34 parts by mass of phenol resin (Showa Polymer BRG556) and imidazole compound (Shikoku Chemicals 2PHZ) -PW) A resin film forming composition comprising 1 part by mass was prepared.
(実施例1)
治具接着層の作製
 長尺の剥離シートとして、剥離処理したPETフィルム(厚さ:50μm)を用意した。
 積層用粘着剤を上記剥離シートの剥離処理面上に、積層用粘着剤層の厚みが5μmとなるように塗工した。次いで、積層用粘着剤層と芯材(ポリプロピレン基材、厚さ:40μm)とを貼り合せた。
Example 1
Preparation of Jig Adhesive Layer A release-treated PET film (thickness: 50 μm) was prepared as a long release sheet.
The pressure-sensitive adhesive for lamination was applied on the release-treated surface of the release sheet so that the thickness of the pressure-sensitive adhesive layer for lamination was 5 μm. Next, the pressure-sensitive adhesive layer for lamination and the core material (polypropylene base material, thickness: 40 μm) were bonded together.
 上記と同様の手順により、別の剥離シートの剥離処理面上に、厚みが5μmの固定用粘着剤層を形成し、上記の芯材に貼り合せ、剥離シート、積層用粘着剤層、芯材、固定用粘着剤層、剥離シートがこの順に積層された積層体(治具接着層用積層体)を得た。 According to the same procedure as described above, a fixing pressure-sensitive adhesive layer having a thickness of 5 μm is formed on the release-treated surface of another release sheet, and bonded to the core material, and then the release sheet, the pressure-sensitive adhesive layer for lamination, and the core material Then, a laminate (laminate for jig adhesive layer) in which the fixing adhesive layer and the release sheet were laminated in this order was obtained.
樹脂膜形成用シート積層体の製造
 治具接着層用積層体から、積層用粘着剤層側の剥離シートを除去し、積層用粘着剤層側から、直径330mmの円形に型抜きを行った。型抜きは、積層用粘着剤層、芯材、固定用粘着剤層を完全に切り込み、固定用粘着剤層側の剥離シートに30μm切り込むように行った。つまり、切込深さd3が30μmの切込部D3を形成した。
Production Sheet Production of Resin Film Forming Sheet The release sheet on the laminating pressure-sensitive adhesive layer side was removed from the laminated body for bonding jig adhesive layer, and the mold was punched from the laminating pressure-sensitive adhesive layer side into a circle having a diameter of 330 mm. The die cutting was performed so that the pressure-sensitive adhesive layer for lamination, the core material, and the pressure-sensitive adhesive layer for fixing were completely cut, and 30 μm was cut into the release sheet on the side of the pressure-sensitive adhesive layer for fixing. That is, a cut portion D3 having a cut depth d3 of 30 μm was formed.
 その後、円形に切り込んだ積層用粘着剤層、芯材、固定用粘着剤層からなる積層体を除去し、円形の内部開口を形成し、剥離シート上に治具接着層を作製した。 Thereafter, the laminate composed of the pressure-sensitive adhesive layer for lamination cut into a circle, the core material, and the pressure-sensitive adhesive layer for fixing was removed, a circular internal opening was formed, and a jig adhesive layer was produced on the release sheet.
 また、上記の樹脂膜形成用組成物を剥離処理したPETフィルム(厚さ:50μm)の剥離処理面上に、樹脂膜形成層の厚みが20μmとなるように塗工した。
 その後、樹脂膜形成層と、上記で得られた支持シートAの粘着剤層とを貼り合せ、支持シートAと樹脂膜形成層とからなる積層体を得た。
Moreover, it apply | coated so that the thickness of a resin film formation layer might be set to 20 micrometers on the peeling process surface of PET film (thickness: 50 micrometers) which peel-processed said composition for resin film formation.
Thereafter, the resin film-forming layer and the pressure-sensitive adhesive layer of the support sheet A obtained above were bonded together to obtain a laminate composed of the support sheet A and the resin film-forming layer.
 次いで、剥離シート上の治具接着層に、支持シートAと樹脂膜形成層とからなる積層体の樹脂膜形成層を貼付し、剥離シート上に樹脂膜形成用シートを形成した。 Subsequently, a resin film forming layer of a laminate composed of the support sheet A and the resin film forming layer was attached to the jig adhesive layer on the release sheet, and a resin film forming sheet was formed on the release sheet.
 最後に、治具接着層の円形の内部開口と同心円状に、直径370mmの円形に樹脂膜形成用シートを型抜きし、不要部分を除去して、第3の態様の樹脂膜形成用シート積層体を得た。型抜きは、樹脂膜形成用シートを完全に切り込み、剥離シートに30μm切り込むように行った。つまり、切込深さd1が30μmの切込部D1を形成した。この樹脂膜形成用シート積層体を用いて各評価を行った。結果を表1に示す。 Finally, the resin film forming sheet is die-cut into a circular shape with a diameter of 370 mm concentrically with the circular inner opening of the jig adhesive layer, unnecessary portions are removed, and the resin film forming sheet stack of the third aspect is laminated. Got the body. The die cutting was performed so that the resin film-forming sheet was completely cut and 30 μm was cut into the release sheet. That is, a cut portion D1 having a cut depth d1 of 30 μm was formed. Each evaluation was performed using this sheet laminate for resin film formation. The results are shown in Table 1.
(実施例2)
 切込部D1の切込深さを35μmとしたこと以外は実施例1と同様にして樹脂膜形成用シート積層体を得、各評価を行った。結果を表1に示す。
(Example 2)
A sheet laminate for forming a resin film was obtained in the same manner as in Example 1 except that the cut depth of the cut portion D1 was set to 35 μm, and each evaluation was performed. The results are shown in Table 1.
(実施例3)
樹脂膜形成用シート積層体の製造
 長尺の剥離シートとして、剥離処理したPETフィルム(厚さ:50μm)を用意した。
 上記の樹脂膜形成用組成物を剥離シートの剥離処理面上に、樹脂膜形成層の厚みが20μmとなるように塗工し、別の剥離シート(PETフィルム、厚さ:50μm)を樹脂膜形成層に積層した。
Example 3
Production of Resin Film Forming Sheet Laminate A release-treated PET film (thickness: 50 μm) was prepared as a long release sheet.
The above resin film-forming composition is applied onto the release-treated surface of the release sheet so that the thickness of the resin film-forming layer is 20 μm, and another release sheet (PET film, thickness: 50 μm) is applied to the resin film. Laminated on the forming layer.
 次いで、一方の剥離シートを除去し、直径330mmの円形に樹脂膜形成層を型抜きした。型抜きは、樹脂膜形成層を完全に切り込み、剥離シートに30μm切り込むように行った。つまり、切込深さd2が30μmの切込部D2を形成した。その後、残余の樹脂膜形成層を除去し、剥離シート上に円形の樹脂膜形成層を得た。 Next, one release sheet was removed, and the resin film forming layer was die-cut into a circle having a diameter of 330 mm. The die cutting was performed so that the resin film forming layer was completely cut and 30 μm was cut into the release sheet. That is, a cut portion D2 having a cut depth d2 of 30 μm was formed. Thereafter, the remaining resin film forming layer was removed to obtain a circular resin film forming layer on the release sheet.
 そして、剥離シート上の樹脂膜形成層に、支持シートAの粘着剤層を貼付し、剥離シート上に樹脂膜形成用シートを形成した。 Then, the pressure-sensitive adhesive layer of the support sheet A was pasted on the resin film forming layer on the release sheet to form a resin film forming sheet on the release sheet.
 最後に、円形の樹脂膜形成層と同心円状に、直径370mmの円形に樹脂膜形成層を型抜きし、不要部分を除去して、第1の態様の樹脂膜形成用シート積層体を得た。型抜きは、樹脂膜形成用シートを完全に切り込み、剥離シートに30μm切り込むように行った。つまり、切込深さd1が30μmの切込部D1を形成した。この樹脂膜形成用シート積層体を用いて各評価を行った。結果を表1に示す。 Finally, the resin film forming layer was cut into a circle having a diameter of 370 mm concentrically with the circular resin film forming layer, and unnecessary portions were removed to obtain the resin film forming sheet laminate of the first aspect. . The die cutting was performed so that the resin film-forming sheet was completely cut and 30 μm was cut into the release sheet. That is, a cut portion D1 having a cut depth d1 of 30 μm was formed. Each evaluation was performed using this sheet laminate for resin film formation. The results are shown in Table 1.
(実施例4)
 切込部D1の切込深さを35μmとしたこと以外は実施例3と同様にして樹脂膜形成用シート積層体を得、各評価を行った。結果を表1に示す。
Example 4
Except having made the cutting depth of the cutting part D1 into 35 micrometers, it carried out similarly to Example 3, and obtained the sheet | seat laminated body for resin film formation, and performed each evaluation. The results are shown in Table 1.
(比較例1)
 支持シートAの代わりに、支持シートBを用いたこと以外は実施例3と同様にして樹脂膜形成用シート積層体を得、各評価を行った。結果を表1に示す。
(Comparative Example 1)
A sheet laminate for forming a resin film was obtained in the same manner as in Example 3 except that the support sheet B was used instead of the support sheet A, and each evaluation was performed. The results are shown in Table 1.
(比較例2)
 支持シートAの代わりに、支持シートBを用いたこと以外は実施例4と同様にして樹脂膜形成用シート積層体を得、各評価を行った。結果を表1に示す。
(Comparative Example 2)
A sheet laminate for forming a resin film was obtained in the same manner as in Example 4 except that the support sheet B was used instead of the support sheet A, and each evaluation was performed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 100:樹脂膜形成用シート積層体
 10:樹脂膜形成用シート
 11:支持シート
 12:樹脂膜形成層
 13:剥離シート
 D1:切込部
 D2:切込部
 D3:切込部
 
DESCRIPTION OF SYMBOLS 100: Sheet | seat laminated body for resin film formation 10: Sheet | seat for resin film formation 11: Support sheet 12: Resin film formation layer 13: Release sheet D1: Cut part D2: Cut part D3: Cut part

Claims (4)

  1.  支持シートと樹脂膜形成層とを含む樹脂膜形成用シートの樹脂膜形成層上に剥離シートを積層してなり、
     樹脂膜形成用シートの外周部における、剥離シートの剥離力が0.05N/25mm以下であり、
     樹脂膜形成用シートの外周部における、SUSに対する粘着力が1.0N/25mm以下である樹脂膜形成用シート積層体。
    A release sheet is laminated on the resin film forming layer of the resin film forming sheet including the support sheet and the resin film forming layer,
    The peeling force of the release sheet at the outer periphery of the resin film forming sheet is 0.05 N / 25 mm or less,
    A resin film-forming sheet laminate in which the adhesive strength to SUS is 1.0 N / 25 mm or less at the outer peripheral portion of the resin film-forming sheet.
  2.  剥離シートには、樹脂膜形成層側の面から樹脂膜形成用シートの外周に沿って切込部が形成されており、
     切込部の切込深さが剥離シートの厚さの1/2超である請求項1に記載の樹脂膜形成用シート積層体。
    In the release sheet, a cut portion is formed along the outer periphery of the resin film forming sheet from the surface on the resin film forming layer side,
    The sheet laminate for forming a resin film according to claim 1, wherein the cut depth of the cut portion is more than ½ of the thickness of the release sheet.
  3.  剥離シートの厚さが50μm以上である請求項1または2に記載の樹脂膜形成用シート積層体。 The resin film-forming sheet laminate according to claim 1 or 2, wherein the release sheet has a thickness of 50 µm or more.
  4.  剥離シートには、樹脂膜形成層側の面から樹脂膜形成用シートの外周に沿って切込部が形成されており、
     切込部の切込深さが25μm超である請求項3に記載の樹脂膜形成用シート積層体。
     
    In the release sheet, a cut portion is formed along the outer periphery of the resin film forming sheet from the surface on the resin film forming layer side,
    The sheet laminate for forming a resin film according to claim 3, wherein the cut depth of the cut portion is more than 25 μm.
PCT/JP2015/051660 2014-03-26 2015-01-22 Laminate for resin film formation sheet WO2015146254A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167011744A KR20160137506A (en) 2014-03-26 2015-01-22 Laminate for resin film formation sheet
CN201580002966.1A CN105793035B (en) 2014-03-26 2015-01-22 Resin film forms and uses thin slice layered product
JP2016510079A JP6600297B2 (en) 2014-03-26 2015-01-22 Sheet laminate for resin film formation
KR1020217021516A KR102544301B1 (en) 2014-03-26 2015-01-22 Laminate for resin film formation sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014064204 2014-03-26
JP2014-064204 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015146254A1 true WO2015146254A1 (en) 2015-10-01

Family

ID=54194796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051660 WO2015146254A1 (en) 2014-03-26 2015-01-22 Laminate for resin film formation sheet

Country Status (5)

Country Link
JP (1) JP6600297B2 (en)
KR (2) KR102544301B1 (en)
CN (1) CN105793035B (en)
TW (1) TWI651205B (en)
WO (1) WO2015146254A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146607A1 (en) * 2018-01-24 2019-08-01 リンテック株式会社 Long laminated sheet, and winding body thereof
WO2019146604A1 (en) * 2018-01-24 2019-08-01 リンテック株式会社 Rolled body of elongated laminated sheet
WO2019146605A1 (en) * 2018-01-24 2019-08-01 リンテック株式会社 Elongated laminated sheet and rolled body thereof
JP2020133053A (en) * 2019-02-20 2020-08-31 三井化学株式会社 Method for producing melt-blown nonwoven fabric
WO2020196138A1 (en) * 2019-03-22 2020-10-01 リンテック株式会社 Film adhesive and sheet for semiconductor processing
WO2020196130A1 (en) * 2019-03-22 2020-10-01 リンテック株式会社 Film adhesive and sheet for semiconductor processing
WO2023136057A1 (en) * 2022-01-11 2023-07-20 株式会社レゾナック Integrated dicing/die bonding film, method for producing same, and method for producing semiconductor device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6901322B2 (en) * 2017-05-31 2021-07-14 株式会社ディスコ Protective tape affixing device
DE112018007519T5 (en) * 2018-04-24 2021-01-14 Disco Hi-Tec Europe Gmbh Apparatus and method for applying a protective tape to a semiconductor wafer
TWI696867B (en) * 2019-03-22 2020-06-21 友達光電股份有限公司 Tape structure, display panel and display device utilized the tape structure
CN113910690B (en) * 2021-10-20 2023-01-03 业成科技(成都)有限公司 Light-tight composite layer and light-transmitting protective film for light-tight layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350520A (en) * 2004-06-08 2005-12-22 Hitachi Chem Co Ltd Adhesive sheet, method for producing the sheet, method for producing semiconductor device, and the semiconductor device
JP2011156792A (en) * 2010-02-02 2011-08-18 Sumitomo Bakelite Co Ltd Lamination film and lamination film with release film
WO2012056511A1 (en) * 2010-10-25 2012-05-03 古河電気工業株式会社 Adhesive film and wafer-processing tape
WO2014156127A1 (en) * 2013-03-26 2014-10-02 三井化学東セロ株式会社 Production method for laminate film, laminate film, and production method for semiconductor device employing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3348923B2 (en) * 1993-07-27 2002-11-20 リンテック株式会社 Adhesive sheet for attaching wafer
JP5142317B2 (en) * 2007-09-03 2013-02-13 一方社油脂工業株式会社 Release treatment agent and adhesive tape, adhesive sheet and release sheet using the same
US9076833B2 (en) * 2010-10-15 2015-07-07 Hitachi Chemical Company, Ltd. Tape for processing wafer, method for manufacturing tape for processing wafer, and method for manufacturing semiconductor device
JP5759729B2 (en) * 2011-01-20 2015-08-05 日東電工株式会社 Adhesive tape for surface protection of semiconductor parts
JP2014007230A (en) * 2012-06-22 2014-01-16 Hitachi Chemical Co Ltd Tape for wafer processing, manufacturing method of tape for wafer processing, and manufacturing method of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350520A (en) * 2004-06-08 2005-12-22 Hitachi Chem Co Ltd Adhesive sheet, method for producing the sheet, method for producing semiconductor device, and the semiconductor device
JP2011156792A (en) * 2010-02-02 2011-08-18 Sumitomo Bakelite Co Ltd Lamination film and lamination film with release film
WO2012056511A1 (en) * 2010-10-25 2012-05-03 古河電気工業株式会社 Adhesive film and wafer-processing tape
WO2014156127A1 (en) * 2013-03-26 2014-10-02 三井化学東セロ株式会社 Production method for laminate film, laminate film, and production method for semiconductor device employing same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200112831A (en) * 2018-01-24 2020-10-05 린텍 가부시키가이샤 Long laminated sheet and its winding body
JP7153034B2 (en) 2018-01-24 2022-10-13 リンテック株式会社 Long laminated sheet and its wound body
JPWO2019146607A1 (en) * 2018-01-24 2021-01-07 リンテック株式会社 Long laminated sheet and its winding body
JPWO2019146604A1 (en) * 2018-01-24 2021-02-04 リンテック株式会社 Rewinder of long laminated sheet
CN111655470A (en) * 2018-01-24 2020-09-11 琳得科株式会社 Long laminated sheet and roll thereof
WO2019146607A1 (en) * 2018-01-24 2019-08-01 リンテック株式会社 Long laminated sheet, and winding body thereof
KR102637842B1 (en) * 2018-01-24 2024-02-16 린텍 가부시키가이샤 Winding body of long laminated sheets
KR20200112830A (en) * 2018-01-24 2020-10-05 린텍 가부시키가이샤 Winding body of long laminated sheet
KR102637843B1 (en) * 2018-01-24 2024-02-16 린텍 가부시키가이샤 Long laminated sheets and their wound bodies
WO2019146605A1 (en) * 2018-01-24 2019-08-01 リンテック株式会社 Elongated laminated sheet and rolled body thereof
JP7402052B2 (en) 2018-01-24 2023-12-20 リンテック株式会社 Long laminated sheets and their rolls
JPWO2019146605A1 (en) * 2018-01-24 2021-02-04 リンテック株式会社 Long laminated sheet and its winding body
WO2019146604A1 (en) * 2018-01-24 2019-08-01 リンテック株式会社 Rolled body of elongated laminated sheet
JP7148434B2 (en) 2019-02-20 2022-10-05 三井化学株式会社 METHOD FOR PRODUCING MELT BLOW NONWOVEN FABRIC
JP2020133053A (en) * 2019-02-20 2020-08-31 三井化学株式会社 Method for producing melt-blown nonwoven fabric
WO2020196130A1 (en) * 2019-03-22 2020-10-01 リンテック株式会社 Film adhesive and sheet for semiconductor processing
WO2020196138A1 (en) * 2019-03-22 2020-10-01 リンテック株式会社 Film adhesive and sheet for semiconductor processing
WO2023136057A1 (en) * 2022-01-11 2023-07-20 株式会社レゾナック Integrated dicing/die bonding film, method for producing same, and method for producing semiconductor device

Also Published As

Publication number Publication date
KR20210088767A (en) 2021-07-14
CN105793035B (en) 2018-05-15
KR20160137506A (en) 2016-11-30
TW201544324A (en) 2015-12-01
JPWO2015146254A1 (en) 2017-04-13
JP6600297B2 (en) 2019-10-30
TWI651205B (en) 2019-02-21
KR102544301B1 (en) 2023-06-15
CN105793035A (en) 2016-07-20

Similar Documents

Publication Publication Date Title
JP6600297B2 (en) Sheet laminate for resin film formation
TWI769242B (en) Sliced Die Stick Film
JP5302951B2 (en) Adhesive sheet
TWI434336B (en) Adhesive tape for semiconductor wafer dicing and method of manufacturing semiconductor device
KR20120030964A (en) Dicing/die bonding film, method for manufacturing dicing/die bonding film and method for manufacturing semiconductor device
CN107924864B (en) Ultraviolet-curable adhesive sheet for back grinding after semiconductor wafer half-dicing
JP7381447B2 (en) Adhesive tape and semiconductor device manufacturing method
WO2013141251A1 (en) Film, sheet substrate for processing workpiece, and sheet for processing workpiece
JP6574787B2 (en) Sheet laminate for resin film formation
WO2015146856A1 (en) Adhesive tape for semiconductor wafer processing and method for processing semiconductor wafer
JP6369996B2 (en) Resin film forming sheet
JP6207192B2 (en) Adhesive sheet for semiconductor processing
JP5010800B2 (en) Manufacturing method of semiconductor device and adhesive tape for dicing
TW201446929A (en) Actinic-radiation-curable self-rolling pressure-sensitive adhesive tape
KR102306372B1 (en) Mask-integrated surface protection tape with release liner
JP2011089073A (en) Adhesive, adhesive sheet, multilayered adhesive sheet, and method for producing electronic part
JP2013222846A (en) Substrate dicing method
JP4364368B2 (en) Manufacturing method of semiconductor chip
WO2019155970A1 (en) Adhesive tape for semiconductor fabrication
JP7069116B2 (en) Base material for back grind tape
JP2014192463A (en) Resin film formation sheet
KR20200112831A (en) Long laminated sheet and its winding body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510079

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167011744

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15769322

Country of ref document: EP

Kind code of ref document: A1