WO2021065073A1 - Pressure-sensitive adhesive sheet - Google Patents

Pressure-sensitive adhesive sheet Download PDF

Info

Publication number
WO2021065073A1
WO2021065073A1 PCT/JP2020/020330 JP2020020330W WO2021065073A1 WO 2021065073 A1 WO2021065073 A1 WO 2021065073A1 JP 2020020330 W JP2020020330 W JP 2020020330W WO 2021065073 A1 WO2021065073 A1 WO 2021065073A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sensitive adhesive
adhesive sheet
adhesive layer
base material
Prior art date
Application number
PCT/JP2020/020330
Other languages
French (fr)
Japanese (ja)
Inventor
高野 健
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2021551131A priority Critical patent/JP7541020B2/en
Priority to TW109119403A priority patent/TWI853036B/en
Publication of WO2021065073A1 publication Critical patent/WO2021065073A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/25Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/062Copolymers with monomers not covered by C09J133/06
    • C09J133/066Copolymers with monomers not covered by C09J133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/122Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present only on one side of the carrier, e.g. single-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/302Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being pressure-sensitive, i.e. tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature

Definitions

  • the present invention relates to an adhesive sheet.
  • CSP chip scale package
  • WLP wafer level package
  • an external electrode or the like is formed on the wafer before it is separated by dicing, and finally the wafer is diced and separated. Examples of the WLP include a fan-in type and a fan-out type.
  • the semiconductor chip is covered with a sealing member so as to have a region larger than the chip size, and the semiconductor chip sealant is covered.
  • the rewiring layer and the external electrode are formed not only on the circuit surface of the semiconductor chip but also on the surface region of the sealing member.
  • an expansion wafer is formed by surrounding a plurality of semiconductor chips separated from a semiconductor wafer by using a mold member, leaving a circuit forming surface thereof, and forming an expansion wafer in a region outside the semiconductor chip.
  • a method for manufacturing a semiconductor package formed by extending a rewiring pattern is described.
  • the semiconductor chips before enclosing a plurality of individualized semiconductor chips with a mold member, the semiconductor chips are replaced with an expanding sheet, and the expanding sheet is expanded to increase the distance between the plurality of semiconductor chips. I'm letting you.
  • Patent Document 2 describes a semiconductor processing sheet used for increasing the distance between a plurality of semiconductor chips.
  • the expanding sheet in order to form the above-mentioned rewiring pattern or the like in the region outside the semiconductor chip, the expanding sheet is expanded to sufficiently separate the semiconductor chips from each other, and after the expansion, the expanding sheet is sufficiently separated from each other. It is necessary to suppress variations in the spacing between a plurality of semiconductor chips (improve alignment). Further, the sheet used in the expanding step usually has a pressure-sensitive adhesive layer for fixing the semiconductor chip on the sheet and a base material for supporting the pressure-sensitive adhesive layer. When the expanding sheet is stretched as described in Patent Document 1 and Patent Document 2, not only the base material of the sheet but also the pressure-sensitive adhesive layer is stretched.
  • the outer peripheral side of the back surface of the chip may be separated from the pressure-sensitive adhesive layer and float from the sheet.
  • chip floating such a phenomenon may be referred to as chip floating.
  • an energy ray such as ultraviolet rays is irradiated to a portion where the chip floats, the curing of the energy ray-curable pressure-sensitive adhesive is hindered and adhesive residue is likely to occur.
  • the defect that the pressure-sensitive adhesive layer remains on the back surface of the semiconductor chip in contact with the pressure-sensitive adhesive layer is referred to as adhesive residue.
  • An object of the present invention is to provide an adhesive sheet capable of improving alignment after expansion in an expanding step and suppressing chip floating.
  • the pressure-sensitive adhesive layer has a base material and a pressure-sensitive adhesive layer, the pressure-sensitive adhesive layer contains an energy ray-curable resin, and the pressure-strain curve of the pressure-sensitive adhesive layer alone is stretched.
  • the degree is 1500% or more and the displacement in the displacement-stress curve of the adhesive layer alone is 1500%, An adhesive sheet having a stress of 0.22 MPa or less is provided.
  • the stress is preferably 0.17 MPa or less when the displacement of the pressure-sensitive adhesive layer alone in the displacement-stress curve is 1500%.
  • the stress when the displacement of the pressure-sensitive adhesive layer alone in the displacement-stress curve is 1500%, the stress is preferably 0.0001 MPa or more.
  • the pressure-sensitive adhesive sheet is subjected to a first direction, a second direction opposite to the first direction, a third direction perpendicular to the first direction, and a third direction.
  • the area ratio (S2 / S1) ⁇ 100 of the area S1 of the pressure-sensitive adhesive sheet before stretching and the area S2 of the pressure-sensitive adhesive sheet after stretching is calculated by stretching in the fourth direction opposite to the third direction.
  • it is 300%, it is preferable that the base material and the pressure-sensitive adhesive layer do not break.
  • an adhesive sheet capable of improving alignment after expansion in the expanding step and suppressing chip floating.
  • the pressure-sensitive adhesive sheet has a base material and a pressure-sensitive adhesive layer.
  • the shape of the adhesive sheet can be any shape such as a tape shape (long form) and a label shape (single leaf shape).
  • the pressure-sensitive adhesive layer contains an energy ray-curable resin.
  • the displacement-stress curve of the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet is 1500% or more and the displacement of the pressure-sensitive adhesive layer is 1500%, the stress is 0.22 MPa or less. ..
  • the pressure-sensitive adhesive sheet having the pressure-sensitive adhesive layer having such properties of elongation at break and stress it is possible to improve the alignment after expansion in the expanding step and suppress the chip floating.
  • the expanding step for example, when the distance between the semiconductor chips before expansion is 35 ⁇ m, when the distance is expanded to 2000 ⁇ m by expanding, the pressure-sensitive adhesive layer is greatly deformed while following the base material.
  • the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet according to the present embodiment has a breaking elongation of 1500% or more, the pressure-sensitive adhesive layer can follow the substrate without breaking even during large deformation due to such expansion. Further, since the stress when the displacement in the displacement-stress curve of the pressure-sensitive adhesive layer alone is 1500% is 0.22 MPa or less, the deformation of the pressure-sensitive adhesive sheet is suppressed by the semiconductor chip when the base material is greatly deformed by the expansion. The binding force can be reduced.
  • the surface of the semiconductor chip in contact with the pressure-sensitive adhesive layer fixes the surface of the pressure-sensitive adhesive layer, and pulls the pressure-sensitive adhesive layer during expansion to add a binding force that suppresses deformation of the base material, resulting in non-uniform deformation of the pressure-sensitive adhesive sheet. Therefore, it is considered that the alignment of the semiconductor chip is impaired. If this binding force is zero, the adhesive sheet can be expanded uniformly, and as the binding force increases, the deformation of the adhesive sheet concentrates near the gap between the semiconductor chips, and when the entire work area is taken into consideration, the semiconductor at the end The binding force is concentrated on the chip, making expansion itself difficult. Since the pressure-sensitive adhesive sheet according to the present embodiment can reduce such binding force, good alignment is exhibited. If the stress in the displacement-stress curve of the pressure-sensitive adhesive layer alone exceeds 0.22 MPa, the alignment is impaired due to the influence of the binding force of the semiconductor chip.
  • the stress when the displacement of the pressure-sensitive adhesive layer alone in the displacement-stress curve is 1500%, the stress is preferably 0.17 MPa or less. According to the pressure-sensitive adhesive sheet having the pressure-sensitive adhesive layer in which the stress at 1500% of the displacement is 0.17 MPa or less, excellent alignment is exhibited even if the expansion amount in the expanding step is increased.
  • the stress when the displacement of the pressure-sensitive adhesive layer alone in the displacement-stress curve is 1500%, the stress is preferably 0.0001 MPa or more.
  • the stress at 1500% displacement is 0.0001 MPa or more, it is possible to prevent the pressure-sensitive adhesive layer from becoming too soft. If the stress at a displacement of 1500% is 0.0001 MPa or more, even if the expansion amount is large in the expanding step, it is possible to prevent problems such as the adhesive sheet being detached from the chuck of the expanding device due to insufficient cohesive force of the adhesive.
  • the elongation at break in the displacement-stress curve of the pressure-sensitive adhesive layer alone and the stress when the displacement in the displacement-stress curve is 1500% can be measured by the method described in Examples described later.
  • the pressure-sensitive adhesive contained in the pressure-sensitive adhesive layer has the above-mentioned stress at break elongation in the displacement-stress curve of the pressure-sensitive adhesive layer alone and stress when the displacement in the displacement-stress curve is 1500%.
  • the material (adhesive) constituting the pressure-sensitive adhesive layer can be appropriately selected and blended from, for example, the materials described below so as to satisfy the above-mentioned range of elongation at break and stress.
  • the energy ray-curable resin (a1) is a resin that polymerizes and cures when irradiated with energy rays. Examples of the energy ray include ultraviolet rays and electron beams.
  • the energy ray-curable resin (a1) is preferably an ultraviolet curable resin.
  • the energy ray-curable resin (a1) has at least one energy ray-curable functional group in the molecule.
  • the energy ray-curable functional group is preferably a functional group containing a carbon-carbon double bond, and more preferably an acryloyl group or a methacryloyl group.
  • the pressure-sensitive adhesive layer containing the energy ray-curable resin (a1) is cured by energy ray irradiation, and the adhesive strength is reduced. When it is desired to separate the adherend and the pressure-sensitive adhesive sheet, the pressure-sensitive adhesive layer can be easily separated by irradiating the pressure-sensitive adhesive layer with energy rays.
  • Examples of the energy ray-curable resin (a1) include low molecular weight compounds having an energy ray-curable group (monofunctional monomer, polyfunctional monomer, monofunctional oligomer, and polyfunctional oligomer).
  • the energy ray-curable resin (a1) preferably has one or more ethylene glycol units represented by the following general formula (11).
  • the energy ray-curable resin (a1) has two or more ethylene glycol units represented by the following general formula (11), the two or more m are the same as or different from each other.
  • n in the general formula (11) is 2 or more.
  • the energy ray-curable resin (a1) Since the energy ray-curable resin (a1) has a flexible polyethylene glycol chain, the pressure-sensitive adhesive layer before curing is easily deformed, the crosslink density of the pressure-sensitive adhesive layer after curing is appropriately lowered, and the pressure-sensitive adhesive layer is formed. It becomes difficult to break.
  • the number of ethylene glycol units that the energy ray-curable resin (a1) has per molecule is preferably 3 or more, and more preferably 5 or more.
  • the number of ethylene glycol units contained in the energy ray-curable resin (a1) per molecule is preferably 10 or more, more preferably 30 or more, and more preferably 50 or more. Is even more preferable.
  • the number of ethylene glycol units that the energy ray-curable resin (a1) has per molecule is preferably 100 or less, more preferably 90 or less, and further preferably 80 or less.
  • the energy ray-curable resin (a1) further preferably has 3 or more energy ray-curable functional groups, and more preferably 4 or more.
  • the number of energy ray-curable functional groups contained in the energy ray-curable resin (a1) is 3 or more, it becomes easier to further suppress adhesive residue.
  • the energy ray-curable resin (a1) preferably has a group in which the ethylene glycol unit represented by the general formula (11) and the energy ray-curable functional group are directly bonded.
  • the energy ray-curable resin (a1) preferably has one or more groups containing ethylene glycol units represented by the following general formula (11A).
  • m is 1 or more, and R is a hydrogen atom or a methyl group.
  • the number of groups represented by the general formula (11A) in one molecule is preferably 3 or more. More preferably, it is 4 or more.
  • the number of groups represented by the general formula (11A) contained in one molecule of the energy ray-curable resin (a1) is 3 or more, it becomes easier to further suppress the adhesive residue.
  • the energy ray-curable resin (a1) has a group represented by the general formula (11A)
  • the number of groups represented by the general formula (11A) in one molecule is preferably 10 or less. , 9 or less, more preferably 8 or less.
  • the energy ray-curable resin (a1) preferably has one or more glycerin skeletons.
  • the energy ray-curable resin (a1) also preferably has a polyglycerin skeleton.
  • the energy ray-curable resin (a1) has a glycerin skeleton that has more ether bonds and can be polyfunctionalized than a carbon-carbon bond system such as a saturated hydrocarbon skeleton, the pressure-sensitive adhesive layer is further deformed. It becomes easy to do, and at the same time, good curability can be realized.
  • the energy ray-curable resin (a1) is preferably represented by the following general formula (12).
  • n is 1 or more
  • R 1 , R 2 and R 3 are independently atoms or groups in the molecule of the energy ray-curable resin. At least one of R 1 , R 2 and R 3 has one or more ethylene glycol units represented by the general formula (11). )
  • R 1 , R 2 and R 3 are synonymous with R 1 , R 2 and R 3 in the general formula (12)).
  • R 1A , R 1B , R 1C and R 1D are independently synonymous with R 1 in the general formula (12).
  • R 2 and R 3 are synonymous with R 2 and R 3 in the general formula (12).
  • R 1 , R 2 and R 3 each independently have one or more ethylene glycol units represented by the general formula (11).
  • the numbers of ethylene glycol units in R 1 , R 2 and R 3 are the same or different from each other.
  • R 1 , R 2 and R 3 is a group containing an energy ray-curable functional group, and R 1 , R 2 and R 3 are independently energy ray-curable functional groups. It is more preferable that the group contains.
  • R 1 , R 2 and R 3 are groups each independently having one or more ethylene glycol units represented by the general formula (11) and containing an energy ray-curable functional group. ..
  • R 1 , R 2 and R 3 are independently represented by the general formula (11A).
  • R 1A , R 1B , R 1C , R 1D , R 2 and R 3 form energy ray-curable functional groups.
  • the energy ray-curable resin (a1) corresponds to having six energy ray-curable functional groups.
  • the energy ray-curable resin (a1) is preferably represented by the following general formula (13).
  • n is 1 or more
  • R 11 , R 12 and R 13 are independently other atoms or groups in the molecule of the energy ray-curable resin, respectively.
  • m1, m2 and m3 are 1 or more independently of each other.
  • R 11 , R 12 and R 13 is a group containing an energy ray-curable functional group, and R 11 , R 12 and R 13 are independently energy ray-curable functional groups. It is more preferable that the group contains.
  • the energy ray-curable resin (a1) is also preferably represented by the following general formula (14).
  • R 21 , R 22 , R 23 and R 24 are independently other atoms or groups in the molecule of the energy ray-curable resin, respectively. At least one of R 21 , R 22 , R 23 and R 24 has one or more ethylene glycol units represented by the general formula (11). )
  • R 21 , R 22 , R 23 and R 24 each independently have one or more ethylene glycol units represented by the general formula (11).
  • the number of ethylene glycol units in R 21 , R 22 , R 23 and R 24 is the same as or different from each other.
  • R 21, R 22, R 23 and R 24 are a group containing an energy ray-curable functional group
  • R 21, R 22, R 23 and R 24 are each independently energy More preferably, it is a group containing a linearly curable functional group.
  • R 21 , R 22 , R 23 and R 24 are groups each independently having one or more ethylene glycol units represented by the general formula (11) and containing an energy ray-curable functional group. Is preferable.
  • R 21 , R 22 , R 23 and R 24 are each independently represented by the general formula (11A).
  • the energy ray-curable resin (a1) is preferably represented by the following general formula (15).
  • R 25 , R 26 , R 27 and R 28 are independently other atoms or groups in the molecule of the energy ray-curable resin, respectively.
  • m21, m22, m23 and m24 are independently one or more.
  • R 25, at least one of R 26, R 27 and R 28 is a group containing an energy ray-curable functional group
  • R 25, R 26, R 27 and R 28 are each independently energy More preferably, it is a group containing a linearly curable functional group.
  • the pressure-sensitive adhesive layer preferably contains the energy ray-curable resin (a1) in an amount of 15% by mass or more and 55% by mass or less, preferably 20% by mass or more and 48% by mass or less, based on the total solid content of the pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive layer contains the energy ray-curable resin (a1) in an amount of 15% by mass or more and 55% by mass or less, it is easy to further improve the alignment and further suppress the adhesive residue.
  • the pressure-sensitive adhesive layer contains 20% by mass or more of the energy ray-curable resin (a1), it is easy to improve the alignment.
  • the pressure-sensitive adhesive layer contains the energy ray-curable resin (a1) in an amount of 48% by mass or less, the pressure-sensitive adhesive is less likely to seep out from the end of the roll when the pressure-sensitive adhesive sheet is wound into a roll.
  • the total number M EG ethylene glycol units having energy ray-curable resin (a1) is the ratio M EG / M UV and the total number M UV energy ray-curable functional group which energy ray-curable resin (a1) has found It is preferably 1 or more and 15 or less.
  • the pressure-sensitive adhesive layer contains 24% by mass or more of the energy ray-curable resin (a1) and the MEG / MUV is 9 or more, excellent alignment is achieved even if the amount of expansion in the expanding step is increased. Shown.
  • the energy ray-curable resin (a1) is preferably a (meth) acrylic resin.
  • the energy ray-curable resin (a1) is preferably an ultraviolet curable resin, and more preferably an ultraviolet curable (meth) acrylic resin.
  • the energy ray-curable resin (a1) is a resin that polymerizes and cures when irradiated with energy rays.
  • Examples of the energy ray include ultraviolet rays and electron beams.
  • Examples of the energy ray-curable resin (a1) include trimethyl propantriacrylate, tetramethylolmethanetetraacrylate, pentaerythritol triacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, and 1,4-butylene glycol.
  • Diacrylate and acrylates such as 1,6-hexanediol diacrylate, cyclic aliphatic skeleton-containing acrylates such as dicyclopentadiene dimethoxydiacrylate and isobornyl acrylate, and polyethylene glycol diacrylates, oligoester acrylates and urethane acrylate oligomers.
  • Epoxy-modified acrylates, polyether acrylates, and acrylate-based compounds such as itaconic acid oligomers can also be used.
  • the energy ray-curable resin (a1) is used alone or in combination of two or more.
  • the molecular weight of the energy ray-curable resin (a1) is preferably 100 or more, and more preferably 300 or more.
  • the molecular weight of the energy ray-curable resin (a1) is preferably 30,000 or less, and more preferably 15,000 or less.
  • phase separation from the pressure-sensitive adhesive can be prevented and the storage stability of the tape can be maintained.
  • molecular weight of the energy ray-curable resin (a1) is 30,000 or less, compatibility with other materials can be maintained.
  • the weight average molecular weight of the energy ray-curable resin (a1) is preferably 10,000 or less.
  • the weight average molecular weight can be obtained from a standard polystyrene conversion value by a gel permeation chromatography (GPC) method.
  • the pressure-sensitive adhesive layer contains a UV-curable compound (for example, a UV-curable resin)
  • the pressure-sensitive adhesive layer preferably contains a photopolymerization initiator (C). Since the pressure-sensitive adhesive layer contains the photopolymerization initiator (C), the polymerization curing time and the amount of light irradiation can be reduced.
  • photopolymerization initiator (C) examples include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, and benzoin dimethyl ketal.
  • the photopolymerization initiator (C) is an energy ray-curable resin (a1).
  • the total amount of the (meth) acrylic copolymer (b1) is preferably 0.1 parts by mass or more, and more preferably 0.5 parts by mass or more. preferable.
  • the photopolymerization initiator (C) is an energy ray-curable resin (a1) when the energy ray-curable resin (a1) and the (meth) acrylic copolymer (b1) are blended in the pressure-sensitive adhesive layer.
  • the (meth) acrylic copolymer (b1) in an amount of 10 parts by mass or less, more preferably 6 parts by mass or less, based on 100 parts by mass of the total amount.
  • the pressure-sensitive adhesive layer may contain other components as appropriate in addition to the above components.
  • other components include a cross-linking agent (E), an antistatic agent, an antioxidant, a coloring agent, and the like.
  • cross-linking agent (E) a polyfunctional compound having reactivity with a functional group of the (meth) acrylic copolymer (b1) or the like can be used.
  • polyfunctional compounds include isocyanate compounds, epoxy compounds, amine compounds, melamine compounds, aziridine compounds, hydrazine compounds, aldehyde compounds, oxazoline compounds, metal alkoxide compounds, metal chelate compounds, metal salts, ammonium salts, etc. And reactive phenolic resins and the like.
  • the blending amount of the cross-linking agent (E) is preferably 0.01 part by mass or more, and preferably 0.03 part by mass or more with respect to 100 parts by mass of the (meth) acrylic copolymer (b1). More preferably, it is 0.04 parts by mass or more.
  • the amount of the cross-linking agent (E) to be blended is preferably 8 parts by mass or less, and more preferably 5 parts by mass or less, based on 100 parts by mass of the (meth) acrylic copolymer (b1). , 3.5 parts by mass or less, and even more preferably 2.1 parts by mass or less.
  • the thickness of the adhesive layer is not particularly limited.
  • the thickness of the pressure-sensitive adhesive layer is, for example, preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • the thickness of the pressure-sensitive adhesive layer is preferably 150 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the base material preferably has a first base material surface and a second base material surface opposite to the first base material surface.
  • the pressure-sensitive adhesive layer according to the present embodiment is preferably provided on one surface of the first base material surface and the second base material surface, and is adherent to the other surface. It is preferable that the agent layer is not provided.
  • the material of the base material is preferably a thermoplastic elastomer or a rubber-based material, and more preferably a thermoplastic elastomer from the viewpoint of being easily stretched greatly.
  • the material of the base material it is preferable to use a resin having a relatively low glass transition temperature (Tg) from the viewpoint of being large and easy to stretch.
  • the glass transition temperature (Tg) of such a resin is preferably 90 ° C. or lower, more preferably 80 ° C. or lower, and even more preferably 70 ° C. or lower.
  • thermoplastic elastomer examples include urethane-based elastomers, olefin-based elastomers, vinyl chloride-based elastomers, polyester-based elastomers, styrene-based elastomers, acrylic-based elastomers, and amide-based elastomers.
  • the thermoplastic elastomer may be used alone or in combination of two or more.
  • Urethane-based elastomers are generally obtained by reacting long-chain polyols, chain extenders, and diisocyanates.
  • the urethane-based elastomer comprises a soft segment having a structural unit derived from a long-chain polyol and a hard segment having a polyurethane structure obtained by reacting a chain extender with a diisocyanate.
  • Urethane-based elastomers can be classified into polyester-based polyurethane elastomers, polyether-based polyurethane elastomers, polycarbonate-based polyurethane elastomers, and the like when classified according to the type of long-chain polyol. Urethane-based elastomers can be used alone or in combination of two or more.
  • the urethane-based elastomer is preferably a polyester-based polyurethane elastomer or a polyether-based polyurethane elastomer from the viewpoint of being large and easy to stretch.
  • long-chain polyols examples include polyester polyols such as lactone-based polyester polyols and adipate-based polyester polyols; polypropylene (ethylene) polyols, and polyether polyols such as polytetramethylene ether glycol; polycarbonate polyols and the like.
  • the long-chain polyol is preferably an adipate-based polyester polyol from the viewpoint of being large and easy to stretch.
  • diisocyanates examples include 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 4,4'-diphenylmethane diisocyanate, hexamethylene diisocyanate and the like.
  • the diisocyanate is preferably hexamethylene diisocyanate from the viewpoint of being large and easy to stretch.
  • chain extender examples include low molecular weight polyhydric alcohols (for example, 1,4-butanediol, 1,6-hexanediol, etc.), aromatic diamines, and the like. Of these, 1,6-hexanediol is preferably used from the viewpoint of being easy to stretch significantly.
  • olefin-based elastomer examples include ethylene / ⁇ -olefin copolymer, propylene / ⁇ -olefin copolymer, butene / ⁇ -olefin copolymer, ethylene / propylene / ⁇ -olefin copolymer, and ethylene / butene / ⁇ -.
  • olefin copolymers Selected from the group consisting of olefin copolymers, propylene / butene- ⁇ olefin copolymers, ethylene / propylene / butene- ⁇ / olefin copolymers, styrene / isoprene copolymers, and styrene / ethylene / butylene copolymers.
  • examples thereof include an elastomer containing at least one kind of resin.
  • the olefin-based elastomer may be used alone or in combination of two or more.
  • the density of the olefin elastomer is not particularly limited.
  • the density of the olefin elastomers 0.860 g / cm 3 or more is preferably less than 0.905g / cm 3, 0.862g / cm 3 or more, more is less than 0.900 g / cm 3 It is preferably 0.864 g / cm 3 or more and less than 0.895 g / cm 3.
  • the olefin-based elastomer has a mass ratio of a monomer composed of an olefin-based compound (also referred to as “olefin content” in the present specification) of 50% by mass among all the monomers used for forming the elastomer. As mentioned above, it is preferably 100% by mass or less.
  • the olefin content is excessively low, the properties of the elastomer containing the structural unit derived from the olefin are less likely to appear, and the base material is less likely to exhibit flexibility and rubber elasticity. From the viewpoint of stably obtaining flexibility and rubber elasticity, the olefin content is preferably 50% by mass or more, and more preferably 60% by mass or more.
  • styrene-based elastomer examples include a styrene-conjugated diene copolymer and a styrene-olefin copolymer.
  • Specific examples of the styrene-conjugated diene copolymer include styrene-butadiene copolymer, styrene-butadiene-styrene copolymer (SBS), styrene-butadiene-butylene-styrene copolymer, and styrene-isoprene copolymer.
  • Unhydrogenated styrene-conjugated diene copolymers such as styrene-isoprene-styrene copolymer (SIS), styrene-ethylene-isoprene-styrene copolymers, styrene-ethylene / propylene-styrene copolymers (SEPS, styrene- Hydroadditives of isoprene-styrene copolymers) and hydrogenated styrene-conjugated diene copolymers such as styrene-ethylene-butylene-styrene copolymers (SEBS, hydrogenated additives of styrene-butadiene copolymers).
  • SIS styrene-isoprene-styrene copolymer
  • SEPS styrene-ethylene-isoprene-styrene copolymers
  • styrene-based elastomers Toughprene (manufactured by Asahi Kasei Corporation), Clayton (manufactured by Kraton Polymer Japan Co., Ltd.), Sumitomo TPE-SB (manufactured by Sumitomo Chemical Co., Ltd.), Epofriend (manufactured by Daicel Co., Ltd.) ), Lavalon (manufactured by Mitsubishi Chemical Co., Ltd.), Septon (manufactured by Kuraray Co., Ltd.), and Tough Tech (manufactured by Asahi Kasei Corporation).
  • the styrene-based elastomer may be hydrogenated or unhydrogenated.
  • the styrene-based elastomer may be used alone or in combination of two or more.
  • the rubber-based material examples include natural rubber, synthetic isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), acrylonitrile-butadiene copolymer rubber (NBR), and butyl rubber ( IIR), butyl halide rubber, acrylic rubber, urethane rubber, polysulfide rubber and the like can be mentioned.
  • IR synthetic isoprene rubber
  • BR butadiene rubber
  • SBR styrene-butadiene rubber
  • CR chloroprene rubber
  • NBR acrylonitrile-butadiene copolymer rubber
  • IIR butyl rubber
  • butyl halide rubber acrylic rubber, urethane rubber, polysulfide rubber and the like can be mentioned.
  • the rubber-based material one of these can be used alone or in combination of two or more.
  • the base material may be a laminated film in which a plurality of films made of the above materials (for example, a thermoplastic elastomer or a rubber-based material) are laminated. Further, the base material may be a laminated film in which a film made of the above materials (for example, a thermoplastic elastomer or a rubber-based material) and another film are laminated.
  • the base material may contain an additive in a film containing the above resin-based material as a main material.
  • the additive include pigments, dyes, flame retardants, plasticizers, antistatic agents, lubricants, fillers and the like.
  • the pigment include titanium dioxide, carbon black and the like.
  • the filler include organic materials such as melamine resin, inorganic materials such as fumed silica, and metallic materials such as nickel particles.
  • the content of such additives is not particularly limited, but it is preferable to keep the content within a range in which the base material can exhibit a desired function.
  • the substrate is surface-treated or primer on one or both sides, if desired, for the purpose of improving adhesion to the pressure-sensitive adhesive layer laminated on at least one of the first substrate surface and the second substrate surface. It may be treated.
  • the surface treatment include an oxidation method and an unevenness method.
  • the primer treatment include a method of forming a primer layer on the surface of the base material.
  • the oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone treatment, ultraviolet irradiation treatment and the like.
  • Examples of the unevenness method include a sandblasting method and a thermal spraying treatment method.
  • the base material When the pressure-sensitive adhesive layer contains an energy ray-curable pressure-sensitive adhesive, the base material preferably has permeability to energy rays. When ultraviolet rays are used as energy rays, the base material preferably has transparency to ultraviolet rays. When an electron beam is used as the energy ray, the base material preferably has the transparency of the electron beam.
  • the thickness of the base material is not limited as long as the adhesive sheet can function properly in the desired process.
  • the thickness of the base material is preferably 20 ⁇ m or more, and more preferably 40 ⁇ m or more.
  • the thickness of the base material is preferably 250 ⁇ m or less, more preferably 200 ⁇ m or less.
  • the standard deviation of the thickness of the base material is 2 ⁇ m or less when the thickness of a plurality of places is measured at intervals of 2 cm in the in-plane direction of the first base material surface or the second base material surface of the base material. It is preferably 1.5 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the pressure-sensitive adhesive sheet has a highly accurate thickness, and the pressure-sensitive adhesive sheet can be uniformly stretched.
  • the tensile elastic modulus in the MD direction and the CD direction of the base material at 23 ° C. is 10 MPa or more and 350 MPa or less, respectively, and the 100% stress in the MD direction and the CD direction of the base material at 23 ° C. is 3 MPa or more and 20 MPa or less, respectively. It is preferable to have.
  • the pressure-sensitive adhesive sheet can be greatly stretched.
  • the 100% stress of the base material is a value obtained as follows. A test piece having a size of 100 mm (length direction) x 15 mm (width direction) is cut out from the base material.
  • the test piece is pulled in the length direction at a speed of 200 mm / min, and the measured value of the tensile force when the length between the gripping tools becomes 100 mm is read.
  • the 100% stress of the base material is a value obtained by dividing the read measured value of the tensile force by the cross-sectional area of the base material.
  • the cross-sectional area of the base material is calculated by the length in the width direction of 15 mm ⁇ the thickness of the base material (test piece).
  • the cutting is performed so that the flow direction (MD direction) or the direction orthogonal to the MD direction (CD direction) at the time of manufacturing the base material coincides with the length direction of the test piece.
  • the thickness of the test piece is not particularly limited and may be the same as the thickness of the base material to be tested.
  • the elongation at break in the MD direction and the CD direction of the base material at 23 ° C. is 100% or more, respectively.
  • the breaking elongation of the base material in the MD direction and the breaking elongation in the CD direction is 100% or more, the pressure-sensitive adhesive sheet can be greatly stretched without breaking.
  • the tensile elastic modulus (MPa) of the base material and the breaking elongation (%) of the base material can be measured as follows.
  • the base material is cut into 15 mm ⁇ 140 mm to obtain a test piece.
  • the elongation at break and the tensile elastic modulus at 23 ° C. are measured in accordance with JIS K7161: 2014 and JIS K7127: 1999.
  • the above test piece is pulled at a speed of 200 mm / min after setting the distance between chucks to 100 mm with a tensile tester (manufactured by Shimadzu Corporation, product name "Autograph AG-IS 500N").
  • the measurement is performed in both the flow direction (MD) at the time of manufacturing the base material and the direction perpendicular to the flow direction (CD).
  • the adhesive sheet according to the present embodiment has a first direction, a second direction opposite to the first direction, a third direction perpendicular to the first direction, and a direction opposite to the third direction.
  • the area ratio (S2 / S1) ⁇ 100 of the area S1 of the pressure-sensitive adhesive sheet before stretching and the area S2 of the pressure-sensitive adhesive sheet after stretching is 300%, the base material and the pressure-sensitive adhesive are stretched in the fourth direction. It is preferable that the layer does not break.
  • the first direction, the second direction, the third direction, and the fourth direction correspond to, for example, the four directions of the biaxial stretching + X-axis direction, -X-axis direction, + Y-axis direction, and -Y-axis direction, which will be described later, respectively. It is preferable to do so.
  • Examples of the device for extending in four directions include an expanding device described later.
  • a release sheet is laminated on the pressure-sensitive adhesive surface for the purpose of protecting the pressure-sensitive adhesive surface until the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer is attached to an adherend (for example, a semiconductor chip or the like). You may.
  • the structure of the release sheet is arbitrary.
  • the release sheet include a plastic film that has been peeled off with a release agent or the like.
  • Specific examples of the plastic film include a polyester film and a polyolefin film.
  • the polyester film include films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate.
  • the polyolefin film examples include a film such as polypropylene or polyethylene.
  • the release agent silicone-based, fluorine-based, long-chain alkyl-based, and the like can be used. Among these release agents, a silicone type that can obtain stable performance at low cost is preferable.
  • the thickness of the release sheet is not particularly limited. The thickness of the release sheet is usually 20 ⁇ m or more and 250 ⁇ m or less.
  • the pressure-sensitive adhesive sheet according to this embodiment can be manufactured in the same manner as the conventional pressure-sensitive adhesive sheet.
  • the method for producing the pressure-sensitive adhesive sheet is not particularly limited as long as the above-mentioned pressure-sensitive adhesive layer can be laminated on one surface of the base material.
  • the following methods can be mentioned as an example of the method for manufacturing the adhesive sheet.
  • a pressure-sensitive composition constituting the pressure-sensitive adhesive layer and, if desired, a coating liquid further containing a solvent or a dispersion medium are prepared.
  • the coating liquid is applied onto one surface of the base material by the coating means to form a coating film.
  • the coating means include a die coater, a curtain coater, a spray coater, a slit coater, a knife coater and the like.
  • the pressure-sensitive adhesive layer can be formed by drying the coating film.
  • the properties of the coating liquid are not particularly limited as long as it can be applied.
  • the coating liquid may contain a component for forming the pressure-sensitive adhesive layer as a solute, or may contain a component for forming the pressure-sensitive adhesive layer as a dispersoid.
  • a coating liquid is applied on the peeled surface of the above-mentioned peeling sheet to form a coating film.
  • the coating film is dried to form a laminate composed of an adhesive layer and a release sheet.
  • a base material may be attached to the surface of the pressure-sensitive adhesive layer of the laminated body opposite to the surface on the release sheet side to obtain a laminate of the pressure-sensitive adhesive sheet and the release sheet.
  • the release sheet in this laminate may be peeled off as a process material, or protects the pressure-sensitive adhesive layer until an adherend (for example, a semiconductor chip, a semiconductor wafer, etc.) is attached to the pressure-sensitive adhesive layer. May be good.
  • the coating liquid contains a cross-linking agent
  • the cross-linking reaction between the acrylic copolymer (b1) and the cross-linking agent may be allowed to proceed to form a cross-linked structure in the pressure-sensitive adhesive layer at a desired abundance density.
  • the obtained pressure-sensitive adhesive sheet is allowed to stand in an environment of, for example, 23 ° C. and a relative humidity of 50% for several days. You may perform curing such as placing.
  • the thickness of the pressure-sensitive adhesive sheet according to this embodiment is preferably 30 ⁇ m or more, and more preferably 50 ⁇ m or more.
  • the thickness of the pressure-sensitive adhesive sheet is preferably 400 ⁇ m or less, and more preferably 300 ⁇ m or less.
  • the adherend to which the pressure-sensitive adhesive sheet according to the present embodiment can be applied is not particularly limited.
  • the adherend is preferably a semiconductor chip and a semiconductor wafer.
  • the pressure-sensitive adhesive sheet according to this embodiment can be used, for example, for semiconductor processing. Further, the pressure-sensitive adhesive sheet according to the present embodiment can be used to increase the distance between a plurality of semiconductor chips attached to one side.
  • the expansion interval of a plurality of semiconductor chips depends on the size of the semiconductor chips, and is not particularly limited.
  • the pressure-sensitive adhesive sheet according to the present embodiment is preferably used to widen the distance between adjacent semiconductor chips in a plurality of semiconductor chips attached to one side of the pressure-sensitive adhesive sheet by 200 ⁇ m or more.
  • the upper limit of the distance between the semiconductor chips is not particularly limited.
  • the upper limit of the distance between the semiconductor chips may be, for example, 6000 ⁇ m.
  • the pressure-sensitive adhesive sheet according to the present embodiment can also be used when the distance between a plurality of semiconductor chips laminated on one side of the pressure-sensitive adhesive sheet is widened by at least biaxial stretching.
  • the adhesive sheet is stretched by applying tension in four directions of + X-axis direction, -X-axis direction, + Y-axis direction, and -Y-axis direction, for example, in the X-axis and Y-axis orthogonal to each other. More specifically, it is stretched in the MD direction and the CD direction of the base material, respectively.
  • Biaxial stretching as described above can be performed using, for example, a separation device that applies tension in the X-axis direction and the Y-axis direction.
  • a separation device that applies tension in the X-axis direction and the Y-axis direction.
  • the X-axis and the Y-axis are orthogonal to each other, one of the directions parallel to the X-axis is the + X-axis direction, the direction opposite to the + X-axis direction is the -X-axis direction, and the direction parallel to the Y-axis.
  • One of them is defined as the + Y-axis direction, and the direction opposite to the + Y-axis direction is defined as the ⁇ Y-axis direction.
  • the separating device applies tension to the adhesive sheet in four directions of + X-axis direction, -X-axis direction, + Y-axis direction, and -Y-axis direction, and with a plurality of holding means in each of the four directions. , It is preferable to provide a plurality of tension applying means corresponding to them.
  • the number of holding means and tension applying means in each direction depends on the size of the pressure-sensitive adhesive sheet, but may be, for example, about 3 or more and 10 or less.
  • each holding means includes a holding member for holding the adhesive sheet. It is preferable that each tension applying means applies tension to the pressure-sensitive adhesive sheet by moving the holding member corresponding to the tension applying means in the + X-axis direction. Then, it is preferable that the plurality of tension applying means are independently provided so as to move the holding means in the + X axis direction. Further, the same configuration is also applied to three groups including a plurality of holding means and a plurality of tension applying means provided for applying tension in the ⁇ X axis direction, the + Y axis direction, and the ⁇ Y axis direction, respectively. It is preferable to have. As a result, the separation device can apply a different magnitude of tension to the pressure-sensitive adhesive sheet for each region in the direction orthogonal to each direction.
  • the pressure-sensitive adhesive sheet is held from four directions of + X-axis direction, -X-axis direction, + Y-axis direction and -Y-axis direction by using four holding members and stretched in the four directions, the pressure-sensitive adhesive sheet is formed.
  • these composite directions for example, the composite direction of the + X-axis direction and the + Y-axis direction, the composite direction of the + Y-axis direction and the -X-axis direction, and the composite of the -X-axis direction and the -Y-axis direction).
  • Tension is also applied in the direction and the combined direction of the ⁇ Y axis direction and the + X axis direction). As a result, there may be a difference between the distance between the semiconductor chips in the inner region of the pressure-sensitive adhesive sheet and the distance between the semiconductor chips in the outer region.
  • a plurality of tension applying means can independently apply tension to the pressure-sensitive adhesive sheet in each of the + X-axis direction, the ⁇ X-axis direction, the + Y-axis direction, and the ⁇ Y-axis direction. Therefore, the pressure-sensitive adhesive sheet can be stretched so that the difference in the distance between the inside and the outside of the pressure-sensitive adhesive sheet as described above is eliminated. As a result, the distance between the semiconductor chips can be adjusted accurately.
  • the separation device further includes a measuring means for measuring the mutual distance between the semiconductor chips.
  • the tension applying means is provided so that a plurality of holding members can be individually moved based on the measurement results of the measuring means.
  • the separation device is provided with the measuring means, the distance can be further adjusted based on the measurement result of the distance between the semiconductor chips by the measuring means, and as a result, the distance between the semiconductor chips can be adjusted more accurately. Is possible.
  • examples of the holding means include a chucking means and a depressurizing means.
  • examples of the chucking means include a mechanical chuck and a chuck cylinder.
  • Examples of the decompression means include a decompression pump, a vacuum ejector, and the like.
  • the holding means may be configured to support the pressure-sensitive adhesive sheet with an adhesive, a magnetic force, or the like.
  • the holding member in the chuck means for example, a lower support member that supports the adhesive sheet from below, a drive device that is supported by the lower support member, and a drive device that is supported by the output shaft of the drive device to drive the drive device.
  • a holding member having a structure including an upper support member capable of pressing the adhesive sheet from above can be used.
  • the drive device include an electric device, an actuator, and the like.
  • the electric device include a rotary motor, a linear motor, a linear motor, a single-axis robot, an articulated robot, and the like.
  • the actuator include an air cylinder, a hydraulic cylinder, a rodless cylinder, a rotary cylinder, and the like.
  • the tension applying means may include a drive device, and the holding member may be moved by the drive device.
  • the drive device included in the tension applying means the same drive device as the drive device included in the holding member described above can be used.
  • the tension applying means includes a linear motor as a drive device and an output shaft interposed between the linear motor and the holding member, and the driven linear motor moves the holding member via the output shaft. It may be a configuration.
  • the distance between the semiconductor chips When the distance between the semiconductor chips is widened by using the adhesive sheet according to the present embodiment, the distance may be widened from the state where the semiconductor chips are in contact with each other or the distance between the semiconductor chips is hardly widened, or the semiconductor. The distance between the chips may be further increased from the state in which the distance between the chips has already been increased to a predetermined distance.
  • the distance between the semiconductor chips is increased from the state where the semiconductor chips are in contact with each other or the distance between the semiconductor chips is hardly widened, for example, after obtaining a plurality of semiconductor chips by dividing the semiconductor wafer on a dicing sheet.
  • a plurality of semiconductor chips can be transferred from the dicing sheet to the pressure-sensitive adhesive sheet according to the present embodiment, and subsequently, the distance between the semiconductor chips can be widened.
  • the semiconductor wafer is divided on the pressure-sensitive adhesive sheet according to the present embodiment to obtain a plurality of semiconductor chips, the distance between the semiconductor chips can be widened.
  • another pressure-sensitive adhesive sheet preferably the pressure-sensitive adhesive sheet according to the present embodiment (first stretching pressure-sensitive adhesive sheet) is used.
  • the semiconductor chips are transferred from the sheet (adhesive sheet for first stretching) to the adhesive sheet (adhesive sheet for second stretching) according to the present embodiment, and subsequently.
  • stretching the pressure-sensitive adhesive sheet (the pressure-sensitive adhesive sheet for second stretching) according to the present embodiment the distance between the semiconductor chips can be further increased.
  • the transfer of the semiconductor chip and the stretching of the pressure-sensitive adhesive sheet may be repeated a plurality of times until the distance between the semiconductor chips reaches a desired distance.
  • the pressure-sensitive adhesive sheet according to the present embodiment is preferably used for applications that require a relatively large distance between semiconductor chips, and an example of such applications is a fan-out type semiconductor wafer level package (FO-).
  • a method for producing WLP) is preferably mentioned.
  • FO-WLP semiconductor wafer level package
  • FIG. 1A shows a first adhesive sheet 10 and a plurality of semiconductor chip CPs attached to the first adhesive sheet 10.
  • the first pressure-sensitive adhesive sheet 10 has a first base material 11 and a first pressure-sensitive adhesive layer 12.
  • the first base material 11 corresponds to the base material of the pressure-sensitive adhesive sheet according to the present embodiment.
  • the first pressure-sensitive adhesive layer 12 corresponds to the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet according to the present embodiment.
  • the first base material 11 has a first base material surface 11A and a second base material surface 11B opposite to the first base material surface 11A.
  • the first pressure-sensitive adhesive layer 12 is provided on the first base material surface 11A.
  • No pressure-sensitive adhesive layer is provided on the second base material surface 11B.
  • the first pressure-sensitive adhesive sheet 10 is used as the expanding sheet.
  • the semiconductor chip CP has a circuit surface W1 and a back surface W3 on the opposite side of the circuit surface W1.
  • a circuit W2 is formed on the circuit surface W1.
  • the plurality of semiconductor chip CPs are preferably formed by, for example, individualizing a semiconductor wafer by dicing.
  • the dicing is preferably carried out on a semiconductor wafer attached to a dicing sheet or the like.
  • a cutting means such as a dicing saw is used.
  • Dicing may be performed by irradiating the semiconductor wafer with laser light instead of using the cutting means described above.
  • the semiconductor wafer may be completely divided by irradiation with laser light and individualized into a plurality of semiconductor chips.
  • the adhesive sheet is stretched in the expanding step described later, thereby breaking the semiconductor wafer at the position of the modified layer and forming the semiconductor chip CP. It may be tidied up.
  • the method of individualizing into a semiconductor chip in this way is sometimes called stealth dicing.
  • stealth dicing the irradiation of the laser beam irradiates, for example, the laser beam in the infrared region so as to be focused on the focal point set inside the semiconductor wafer. Further, in these methods, the laser beam irradiation may be performed from any side of the semiconductor wafer.
  • the plurality of semiconductor chip CPs are preferably collectively transferred to the expanding sheet.
  • the plurality of fragmented semiconductor chip CPs are transferred from the dicing sheet to the first adhesive sheet 10.
  • the plurality of semiconductor chip CPs are attached with their circuit surfaces W1 facing the first pressure-sensitive adhesive layer 12.
  • FIG. 1B shows a diagram illustrating a step of stretching the first pressure-sensitive adhesive sheet 10 holding a plurality of semiconductor chip CPs (hereinafter, may be referred to as an “expanding step”).
  • the first adhesive sheet 10 is stretched to widen the distance between the plurality of semiconductor chip CPs. Further, when stealth dicing is performed, the first pressure-sensitive adhesive sheet 10 is stretched to break the semiconductor wafer at the position of the modified layer, and the semiconductor wafer is separated into a plurality of semiconductor chips CP and a plurality of semiconductor chips. The interval between CPs can be increased.
  • the method of stretching the first pressure-sensitive adhesive sheet 10 in the expanding step is not particularly limited.
  • a method of stretching the first pressure-sensitive adhesive sheet 10 for example, a method of pressing an annular or circular expander to stretch the first pressure-sensitive adhesive sheet 10, and a method of stretching the first pressure-sensitive adhesive sheet 10 and an outer circumference of the first pressure-sensitive adhesive sheet 10 using a gripping member or the like.
  • Examples of the latter method include a method of biaxial stretching using the above-mentioned separation device and the like.
  • the biaxial stretching method is preferable from the viewpoint that the distance between the semiconductor chip CPs can be further widened.
  • the phenomenon that the end portion of the semiconductor chip CP on the pressure-sensitive adhesive layer side floats from the first pressure-sensitive adhesive sheet 10 (chip floating) can be suppressed.
  • D1 be the distance between the semiconductor chip CPs after expansion.
  • the distance D1 is not particularly limited because it depends on the size of the semiconductor chip CP.
  • the distance D1 is preferably, for example, 200 ⁇ m or more and 6000 ⁇ m or less, respectively.
  • the first pressure-sensitive adhesive sheet 10 is irradiated with energy rays to cure the first pressure-sensitive adhesive layer 12 (hereinafter, may be referred to as "energy ray irradiation step").
  • energy ray irradiation step When the first pressure-sensitive adhesive layer 12 is ultraviolet-curable, the first pressure-sensitive adhesive sheet 10 is irradiated with ultraviolet rays in the energy ray irradiation step.
  • FIG. 2A shows a diagram illustrating a step of transferring a plurality of semiconductor chip CPs to the second pressure-sensitive adhesive sheet 20 (hereinafter, may be referred to as a “transfer step”) after the expanding step. Since the first pressure-sensitive adhesive layer 12 is cured after the first expanding step, the adhesive strength of the first pressure-sensitive adhesive layer 12 is reduced, and the first pressure-sensitive adhesive sheet 10 can be easily peeled off from the semiconductor chip CP. .. Further, since the first pressure-sensitive adhesive sheet 10 is the pressure-sensitive adhesive sheet according to the present embodiment, it is possible to suppress the adhesive residue of the semiconductor chip CP.
  • the first pressure-sensitive adhesive sheet 10 is stretched to widen the distance between the plurality of semiconductor chip CPs to obtain a distance D1, and then the second pressure-sensitive adhesive sheet 20 is attached to the back surface W3 of the semiconductor chip CP.
  • the second pressure-sensitive adhesive sheet 20 is not particularly limited as long as it can hold a plurality of semiconductor chip CPs.
  • the second pressure-sensitive adhesive sheet 20 has a second base material 21 and a third pressure-sensitive adhesive layer 22.
  • the second base material 21 corresponds to the base material of the pressure-sensitive adhesive sheet according to the present embodiment
  • the third pressure-sensitive adhesive layer 22 is the present.
  • the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet according to the embodiment corresponds to the pressure-sensitive adhesive sheet according to the embodiment.
  • the second adhesive sheet 20 may be attached to the second ring frame together with the plurality of semiconductor chip CPs.
  • the second ring frame is placed on the third pressure-sensitive adhesive layer 22 of the second pressure-sensitive adhesive sheet 20, and the second ring frame is lightly pressed and fixed.
  • the third pressure-sensitive adhesive layer 22 exposed inside the ring shape of the second ring frame is pressed against the back surface W3 of the semiconductor chip CP to fix the plurality of semiconductor chip CPs to the second pressure-sensitive adhesive sheet 20. ..
  • FIG. 2B shows a diagram illustrating a step of peeling off the first pressure-sensitive adhesive sheet 10 after the second pressure-sensitive adhesive sheet 20 is attached.
  • the second adhesive sheet 20 is an expanding sheet
  • a step of peeling off the first adhesive sheet 10 and then stretching the second adhesive sheet 20 (hereinafter, may be referred to as "second expanding step") is performed. You may.
  • the expanding step of stretching the first pressure-sensitive adhesive sheet 10 may be referred to as the first expanding step.
  • the distance between the plurality of semiconductor chip CPs is further widened.
  • the second pressure-sensitive adhesive sheet 20 is the pressure-sensitive adhesive sheet according to the present embodiment, the alignment of the plurality of semiconductor chip CPs after expansion is improved.
  • the method of stretching the second adhesive sheet 20 in the second expanding step is not particularly limited.
  • the second expanding step can be carried out in the same manner as the first expanding step.
  • the interval between the semiconductor chip CPs after the second expanding step is D2.
  • the distance D2 is not particularly limited because it depends on the size of the semiconductor chip CP, but the distance D2 is larger than the distance D1.
  • the distance D2 is preferably, for example, 200 ⁇ m or more and 6000 ⁇ m or less, respectively.
  • FIG. 2C is a diagram illustrating a step of transferring a plurality of semiconductor chip CPs attached to the second adhesive sheet 20 to the third adhesive sheet 30 (hereinafter, may be referred to as a “transfer step”). It is shown.
  • the second pressure-sensitive adhesive sheet 20 is the pressure-sensitive adhesive sheet according to the present embodiment, the adhesive residue of the semiconductor chip CP can be suppressed.
  • FIG. 2C shows a state in which the second pressure-sensitive adhesive sheet 20 is transferred to the third pressure-sensitive adhesive sheet 30 without performing the second expanding step.
  • the third adhesive sheet 30 is not particularly limited as long as it can hold a plurality of semiconductor chip CPs.
  • the distance D1 between the semiconductor chip CPs is maintained in the plurality of semiconductor chip CPs transferred from the second pressure-sensitive adhesive sheet 20 to the third pressure-sensitive adhesive sheet 30.
  • the distance D2 between the semiconductor chip CPs is maintained.
  • the distance between the semiconductor chip CPs is set to a desired distance, and the orientation of the circuit surface when sealing the semiconductor chip CP is set to the desired orientation. Can be.
  • a pressure-sensitive adhesive sheet for the sealing process As the third pressure-sensitive adhesive sheet 30, and a heat-resistant pressure-sensitive adhesive sheet is used. Is more preferable.
  • the third pressure-sensitive adhesive sheet 30 has a third base material 31 and a fourth pressure-sensitive adhesive layer 32.
  • the third base material 31 and the fourth pressure-sensitive adhesive layer 32 each have heat resistance that can withstand the temperature imposed in the sealing step. It is preferably made of a material having properties.
  • Another embodiment of the third pressure-sensitive adhesive sheet 30 includes a pressure-sensitive adhesive sheet provided with a third base material, a third pressure-sensitive adhesive layer, and a fourth pressure-sensitive adhesive layer. This pressure-sensitive adhesive sheet contains a third base material between the third pressure-sensitive adhesive layer and the fourth pressure-sensitive adhesive layer, and has pressure-sensitive adhesive layers on both sides of the third base material.
  • the plurality of semiconductor chip CPs transferred from the second pressure-sensitive adhesive sheet 20 to the third pressure-sensitive adhesive sheet 30 are attached with the circuit surface W1 facing the fourth pressure-sensitive adhesive layer 32.
  • FIG. 2D shows a diagram illustrating a step of sealing a plurality of semiconductor chip CPs using the sealing member 60 (hereinafter, may be referred to as a “sealing step”).
  • the sealing step is performed after the plurality of semiconductor chip CPs have been transferred to the third pressure-sensitive adhesive sheet 30.
  • the sealing body 3 is formed by covering a plurality of semiconductor chip CPs with the sealing member 60 while the circuit surface W1 is protected by the third pressure-sensitive adhesive sheet 30.
  • the sealing member 60 is also filled between the plurality of semiconductor chip CPs. Since the circuit surface W1 and the circuit W2 are covered by the third adhesive sheet 30, it is possible to prevent the circuit surface W1 from being covered by the sealing member 60.
  • a sealing body 3 in which a plurality of semiconductor chip CPs separated by a predetermined distance are embedded in the sealing member 60 can be obtained.
  • the plurality of semiconductor chip CPs are covered with the sealing member 60 in a state where the distance after the expanding step is maintained.
  • the third adhesive sheet 30 is peeled off.
  • the circuit surface W1 of the semiconductor chip CP and the surface 3A in contact with the third adhesive sheet 30 of the sealant 3 are exposed.
  • the connection process of electrically connecting the and is performed in order.
  • the circuit of the semiconductor chip CP and the external terminal electrode are electrically connected by the rewiring layer forming step and the connection step with the external terminal electrode.
  • the encapsulant 3 to which the external terminal electrode is connected is individualized in units of semiconductor chip CP.
  • the method for individualizing the sealing body 3 is not particularly limited. By separating the sealing body 3 into individual pieces, a semiconductor package of semiconductor chip CP units is manufactured.
  • a semiconductor package in which a fan-out external electrode is connected outside the region of the semiconductor chip CP is manufactured as a fan-out type wafer level package (FO-WLP).
  • FO-WLP fan-out type wafer level package
  • the adhesive sheet according to the present embodiment it is possible to improve the alignment after expansion in the expanding step and suppress the residue of the floating adhesive on the chips. Therefore, as described above, it can be suitably used for applications in which it is necessary to greatly widen the interval between the plurality of semiconductor chips and suppress the misalignment of the plurality of semiconductor chips after expansion.
  • the present invention is not limited to the above-described embodiment.
  • the present invention includes aspects obtained by modifying the above-described embodiment to the extent that the object of the present invention can be achieved.
  • circuits and the like in semiconductor wafers and semiconductor chips are not limited to the arrangements and shapes shown in the drawings.
  • the connection structure with the external terminal electrode in the semiconductor package is not limited to the mode described in the above-described embodiment.
  • the embodiment of manufacturing the FO-WLP type semiconductor package has been described as an example, but the present invention can also be applied to the mode of manufacturing other semiconductor packages such as a fan-in type WLP.
  • the pressure-sensitive adhesive layer according to the embodiment is provided on one surface of the first base material surface and the second base material surface, and the pressure-sensitive adhesive layer is not provided on the other surface.
  • the pressure-sensitive adhesive sheet has been described as an example, the present invention is not limited to such an embodiment.
  • a pressure-sensitive adhesive sheet in which pressure-sensitive adhesive layers are provided on both sides of a base material can be mentioned, and at least one pressure-sensitive adhesive layer is the pressure-sensitive adhesive layer according to the embodiment.
  • FIG. 4 shows the adhesive sheet 10A.
  • the pressure-sensitive adhesive sheet 10A has a base material 110, a first pressure-sensitive adhesive layer 12, and a second pressure-sensitive adhesive layer 13.
  • the pressure-sensitive adhesive sheet 10A includes a base material 110 between the first pressure-sensitive adhesive layer 12 and the second pressure-sensitive adhesive layer 13.
  • a first pressure-sensitive adhesive layer 12 is provided on the first base material surface 11A of the base material 110, and a second pressure-sensitive adhesive layer 13 is provided on the second base material surface 11B.
  • the base material 110 is the same as the first base material 11 in the above embodiment.
  • the first pressure-sensitive adhesive layer 12 corresponds to the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet according to the embodiment.
  • the second pressure-sensitive adhesive layer 13 is not particularly limited.
  • the composition of the first pressure-sensitive adhesive layer 12 and the second pressure-sensitive adhesive layer 13 may be the same or different.
  • the thicknesses of the first pressure-sensitive adhesive layer 12 and the second pressure-sensitive adhesive layer 13 may be the same or different.
  • Example 1 An acrylic copolymer was obtained by copolymerizing 52 parts by mass of butyl acrylate (BA), 20 parts by mass of methyl methacrylate (MMA), and 28 parts by mass of 2-hydroxyethyl acrylate (2HEA). A solution (adhesive main agent) of a resin (acrylic A) to which 2-isocyanate ethyl methacrylate (manufactured by Showa Denko KK, product name "Karenzu MOI” (registered trademark)) is added to this acrylic copolymer. Prepared.
  • BA butyl acrylate
  • MMA methyl methacrylate
  • 2HEA 2-hydroxyethyl acrylate
  • the addition rate was 90 mol% of 2-isocyanate ethyl methacrylate with respect to 100 mol% of 2HEA of the acrylic copolymer.
  • the weight average molecular weight (Mw) of the obtained resin (acrylic A) was 600,000, and Mw / Mn was 4.5.
  • the weight average molecular weight Mw and the number average molecular weight Mn in terms of standard polystyrene were measured by gel permeation chromatography (GPC) method, and the molecular weight distribution (Mw / Mn) was obtained from each measured value.
  • the prepared solution of the pressure-sensitive adhesive composition A1 was applied to a polyethylene terephthalate (PET) -based release film (manufactured by Lintec Corporation, product name "PET752150”), the coating film was dried at 90 ° C. for 90 seconds, and further 100. Drying at ° C. for 90 seconds formed a 30 ⁇ m thick pressure-sensitive adhesive layer on the release film.
  • PET polyethylene terephthalate
  • PET752150 polyethylene terephthalate
  • Table 1 shows the properties of the energy ray-curable resin and the like.
  • Example 2 In the production of the pressure-sensitive adhesive sheet SA1 according to Example 1, instead of the energy ray-curable resin A (“SA-TE60”), the energy ray-curable resin B (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd., product name “SA-TE6”” ) was used, and the pressure-sensitive adhesive sheet SA2 according to Example 2 was produced in the same manner as in Example 1.
  • SA-TE60 energy ray-curable resin A
  • SA-TE6 product name
  • Example 3 In the production of the pressure-sensitive adhesive sheet SA1 according to Example 1, instead of the energy ray-curable resin A (“SA-TE60”), the energy ray-curable resin C (manufactured by Shin-Nakamura Chemical Industry Co., Ltd., product name “ATM-35E”)
  • SA-TE60 the energy ray-curable resin A
  • ATM-35E the energy ray-curable resin C
  • the pressure-sensitive adhesive sheet SA3 according to Example 3 was produced in the same manner as in Example 1 except that ") was used.
  • Example 4 In the production of the pressure-sensitive adhesive sheet SA1 according to Example 1, the energy ray-curable resin A was changed to 22 parts by mass of the solid content with respect to 100 parts by mass of the solid content in the pressure-sensitive adhesive main agent.
  • the pressure-sensitive adhesive sheet SA4 according to Example 4 was produced in the same manner as in Example 1 except that the pressure-sensitive adhesive layer having a content of 38% by mass was produced.
  • the product name "Autograph AG-IS 500N” manufactured by Shimadzu Corporation was used as the tensile tester.
  • the displacement when the SS characteristic evaluation sample broke was defined as the elongation at break (unit:%).
  • ">2000” indicates that the SS characteristic evaluation sample did not break even when the displacement was 2000%.
  • Table 1 shows the stress (unit: MPa) at 1500% displacement in the displacement-stress curve.
  • the evaluation criteria for SS characteristics were set as follows. In this embodiment, the evaluation A was judged to be acceptable. -Evaluation Criteria for SS Characteristics Evaluation A: The elongation at break was 1500% or more, and the stress at the time of 1500% displacement was 0.22 MPa or less.
  • Evaluation B Corresponds to at least one of the cases where the elongation at break is less than 1500% and the stress at the time of displacement of 1500% exceeds 0.22 MPa.
  • the pressure-sensitive adhesive sheets prepared in Examples 1 to 4 and Comparative Examples 1 and 2 were cut into 210 mm ⁇ 210 mm to obtain a test pressure-sensitive adhesive sheet. At this time, each side of the sheet after cutting was cut so as to be parallel or perpendicular to the MD direction of the base material in the adhesive sheet. The silicon wafer was diced, and a total of 49 chips were cut out so that the chips having a size of 3 mm ⁇ 3 mm had 7 rows in the X-axis direction and 7 rows in the Y-axis direction. The release film of the test pressure-sensitive adhesive sheet was peeled off, and a total of 49 chips cut out as described above were attached to the center of the exposed pressure-sensitive adhesive layer. At this time, the chips were arranged in 7 rows in the X-axis direction and 7 rows in the Y-axis direction, and the distance between the chips was 35 ⁇ m in both the X-axis direction and the Y-axis direction.
  • FIG. 3 shows a plan view illustrating the expanding device 100.
  • the X-axis and the Y-axis are orthogonal to each other, the positive direction of the X-axis is the + X-axis direction, the negative direction of the X-axis is the -X-axis direction, and the positive direction of the Y-axis. Is the + Y-axis direction, and the negative direction of the Y-axis is the ⁇ Y-axis direction.
  • the test adhesive sheet 200 was installed in the expanding device 100 so that each side was parallel to the X-axis or the Y-axis. As a result, the MD direction of the base material in the test pressure-sensitive adhesive sheet 200 is parallel to the X-axis or the Y-axis.
  • the chip is omitted.
  • the expanding device 100 includes five holding means 101 (a total of 20 holding means 101) in each of the + X-axis direction, the ⁇ X-axis direction, the + Y-axis direction, and the ⁇ Y-axis direction.
  • the holding means 101A is located at both ends
  • the holding means 101C is located at the center
  • the holding means 101B is located between the holding means 101A and the holding means 101C.
  • Each side of the test adhesive sheet 200 was gripped by these holding means 101.
  • one side of the test adhesive sheet 200 is 210 mm. Further, the distance between the holding means 101 on each side is 40 mm. Further, the distance between the end portion (the apex of the sheet) on one side of the test adhesive sheet 200 and the holding means 101A existing on the side and closest to the end portion is 25 mm.
  • a plurality of tension applying means (not shown) corresponding to each of the holding means 101 were driven to move the holding means 101 independently.
  • the four sides of the test adhesive sheet were fixed with a gripping jig, and the test adhesive sheet was expanded at a speed of 5 mm / s in the X-axis direction and the Y-axis direction with an expansion amount of 200 mm.
  • the area of the adhesive sheet for testing was expanded to 381% compared to before expanding.
  • this expansion test having an expansion amount of 200 mm may be referred to as a first expansion test.
  • the base material and the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet according to Examples 1 to 4 did not break.
  • the test adhesive sheet was expanded in the same manner as in the first expand test, except that the expansion amount in the X-axis direction and the Y-axis direction in the above-mentioned first expand test was changed to 350 mm.
  • the second expanding test the area of the adhesive sheet for testing was expanded to 711% compared to before expanding.
  • this expansion test with an expansion amount of 350 mm may be referred to as a second expansion test.
  • the second expand test was carried out on the pressure-sensitive adhesive sheet whose alignment evaluation was evaluation A, which will be described later, as a result of the first expand test. After the second expanding test, the base material and the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet according to Examples 1 to 4 did not break.
  • the expanded state of the test pressure-sensitive adhesive sheet 200 was maintained by a ring frame.
  • the alignment was evaluated by calculating the standard deviation of the inter-chip distance based on the positional relationship between the chips while maintaining the expanded state. Specifically, the center of the chip was obtained from the corner of each chip, and the distance between the centers of adjacent chips was measured. The distance between the chips was obtained by subtracting 3 mm, which is the length of the side of the chip, from the distance between the centers.
  • the position of the chip on the test adhesive sheet was measured using a CNC image measuring machine (manufactured by Mitutoyo Co., Ltd., product name "Vision ACCEL").
  • the standard deviation was calculated using JMP13, a data analysis software manufactured by JMP.
  • the evaluation criteria for alignment were set as follows. In this example, evaluation A or evaluation B was judged to be acceptable. -Evaluation criteria for alignment Evaluation A: Standard deviation is 100 ⁇ m or less Evaluation B: Standard deviation is 200 ⁇ m or less Evaluation C: Standard deviation is 201 ⁇ m or more
  • evaluation method of chip float After the test pressure-sensitive adhesive sheet was expanded by the first expansion test in the above description of the alignment evaluation method, the expanded state of the test pressure-sensitive adhesive sheet 200 was maintained by the ring frame. While maintaining the expanded state, use a digital microscope (manufactured by KEYENCE Co., Ltd., product name "VHX-1000") to check the bonding state between the adhesive layer side surface of the chip and the adhesive layer through the test adhesive sheet 200. Observed using.
  • the evaluation criteria for chip floating were set as follows. In this embodiment, the evaluation A was judged to be acceptable. -Evaluation criteria for chip floating Evaluation A: All chips are not floating from the adhesive sheet (the ends of the chips are not separated from the adhesive layer). Evaluation B: At least one chip is floating from the pressure-sensitive adhesive sheet (the end of the chip is separated from the pressure-sensitive adhesive layer).
  • the evaluation criteria for the adhesive residue were set as follows. In this example, evaluation A or evaluation B was judged to be acceptable. -Evaluation criteria for adhesive residue Evaluation A: No adhesive residue on all chips Evaluation B: Occurrence rate of adhesive residue chips is 40% or less Evaluation C: Occurrence rate of adhesive residue chips is 41% or more
  • the stress is 0.22 MPa.
  • the adhesive sheets according to Examples 1 to 4 were excellent in alignment and were less likely to cause chip floating.
  • first pressure-sensitive adhesive sheet 11 ... first base material, 12 ... first pressure-sensitive adhesive layer, 13 ... second pressure-sensitive adhesive layer, 110 ... base material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Dicing (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)

Abstract

A pressure-sensitive adhesive sheet (10) has a base material (11) and a pressure-sensitive adhesive layer (12), wherein the pressure-sensitive adhesive layer (12) includes an energy ray-curable resin, an elongation at break in a displacement-stress curve of the pressure-sensitive adhesive layer (12) alone is 1500% or more, and when the displacement of the pressure-sensitive adhesive layer (12) alone in the displacement-stress curve is 1500%, the stress is 0.100 MPa or less.

Description

粘着シートAdhesive sheet
 本発明は、粘着シートに関する。 The present invention relates to an adhesive sheet.
 近年、電子機器の小型化、軽量化、及び高機能化が進んでいる。電子機器に搭載される半導体装置にも、小型化、薄型化、及び高密度化が求められている。半導体チップは、そのサイズに近いパッケージに実装されることがある。このようなパッケージは、チップスケールパッケージ(Chip Scale Package;CSP)と称されることもある。CSPの一つとして、ウエハレベルパッケージ(Wafer Level Package;WLP)が挙げられる。WLPにおいては、ダイシングにより個片化する前に、ウエハに外部電極などを形成し、最終的にはウエハをダイシングして、個片化する。WLPとしては、ファンイン(Fan-In)型とファンアウト(Fan-Out)型が挙げられる。ファンアウト型のWLP(以下、「FO-WLP」と略記する場合がある。)においては、半導体チップを、チップサイズよりも大きな領域となるように封止部材で覆って半導体チップ封止体を形成し、再配線層や外部電極を、半導体チップの回路面だけでなく封止部材の表面領域においても形成する。 In recent years, electronic devices have become smaller, lighter, and more sophisticated. Semiconductor devices mounted on electronic devices are also required to be smaller, thinner, and higher in density. Semiconductor chips may be mounted in packages close to their size. Such a package is sometimes referred to as a chip scale package (CSP). One of the CSPs is a wafer level package (WLP). In the WLP, an external electrode or the like is formed on the wafer before it is separated by dicing, and finally the wafer is diced and separated. Examples of the WLP include a fan-in type and a fan-out type. In a fan-out type WLP (hereinafter, may be abbreviated as "FO-WLP"), the semiconductor chip is covered with a sealing member so as to have a region larger than the chip size, and the semiconductor chip sealant is covered. The rewiring layer and the external electrode are formed not only on the circuit surface of the semiconductor chip but also on the surface region of the sealing member.
 例えば、特許文献1には、半導体ウエハから個片化された複数の半導体チップについて、その回路形成面を残し、モールド部材を用いて周りを囲んで拡張ウエハを形成し、半導体チップ外の領域に再配線パターンを延在させて形成する半導体パッケージの製造方法が記載されている。特許文献1に記載の製造方法において、個片化された複数の半導体チップをモールド部材で囲う前に、エキスパンドシートに貼り替え、エキスパンドシートを展延して複数の半導体チップの間の距離を拡大させている。特許文献2には、複数の半導体チップの間隔を拡げるために使用される半導体加工用シートが記載されている。 For example, in Patent Document 1, an expansion wafer is formed by surrounding a plurality of semiconductor chips separated from a semiconductor wafer by using a mold member, leaving a circuit forming surface thereof, and forming an expansion wafer in a region outside the semiconductor chip. A method for manufacturing a semiconductor package formed by extending a rewiring pattern is described. In the manufacturing method described in Patent Document 1, before enclosing a plurality of individualized semiconductor chips with a mold member, the semiconductor chips are replaced with an expanding sheet, and the expanding sheet is expanded to increase the distance between the plurality of semiconductor chips. I'm letting you. Patent Document 2 describes a semiconductor processing sheet used for increasing the distance between a plurality of semiconductor chips.
国際公開第2010/058646号International Publication No. 2010/058646 国際公開第2018/003312号International Publication No. 2018/003312
 上記のようなFO-WLPの製造方法では、半導体チップ外の領域に上述した再配線パターン等を形成するために、エキスパンドシートを拡張させて半導体チップ同士を十分に離間させ、拡張後においては、複数の半導体チップの間隔のばらつきを抑制する(整列性を向上させる)必要がある。
 また、エキスパンド工程に用いられるシートは、通常、シート上の半導体チップを固定するために粘着剤層と、粘着剤層を支持するための基材と、を有する。特許文献1及び特許文献2に記載のようにエキスパンド用のシートを引き延ばすと、シートの基材だけでなく、粘着剤層も引き延ばされる。エキスパンド工程後、半導体チップの裏面(半導体チップの粘着剤層側の面)を観察するとチップ裏面の外周側は、粘着剤層から離間し、シートから浮いている場合がある。このような現象を本明細書においては、チップ浮きと称する場合がある。チップ浮きが生じている箇所にも紫外線等のエネルギー線が照射されると、エネルギー線硬化性粘着剤の硬化が阻害され、糊残りが生じ易い。本明細書において、エネルギー線照射後に半導体チップを粘着剤層から剥離すると、粘着剤層と接していた半導体チップの裏面に粘着剤層が残る不具合を糊残りと称する。
In the above-mentioned FO-WLP manufacturing method, in order to form the above-mentioned rewiring pattern or the like in the region outside the semiconductor chip, the expanding sheet is expanded to sufficiently separate the semiconductor chips from each other, and after the expansion, the expanding sheet is sufficiently separated from each other. It is necessary to suppress variations in the spacing between a plurality of semiconductor chips (improve alignment).
Further, the sheet used in the expanding step usually has a pressure-sensitive adhesive layer for fixing the semiconductor chip on the sheet and a base material for supporting the pressure-sensitive adhesive layer. When the expanding sheet is stretched as described in Patent Document 1 and Patent Document 2, not only the base material of the sheet but also the pressure-sensitive adhesive layer is stretched. When observing the back surface of the semiconductor chip (the surface of the semiconductor chip on the pressure-sensitive adhesive layer side) after the expanding step, the outer peripheral side of the back surface of the chip may be separated from the pressure-sensitive adhesive layer and float from the sheet. In the present specification, such a phenomenon may be referred to as chip floating. When an energy ray such as ultraviolet rays is irradiated to a portion where the chip floats, the curing of the energy ray-curable pressure-sensitive adhesive is hindered and adhesive residue is likely to occur. In the present specification, when the semiconductor chip is peeled from the pressure-sensitive adhesive layer after irradiation with energy rays, the defect that the pressure-sensitive adhesive layer remains on the back surface of the semiconductor chip in contact with the pressure-sensitive adhesive layer is referred to as adhesive residue.
 本発明は、エキスパンド工程での拡張後の整列性を向上させ、かつチップ浮きを抑制できる粘着シートを提供することを目的とする。 An object of the present invention is to provide an adhesive sheet capable of improving alignment after expansion in an expanding step and suppressing chip floating.
 本発明の一態様によれば、基材と、粘着剤層と、を有し、前記粘着剤層は、エネルギー線硬化性樹脂を含有し、前記粘着剤層単体の変位-応力曲線における破断伸度が1500%以上であり、前記粘着剤層単体の変位-応力曲線における変位が1500%の際に、
応力が0.22MPa以下である粘着シートが提供される。
According to one aspect of the present invention, the pressure-sensitive adhesive layer has a base material and a pressure-sensitive adhesive layer, the pressure-sensitive adhesive layer contains an energy ray-curable resin, and the pressure-strain curve of the pressure-sensitive adhesive layer alone is stretched. When the degree is 1500% or more and the displacement in the displacement-stress curve of the adhesive layer alone is 1500%,
An adhesive sheet having a stress of 0.22 MPa or less is provided.
 本発明の一態様に係る粘着シートにおいて、前記粘着剤層単体の変位-応力曲線における変位が1500%の際に、応力が0.17MPa以下であることが好ましい。 In the pressure-sensitive adhesive sheet according to one aspect of the present invention, the stress is preferably 0.17 MPa or less when the displacement of the pressure-sensitive adhesive layer alone in the displacement-stress curve is 1500%.
 本発明の一態様に係る粘着シートにおいて、前記粘着剤層単体の変位-応力曲線における変位が1500%の際に、応力が0.0001MPa以上であることが好ましい。 In the pressure-sensitive adhesive sheet according to one aspect of the present invention, when the displacement of the pressure-sensitive adhesive layer alone in the displacement-stress curve is 1500%, the stress is preferably 0.0001 MPa or more.
 本発明の一態様に係る粘着シートにおいて、前記粘着シートを、第一方向、前記第一方向とは反対方向である第二方向、前記第一方向に対して鉛直方向である第三方向、及び前記第三方向とは反対方向である第四方向に伸長させて、伸長前の前記粘着シートの面積S1と、伸長後の前記粘着シートの面積S2との面積比(S2/S1)×100が300%であるときに、前記基材及び前記粘着剤層が破断しないことが好ましい。 In the pressure-sensitive adhesive sheet according to one aspect of the present invention, the pressure-sensitive adhesive sheet is subjected to a first direction, a second direction opposite to the first direction, a third direction perpendicular to the first direction, and a third direction. The area ratio (S2 / S1) × 100 of the area S1 of the pressure-sensitive adhesive sheet before stretching and the area S2 of the pressure-sensitive adhesive sheet after stretching is calculated by stretching in the fourth direction opposite to the third direction. When it is 300%, it is preferable that the base material and the pressure-sensitive adhesive layer do not break.
 本発明の一態様によれば、エキスパンド工程での拡張後の整列性を向上させ、かつチップ浮きを抑制できる粘着シートを提供できる。 According to one aspect of the present invention, it is possible to provide an adhesive sheet capable of improving alignment after expansion in the expanding step and suppressing chip floating.
本発明の一実施形態に係る粘着シートの使用方法の第一態様を説明する断面図である。It is sectional drawing explaining the 1st aspect of the usage method of the pressure-sensitive adhesive sheet which concerns on one Embodiment of this invention. 本発明の一実施形態に係る粘着シートの使用方法の第一態様を説明する断面図である。It is sectional drawing explaining the 1st aspect of the usage method of the pressure-sensitive adhesive sheet which concerns on one Embodiment of this invention. 本発明の一実施形態に係る粘着シートの使用方法の第一態様を説明する断面図である。It is sectional drawing explaining the 1st aspect of the usage method of the pressure-sensitive adhesive sheet which concerns on one Embodiment of this invention. 本発明の一実施形態に係る粘着シートの使用方法の第一態様を説明する断面図である。It is sectional drawing explaining the 1st aspect of the usage method of the pressure-sensitive adhesive sheet which concerns on one Embodiment of this invention. 本発明の一実施形態に係る粘着シートの使用方法の第一態様を説明する断面図である。It is sectional drawing explaining the 1st aspect of the usage method of the pressure-sensitive adhesive sheet which concerns on one Embodiment of this invention. 本発明の一実施形態に係る粘着シートの使用方法の第一態様を説明する断面図である。It is sectional drawing explaining the 1st aspect of the usage method of the pressure-sensitive adhesive sheet which concerns on one Embodiment of this invention. 実施例で使用した2軸延伸エキスパンド装置を説明する平面図である。It is a top view explaining the biaxial stretching expanding apparatus used in an Example. 本発明の別の一実施形態に係る粘着シートの断面図である。It is sectional drawing of the adhesive sheet which concerns on another Embodiment of this invention.
 以下、本発明の一実施形態について説明する。
[粘着シート]
 本実施形態に係る粘着シートは、基材と、粘着剤層と、を有する。粘着シートの形状は、例えば、テープ状(長尺の形態)、及びラベル状(枚葉の形態)等、あらゆる形状をとり得る。
Hereinafter, an embodiment of the present invention will be described.
[Adhesive sheet]
The pressure-sensitive adhesive sheet according to this embodiment has a base material and a pressure-sensitive adhesive layer. The shape of the adhesive sheet can be any shape such as a tape shape (long form) and a label shape (single leaf shape).
(粘着剤層)
 本実施形態に係る粘着シートにおいて、粘着剤層は、エネルギー線硬化性樹脂を含有する。この粘着シートの粘着剤層単体の変位-応力曲線における破断伸度が1500%以上であり、粘着剤層単体の変位-応力曲線における変位が1500%の際に、応力が0.22MPa以下である。
 このような破断伸度及び応力の特性を兼ね備えた粘着剤層を有する粘着シートによれば、エキスパンド工程での拡張後の整列性を向上させ、かつチップ浮きを抑制できる。
 エキスパンド工程において、例えば、拡張前の半導体チップ同士の間隔が35μmである場合、エキスパンドによって間隔を2000μmまで拡張すると、粘着剤層は、基材に追従しながら大きく変形する。本実施形態に係る粘着シートが有する粘着剤層は、破断伸度が1500%以上であるので、このようなエキスパンドによる大変形時においても粘着剤層は破断することなく基材に追従できる。
 さらに、粘着剤層単体の変位-応力曲線における変位が1500%の際の応力が0.22MPa以下であるので、エキスパンドによって基材が大変形する際に、半導体チップによって粘着シートの変形を抑制する拘束力を低減できる。半導体チップの粘着剤層と接する面は、粘着剤層表面を固定し、エキスパンド時には粘着剤層を引っ張ることによって基材の変形を抑制する拘束力が加わり、その結果、粘着シートの変形が不均一になり、半導体チップの整列性が損なわれると考えられる。仮に、この拘束力がゼロであれば、粘着シートを均一に拡張でき、拘束力が大きくなるほど、粘着シートの変形は半導体チップ同士の隙間付近に集中し、さらにワーク全域を考慮すると端部の半導体チップに拘束力が集中して、拡張自体が困難になる。
 本実施形態に係る粘着シートは、このような拘束力を低減できるため、良好な整列性が発現する。粘着剤層単体の変位-応力曲線における変位が1500%の際の応力が0.22MPaを超えると、半導体チップの拘束力の影響を受けて、整列性が損なわれる。
(Adhesive layer)
In the pressure-sensitive adhesive sheet according to the present embodiment, the pressure-sensitive adhesive layer contains an energy ray-curable resin. When the displacement-stress curve of the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet is 1500% or more and the displacement of the pressure-sensitive adhesive layer is 1500%, the stress is 0.22 MPa or less. ..
According to the pressure-sensitive adhesive sheet having the pressure-sensitive adhesive layer having such properties of elongation at break and stress, it is possible to improve the alignment after expansion in the expanding step and suppress the chip floating.
In the expanding step, for example, when the distance between the semiconductor chips before expansion is 35 μm, when the distance is expanded to 2000 μm by expanding, the pressure-sensitive adhesive layer is greatly deformed while following the base material. Since the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet according to the present embodiment has a breaking elongation of 1500% or more, the pressure-sensitive adhesive layer can follow the substrate without breaking even during large deformation due to such expansion.
Further, since the stress when the displacement in the displacement-stress curve of the pressure-sensitive adhesive layer alone is 1500% is 0.22 MPa or less, the deformation of the pressure-sensitive adhesive sheet is suppressed by the semiconductor chip when the base material is greatly deformed by the expansion. The binding force can be reduced. The surface of the semiconductor chip in contact with the pressure-sensitive adhesive layer fixes the surface of the pressure-sensitive adhesive layer, and pulls the pressure-sensitive adhesive layer during expansion to add a binding force that suppresses deformation of the base material, resulting in non-uniform deformation of the pressure-sensitive adhesive sheet. Therefore, it is considered that the alignment of the semiconductor chip is impaired. If this binding force is zero, the adhesive sheet can be expanded uniformly, and as the binding force increases, the deformation of the adhesive sheet concentrates near the gap between the semiconductor chips, and when the entire work area is taken into consideration, the semiconductor at the end The binding force is concentrated on the chip, making expansion itself difficult.
Since the pressure-sensitive adhesive sheet according to the present embodiment can reduce such binding force, good alignment is exhibited. If the stress in the displacement-stress curve of the pressure-sensitive adhesive layer alone exceeds 0.22 MPa, the alignment is impaired due to the influence of the binding force of the semiconductor chip.
 本実施形態に係る粘着シートにおいて、粘着剤層単体の変位-応力曲線における変位が1500%の際に、応力が0.17MPa以下であることが好ましい。
 変位1500%時の応力が0.17MPa以下である粘着剤層を有する粘着シートによれば、エキスパンド工程での拡張量を大きくしても、優れた整列性を示す。
In the pressure-sensitive adhesive sheet according to the present embodiment, when the displacement of the pressure-sensitive adhesive layer alone in the displacement-stress curve is 1500%, the stress is preferably 0.17 MPa or less.
According to the pressure-sensitive adhesive sheet having the pressure-sensitive adhesive layer in which the stress at 1500% of the displacement is 0.17 MPa or less, excellent alignment is exhibited even if the expansion amount in the expanding step is increased.
 本実施形態に係る粘着シートにおいて、粘着剤層単体の変位-応力曲線における変位が1500%の際に、応力が0.0001MPa以上であることが好ましい。変位1500%時の応力が0.0001MPa以上であることにより、粘着剤層が柔らかくなり過ぎることを防止できる。
 変位1500%時の応力が0.0001MPa以上であれば、エキスパンド工程で拡張量を大きくても、粘着剤の凝集力が不足してエキスパンド装置のチャックから粘着シートが外れる等の不具合を防止できる。
In the pressure-sensitive adhesive sheet according to the present embodiment, when the displacement of the pressure-sensitive adhesive layer alone in the displacement-stress curve is 1500%, the stress is preferably 0.0001 MPa or more. When the stress at 1500% displacement is 0.0001 MPa or more, it is possible to prevent the pressure-sensitive adhesive layer from becoming too soft.
If the stress at a displacement of 1500% is 0.0001 MPa or more, even if the expansion amount is large in the expanding step, it is possible to prevent problems such as the adhesive sheet being detached from the chuck of the expanding device due to insufficient cohesive force of the adhesive.
 粘着剤層単体の変位-応力曲線における破断伸度、並びに変位-応力曲線における変位が1500%の際の応力は、後述する実施例に記載の方法により測定できる。 The elongation at break in the displacement-stress curve of the pressure-sensitive adhesive layer alone and the stress when the displacement in the displacement-stress curve is 1500% can be measured by the method described in Examples described later.
 本実施形態に係る粘着シートにおいて、粘着剤層が含有する粘着剤は、粘着剤層単体の変位-応力曲線における破断伸度、並びに変位-応力曲線における変位が1500%の際の応力が前述の範囲を満たす限り、特に限定されない。前述した破断伸度及び応力の範囲を満たすように、粘着剤層を構成する材料(粘着剤)を、例えば、以下に説明する材料の中から適宜選択して配合することができる。 In the pressure-sensitive adhesive sheet according to the present embodiment, the pressure-sensitive adhesive contained in the pressure-sensitive adhesive layer has the above-mentioned stress at break elongation in the displacement-stress curve of the pressure-sensitive adhesive layer alone and stress when the displacement in the displacement-stress curve is 1500%. As long as the range is satisfied, there is no particular limitation. The material (adhesive) constituting the pressure-sensitive adhesive layer can be appropriately selected and blended from, for example, the materials described below so as to satisfy the above-mentioned range of elongation at break and stress.
・エネルギー線硬化性樹脂(a1)
 エネルギー線硬化性樹脂(a1)は、エネルギー線の照射を受けると重合硬化する樹脂である。エネルギー線としては、例えば、紫外線、及び電子線等が挙げられる。エネルギー線硬化性樹脂(a1)は、紫外線硬化性樹脂であることが好ましい。
-Energy ray curable resin (a1)
The energy ray-curable resin (a1) is a resin that polymerizes and cures when irradiated with energy rays. Examples of the energy ray include ultraviolet rays and electron beams. The energy ray-curable resin (a1) is preferably an ultraviolet curable resin.
 エネルギー線硬化性樹脂(a1)は、分子内に、エネルギー線硬化性の官能基を少なくとも1つ有する。エネルギー線硬化性の官能基は、炭素-炭素二重結合を含む官能基であることが好ましく、アクリロイル基又はメタクリロイル基であることがより好ましい。
 エネルギー線硬化性樹脂(a1)を含有する粘着剤層は、エネルギー線照射により硬化して粘着力が低下する。被着体と粘着シートとを分離したい場合、エネルギー線を粘着剤層に照射することにより、容易に分離できる。
The energy ray-curable resin (a1) has at least one energy ray-curable functional group in the molecule. The energy ray-curable functional group is preferably a functional group containing a carbon-carbon double bond, and more preferably an acryloyl group or a methacryloyl group.
The pressure-sensitive adhesive layer containing the energy ray-curable resin (a1) is cured by energy ray irradiation, and the adhesive strength is reduced. When it is desired to separate the adherend and the pressure-sensitive adhesive sheet, the pressure-sensitive adhesive layer can be easily separated by irradiating the pressure-sensitive adhesive layer with energy rays.
 エネルギー線硬化性樹脂(a1)の例としては、エネルギー線硬化性基を有する低分子量化合物(単官能のモノマー、多官能のモノマー、単官能のオリゴマー、及び多官能のオリゴマー)が挙げられる。 Examples of the energy ray-curable resin (a1) include low molecular weight compounds having an energy ray-curable group (monofunctional monomer, polyfunctional monomer, monofunctional oligomer, and polyfunctional oligomer).
 エネルギー線硬化性樹脂(a1)は、下記一般式(11)で表されるエチレングリコール単位を1以上有することが好ましい。 The energy ray-curable resin (a1) preferably has one or more ethylene glycol units represented by the following general formula (11).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(前記一般式(11)中、mは、1以上である。) (In the general formula (11), m is 1 or more.)
 エネルギー線硬化性樹脂(a1)が下記一般式(11)で表されるエチレングリコール単位を2以上有する場合、2以上のmは、互いに同一であるか又は異なる。 When the energy ray-curable resin (a1) has two or more ethylene glycol units represented by the following general formula (11), the two or more m are the same as or different from each other.
 前記一般式(11)中のmは、2以上であることが好ましい。 It is preferable that m in the general formula (11) is 2 or more.
 エネルギー線硬化性樹脂(a1)が柔軟なポリエチレングリコール鎖を有することで、硬化前の粘着剤層が変形し易くなり、硬化後の粘着剤層の架橋密度が適度に低下し、粘着剤層が破断し難くなる。 Since the energy ray-curable resin (a1) has a flexible polyethylene glycol chain, the pressure-sensitive adhesive layer before curing is easily deformed, the crosslink density of the pressure-sensitive adhesive layer after curing is appropriately lowered, and the pressure-sensitive adhesive layer is formed. It becomes difficult to break.
 エネルギー線硬化性樹脂(a1)が一分子当たり有するエチレングリコール単位の数は、3以上であることが好ましく、5以上であることがより好ましい。 The number of ethylene glycol units that the energy ray-curable resin (a1) has per molecule is preferably 3 or more, and more preferably 5 or more.
 また、一実施形態においては、エネルギー線硬化性樹脂(a1)が一分子当たり有するエチレングリコール単位の数は、10以上であることも好ましく、30以上であることもより好ましく、50以上であることもさらに好ましい。 Further, in one embodiment, the number of ethylene glycol units contained in the energy ray-curable resin (a1) per molecule is preferably 10 or more, more preferably 30 or more, and more preferably 50 or more. Is even more preferable.
 エネルギー線硬化性樹脂(a1)が一分子当たり有するエチレングリコール単位の数は、100以下であることが好ましく、90以下であることがさらに好ましく、80以下であることがさらに好ましい。 The number of ethylene glycol units that the energy ray-curable resin (a1) has per molecule is preferably 100 or less, more preferably 90 or less, and further preferably 80 or less.
 エネルギー線硬化性樹脂(a1)は、さらに、エネルギー線硬化性の官能基を3以上有することが好ましく、4以上有することがより好ましい。エネルギー線硬化性樹脂(a1)が有するエネルギー線硬化性の官能基の数が3以上であれば、糊残りをさらに抑制し易くなる。 The energy ray-curable resin (a1) further preferably has 3 or more energy ray-curable functional groups, and more preferably 4 or more. When the number of energy ray-curable functional groups contained in the energy ray-curable resin (a1) is 3 or more, it becomes easier to further suppress adhesive residue.
 エネルギー線硬化性樹脂(a1)は、一般式(11)で表されるエチレングリコール単位とエネルギー線硬化性の官能基とが直接結合した基を有することが好ましい。 The energy ray-curable resin (a1) preferably has a group in which the ethylene glycol unit represented by the general formula (11) and the energy ray-curable functional group are directly bonded.
 エネルギー線硬化性樹脂(a1)は、下記一般式(11A)で表されるエチレングリコール単位を含有する基を1以上有することが好ましい。 The energy ray-curable resin (a1) preferably has one or more groups containing ethylene glycol units represented by the following general formula (11A).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(前記一般式(11A)中、mは、1以上であり、Rは、水素原子又はメチル基である。) (In the general formula (11A), m is 1 or more, and R is a hydrogen atom or a methyl group.)
 エネルギー線硬化性樹脂(a1)が前記一般式(11A)で表される基を有する場合、一分子中の前記一般式(11A)で表される基の数は、3以上であることが好ましく、4以上であることがより好ましい。
 エネルギー線硬化性樹脂(a1)が一分子中に有する前記一般式(11A)で表される基の数が、3以上であれば、糊残りをさらに抑制し易くなる。
 エネルギー線硬化性樹脂(a1)が前記一般式(11A)で表される基を有する場合、一分子中の前記一般式(11A)で表される基の数は、10以下であることが好ましく、9以下であることがより好ましく、8以下であることがさらに好ましい。
When the energy ray-curable resin (a1) has a group represented by the general formula (11A), the number of groups represented by the general formula (11A) in one molecule is preferably 3 or more. More preferably, it is 4 or more.
When the number of groups represented by the general formula (11A) contained in one molecule of the energy ray-curable resin (a1) is 3 or more, it becomes easier to further suppress the adhesive residue.
When the energy ray-curable resin (a1) has a group represented by the general formula (11A), the number of groups represented by the general formula (11A) in one molecule is preferably 10 or less. , 9 or less, more preferably 8 or less.
 エネルギー線硬化性樹脂(a1)は、さらに、グリセリン骨格を1以上有することが好ましい。エネルギー線硬化性樹脂(a1)は、ポリグリセリン骨格を有することも好ましい。 The energy ray-curable resin (a1) preferably has one or more glycerin skeletons. The energy ray-curable resin (a1) also preferably has a polyglycerin skeleton.
 エネルギー線硬化性樹脂(a1)が、飽和炭化水素骨格のような炭素-炭素結合系よりも、エーテル結合を多数有し、かつ多官能化できるグリセリン骨格を有することで、粘着剤層がさらに変形し易くなり、同時に良好な硬化性を実現できる。 Since the energy ray-curable resin (a1) has a glycerin skeleton that has more ether bonds and can be polyfunctionalized than a carbon-carbon bond system such as a saturated hydrocarbon skeleton, the pressure-sensitive adhesive layer is further deformed. It becomes easy to do, and at the same time, good curability can be realized.
 エネルギー線硬化性樹脂(a1)は、下記一般式(12)で表されることが好ましい。 The energy ray-curable resin (a1) is preferably represented by the following general formula (12).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(前記一般式(12)中、
 nは、1以上であり、
 R、R及びRは、それぞれ独立に、前記エネルギー線硬化性樹脂の分子中の原子、又は基であり、
 R、R及びRの内、少なくとも1つは、前記一般式(11)で表されるエチレングリコール単位を1以上有する。)
(In the general formula (12),
n is 1 or more,
R 1 , R 2 and R 3 are independently atoms or groups in the molecule of the energy ray-curable resin.
At least one of R 1 , R 2 and R 3 has one or more ethylene glycol units represented by the general formula (11). )
 nが1であるとき、前記一般式(12)は、下記一般式(12-1)で表される。 When n is 1, the general formula (12) is represented by the following general formula (12-1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(前記一般式(12-1)において、R、R及びRは、前記一般式(12)におけるR、R及びRと同義である。) (In the general formula (12-1), R 1 , R 2 and R 3 are synonymous with R 1 , R 2 and R 3 in the general formula (12)).
 nが4であるとき、前記一般式(12)は、下記一般式(12-4)で表される。 When n is 4, the general formula (12) is represented by the following general formula (12-4).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(前記一般式(12-4)において、
 R1A、R1B、R1C及びR1Dは、それぞれ独立に、前記一般式(12)におけるRと同義であり、
 R及びRは、前記一般式(12)におけるR及びRと同義である。)
(In the general formula (12-4),
R 1A , R 1B , R 1C and R 1D are independently synonymous with R 1 in the general formula (12).
R 2 and R 3 are synonymous with R 2 and R 3 in the general formula (12). )
 R、R及びRが、それぞれ独立に、前記一般式(11)で表されるエチレングリコール単位を1以上有することが好ましい。この場合、R、R及びRにおけるエチレングリコール単位の数は、互いに同一であるか又は異なる。 It is preferable that R 1 , R 2 and R 3 each independently have one or more ethylene glycol units represented by the general formula (11). In this case, the numbers of ethylene glycol units in R 1 , R 2 and R 3 are the same or different from each other.
 R、R及びRのうち少なくとも1つがエネルギー線硬化性の官能基を含む基であることが好ましく、R、R及びRが、それぞれ独立に、エネルギー線硬化性の官能基を含む基であることがより好ましい。 It is preferable that at least one of R 1 , R 2 and R 3 is a group containing an energy ray-curable functional group, and R 1 , R 2 and R 3 are independently energy ray-curable functional groups. It is more preferable that the group contains.
 R、R及びRが、それぞれ独立に、前記一般式(11)で表されるエチレングリコール単位を1以上有し、かつ、エネルギー線硬化性の官能基を含む基であることが好ましい。 It is preferable that R 1 , R 2 and R 3 are groups each independently having one or more ethylene glycol units represented by the general formula (11) and containing an energy ray-curable functional group. ..
 R、R及びRが、それぞれ独立に、前記一般式(11A)で表される基であることがより好ましい。 It is more preferable that R 1 , R 2 and R 3 are independently represented by the general formula (11A).
 例えば、前記一般式(12-4)で表されるエネルギー線硬化性樹脂(a1)において、R1A、R1B、R1C、R1D、R及びRがエネルギー線硬化性の官能基を1つずつ有する場合、当該エネルギー線硬化性樹脂(a1)は、エネルギー線硬化性の官能基を6個有することに相当する。 For example, in the energy ray-curable resin (a1) represented by the general formula (12-4), R 1A , R 1B , R 1C , R 1D , R 2 and R 3 form energy ray-curable functional groups. When having one by one, the energy ray-curable resin (a1) corresponds to having six energy ray-curable functional groups.
 エネルギー線硬化性樹脂(a1)は、下記一般式(13)で表されることが好ましい。 The energy ray-curable resin (a1) is preferably represented by the following general formula (13).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(前記一般式(13)中、
 nは、1以上であり、
 R11、R12及びR13は、それぞれ独立に、前記エネルギー線硬化性樹脂の分子中の他の原子、又は基であり、
 m1、m2及びm3は、それぞれ独立に、1以上である。)
(In the general formula (13),
n is 1 or more,
R 11 , R 12 and R 13 are independently other atoms or groups in the molecule of the energy ray-curable resin, respectively.
m1, m2 and m3 are 1 or more independently of each other. )
 前記一般式(13)において、nが2以上である場合、2以上のm1は、互いに同一であるか又は異なり、2以上のR11は、互いに同一であるか又は異なる。 In the general formula (13), when n is 2 or more, 2 or more m1 is the same or different from each other, two or more R 11 is or different are identical to one another.
 R11、R12及びR13のうち少なくとも1つがエネルギー線硬化性の官能基を含む基であることが好ましく、R11、R12及びR13が、それぞれ独立に、エネルギー線硬化性の官能基を含む基であることがより好ましい。 It is preferable that at least one of R 11 , R 12 and R 13 is a group containing an energy ray-curable functional group, and R 11 , R 12 and R 13 are independently energy ray-curable functional groups. It is more preferable that the group contains.
 エネルギー線硬化性樹脂(a1)は、下記一般式(14)で表されることも好ましい。 The energy ray-curable resin (a1) is also preferably represented by the following general formula (14).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(前記一般式(14)中、
 R21、R22、R23及びR24は、それぞれ独立に、前記エネルギー線硬化性樹脂の分子中の他の原子、又は基であり、
 R21、R22、R23及びR24の内、少なくとも1つは、前記一般式(11)で表されるエチレングリコール単位を1以上有する。)
(In the general formula (14),
R 21 , R 22 , R 23 and R 24 are independently other atoms or groups in the molecule of the energy ray-curable resin, respectively.
At least one of R 21 , R 22 , R 23 and R 24 has one or more ethylene glycol units represented by the general formula (11). )
 R21、R22、R23及びR24が、それぞれ独立に、前記一般式(11)で表されるエチレングリコール単位を1以上有することが好ましい。この場合、R21、R22、R23及びR24におけるエチレングリコール単位の数は、互いに同一であるか又は異なる。 It is preferable that R 21 , R 22 , R 23 and R 24 each independently have one or more ethylene glycol units represented by the general formula (11). In this case, the number of ethylene glycol units in R 21 , R 22 , R 23 and R 24 is the same as or different from each other.
 R21、R22、R23及びR24のうち少なくとも1つがエネルギー線硬化性の官能基を含む基であることが好ましく、R21、R22、R23及びR24が、それぞれ独立に、エネルギー線硬化性の官能基を含む基であることがより好ましい。 Preferably at least one of R 21, R 22, R 23 and R 24 is a group containing an energy ray-curable functional group, R 21, R 22, R 23 and R 24 are each independently energy More preferably, it is a group containing a linearly curable functional group.
 R21、R22、R23及びR24が、それぞれ独立に、前記一般式(11)で表されるエチレングリコール単位を1以上有し、かつ、エネルギー線硬化性の官能基を含む基であることが好ましい。 R 21 , R 22 , R 23 and R 24 are groups each independently having one or more ethylene glycol units represented by the general formula (11) and containing an energy ray-curable functional group. Is preferable.
 R21、R22、R23及びR24が、それぞれ独立に、前記一般式(11A)で表される基であることがより好ましい。 It is more preferable that R 21 , R 22 , R 23 and R 24 are each independently represented by the general formula (11A).
 エネルギー線硬化性樹脂(a1)は、下記一般式(15)で表されることが好ましい。 The energy ray-curable resin (a1) is preferably represented by the following general formula (15).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(前記一般式(15)中、
 R25、R26、R27及びR28は、それぞれ独立に、前記エネルギー線硬化性樹脂の分子中の他の原子、又は基であり、
 m21、m22、m23及びm24は、それぞれ独立に、1以上である。)
(In the general formula (15),
R 25 , R 26 , R 27 and R 28 are independently other atoms or groups in the molecule of the energy ray-curable resin, respectively.
m21, m22, m23 and m24 are independently one or more. )
 R25、R26、R27及びR28のうち少なくとも1つがエネルギー線硬化性の官能基を含む基であることが好ましく、R25、R26、R27及びR28が、それぞれ独立に、エネルギー線硬化性の官能基を含む基であることがより好ましい。 Preferably R 25, at least one of R 26, R 27 and R 28 is a group containing an energy ray-curable functional group, R 25, R 26, R 27 and R 28 are each independently energy More preferably, it is a group containing a linearly curable functional group.
 粘着剤層は、エネルギー線硬化性樹脂(a1)を当該粘着剤層の固形分の全量に対して15質量%以上、55質量%以下、含有することが好ましく、20質量%以上、48質量%以下、含有することがより好ましく、24質量%以上、48質量%以下、含有することがさらに好ましい。
 粘着剤層がエネルギー線硬化性樹脂(a1)を15質量%以上、55質量%以下、含有することで、整列性をさらに向上させ易く、糊残りもさらに抑制し易い。
 粘着剤層がエネルギー線硬化性樹脂(a1)を20質量%以上、含有することで、整列性を向上させ易い。
 粘着剤層がエネルギー線硬化性樹脂(a1)を48質量%以下、含有することで、粘着シートをロール状に巻き取った際に、ロール端部から粘着剤が染み出しにくくなる。
The pressure-sensitive adhesive layer preferably contains the energy ray-curable resin (a1) in an amount of 15% by mass or more and 55% by mass or less, preferably 20% by mass or more and 48% by mass or less, based on the total solid content of the pressure-sensitive adhesive layer. Hereinafter, it is more preferable to contain it, and it is further preferable to contain it in an amount of 24% by mass or more and 48% by mass or less.
When the pressure-sensitive adhesive layer contains the energy ray-curable resin (a1) in an amount of 15% by mass or more and 55% by mass or less, it is easy to further improve the alignment and further suppress the adhesive residue.
When the pressure-sensitive adhesive layer contains 20% by mass or more of the energy ray-curable resin (a1), it is easy to improve the alignment.
When the pressure-sensitive adhesive layer contains the energy ray-curable resin (a1) in an amount of 48% by mass or less, the pressure-sensitive adhesive is less likely to seep out from the end of the roll when the pressure-sensitive adhesive sheet is wound into a roll.
 エネルギー線硬化性樹脂(a1)が有するエチレングリコール単位の総数MEGと、エネルギー線硬化性樹脂(a1)が有するエネルギー線硬化性の官能基の総数MUVとの比MEG/MUVが、1以上、15以下であることが好ましい。 The total number M EG ethylene glycol units having energy ray-curable resin (a1) is the ratio M EG / M UV and the total number M UV energy ray-curable functional group which energy ray-curable resin (a1) has found It is preferably 1 or more and 15 or less.
 粘着剤層がエネルギー線硬化性樹脂(a1)を24質量%以上含有し、MEG/MUVが、9以上である場合、エキスパンド工程での拡張量を大きくしても、優れた整列性を示す。 When the pressure-sensitive adhesive layer contains 24% by mass or more of the energy ray-curable resin (a1) and the MEG / MUV is 9 or more, excellent alignment is achieved even if the amount of expansion in the expanding step is increased. Shown.
 エネルギー線硬化性樹脂(a1)は、(メタ)アクリル系樹脂であることが好ましい。 The energy ray-curable resin (a1) is preferably a (meth) acrylic resin.
 エネルギー線硬化性樹脂(a1)は、紫外線硬化性樹脂であることが好ましく、紫外線硬化性の(メタ)アクリル系樹脂であることがより好ましい。 The energy ray-curable resin (a1) is preferably an ultraviolet curable resin, and more preferably an ultraviolet curable (meth) acrylic resin.
 エネルギー線硬化性樹脂(a1)は、エネルギー線の照射を受けると重合硬化する樹脂である。エネルギー線としては、例えば、紫外線、及び電子線等が挙げられる。 The energy ray-curable resin (a1) is a resin that polymerizes and cures when irradiated with energy rays. Examples of the energy ray include ultraviolet rays and electron beams.
 エネルギー線硬化性樹脂(a1)としては、例えば、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、1,4-ブチレングリコールジアクリレート、及び1,6-ヘキサンジオールジアクリレート等のアクリレート、ジシクロペンタジエンジメトキシジアクリレート、及びイソボルニルアクリレート等の環状脂肪族骨格含有アクリレート、並びにポリエチレングリコールジアクリレート、オリゴエステルアクリレート、ウレタンアクリレートオリゴマー、エポキシ変性アクリレート、ポリエーテルアクリレート、及びイタコン酸オリゴマー等のアクリレート系化合物も使用できる。 Examples of the energy ray-curable resin (a1) include trimethyl propantriacrylate, tetramethylolmethanetetraacrylate, pentaerythritol triacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, and 1,4-butylene glycol. Diacrylate and acrylates such as 1,6-hexanediol diacrylate, cyclic aliphatic skeleton-containing acrylates such as dicyclopentadiene dimethoxydiacrylate and isobornyl acrylate, and polyethylene glycol diacrylates, oligoester acrylates and urethane acrylate oligomers. , Epoxy-modified acrylates, polyether acrylates, and acrylate-based compounds such as itaconic acid oligomers can also be used.
 エネルギー線硬化性樹脂(a1)は、1種を単独でまたは2種以上を組み合わせて用いられる。 The energy ray-curable resin (a1) is used alone or in combination of two or more.
 エネルギー線硬化性樹脂(a1)の分子量は、100以上であることが好ましく、300以上であることがより好ましい。
 エネルギー線硬化性樹脂(a1)の分子量は、30000以下であることが好ましく、15000以下であることがより好ましい。
 エネルギー線硬化性樹脂(a1)の分子量が100以上であれば、粘着剤中から相分離することを防ぎ、テープの保管安定性を維持できる。
 エネルギー線硬化性樹脂(a1)の分子量が30000以下であれば、他の材料との相溶性を維持することができる。
The molecular weight of the energy ray-curable resin (a1) is preferably 100 or more, and more preferably 300 or more.
The molecular weight of the energy ray-curable resin (a1) is preferably 30,000 or less, and more preferably 15,000 or less.
When the molecular weight of the energy ray-curable resin (a1) is 100 or more, phase separation from the pressure-sensitive adhesive can be prevented and the storage stability of the tape can be maintained.
When the molecular weight of the energy ray-curable resin (a1) is 30,000 or less, compatibility with other materials can be maintained.
 また、エネルギー線硬化性樹脂(a1)の重量平均分子量は、10000以下であることも好ましい。ネルギー線硬化性樹脂(a1)の重量平均分子量が10000以下であれば、粘着剤の伸張性と硬化性とを両立しやすい。
 重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、標準ポリスチレン換算値から得ることができる。
Further, the weight average molecular weight of the energy ray-curable resin (a1) is preferably 10,000 or less. When the weight average molecular weight of the energy ray-curable resin (a1) is 10,000 or less, it is easy to achieve both extensibility and curability of the pressure-sensitive adhesive.
The weight average molecular weight can be obtained from a standard polystyrene conversion value by a gel permeation chromatography (GPC) method.
・光重合開始剤(C)
 粘着剤層が紫外線硬化性の化合物(例えば、紫外線硬化性樹脂)を含有する場合、粘着剤層は、光重合開始剤(C)を含有することが好ましい。
 粘着剤層が光重合開始剤(C)を含有することにより、重合硬化時間及び光線照射量を少なくすることができる。
-Photopolymerization initiator (C)
When the pressure-sensitive adhesive layer contains a UV-curable compound (for example, a UV-curable resin), the pressure-sensitive adhesive layer preferably contains a photopolymerization initiator (C).
Since the pressure-sensitive adhesive layer contains the photopolymerization initiator (C), the polymerization curing time and the amount of light irradiation can be reduced.
 光重合開始剤(C)としては、具体的には、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサンソン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、β-クロールアンスラキノン、(2,4,6-トリメチルベンジルジフェニル)フォスフィンオキサイド、2-ベンゾチアゾール-N,N-ジエチルジチオカルバメート、オリゴ{2-ヒドロキシ-2-メチル-1-[4-(1-プロペニル)フェニル]プロパノン}、及び2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等が挙げられる。これら光重合開始剤(C)は、1種を単独で用いてもよいし、2種以上を併用してもよい。 Specific examples of the photopolymerization initiator (C) include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, and benzoin dimethyl ketal. 2,4-Diethylthioxanthone, 1-hydroxycyclohexylphenylketone, benzyldiphenylsulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, β-chloranthraquinone, (2,4) 6-trimethylbenzyldiphenyl) phosphine oxide, 2-benzothiazole-N, N-diethyldithiocarbamate, oligo {2-hydroxy-2-methyl-1- [4- (1-propenyl) phenyl] propanone}, and 2 , 2-Dimethoxy-1,2-diphenylethane-1-one and the like. These photopolymerization initiators (C) may be used alone or in combination of two or more.
 光重合開始剤(C)は、粘着剤層にエネルギー線硬化性樹脂(a1)、及び(メタ)アクリル系共重合体(b1)を配合する場合には、エネルギー線硬化性樹脂(a1)、及び(メタ)アクリル系共重合体(b1)の合計量100質量部に対して0.1質量部以上の量で用いられることが好ましく、0.5質量部以上の量で用いられることがより好ましい。
 また、光重合開始剤(C)は、粘着剤層にエネルギー線硬化性樹脂(a1)、及び(メタ)アクリル系共重合体(b1)を配合する場合には、エネルギー線硬化性樹脂(a1)、及び(メタ)アクリル系共重合体(b1)の合計量100質量部に対して10質量部以下の量で用いられることが好ましく、6質量部以下の量で用いられることがより好ましい。
When the energy ray-curable resin (a1) and the (meth) acrylic copolymer (b1) are blended in the pressure-sensitive adhesive layer, the photopolymerization initiator (C) is an energy ray-curable resin (a1). The total amount of the (meth) acrylic copolymer (b1) is preferably 0.1 parts by mass or more, and more preferably 0.5 parts by mass or more. preferable.
Further, the photopolymerization initiator (C) is an energy ray-curable resin (a1) when the energy ray-curable resin (a1) and the (meth) acrylic copolymer (b1) are blended in the pressure-sensitive adhesive layer. ) And the (meth) acrylic copolymer (b1) in an amount of 10 parts by mass or less, more preferably 6 parts by mass or less, based on 100 parts by mass of the total amount.
 粘着剤層は、上記成分以外にも、適宜他の成分を含有してもよい。他の成分としては、例えば、架橋剤(E)、帯電防止剤、酸化防止剤、及び着色剤等が挙げられる。 The pressure-sensitive adhesive layer may contain other components as appropriate in addition to the above components. Examples of other components include a cross-linking agent (E), an antistatic agent, an antioxidant, a coloring agent, and the like.
・架橋剤(E)
 架橋剤(E)としては、(メタ)アクリル系共重合体(b1)等が有する官能基との反応性を有する多官能性化合物を用いることができる。このような多官能性化合物の例としては、イソシアネート化合物、エポキシ化合物、アミン化合物、メラミン化合物、アジリジン化合物、ヒドラジン化合物、アルデヒド化合物、オキサゾリン化合物、金属アルコキシド化合物、金属キレート化合物、金属塩、アンモニウム塩、及び反応性フェノール樹脂等を挙げることができる。
・ Crosslinking agent (E)
As the cross-linking agent (E), a polyfunctional compound having reactivity with a functional group of the (meth) acrylic copolymer (b1) or the like can be used. Examples of such polyfunctional compounds include isocyanate compounds, epoxy compounds, amine compounds, melamine compounds, aziridine compounds, hydrazine compounds, aldehyde compounds, oxazoline compounds, metal alkoxide compounds, metal chelate compounds, metal salts, ammonium salts, etc. And reactive phenolic resins and the like.
 架橋剤(E)の配合量は、(メタ)アクリル系共重合体(b1)100質量部に対して、0.01質量部以上であることが好ましく、0.03質量部以上であることがより好ましく、0.04質量部以上であることがさらに好ましい。
 また、架橋剤(E)の配合量は、(メタ)アクリル系共重合体(b1)100質量部に対して、8質量部以下であることが好ましく、5質量部以下であることがより好ましく、3.5質量部以下であることがさらに好ましく、2.1質量部以下であることがよりさらに好ましい。
The blending amount of the cross-linking agent (E) is preferably 0.01 part by mass or more, and preferably 0.03 part by mass or more with respect to 100 parts by mass of the (meth) acrylic copolymer (b1). More preferably, it is 0.04 parts by mass or more.
The amount of the cross-linking agent (E) to be blended is preferably 8 parts by mass or less, and more preferably 5 parts by mass or less, based on 100 parts by mass of the (meth) acrylic copolymer (b1). , 3.5 parts by mass or less, and even more preferably 2.1 parts by mass or less.
 粘着剤層の厚さは、特に限定されない。粘着剤層の厚さは、例えば、10μm以上であることが好ましく、20μm以上であることがより好ましい。また、粘着剤層の厚さは、150μm以下であることが好ましく、100μm以下であることがより好ましい。 The thickness of the adhesive layer is not particularly limited. The thickness of the pressure-sensitive adhesive layer is, for example, preferably 10 μm or more, and more preferably 20 μm or more. The thickness of the pressure-sensitive adhesive layer is preferably 150 μm or less, and more preferably 100 μm or less.
(基材)
 基材は、第一の基材面と、第一の基材面とは反対側の第二の基材面とを有することが好ましい。
 本実施形態の粘着シートにおいて、本実施形態に係る粘着剤層が、第一の基材面及び第二の基材面の一方の面に設けられていることが好ましく、他方の面には粘着剤層が設けられていないことが好ましい。
(Base material)
The base material preferably has a first base material surface and a second base material surface opposite to the first base material surface.
In the pressure-sensitive adhesive sheet of the present embodiment, the pressure-sensitive adhesive layer according to the present embodiment is preferably provided on one surface of the first base material surface and the second base material surface, and is adherent to the other surface. It is preferable that the agent layer is not provided.
 基材の材料は、大きく延伸させ易いという観点から、熱可塑性エラストマー、またはゴム系材料であることが好ましく、熱可塑性エラストマーであることがより好ましい。 The material of the base material is preferably a thermoplastic elastomer or a rubber-based material, and more preferably a thermoplastic elastomer from the viewpoint of being easily stretched greatly.
 また、基材の材料としては、大きく延伸させ易いという観点から、ガラス転移温度(Tg)が比較的低い樹脂を使用することが好ましい。このような樹脂のガラス転移温度(Tg)は、90℃以下であることが好ましく、80℃以下であることがより好ましく、70℃以下であることがさらに好ましい。 Further, as the material of the base material, it is preferable to use a resin having a relatively low glass transition temperature (Tg) from the viewpoint of being large and easy to stretch. The glass transition temperature (Tg) of such a resin is preferably 90 ° C. or lower, more preferably 80 ° C. or lower, and even more preferably 70 ° C. or lower.
 熱可塑性エラストマーとしては、ウレタン系エラストマー、オレフィン系エラストマー、塩化ビニル系エラストマー、ポリエステル系エラストマー、スチレン系エラストマー、アクリル系エラストマー、及びアミド系エラストマー等が挙げられる。熱可塑性エラストマーは、1種を単独でまたは2種以上を組み合わせて使用することができる。熱可塑性エラストマーとしては、大きく延伸させ易いという観点から、ウレタン系エラストマーを使用することが好ましい。 Examples of the thermoplastic elastomer include urethane-based elastomers, olefin-based elastomers, vinyl chloride-based elastomers, polyester-based elastomers, styrene-based elastomers, acrylic-based elastomers, and amide-based elastomers. The thermoplastic elastomer may be used alone or in combination of two or more. As the thermoplastic elastomer, it is preferable to use a urethane-based elastomer from the viewpoint of being large and easy to stretch.
 ウレタン系エラストマーは、一般に、長鎖ポリオール、鎖延長剤、及びジイソシアネートを反応させて得られる。ウレタン系エラストマーは、長鎖ポリオールから誘導される構成単位を有するソフトセグメントと、鎖延長剤とジイソシアネートとの反応から得られるポリウレタン構造を有するハードセグメントとからなる。 Urethane-based elastomers are generally obtained by reacting long-chain polyols, chain extenders, and diisocyanates. The urethane-based elastomer comprises a soft segment having a structural unit derived from a long-chain polyol and a hard segment having a polyurethane structure obtained by reacting a chain extender with a diisocyanate.
 ウレタン系エラストマーを、長鎖ポリオールの種類によって分類すると、ポリエステル系ポリウレタンエラストマー、ポリエーテル系ポリウレタンエラストマー、及びポリカーボネート系ポリウレタンエラストマー等に分けられる。ウレタン系エラストマーは、1種を単独でまたは2種以上を組み合わせて使用することができる。本実施形態では、ウレタン系エラストマーは、大きく延伸させ易いという観点から、ポリエステル系ポリウレタンエラストマーまたはポリエーテル系ポリウレタンエラストマーであることが好ましい。 Urethane-based elastomers can be classified into polyester-based polyurethane elastomers, polyether-based polyurethane elastomers, polycarbonate-based polyurethane elastomers, and the like when classified according to the type of long-chain polyol. Urethane-based elastomers can be used alone or in combination of two or more. In the present embodiment, the urethane-based elastomer is preferably a polyester-based polyurethane elastomer or a polyether-based polyurethane elastomer from the viewpoint of being large and easy to stretch.
 長鎖ポリオールの例としては、ラクトン系ポリエステルポリオール、及びアジペート系ポリエステルポリオール等のポリエステルポリオール;ポリプロピレン(エチレン)ポリオール、及びポリテトラメチレンエーテルグリコール等のポリエーテルポリオール;ポリカーボネートポリオール等が挙げられる。本実施形態では、長鎖ポリオールは、大きく延伸させ易いという観点から、アジペート系ポリエステルポリオールであることが好ましい。 Examples of long-chain polyols include polyester polyols such as lactone-based polyester polyols and adipate-based polyester polyols; polypropylene (ethylene) polyols, and polyether polyols such as polytetramethylene ether glycol; polycarbonate polyols and the like. In the present embodiment, the long-chain polyol is preferably an adipate-based polyester polyol from the viewpoint of being large and easy to stretch.
 ジイソシアネートの例としては、2,4-トルエンジイソシアネート、2,6-トルエンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、及びヘキサメチレンジイソシアネート等が挙げられる。本実施形態では、ジイソシアネートは、大きく延伸させ易いという観点から、ヘキサメチレンジイソシアネートであることが好ましい。 Examples of diisocyanates include 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 4,4'-diphenylmethane diisocyanate, hexamethylene diisocyanate and the like. In the present embodiment, the diisocyanate is preferably hexamethylene diisocyanate from the viewpoint of being large and easy to stretch.
 鎖延長剤としては、低分子多価アルコール(例えば、1,4-ブタンジオール、及び1,6-ヘキサンジオール等)、及び芳香族ジアミン等が挙げられる。これらのうち、大きく延伸させ易いという観点から、1,6-ヘキサンジオールを使用することが好ましい。 Examples of the chain extender include low molecular weight polyhydric alcohols (for example, 1,4-butanediol, 1,6-hexanediol, etc.), aromatic diamines, and the like. Of these, 1,6-hexanediol is preferably used from the viewpoint of being easy to stretch significantly.
 オレフィン系エラストマーとしては、エチレン・α-オレフィン共重合体、プロピレン・α-オレフィン共重合体、ブテン・α-オレフィン共重合体、エチレン・プロピレン・α-オレフィン共重合体、エチレン・ブテン・α-オレフィン共重合体、プロピレン・ブテン-αオレフィン共重合体、エチレン・プロピレン・ブテン-α・オレフィン共重合体、スチレン・イソプレン共重合体、及びスチレン・エチレン・ブチレン共重合体からなる群より選ばれる少なくとも1種の樹脂を含むエラストマーが挙げられる。オレフィン系エラストマーは、1種を単独でまたは2種以上を組み合わせて使用することができる。 Examples of the olefin-based elastomer include ethylene / α-olefin copolymer, propylene / α-olefin copolymer, butene / α-olefin copolymer, ethylene / propylene / α-olefin copolymer, and ethylene / butene / α-. Selected from the group consisting of olefin copolymers, propylene / butene-α olefin copolymers, ethylene / propylene / butene-α / olefin copolymers, styrene / isoprene copolymers, and styrene / ethylene / butylene copolymers. Examples thereof include an elastomer containing at least one kind of resin. The olefin-based elastomer may be used alone or in combination of two or more.
 オレフィン系エラストマーの密度は、特に限定されない。例えば、オレフィン系エラストマーの密度は、0.860g/cm以上、0.905g/cm未満であることが好ましく、0.862g/cm以上、0.900g/cm未満であることがより好ましく、0.864g/cm以上、0.895g/cm未満であることが特に好ましい。オレフィン系エラストマーの密度が上記範囲を満たすことで、基材は、被着体としての半導体ウエハを粘着シートに貼付する時の凹凸追従性等に優れる。 The density of the olefin elastomer is not particularly limited. For example, the density of the olefin elastomers, 0.860 g / cm 3 or more is preferably less than 0.905g / cm 3, 0.862g / cm 3 or more, more is less than 0.900 g / cm 3 It is preferably 0.864 g / cm 3 or more and less than 0.895 g / cm 3. When the density of the olefin-based elastomer satisfies the above range, the base material is excellent in unevenness followability when the semiconductor wafer as an adherend is attached to the pressure-sensitive adhesive sheet.
 オレフィン系エラストマーは、このエラストマーを形成するために用いた全単量体のうち、オレフィン系化合物からなる単量体の質量比率(本明細書において「オレフィン含有率」ともいう。)が50質量%以上、100質量%以下であることが好ましい。
 オレフィン含有率が過度に低い場合には、オレフィンに由来する構造単位を含むエラストマーとしての性質が現れにくくなり、基材は、柔軟性及びゴム弾性を示し難くなる。
 柔軟性及びゴム弾性を安定的に得る観点から、オレフィン含有率は50質量%以上であることが好ましく、60質量%以上であることがより好ましい。
The olefin-based elastomer has a mass ratio of a monomer composed of an olefin-based compound (also referred to as “olefin content” in the present specification) of 50% by mass among all the monomers used for forming the elastomer. As mentioned above, it is preferably 100% by mass or less.
When the olefin content is excessively low, the properties of the elastomer containing the structural unit derived from the olefin are less likely to appear, and the base material is less likely to exhibit flexibility and rubber elasticity.
From the viewpoint of stably obtaining flexibility and rubber elasticity, the olefin content is preferably 50% by mass or more, and more preferably 60% by mass or more.
 スチレン系エラストマーとしては、スチレン-共役ジエン共重合体、及びスチレン-オレフィン共重合体等が挙げられる。スチレン-共役ジエン共重合体の具体例としては、スチレン-ブタジエン共重合体、スチレン-ブタジエン-スチレン共重合体(SBS)、スチレン-ブタジエン-ブチレン-スチレン共重合体、スチレン-イソプレン共重合体、スチレン-イソプレン-スチレン共重合体(SIS)、スチレン-エチレン-イソプレン-スチレン共重合体等の未水添スチレン-共役ジエン共重合体、スチレン-エチレン/プロピレン-スチレン共重合体(SEPS、スチレン-イソプレン-スチレン共重合体の水添加物)、及びスチレン-エチレン-ブチレン-スチレン共重合体(SEBS、スチレン-ブタジエン共重合体の水素添加物)等の水添スチレン-共役ジエン共重合体等を挙げることができる。また、工業的には、スチレン系エラストマーとしては、タフプレン(旭化成株式会社製)、クレイトン(クレイトンポリマージャパン株式会社製)、住友TPE-SB(住友化学株式会社製)、エポフレンド(株式会社ダイセル製)、ラバロン(三菱ケミカル株式会社製)、セプトン(株式会社クラレ製)、及びタフテック(旭化成株式会社製)等の商品名が挙げられる。スチレン系エラストマーは、水素添加物でも未水添物であってもよい。スチレン系エラストマーは、1種を単独でまたは2種以上を組み合わせて使用することができる。 Examples of the styrene-based elastomer include a styrene-conjugated diene copolymer and a styrene-olefin copolymer. Specific examples of the styrene-conjugated diene copolymer include styrene-butadiene copolymer, styrene-butadiene-styrene copolymer (SBS), styrene-butadiene-butylene-styrene copolymer, and styrene-isoprene copolymer. Unhydrogenated styrene-conjugated diene copolymers such as styrene-isoprene-styrene copolymer (SIS), styrene-ethylene-isoprene-styrene copolymers, styrene-ethylene / propylene-styrene copolymers (SEPS, styrene- Hydroadditives of isoprene-styrene copolymers) and hydrogenated styrene-conjugated diene copolymers such as styrene-ethylene-butylene-styrene copolymers (SEBS, hydrogenated additives of styrene-butadiene copolymers). Can be mentioned. Industrially, as styrene-based elastomers, Toughprene (manufactured by Asahi Kasei Corporation), Clayton (manufactured by Kraton Polymer Japan Co., Ltd.), Sumitomo TPE-SB (manufactured by Sumitomo Chemical Co., Ltd.), Epofriend (manufactured by Daicel Co., Ltd.) ), Lavalon (manufactured by Mitsubishi Chemical Co., Ltd.), Septon (manufactured by Kuraray Co., Ltd.), and Tough Tech (manufactured by Asahi Kasei Corporation). The styrene-based elastomer may be hydrogenated or unhydrogenated. The styrene-based elastomer may be used alone or in combination of two or more.
 ゴム系材料としては、例えば、天然ゴム、合成イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)、クロロプレンゴム(CR)、アクリロニトリル-ブタジエン共重合ゴム(NBR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム、アクリルゴム、ウレタンゴム、及び多硫化ゴム等が挙げられる。ゴム系材料は、これらの1種を単独でまたは2種以上を組み合わせて使用することができる。 Examples of the rubber-based material include natural rubber, synthetic isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), acrylonitrile-butadiene copolymer rubber (NBR), and butyl rubber ( IIR), butyl halide rubber, acrylic rubber, urethane rubber, polysulfide rubber and the like can be mentioned. As the rubber-based material, one of these can be used alone or in combination of two or more.
 基材は、上記のような材料(例えば、熱可塑性エラストマー、またはゴム系材料)からなるフィルムが、複数、積層された積層フィルムでもよい。また、基材は、上記のような材料(例えば、熱可塑性エラストマー、またはゴム系材料)からなるフィルムと、その他のフィルムとが積層された積層フィルムでもよい。 The base material may be a laminated film in which a plurality of films made of the above materials (for example, a thermoplastic elastomer or a rubber-based material) are laminated. Further, the base material may be a laminated film in which a film made of the above materials (for example, a thermoplastic elastomer or a rubber-based material) and another film are laminated.
 基材は、上記の樹脂系材料を主材料とするフィルム内に、添加剤を含んでいてもよい。
 添加剤としては、例えば、顔料、染料、難燃剤、可塑剤、帯電防止剤、滑剤、及びフィラー等が挙げられる。顔料としては、例えば、二酸化チタン、及びカーボンブラック等が挙げられる。また、フィラーとしては、メラミン樹脂のような有機系材料、ヒュームドシリカのような無機系材料、及びニッケル粒子のような金属系材料が例示される。こうした添加剤の含有量は特に限定されないが、基材が所望の機能を発揮し得る範囲に留めることが好ましい。
The base material may contain an additive in a film containing the above resin-based material as a main material.
Examples of the additive include pigments, dyes, flame retardants, plasticizers, antistatic agents, lubricants, fillers and the like. Examples of the pigment include titanium dioxide, carbon black and the like. Examples of the filler include organic materials such as melamine resin, inorganic materials such as fumed silica, and metallic materials such as nickel particles. The content of such additives is not particularly limited, but it is preferable to keep the content within a range in which the base material can exhibit a desired function.
 基材は、第一の基材面及び第二の基材面の少なくともいずれかに積層される粘着剤層との密着性を向上させる目的で、所望により片面または両面に、表面処理、またはプライマー処理が施されていてもよい。表面処理としては、酸化法、及び凹凸化法等が挙げられる。プライマー処理としては、基材表面にプライマー層を形成する方法が挙げられる。酸化法としては、例えば、コロナ放電処理、プラズマ放電処理、クロム酸化処理(湿式)、火炎処理、熱風処理、オゾン処理、及び紫外線照射処理等が挙げられる。凹凸化法としては、例えば、サンドブラスト法、及び溶射処理法等が挙げられる。 The substrate is surface-treated or primer on one or both sides, if desired, for the purpose of improving adhesion to the pressure-sensitive adhesive layer laminated on at least one of the first substrate surface and the second substrate surface. It may be treated. Examples of the surface treatment include an oxidation method and an unevenness method. Examples of the primer treatment include a method of forming a primer layer on the surface of the base material. Examples of the oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone treatment, ultraviolet irradiation treatment and the like. Examples of the unevenness method include a sandblasting method and a thermal spraying treatment method.
 粘着剤層がエネルギー線硬化性粘着剤を含有する場合、基材は、エネルギー線に対する透過性を有することが好ましい。エネルギー線として紫外線を用いる場合には、基材は、紫外線に対して透過性を有することが好ましい。エネルギー線として電子線を用いる場合には、基材は、電子線の透過性を有することが好ましい。 When the pressure-sensitive adhesive layer contains an energy ray-curable pressure-sensitive adhesive, the base material preferably has permeability to energy rays. When ultraviolet rays are used as energy rays, the base material preferably has transparency to ultraviolet rays. When an electron beam is used as the energy ray, the base material preferably has the transparency of the electron beam.
 基材の厚さは、粘着シートが所望の工程において適切に機能できる限り、限定されない。基材の厚さは、20μm以上であることが好ましく、40μm以上であることがより好ましい。また、基材の厚さは、250μm以下であることが好ましく、200μm以下であることがより好ましい。 The thickness of the base material is not limited as long as the adhesive sheet can function properly in the desired process. The thickness of the base material is preferably 20 μm or more, and more preferably 40 μm or more. The thickness of the base material is preferably 250 μm or less, more preferably 200 μm or less.
 また、基材の第一の基材面または第二の基材面の面内方向において2cm間隔で複数箇所の厚さを測定した際の、基材の厚さの標準偏差は、2μm以下であることが好ましく、1.5μm以下であることがより好ましく、1μm以下であることがさらに好ましい。当該標準偏差が2μm以下であることで、粘着シートは、精度の高い厚さを有しており、粘着シートを均一に延伸することが可能となる。 Further, the standard deviation of the thickness of the base material is 2 μm or less when the thickness of a plurality of places is measured at intervals of 2 cm in the in-plane direction of the first base material surface or the second base material surface of the base material. It is preferably 1.5 μm or less, more preferably 1 μm or less. When the standard deviation is 2 μm or less, the pressure-sensitive adhesive sheet has a highly accurate thickness, and the pressure-sensitive adhesive sheet can be uniformly stretched.
 23℃において基材のMD方向及びCD方向の引張弾性率が、それぞれ10MPa以上、350MPa以下であり、23℃において基材のMD方向及びCD方向の100%応力が、それぞれ3MPa以上、20MPa以下であることが好ましい。
 引張弾性率及び100%応力が上記範囲であることで、粘着シートを大きく延伸することが可能となる。
 基材の100%応力は、次のようにして得られる値である。100mm(長さ方向)×15mm(幅方向)の大きさの試験片を基材から切り出す。切り出した試験片の長さ方向の両端を、つかみ具間の長さが50mmとなるようにつかみ具でつかむ。つかみ具で試験片をつかんだ後、速度200mm/minで長さ方向に引張り、つかみ具間の長さが100mmとなったときの引張力の測定値を読み取る。基材の100%応力は、読み取った引張力の測定値を、基材の断面積で除算することで得られる値である。基材の断面積は、幅方向長さ15mm×基材(試験片)の厚みで算出される。当該切り出しは、基材の製造時における流れ方向(MD方向)またはMD方向に直交する方向(CD方向)と、試験片の長さ方向とが一致するように行う。なお、この引張試験において、試験片の厚さは特別に制限されず、試験の対象とする基材の厚さと同じであってよい。
The tensile elastic modulus in the MD direction and the CD direction of the base material at 23 ° C. is 10 MPa or more and 350 MPa or less, respectively, and the 100% stress in the MD direction and the CD direction of the base material at 23 ° C. is 3 MPa or more and 20 MPa or less, respectively. It is preferable to have.
When the tensile elastic modulus and 100% stress are in the above ranges, the pressure-sensitive adhesive sheet can be greatly stretched.
The 100% stress of the base material is a value obtained as follows. A test piece having a size of 100 mm (length direction) x 15 mm (width direction) is cut out from the base material. Grasp both ends of the cut out test piece in the length direction with a gripper so that the length between the grippers is 50 mm. After grasping the test piece with the gripping tool, the test piece is pulled in the length direction at a speed of 200 mm / min, and the measured value of the tensile force when the length between the gripping tools becomes 100 mm is read. The 100% stress of the base material is a value obtained by dividing the read measured value of the tensile force by the cross-sectional area of the base material. The cross-sectional area of the base material is calculated by the length in the width direction of 15 mm × the thickness of the base material (test piece). The cutting is performed so that the flow direction (MD direction) or the direction orthogonal to the MD direction (CD direction) at the time of manufacturing the base material coincides with the length direction of the test piece. In this tensile test, the thickness of the test piece is not particularly limited and may be the same as the thickness of the base material to be tested.
 23℃において基材のMD方向及びCD方向の破断伸度が、それぞれ100%以上であることが好ましい。
 基材のMD方向及びCD方向の破断伸度が、それぞれ100%以上であることで、破断が生じることなく、粘着シートを大きく延伸することが可能となる。
It is preferable that the elongation at break in the MD direction and the CD direction of the base material at 23 ° C. is 100% or more, respectively.
When the breaking elongation of the base material in the MD direction and the breaking elongation in the CD direction is 100% or more, the pressure-sensitive adhesive sheet can be greatly stretched without breaking.
 基材の引張弾性率(MPa)及び基材の破断伸度(%)は、次のようにして測定できる。基材を15mm×140mmに裁断して試験片を得る。当該試験片について、JIS K7161:2014及びJIS K7127:1999に準拠して、23℃における破断伸度及び引張弾性率を測定する。具体的には、上記試験片を、引張試験機(株式会社島津製作所製,製品名「オートグラフAG-IS 500N」)にて、チャック間距離100mmに設定した後、200mm/minの速度で引張試験を行い、破断伸度(%)及び引張弾性率(MPa)を測定する。なお、測定は、基材の製造時の流れ方向(MD)及びこれに直角の方向(CD)の双方で行う。 The tensile elastic modulus (MPa) of the base material and the breaking elongation (%) of the base material can be measured as follows. The base material is cut into 15 mm × 140 mm to obtain a test piece. For the test piece, the elongation at break and the tensile elastic modulus at 23 ° C. are measured in accordance with JIS K7161: 2014 and JIS K7127: 1999. Specifically, the above test piece is pulled at a speed of 200 mm / min after setting the distance between chucks to 100 mm with a tensile tester (manufactured by Shimadzu Corporation, product name "Autograph AG-IS 500N"). Perform the test and measure the elongation at break (%) and the tensile elastic modulus (MPa). The measurement is performed in both the flow direction (MD) at the time of manufacturing the base material and the direction perpendicular to the flow direction (CD).
(粘着シートの物性)
 本実施形態に係る粘着シートを、第一方向、第一方向とは反対方向である第二方向、第一方向に対して鉛直方向である第三方向、及び第三方向とは反対方向である第四方向に伸長させて、伸長前の粘着シートの面積S1と、伸長後の粘着シートの面積S2との面積比(S2/S1)×100が300%であるときに、基材及び粘着剤層が破断しないことが好ましい。第一方向、第二方向、第三方向及び第四方向は、それぞれ、例えば、後述する2軸延伸の+X軸方向、-X軸方向、+Y軸方向、及び-Y軸方向の4方向と対応していることが好ましい。4方向に伸長させるための装置としては、例えば、後述するエキスパンド装置が挙げられる。
(Physical characteristics of adhesive sheet)
The adhesive sheet according to the present embodiment has a first direction, a second direction opposite to the first direction, a third direction perpendicular to the first direction, and a direction opposite to the third direction. When the area ratio (S2 / S1) × 100 of the area S1 of the pressure-sensitive adhesive sheet before stretching and the area S2 of the pressure-sensitive adhesive sheet after stretching is 300%, the base material and the pressure-sensitive adhesive are stretched in the fourth direction. It is preferable that the layer does not break. The first direction, the second direction, the third direction, and the fourth direction correspond to, for example, the four directions of the biaxial stretching + X-axis direction, -X-axis direction, + Y-axis direction, and -Y-axis direction, which will be described later, respectively. It is preferable to do so. Examples of the device for extending in four directions include an expanding device described later.
(剥離シート)
 本実施形態に係る粘着シートは、粘着剤層の粘着面を被着体(例えば、半導体チップ等)に貼付するまでの間、粘着面を保護する目的で、粘着面に剥離シートが積層されていてもよい。剥離シートの構成は任意である。剥離シートの例としては、剥離剤等により剥離処理したプラスチックフィルムが例示される。
 プラスチックフィルムの具体例としては、ポリエステルフィルム、及びポリオレフィンフィルムが挙げられる。ポリエステルフィルムとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、又はポリエチレンナフタレート等のフィルムが挙げられる。ポリオレフィンフィルムとしては、例えば、ポリプロピレン、又はポリエチレン等のフィルムが挙げられる。
 剥離剤としては、シリコーン系、フッ素系、及び長鎖アルキル系等を用いることができる。これら剥離剤の中で、安価で安定した性能が得られるシリコーン系が好ましい。
 剥離シートの厚さについては、特に限定されない。剥離シートの厚さは、通常、20μm以上、250μm以下である。
(Release sheet)
In the pressure-sensitive adhesive sheet according to the present embodiment, a release sheet is laminated on the pressure-sensitive adhesive surface for the purpose of protecting the pressure-sensitive adhesive surface until the pressure-sensitive adhesive surface of the pressure-sensitive adhesive layer is attached to an adherend (for example, a semiconductor chip or the like). You may. The structure of the release sheet is arbitrary. Examples of the release sheet include a plastic film that has been peeled off with a release agent or the like.
Specific examples of the plastic film include a polyester film and a polyolefin film. Examples of the polyester film include films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate. Examples of the polyolefin film include a film such as polypropylene or polyethylene.
As the release agent, silicone-based, fluorine-based, long-chain alkyl-based, and the like can be used. Among these release agents, a silicone type that can obtain stable performance at low cost is preferable.
The thickness of the release sheet is not particularly limited. The thickness of the release sheet is usually 20 μm or more and 250 μm or less.
(粘着シートの製造方法)
 本実施形態に係る粘着シートは、従来の粘着シートと同様に製造できる。
 粘着シートの製造方法は、前述の粘着剤層を基材の一の面に積層できれば、特に詳細には限定されない。
 粘着シートの製造方法の一例としては、次のような方法が挙げられる。まず、粘着剤層を構成する粘着性組成物、及び所望によりさらに溶媒または分散媒を含有する塗工液を調製する。次に、塗工液を、基材の一の面上に、塗布手段により塗布して塗膜を形成する。塗布手段としては、例えば、ダイコーター、カーテンコーター、スプレーコーター、スリットコーター、及びナイフコーター等が挙げられる。次に、当該塗膜を乾燥させることにより、粘着剤層を形成できる。塗工液は、塗布を行うことが可能であれば、その性状は特に限定されない。塗工液は、粘着剤層を形成するための成分を溶質として含有する場合もあれば、粘着剤層を形成するための成分を分散質として含有する場合もある。
(Manufacturing method of adhesive sheet)
The pressure-sensitive adhesive sheet according to this embodiment can be manufactured in the same manner as the conventional pressure-sensitive adhesive sheet.
The method for producing the pressure-sensitive adhesive sheet is not particularly limited as long as the above-mentioned pressure-sensitive adhesive layer can be laminated on one surface of the base material.
The following methods can be mentioned as an example of the method for manufacturing the adhesive sheet. First, a pressure-sensitive composition constituting the pressure-sensitive adhesive layer and, if desired, a coating liquid further containing a solvent or a dispersion medium are prepared. Next, the coating liquid is applied onto one surface of the base material by the coating means to form a coating film. Examples of the coating means include a die coater, a curtain coater, a spray coater, a slit coater, a knife coater and the like. Next, the pressure-sensitive adhesive layer can be formed by drying the coating film. The properties of the coating liquid are not particularly limited as long as it can be applied. The coating liquid may contain a component for forming the pressure-sensitive adhesive layer as a solute, or may contain a component for forming the pressure-sensitive adhesive layer as a dispersoid.
 また、粘着シートの製造方法の別の一例としては、次のような方法が挙げられる。まず、前述の剥離シートの剥離面上に塗工液を塗布して塗膜を形成する。次に、塗膜を乾燥させて粘着剤層と剥離シートとからなる積層体を形成する。次に、この積層体の粘着剤層における剥離シート側の面と反対側の面に、基材を貼付して、粘着シートと剥離シートとの積層体を得てもよい。この積層体における剥離シートは、工程材料として剥離してもよいし、粘着剤層に被着体(例えば、半導体チップ、及び半導体ウエハ等)が貼付されるまで、粘着剤層を保護していてもよい。 Further, as another example of the method for manufacturing the adhesive sheet, the following method can be mentioned. First, a coating liquid is applied on the peeled surface of the above-mentioned peeling sheet to form a coating film. Next, the coating film is dried to form a laminate composed of an adhesive layer and a release sheet. Next, a base material may be attached to the surface of the pressure-sensitive adhesive layer of the laminated body opposite to the surface on the release sheet side to obtain a laminate of the pressure-sensitive adhesive sheet and the release sheet. The release sheet in this laminate may be peeled off as a process material, or protects the pressure-sensitive adhesive layer until an adherend (for example, a semiconductor chip, a semiconductor wafer, etc.) is attached to the pressure-sensitive adhesive layer. May be good.
 塗工液が架橋剤を含有する場合には、塗膜の乾燥の条件(例えば、温度、及び時間等)を変えることにより、または加熱処理を、別途、行うことにより、塗膜内の(メタ)アクリル系共重合体(b1)と架橋剤との架橋反応を進行させ、粘着剤層内に所望の存在密度で架橋構造を形成させればよい。この架橋反応を十分に進行させるために、上述の方法等によって基材に粘着剤層を積層させた後、得られた粘着シートを、例えば、23℃、相対湿度50%の環境に数日間静置するといった養生を行ってもよい。 When the coating liquid contains a cross-linking agent, it is possible to change the drying conditions (for example, temperature, time, etc.) of the coating film, or by separately performing a heat treatment (meta) in the coating film. ) The cross-linking reaction between the acrylic copolymer (b1) and the cross-linking agent may be allowed to proceed to form a cross-linked structure in the pressure-sensitive adhesive layer at a desired abundance density. In order to allow this cross-linking reaction to proceed sufficiently, after laminating the pressure-sensitive adhesive layer on the base material by the above-mentioned method or the like, the obtained pressure-sensitive adhesive sheet is allowed to stand in an environment of, for example, 23 ° C. and a relative humidity of 50% for several days. You may perform curing such as placing.
 本実施形態に係る粘着シートの厚さは、30μm以上であることが好ましく、50μm以上であることがより好ましい。また、粘着シートの厚さは、400μm以下であることが好ましく、300μm以下であることがより好ましい。 The thickness of the pressure-sensitive adhesive sheet according to this embodiment is preferably 30 μm or more, and more preferably 50 μm or more. The thickness of the pressure-sensitive adhesive sheet is preferably 400 μm or less, and more preferably 300 μm or less.
[粘着シートの使用方法]
 本実施形態に係る粘着シートは、様々な被着体に貼着できるため、本実施形態に係る粘着シートを適用できる被着体は、特に限定されない。例えば、被着体としては、半導体チップ、及び半導体ウエハであることが好ましい。
[How to use the adhesive sheet]
Since the pressure-sensitive adhesive sheet according to the present embodiment can be attached to various adherends, the adherend to which the pressure-sensitive adhesive sheet according to the present embodiment can be applied is not particularly limited. For example, the adherend is preferably a semiconductor chip and a semiconductor wafer.
 本実施形態に係る粘着シートは、例えば、半導体加工用に用いることができる。
 さらに、本実施形態に係る粘着シートは、片面に貼着された複数の半導体チップの間隔を拡げるために使用することができる。
The pressure-sensitive adhesive sheet according to this embodiment can be used, for example, for semiconductor processing.
Further, the pressure-sensitive adhesive sheet according to the present embodiment can be used to increase the distance between a plurality of semiconductor chips attached to one side.
 複数の半導体チップの拡張間隔は、半導体チップのサイズに依存するため、特に制限されない。本実施形態に係る粘着シートは、粘着シートの片面に貼着された複数の半導体チップにおける、隣り合う半導体チップの相互の間隔を、200μm以上拡げるために使用することが好ましい。なお、当該半導体チップの相互の間隔の上限は、特に制限されない。当該半導体チップの相互の間隔の上限は、例えば、6000μmであってもよい。 The expansion interval of a plurality of semiconductor chips depends on the size of the semiconductor chips, and is not particularly limited. The pressure-sensitive adhesive sheet according to the present embodiment is preferably used to widen the distance between adjacent semiconductor chips in a plurality of semiconductor chips attached to one side of the pressure-sensitive adhesive sheet by 200 μm or more. The upper limit of the distance between the semiconductor chips is not particularly limited. The upper limit of the distance between the semiconductor chips may be, for example, 6000 μm.
 また、本実施形態に係る粘着シートは、少なくとも2軸延伸によって、粘着シートの片面に積層された複数の半導体チップの間隔を拡げる場合にも使用することができる。この場合、粘着シートは、例えば、互いに直交するX軸及びY軸における、+X軸方向、-X軸方向、+Y軸方向、及び-Y軸方向の4方向に張力を付与して引き延ばされ、より具体的には、基材におけるMD方向及びCD方向にそれぞれ引き延ばされる。 Further, the pressure-sensitive adhesive sheet according to the present embodiment can also be used when the distance between a plurality of semiconductor chips laminated on one side of the pressure-sensitive adhesive sheet is widened by at least biaxial stretching. In this case, the adhesive sheet is stretched by applying tension in four directions of + X-axis direction, -X-axis direction, + Y-axis direction, and -Y-axis direction, for example, in the X-axis and Y-axis orthogonal to each other. More specifically, it is stretched in the MD direction and the CD direction of the base material, respectively.
 上記のような2軸延伸は、例えば、X軸方向、及びY軸方向に張力を付与する離間装置を使用して行うことができる。ここで、X軸及びY軸は直交するものとし、X軸に平行な方向のうちの1つを+X軸方向、当該+X軸方向に反対の方向を-X軸方向、Y軸に平行な方向のうちの1つを+Y軸方向、当該+Y軸方向に反対の方向を-Y軸方向とする。 Biaxial stretching as described above can be performed using, for example, a separation device that applies tension in the X-axis direction and the Y-axis direction. Here, it is assumed that the X-axis and the Y-axis are orthogonal to each other, one of the directions parallel to the X-axis is the + X-axis direction, the direction opposite to the + X-axis direction is the -X-axis direction, and the direction parallel to the Y-axis. One of them is defined as the + Y-axis direction, and the direction opposite to the + Y-axis direction is defined as the −Y-axis direction.
 上記離間装置は、粘着シートに対して、+X軸方向、-X軸方向、+Y軸方向、及び-Y軸方向の4方向に張力を付与し、この4方向のそれぞれについて、複数の保持手段と、それらに対応する複数の張力付与手段とを備えることが好ましい。各方向における、保持手段及び張力付与手段の数は、粘着シートの大きさにもよるが、例えば、3個以上、10個以下程度であってもよい。 The separating device applies tension to the adhesive sheet in four directions of + X-axis direction, -X-axis direction, + Y-axis direction, and -Y-axis direction, and with a plurality of holding means in each of the four directions. , It is preferable to provide a plurality of tension applying means corresponding to them. The number of holding means and tension applying means in each direction depends on the size of the pressure-sensitive adhesive sheet, but may be, for example, about 3 or more and 10 or less.
 ここで、例えば+X軸方向に張力を付与するために備えられた、複数の保持手段と複数の張力付与手段とを含む群において、それぞれの保持手段は、粘着シートを保持する保持部材を備え、それぞれの張力付与手段は、当該張力付与手段に対応した保持部材を+X軸方向に移動させて粘着シートに張力を付与することが好ましい。そして、複数の張力付与手段は、それぞれ独立に、保持手段を+X軸方向に移動させるように設けられていることが好ましい。また、-X軸方向、+Y軸方向及び-Y軸方向にそれぞれ張力を付与するために備えられた、複数の保持手段と複数の張力付与手段とを含む3つの群においても、同様の構成を有することが好ましい。これにより、上記離間装置は、各方向に直交する方向の領域ごとに、粘着シートに対して異なる大きさの張力を付与することができる。 Here, for example, in a group including a plurality of holding means and a plurality of tension applying means provided for applying tension in the + X axis direction, each holding means includes a holding member for holding the adhesive sheet. It is preferable that each tension applying means applies tension to the pressure-sensitive adhesive sheet by moving the holding member corresponding to the tension applying means in the + X-axis direction. Then, it is preferable that the plurality of tension applying means are independently provided so as to move the holding means in the + X axis direction. Further, the same configuration is also applied to three groups including a plurality of holding means and a plurality of tension applying means provided for applying tension in the −X axis direction, the + Y axis direction, and the −Y axis direction, respectively. It is preferable to have. As a result, the separation device can apply a different magnitude of tension to the pressure-sensitive adhesive sheet for each region in the direction orthogonal to each direction.
 一般に、4つの保持部材を用いて粘着シートを、+X軸方向、-X軸方向、+Y軸方向及び-Y軸方向の4方向からそれぞれ保持し、当該4方向に延伸する場合、粘着シートにはこれら4方向に加え、これらの合成方向(例えば、+X軸方向と+Y軸方向との合成方向、+Y軸方向と-X軸方向との合成方向、-X軸方向と-Y軸方向との合成方向及び-Y軸方向と+X軸方向との合成方向)にも張力が付与される。その結果、粘着シートの内側領域における半導体チップの間隔と外側領域における半導体チップとの間隔に違いが生じることがある。 Generally, when the pressure-sensitive adhesive sheet is held from four directions of + X-axis direction, -X-axis direction, + Y-axis direction and -Y-axis direction by using four holding members and stretched in the four directions, the pressure-sensitive adhesive sheet is formed. In addition to these four directions, these composite directions (for example, the composite direction of the + X-axis direction and the + Y-axis direction, the composite direction of the + Y-axis direction and the -X-axis direction, and the composite of the -X-axis direction and the -Y-axis direction). Tension is also applied in the direction and the combined direction of the −Y axis direction and the + X axis direction). As a result, there may be a difference between the distance between the semiconductor chips in the inner region of the pressure-sensitive adhesive sheet and the distance between the semiconductor chips in the outer region.
 しかしながら、上述した離間装置では、+X軸方向、-X軸方向、+Y軸方向及び-Y軸方向のそれぞれの方向において、複数の張力付与手段がそれぞれ独立に粘着シートに張力を付与することができるため、上述したような粘着シートの内側と外側との間隔の違いが解消されるように、粘着シートを延伸することができる。
 その結果、半導体チップの間隔を正確に調整することができる。
However, in the separation device described above, a plurality of tension applying means can independently apply tension to the pressure-sensitive adhesive sheet in each of the + X-axis direction, the −X-axis direction, the + Y-axis direction, and the −Y-axis direction. Therefore, the pressure-sensitive adhesive sheet can be stretched so that the difference in the distance between the inside and the outside of the pressure-sensitive adhesive sheet as described above is eliminated.
As a result, the distance between the semiconductor chips can be adjusted accurately.
 上記離間装置は、半導体チップの相互間隔を測定する測定手段をさらに備えることが好ましい。ここにおいて、上記張力付与手段は、測定手段の測定結果を基に、複数の保持部材を個別に移動可能に設けられていることが好ましい。上記離間装置が測定手段を備えることにより、上記測定手段による半導体チップの間隔の測定結果に基づいて、当該間隔をさらに調整することが可能となる結果、半導体チップの間隔をより正確に調整することが可能となる。 It is preferable that the separation device further includes a measuring means for measuring the mutual distance between the semiconductor chips. Here, it is preferable that the tension applying means is provided so that a plurality of holding members can be individually moved based on the measurement results of the measuring means. When the separation device is provided with the measuring means, the distance can be further adjusted based on the measurement result of the distance between the semiconductor chips by the measuring means, and as a result, the distance between the semiconductor chips can be adjusted more accurately. Is possible.
 なお、上記離間装置において、保持手段としては、チャック手段、及び減圧手段が挙げられる。チャック手段としては、例えば、メカチャック、及びチャックシリンダ等が挙げられる。減圧手段としては、例えば、減圧ポンプ、及び真空エジェクタ等が挙げられる。また、上記離間装置において、保持手段としては、接着剤、もしくは磁力等で粘着シートを支持する構成であってもよい。また、チャック手段における保持部材としては、例えば、粘着シートを下から支持する下支持部材と、下支持部材に支持された駆動機器と、駆動機器の出力軸に支持され、駆動機器が駆動することで粘着シートを上から押さえつけることが可能な上支持部材とを備えた構成を有する保持部材を使用することができる。当該駆動機器としては、例えば、電動機器、及びアクチュエータ等が挙げられる。電動機器としては、例えば、回動モータ、直動モータ、リニアモータ、単軸ロボット、及び多関節ロボット等が挙げられる。アクチュエータとしては、例えば、エアシリンダ、油圧シリンダ、ロッドレスシリンダ、及びロータリシリンダ等が挙げられる。 In the separation device, examples of the holding means include a chucking means and a depressurizing means. Examples of the chucking means include a mechanical chuck and a chuck cylinder. Examples of the decompression means include a decompression pump, a vacuum ejector, and the like. Further, in the separation device, the holding means may be configured to support the pressure-sensitive adhesive sheet with an adhesive, a magnetic force, or the like. Further, as the holding member in the chuck means, for example, a lower support member that supports the adhesive sheet from below, a drive device that is supported by the lower support member, and a drive device that is supported by the output shaft of the drive device to drive the drive device. A holding member having a structure including an upper support member capable of pressing the adhesive sheet from above can be used. Examples of the drive device include an electric device, an actuator, and the like. Examples of the electric device include a rotary motor, a linear motor, a linear motor, a single-axis robot, an articulated robot, and the like. Examples of the actuator include an air cylinder, a hydraulic cylinder, a rodless cylinder, a rotary cylinder, and the like.
 また、上記離間装置において、張力付与手段は、駆動機器を備え、当該駆動機器により保持部材を移動させてもよい。張力付与手段が備える駆動機器としては、上述した保持部材が備える駆動機器と同様の駆動機器を使用することができる。例えば、張力付与手段は、駆動機器としての直動モータと、直動モータと保持部材との間に介在する出力軸とを備え、駆動した直動モータが出力軸を介して保持部材を移動させる構成であってよい。 Further, in the separation device, the tension applying means may include a drive device, and the holding member may be moved by the drive device. As the drive device included in the tension applying means, the same drive device as the drive device included in the holding member described above can be used. For example, the tension applying means includes a linear motor as a drive device and an output shaft interposed between the linear motor and the holding member, and the driven linear motor moves the holding member via the output shaft. It may be a configuration.
 本実施形態に係る粘着シートを用いて半導体チップの間隔を拡げる場合、半導体チップ同士が接触した状態、または半導体チップの間隔が殆ど拡げられていない状態からその間隔を拡げてもよく、あるいは、半導体チップ同士の間隔が既に所定の間隔まで拡げられた状態から、さらにその間隔を拡げてもよい。 When the distance between the semiconductor chips is widened by using the adhesive sheet according to the present embodiment, the distance may be widened from the state where the semiconductor chips are in contact with each other or the distance between the semiconductor chips is hardly widened, or the semiconductor. The distance between the chips may be further increased from the state in which the distance between the chips has already been increased to a predetermined distance.
 半導体チップ同士が接触した状態、または半導体チップの間隔が殆ど拡げられていない状態からその間隔を拡げる場合としては、例えば、ダイシングシート上において半導体ウエハを分割することで複数の半導体チップを得た後、当該ダイシングシートから本実施形態に係る粘着シートに複数の半導体チップを転写し、続いて、当該半導体チップの間隔を拡げることができる。あるいは、本実施形態に係る粘着シート上において半導体ウエハを分割して複数の半導体チップを得た後、当該半導体チップの間隔を拡げることもできる。 When the distance between the semiconductor chips is increased from the state where the semiconductor chips are in contact with each other or the distance between the semiconductor chips is hardly widened, for example, after obtaining a plurality of semiconductor chips by dividing the semiconductor wafer on a dicing sheet. , A plurality of semiconductor chips can be transferred from the dicing sheet to the pressure-sensitive adhesive sheet according to the present embodiment, and subsequently, the distance between the semiconductor chips can be widened. Alternatively, after the semiconductor wafer is divided on the pressure-sensitive adhesive sheet according to the present embodiment to obtain a plurality of semiconductor chips, the distance between the semiconductor chips can be widened.
 半導体チップ同士の間隔が既に所定の間隔まで拡げられた状態から、さらにその間隔を拡げる場合としては、その他の粘着シート、好ましくは本実施形態に係る粘着シート(第一延伸用粘着シート)を用いて半導体チップ同士の間隔を所定の間隔まで拡げた後、当該シート(第一延伸用粘着シート)から本実施形態に係る粘着シート(第二延伸用粘着シート)に半導体チップを転写し、続いて、本実施形態に係る粘着シート(第二延伸用粘着シート)を延伸することで、半導体チップの間隔をさらに拡げることができる。なお、このような半導体チップの転写と粘着シートの延伸は、半導体チップの間隔が所望の距離となるまで複数回繰り返してもよい。 When the distance between the semiconductor chips has already been widened to a predetermined distance and the distance is further widened, another pressure-sensitive adhesive sheet, preferably the pressure-sensitive adhesive sheet according to the present embodiment (first stretching pressure-sensitive adhesive sheet) is used. After expanding the distance between the semiconductor chips to a predetermined distance, the semiconductor chips are transferred from the sheet (adhesive sheet for first stretching) to the adhesive sheet (adhesive sheet for second stretching) according to the present embodiment, and subsequently. By stretching the pressure-sensitive adhesive sheet (the pressure-sensitive adhesive sheet for second stretching) according to the present embodiment, the distance between the semiconductor chips can be further increased. The transfer of the semiconductor chip and the stretching of the pressure-sensitive adhesive sheet may be repeated a plurality of times until the distance between the semiconductor chips reaches a desired distance.
[半導体ウエハレベルパッケージ(FO-WLP)の製造方法]
 本実施形態に係る粘着シートは、半導体チップの間隔を比較的大きく離間させることが求められる用途への使用が好ましく、このような用途の例としては、ファンアウト型の半導体ウエハレベルパッケージ(FO-WLP)の製造方法が好ましく挙げられる。このようなFO-WLPの製造方法の例として、以下に説明する第一態様が挙げられる。
[Manufacturing method of semiconductor wafer level package (FO-WLP)]
The pressure-sensitive adhesive sheet according to the present embodiment is preferably used for applications that require a relatively large distance between semiconductor chips, and an example of such applications is a fan-out type semiconductor wafer level package (FO-). A method for producing WLP) is preferably mentioned. As an example of such a method for producing FO-WLP, the first aspect described below can be mentioned.
(第一態様)
 以下、本実施形態に係る粘着シートを使用したFO-WLPの製造方法の第一態様を説明する。なお、この第一態様において、本実施形態に係る粘着シートは、後述する第一の粘着シート10として使用される。
(First aspect)
Hereinafter, the first aspect of the method for producing FO-WLP using the pressure-sensitive adhesive sheet according to the present embodiment will be described. In this first aspect, the pressure-sensitive adhesive sheet according to this embodiment is used as the first pressure-sensitive adhesive sheet 10 described later.
 図1Aには、第一の粘着シート10と、第一の粘着シート10に貼着された複数の半導体チップCPが示されている。 FIG. 1A shows a first adhesive sheet 10 and a plurality of semiconductor chip CPs attached to the first adhesive sheet 10.
 第一の粘着シート10は、第一の基材11と、第一の粘着剤層12とを有する。第一の基材11は、本実施形態に係る粘着シートの基材に対応する。第一の粘着剤層12は、本実施形態に係る粘着シートの粘着剤層に対応する。第一の基材11は、第一の基材面11Aと、第一の基材面11Aとは反対側の第二の基材面11Bとを有する。第一の粘着剤層12は、第一の基材面11Aに設けられている。第二の基材面11Bには、粘着剤層が設けられていない。
 本実施形態では、第一の粘着シート10がエキスパンドシートとして用いられる。
The first pressure-sensitive adhesive sheet 10 has a first base material 11 and a first pressure-sensitive adhesive layer 12. The first base material 11 corresponds to the base material of the pressure-sensitive adhesive sheet according to the present embodiment. The first pressure-sensitive adhesive layer 12 corresponds to the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet according to the present embodiment. The first base material 11 has a first base material surface 11A and a second base material surface 11B opposite to the first base material surface 11A. The first pressure-sensitive adhesive layer 12 is provided on the first base material surface 11A. No pressure-sensitive adhesive layer is provided on the second base material surface 11B.
In the present embodiment, the first pressure-sensitive adhesive sheet 10 is used as the expanding sheet.
 半導体チップCPは、回路面W1と、回路面W1とは反対側の裏面W3と、を有する。回路面W1には、回路W2が形成されている。 The semiconductor chip CP has a circuit surface W1 and a back surface W3 on the opposite side of the circuit surface W1. A circuit W2 is formed on the circuit surface W1.
 複数の半導体チップCPは、例えば、半導体ウエハをダイシングにより個片化することで形成されることが好ましい。
 ダイシングは、ダイシングシート等に貼着された半導体ウエハに対して実施されることが好ましい。ダイシングには、ダイシングソーなどの切断手段が用いられる。
 ダイシングは、上述の切断手段を用いる代わりに、半導体ウエハに対してレーザ光を照射して行ってもよい。例えば、レーザ光の照射により、半導体ウエハを完全に分断し、複数の半導体チップに個片化してもよい。
 あるいは、レーザ光の照射により半導体ウエハ内部に改質層を形成した後、後述するエキスパンド工程において、粘着シートを引き延ばすことで、半導体ウエハを改質層の位置で破断して、半導体チップCPに個片化してもよい。このようにして半導体チップに個片化する方法をステルスダイシングという場合がある。ステルスダイシングの場合、レーザ光の照射は、例えば、赤外域のレーザ光を、半導体ウエハの内部に設定された焦点に集束されるように照射する。また、これらの方法においては、レーザ光の照射は、半導体ウエハのいずれの側から行ってもよい。
 ダイシング後、複数の半導体チップCPは、エキスパンドシートに一括転写されることが好ましい。
The plurality of semiconductor chip CPs are preferably formed by, for example, individualizing a semiconductor wafer by dicing.
The dicing is preferably carried out on a semiconductor wafer attached to a dicing sheet or the like. For dicing, a cutting means such as a dicing saw is used.
Dicing may be performed by irradiating the semiconductor wafer with laser light instead of using the cutting means described above. For example, the semiconductor wafer may be completely divided by irradiation with laser light and individualized into a plurality of semiconductor chips.
Alternatively, after forming a modified layer inside the semiconductor wafer by irradiation with laser light, the adhesive sheet is stretched in the expanding step described later, thereby breaking the semiconductor wafer at the position of the modified layer and forming the semiconductor chip CP. It may be tidied up. The method of individualizing into a semiconductor chip in this way is sometimes called stealth dicing. In the case of stealth dicing, the irradiation of the laser beam irradiates, for example, the laser beam in the infrared region so as to be focused on the focal point set inside the semiconductor wafer. Further, in these methods, the laser beam irradiation may be performed from any side of the semiconductor wafer.
After dicing, the plurality of semiconductor chip CPs are preferably collectively transferred to the expanding sheet.
 本実施形態では、個片化された複数の半導体チップCPは、ダイシングシートから第一の粘着シート10に転写される。複数の半導体チップCPは、その回路面W1を第一の粘着剤層12に向けて貼着されている。 In the present embodiment, the plurality of fragmented semiconductor chip CPs are transferred from the dicing sheet to the first adhesive sheet 10. The plurality of semiconductor chip CPs are attached with their circuit surfaces W1 facing the first pressure-sensitive adhesive layer 12.
 図1Bには、複数の半導体チップCPを保持する第一の粘着シート10を引き延ばす工程(以下「エキスパンド工程」という場合がある。)を説明する図が示されている。 FIG. 1B shows a diagram illustrating a step of stretching the first pressure-sensitive adhesive sheet 10 holding a plurality of semiconductor chip CPs (hereinafter, may be referred to as an “expanding step”).
 第一の粘着シート10を引き延ばして、複数の半導体チップCP間の間隔を拡げる。また、ステルスダイシングを行った場合には、第一の粘着シート10を引き延ばすことで、半導体ウエハを改質層の位置で破断し、複数の半導体チップCPに個片化するとともに、複数の半導体チップCP間の間隔を拡げることができる。 The first adhesive sheet 10 is stretched to widen the distance between the plurality of semiconductor chip CPs. Further, when stealth dicing is performed, the first pressure-sensitive adhesive sheet 10 is stretched to break the semiconductor wafer at the position of the modified layer, and the semiconductor wafer is separated into a plurality of semiconductor chips CP and a plurality of semiconductor chips. The interval between CPs can be increased.
 エキスパンド工程において第一の粘着シート10を引き延ばす方法は、特に限定されない。第一の粘着シート10を引き延ばす方法としては、例えば、環状または円状のエキスパンダを押し当てて第一の粘着シート10を引き延ばす方法、及び把持部材などを用いて第一の粘着シート10の外周部を掴んで引き延ばす方法などが挙げられる。後者の方法としては、例えば、前述した離間装置等を使用して2軸延伸する方法が挙げられる。これらの方法の中でも、半導体チップCP間の間隔をより大きく拡げることが可能となるという観点から、2軸延伸する方法が好ましい。
 本実施形態に係る粘着シートを第一の粘着シート10として用いることで、半導体チップCPの粘着剤層側の端部が第一の粘着シート10から浮く現象(チップ浮き)を抑制できる。
The method of stretching the first pressure-sensitive adhesive sheet 10 in the expanding step is not particularly limited. As a method of stretching the first pressure-sensitive adhesive sheet 10, for example, a method of pressing an annular or circular expander to stretch the first pressure-sensitive adhesive sheet 10, and a method of stretching the first pressure-sensitive adhesive sheet 10 and an outer circumference of the first pressure-sensitive adhesive sheet 10 using a gripping member or the like. There is a method of grasping the part and stretching it. Examples of the latter method include a method of biaxial stretching using the above-mentioned separation device and the like. Among these methods, the biaxial stretching method is preferable from the viewpoint that the distance between the semiconductor chip CPs can be further widened.
By using the pressure-sensitive adhesive sheet according to the present embodiment as the first pressure-sensitive adhesive sheet 10, the phenomenon that the end portion of the semiconductor chip CP on the pressure-sensitive adhesive layer side floats from the first pressure-sensitive adhesive sheet 10 (chip floating) can be suppressed.
 図1Bに示されているように、エキスパンド後の半導体チップCP間の距離をD1とする。距離D1としては、半導体チップCPのサイズに依存するため、特に制限されない。距離D1としては、例えば、それぞれ独立に、200μm以上、6000μm以下とすることが好ましい。 As shown in FIG. 1B, let D1 be the distance between the semiconductor chip CPs after expansion. The distance D1 is not particularly limited because it depends on the size of the semiconductor chip CP. The distance D1 is preferably, for example, 200 μm or more and 6000 μm or less, respectively.
 エキスパンド工程の後、第一の粘着シート10にエネルギー線を照射して、第一の粘着剤層12を硬化させる工程(以下「エネルギー線照射工程」という場合がある。)を実施する。第一の粘着剤層12が紫外線硬化性である場合、エネルギー線照射工程においては、第一の粘着シート10に紫外線を照射する。エキスパンド工程の後に第一の粘着剤層12を硬化させることで、延伸後の第一の粘着シート10の形状保持性が向上する。その結果、第一の粘着剤層12に貼着された複数の半導体チップCPの整列性が維持され易い。 After the expanding step, the first pressure-sensitive adhesive sheet 10 is irradiated with energy rays to cure the first pressure-sensitive adhesive layer 12 (hereinafter, may be referred to as "energy ray irradiation step"). When the first pressure-sensitive adhesive layer 12 is ultraviolet-curable, the first pressure-sensitive adhesive sheet 10 is irradiated with ultraviolet rays in the energy ray irradiation step. By curing the first pressure-sensitive adhesive layer 12 after the expanding step, the shape retention of the first pressure-sensitive adhesive sheet 10 after stretching is improved. As a result, the alignment of the plurality of semiconductor chip CPs attached to the first pressure-sensitive adhesive layer 12 is likely to be maintained.
 図2Aには、エキスパンド工程の後に、複数の半導体チップCPを第二の粘着シート20に転写する工程(以下「転写工程」という場合がある。)を説明する図が示されている。第一のエキスパンド工程の後に、第一の粘着剤層12を硬化させたので、第一の粘着剤層12の粘着力が低下し、第一の粘着シート10を半導体チップCPから剥離し易くなる。さらに、第一の粘着シート10が本実施形態に係る粘着シートであるので、半導体チップCPの糊残りを抑制できる。
 第一の粘着シート10を引き延ばして複数の半導体チップCPの間隔を拡げて、距離D1とした後、半導体チップCPの裏面W3に第二の粘着シート20を貼着する。ここで、当該第二の粘着シート20として、複数の半導体チップCPを保持できれば特に限定されない。複数の半導体チップCP間の距離D1をさらに拡張させたい場合には、第二の粘着シート20として、エキスパンドシートを用いることが好ましく、本実施形態の粘着シートを用いることがより好ましい。
FIG. 2A shows a diagram illustrating a step of transferring a plurality of semiconductor chip CPs to the second pressure-sensitive adhesive sheet 20 (hereinafter, may be referred to as a “transfer step”) after the expanding step. Since the first pressure-sensitive adhesive layer 12 is cured after the first expanding step, the adhesive strength of the first pressure-sensitive adhesive layer 12 is reduced, and the first pressure-sensitive adhesive sheet 10 can be easily peeled off from the semiconductor chip CP. .. Further, since the first pressure-sensitive adhesive sheet 10 is the pressure-sensitive adhesive sheet according to the present embodiment, it is possible to suppress the adhesive residue of the semiconductor chip CP.
The first pressure-sensitive adhesive sheet 10 is stretched to widen the distance between the plurality of semiconductor chip CPs to obtain a distance D1, and then the second pressure-sensitive adhesive sheet 20 is attached to the back surface W3 of the semiconductor chip CP. Here, the second pressure-sensitive adhesive sheet 20 is not particularly limited as long as it can hold a plurality of semiconductor chip CPs. When it is desired to further extend the distance D1 between the plurality of semiconductor chip CPs, it is preferable to use an expanded sheet as the second pressure-sensitive adhesive sheet 20, and it is more preferable to use the pressure-sensitive adhesive sheet of the present embodiment.
 第二の粘着シート20は、第二の基材21と、第三の粘着剤層22とを有する。
 第二の粘着シート20として本実施形態の粘着シートを用いる場合は、第二の基材21は、本実施形態に係る粘着シートの基材に対応し、第三の粘着剤層22は、本実施形態に係る粘着シートの粘着剤層に対応する。
The second pressure-sensitive adhesive sheet 20 has a second base material 21 and a third pressure-sensitive adhesive layer 22.
When the pressure-sensitive adhesive sheet of the present embodiment is used as the second pressure-sensitive adhesive sheet 20, the second base material 21 corresponds to the base material of the pressure-sensitive adhesive sheet according to the present embodiment, and the third pressure-sensitive adhesive layer 22 is the present. Corresponds to the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet according to the embodiment.
 第二の粘着シート20は、複数の半導体チップCPとともに、第二のリングフレームに貼着されていてもよい。この場合、第二の粘着シート20の第三の粘着剤層22の上に、第二のリングフレームを載置し、これを軽く押圧し、固定する。その後、第二のリングフレームの環形状の内側にて露出する第三の粘着剤層22を半導体チップCPの裏面W3に押し当てて、第二の粘着シート20に複数の半導体チップCPを固定する。 The second adhesive sheet 20 may be attached to the second ring frame together with the plurality of semiconductor chip CPs. In this case, the second ring frame is placed on the third pressure-sensitive adhesive layer 22 of the second pressure-sensitive adhesive sheet 20, and the second ring frame is lightly pressed and fixed. After that, the third pressure-sensitive adhesive layer 22 exposed inside the ring shape of the second ring frame is pressed against the back surface W3 of the semiconductor chip CP to fix the plurality of semiconductor chip CPs to the second pressure-sensitive adhesive sheet 20. ..
 図2Bには、第二の粘着シート20の貼着後、第一の粘着シート10を剥離する工程を説明する図が示されている。
 第二の粘着シート20を貼着した後、第一の粘着シート10を剥離すると、複数の半導体チップCPの回路面W1が露出する。第一の粘着シート10を剥離した後も、エキスパンド工程において拡張させた複数の半導体チップCP間の距離D1が維持されていることが好ましい。
FIG. 2B shows a diagram illustrating a step of peeling off the first pressure-sensitive adhesive sheet 10 after the second pressure-sensitive adhesive sheet 20 is attached.
When the first pressure-sensitive adhesive sheet 10 is peeled off after the second pressure-sensitive adhesive sheet 20 is attached, the circuit surfaces W1 of the plurality of semiconductor chip CPs are exposed. Even after the first pressure-sensitive adhesive sheet 10 is peeled off, it is preferable that the distance D1 between the plurality of semiconductor chip CPs expanded in the expanding step is maintained.
 第二の粘着シート20がエキスパンドシートである場合は、第一の粘着シート10を剥離後、第二の粘着シート20を引き延ばす工程(以下「第二のエキスパンド工程」という場合がある。)を実施してもよい。この場合、第一の粘着シート10を引き延ばすエキスパンド工程のことを、第一のエキスパンド工程と称する場合もある。
 第二のエキスパンド工程では、複数の半導体チップCP間の間隔をさらに拡げる。
 第二の粘着シート20が本実施形態に係る粘着シートである場合、拡張後における複数の半導体チップCPの整列性が向上する。
When the second adhesive sheet 20 is an expanding sheet, a step of peeling off the first adhesive sheet 10 and then stretching the second adhesive sheet 20 (hereinafter, may be referred to as "second expanding step") is performed. You may. In this case, the expanding step of stretching the first pressure-sensitive adhesive sheet 10 may be referred to as the first expanding step.
In the second expanding step, the distance between the plurality of semiconductor chip CPs is further widened.
When the second pressure-sensitive adhesive sheet 20 is the pressure-sensitive adhesive sheet according to the present embodiment, the alignment of the plurality of semiconductor chip CPs after expansion is improved.
 第二のエキスパンド工程において第二の粘着シート20を引き延ばす方法は、特に限定されない。例えば、第二のエキスパンド工程も、第一のエキスパンド工程と同様に実施できる。 The method of stretching the second adhesive sheet 20 in the second expanding step is not particularly limited. For example, the second expanding step can be carried out in the same manner as the first expanding step.
 なお、第二のエキスパンド工程後の半導体チップCP間の間隔をD2とする。距離D2としては、半導体チップCPのサイズに依存するため、特に制限されないが、距離D2は、距離D1よりも大きい。距離D2としては、例えば、それぞれ独立に、200μm以上、6000μm以下とすることが好ましい。 The interval between the semiconductor chip CPs after the second expanding step is D2. The distance D2 is not particularly limited because it depends on the size of the semiconductor chip CP, but the distance D2 is larger than the distance D1. The distance D2 is preferably, for example, 200 μm or more and 6000 μm or less, respectively.
 図2Cには、第二の粘着シート20に貼着されていた複数の半導体チップCPを、第三の粘着シート30に転写する工程(以下「転写工程」という場合がある。)を説明する図が示されている。第二の粘着シート20が本実施形態に係る粘着シートである場合、半導体チップCPの糊残りを抑制できる。
 図2Cには、第二のエキスパンド工程を実施せずに、第二の粘着シート20から第三の粘着シート30に転写した状態が示されている。第三の粘着シート30は、複数の半導体チップCPを保持できれば特に限定されない。
FIG. 2C is a diagram illustrating a step of transferring a plurality of semiconductor chip CPs attached to the second adhesive sheet 20 to the third adhesive sheet 30 (hereinafter, may be referred to as a “transfer step”). It is shown. When the second pressure-sensitive adhesive sheet 20 is the pressure-sensitive adhesive sheet according to the present embodiment, the adhesive residue of the semiconductor chip CP can be suppressed.
FIG. 2C shows a state in which the second pressure-sensitive adhesive sheet 20 is transferred to the third pressure-sensitive adhesive sheet 30 without performing the second expanding step. The third adhesive sheet 30 is not particularly limited as long as it can hold a plurality of semiconductor chip CPs.
 第二の粘着シート20から第三の粘着シート30に転写された複数の半導体チップCPは、半導体チップCP間の距離D1が維持されていることが好ましい。第二のエキスパンド工程を実施した場合には、半導体チップCP間の距離D2が維持されていることが好ましい。 It is preferable that the distance D1 between the semiconductor chip CPs is maintained in the plurality of semiconductor chip CPs transferred from the second pressure-sensitive adhesive sheet 20 to the third pressure-sensitive adhesive sheet 30. When the second expanding step is carried out, it is preferable that the distance D2 between the semiconductor chip CPs is maintained.
 第一のエキスパンド工程の後、転写工程及びエキスパンド工程を任意の回数繰り返すことで、半導体チップCP間の距離を所望の距離とし、半導体チップCPを封止する際の回路面の向きを所望の向きとすることができる。 By repeating the transfer step and the expanding step an arbitrary number of times after the first expanding step, the distance between the semiconductor chip CPs is set to a desired distance, and the orientation of the circuit surface when sealing the semiconductor chip CP is set to the desired orientation. Can be.
 第三の粘着シート30上の複数の半導体チップCPを封止したい場合には、第三の粘着シート30として、封止工程用の粘着シートを用いることが好ましく、耐熱性を有する粘着シートを用いることがより好ましい。 When it is desired to seal a plurality of semiconductor chip CPs on the third pressure-sensitive adhesive sheet 30, it is preferable to use a pressure-sensitive adhesive sheet for the sealing process as the third pressure-sensitive adhesive sheet 30, and a heat-resistant pressure-sensitive adhesive sheet is used. Is more preferable.
 第三の粘着シート30は、第三の基材31と、第四の粘着剤層32とを有する。
 また、第三の粘着シート30として耐熱性を有する粘着シートを用いる場合は、第三の基材31及び第四の粘着剤層32は、それぞれ、封止工程で課される温度に耐え得る耐熱性を有する材料で形成されていることが好ましい。第三の粘着シート30の別の態様としては、第三の基材、第三の粘着剤層、及び第四の粘着剤層を備えた粘着シートが挙げられる。この粘着シートは、第三の粘着剤層と第四の粘着剤層との間に第三の基材を含み、第三の基材の両面に粘着剤層を有する。
The third pressure-sensitive adhesive sheet 30 has a third base material 31 and a fourth pressure-sensitive adhesive layer 32.
When a heat-resistant pressure-sensitive adhesive sheet is used as the third pressure-sensitive adhesive sheet 30, the third base material 31 and the fourth pressure-sensitive adhesive layer 32 each have heat resistance that can withstand the temperature imposed in the sealing step. It is preferably made of a material having properties. Another embodiment of the third pressure-sensitive adhesive sheet 30 includes a pressure-sensitive adhesive sheet provided with a third base material, a third pressure-sensitive adhesive layer, and a fourth pressure-sensitive adhesive layer. This pressure-sensitive adhesive sheet contains a third base material between the third pressure-sensitive adhesive layer and the fourth pressure-sensitive adhesive layer, and has pressure-sensitive adhesive layers on both sides of the third base material.
 第二の粘着シート20から第三の粘着シート30に転写された複数の半導体チップCPは、回路面W1を第四の粘着剤層32に向けて貼着されている。 The plurality of semiconductor chip CPs transferred from the second pressure-sensitive adhesive sheet 20 to the third pressure-sensitive adhesive sheet 30 are attached with the circuit surface W1 facing the fourth pressure-sensitive adhesive layer 32.
 図2Dには、封止部材60を用いて複数の半導体チップCPを封止する工程(以下「封止工程」という場合がある。)を説明する図が示されている。 FIG. 2D shows a diagram illustrating a step of sealing a plurality of semiconductor chip CPs using the sealing member 60 (hereinafter, may be referred to as a “sealing step”).
 本実施形態において、封止工程は、複数の半導体チップCPが第三の粘着シート30に転写された後に実施される。
 封止工程において、回路面W1が第三の粘着シート30に保護された状態で、複数の半導体チップCPを封止部材60によって覆うことにより封止体3が形成される。複数の半導体チップCPの間にも封止部材60が充填されている。第三の粘着シート30により回路面W1及び回路W2が覆われているので、封止部材60で回路面W1が覆われることを防止できる。
In the present embodiment, the sealing step is performed after the plurality of semiconductor chip CPs have been transferred to the third pressure-sensitive adhesive sheet 30.
In the sealing step, the sealing body 3 is formed by covering a plurality of semiconductor chip CPs with the sealing member 60 while the circuit surface W1 is protected by the third pressure-sensitive adhesive sheet 30. The sealing member 60 is also filled between the plurality of semiconductor chip CPs. Since the circuit surface W1 and the circuit W2 are covered by the third adhesive sheet 30, it is possible to prevent the circuit surface W1 from being covered by the sealing member 60.
 封止工程により、所定距離ずつ離間した複数の半導体チップCPが封止部材60に埋め込まれた封止体3が得られる。封止工程においては、複数の半導体チップCPは、エキスパンド工程を実施した後の距離が維持された状態で、封止部材60により覆われることが好ましい。 By the sealing step, a sealing body 3 in which a plurality of semiconductor chip CPs separated by a predetermined distance are embedded in the sealing member 60 can be obtained. In the sealing step, it is preferable that the plurality of semiconductor chip CPs are covered with the sealing member 60 in a state where the distance after the expanding step is maintained.
 封止工程の後、第三の粘着シート30を剥離する。半導体チップCPの回路面W1及び封止体3の第三の粘着シート30と接触していた面3Aが露出する。 After the sealing step, the third adhesive sheet 30 is peeled off. The circuit surface W1 of the semiconductor chip CP and the surface 3A in contact with the third adhesive sheet 30 of the sealant 3 are exposed.
 封止体3から粘着シートを剥離した後、この封止体3に対して、半導体チップCPと電気的に接続する再配線層を形成する再配線層形成工程と、再配線層と外部端子電極とを電気的に接続する接続工程とが順に行われる。再配線層形成工程及び外部端子電極との接続工程によって、半導体チップCPの回路と外部端子電極とが電気的に接続される。
 外部端子電極が接続された封止体3を半導体チップCP単位で個片化する。封止体3を個片化させる方法は、特に限定されない。封止体3を個片化することで、半導体チップCP単位の半導体パッケージが製造される。半導体チップCPの領域外にファンアウトさせた外部電極を接続させた半導体パッケージは、ファンアウト型のウエハレベルパッケージ(FO-WLP)として製造される。
A rewiring layer forming step of forming a rewiring layer electrically connected to the semiconductor chip CP on the sealing body 3 after peeling the adhesive sheet from the sealing body 3, and a rewiring layer and an external terminal electrode. The connection process of electrically connecting the and is performed in order. The circuit of the semiconductor chip CP and the external terminal electrode are electrically connected by the rewiring layer forming step and the connection step with the external terminal electrode.
The encapsulant 3 to which the external terminal electrode is connected is individualized in units of semiconductor chip CP. The method for individualizing the sealing body 3 is not particularly limited. By separating the sealing body 3 into individual pieces, a semiconductor package of semiconductor chip CP units is manufactured. A semiconductor package in which a fan-out external electrode is connected outside the region of the semiconductor chip CP is manufactured as a fan-out type wafer level package (FO-WLP).
 本実施形態に係る粘着シートによれば、エキスパンド工程での拡張後の整列性を向上させ、かつチップ浮き糊残りを抑制できる。そのため、以上説明したような、複数の半導体チップの間隔を大きく拡げ、拡張後における複数の半導体チップの位置ずれを抑制する必要がある用途に好適に使用することができる。 According to the adhesive sheet according to the present embodiment, it is possible to improve the alignment after expansion in the expanding step and suppress the residue of the floating adhesive on the chips. Therefore, as described above, it can be suitably used for applications in which it is necessary to greatly widen the interval between the plurality of semiconductor chips and suppress the misalignment of the plurality of semiconductor chips after expansion.
[実施形態の変形]
 本発明は、上述の実施形態に何ら限定されない。本発明は、本発明の目的を達成できる範囲で、上述の実施形態を変形した態様などを含む。
[Modification of Embodiment]
The present invention is not limited to the above-described embodiment. The present invention includes aspects obtained by modifying the above-described embodiment to the extent that the object of the present invention can be achieved.
 例えば、半導体ウエハや半導体チップにおける回路等は、図示した配列や形状等に限定されない。半導体パッケージにおける外部端子電極との接続構造等も、前述の実施形態で説明した態様に限定されない。前述の実施形態では、FO-WLPタイプの半導体パッケージを製造する態様を例に挙げて説明したが、本発明は、ファンイン型のWLP等のその他の半導体パッケージを製造する態様にも適用できる。 For example, circuits and the like in semiconductor wafers and semiconductor chips are not limited to the arrangements and shapes shown in the drawings. The connection structure with the external terminal electrode in the semiconductor package is not limited to the mode described in the above-described embodiment. In the above-described embodiment, the embodiment of manufacturing the FO-WLP type semiconductor package has been described as an example, but the present invention can also be applied to the mode of manufacturing other semiconductor packages such as a fan-in type WLP.
 上述した第一態様に係るFO-WLPの製造方法は、一部の工程を変更したり、一部の工程を省略したりしてもよい。 In the method for producing FO-WLP according to the first aspect described above, some steps may be changed or some steps may be omitted.
 前記実施形態では、前記実施形態に係る粘着剤層が第一の基材面及び第二の基材面の一方の面に設けられ、他方の面には粘着剤層が設けられていない態様の粘着シートを例に挙げて説明したが、本発明はこのような態様に限定されない。
 例えば、基材の両面に粘着剤層が設けられた粘着シートが挙げられ、少なくとも一方の粘着剤層が、前記実施形態に係る粘着剤層である。
 例えば、図4には、粘着シート10Aが示されている。粘着シート10Aは、基材110と、第一の粘着剤層12と、第二の粘着剤層13とを有する。粘着シート10Aは、第一の粘着剤層12と第二の粘着剤層13との間に基材110を含む。
 基材110の第一の基材面11Aには、第一の粘着剤層12が設けられ、第二の基材面11Bには、第二の粘着剤層13が設けられている。
 基材110は、前記実施形態における第一の基材11と同様である。
 第一の粘着剤層12は、前記実施形態に係る粘着シートの粘着剤層に対応する。第二の粘着剤層13は、特に限定されない。
 第一の粘着剤層12及び第二の粘着剤層13の組成は、同じであっても、異なっていてもよい。
 第一の粘着剤層12及び第二の粘着剤層13の厚さは、同じであっても、異なっていてもよい。
In the embodiment, the pressure-sensitive adhesive layer according to the embodiment is provided on one surface of the first base material surface and the second base material surface, and the pressure-sensitive adhesive layer is not provided on the other surface. Although the pressure-sensitive adhesive sheet has been described as an example, the present invention is not limited to such an embodiment.
For example, a pressure-sensitive adhesive sheet in which pressure-sensitive adhesive layers are provided on both sides of a base material can be mentioned, and at least one pressure-sensitive adhesive layer is the pressure-sensitive adhesive layer according to the embodiment.
For example, FIG. 4 shows the adhesive sheet 10A. The pressure-sensitive adhesive sheet 10A has a base material 110, a first pressure-sensitive adhesive layer 12, and a second pressure-sensitive adhesive layer 13. The pressure-sensitive adhesive sheet 10A includes a base material 110 between the first pressure-sensitive adhesive layer 12 and the second pressure-sensitive adhesive layer 13.
A first pressure-sensitive adhesive layer 12 is provided on the first base material surface 11A of the base material 110, and a second pressure-sensitive adhesive layer 13 is provided on the second base material surface 11B.
The base material 110 is the same as the first base material 11 in the above embodiment.
The first pressure-sensitive adhesive layer 12 corresponds to the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet according to the embodiment. The second pressure-sensitive adhesive layer 13 is not particularly limited.
The composition of the first pressure-sensitive adhesive layer 12 and the second pressure-sensitive adhesive layer 13 may be the same or different.
The thicknesses of the first pressure-sensitive adhesive layer 12 and the second pressure-sensitive adhesive layer 13 may be the same or different.
 以下、実施例を挙げて本発明をさらに詳細に説明する。本発明はこれら実施例に何ら限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to these examples.
[粘着シートの作製]
(実施例1)
 ブチルアクリレート(BA)52質量部、メタクリル酸メチル(MMA)20質量部、及び2-ヒドロキシエチルアクリレート(2HEA)28質量部を共重合してアクリル系共重合体を得た。このアクリル系共重合体に対して、2-イソシアナートエチルメタクリレート(昭和電工株式会社製、製品名「カレンズMOI」(登録商標))を付加した樹脂(アクリルA)の溶液(粘着剤主剤)を調製した。付加率は、アクリル系共重合体の2HEA100モル%に対して、2-イソシアナートエチルメタクリレートを90モル%とした。
 得られた樹脂(アクリルA)の重量平均分子量(Mw)は、60万、Mw/Mnは4.5であった。ゲルパーミエーションクロマトグラフィー(GPC)法により、標準ポリスチレン換算の重量平均分子量Mw、及び数平均分子量Mnを測定し、それぞれの測定値から分子量分布(Mw/Mn)を求めた。
 この粘着剤主剤に、エネルギー線硬化性樹脂A(阪本薬品工業株式会社製、製品名「SA-TE60」)、光重合開始剤(IGM Resins B.V.製、製品名「Omnirad 127D」)及び架橋剤(トーヨーケム株式会社製、TMP-TDI(トリレンジイソシアネートのトリメチロールプロパンアダクト体)を次に示す比率で添加し、さらに酢酸エチルを添加した後、30分間攪拌して、固形分35.0質量%の粘着剤組成物A1を調製した。
  粘着剤主剤 :固形分100質量部
  エネルギー線硬化性樹脂A:固形分51.4質量部
  光重合開始剤 :固形分3.7質量部
  架橋剤    :固形分0.2質量部
[Making an adhesive sheet]
(Example 1)
An acrylic copolymer was obtained by copolymerizing 52 parts by mass of butyl acrylate (BA), 20 parts by mass of methyl methacrylate (MMA), and 28 parts by mass of 2-hydroxyethyl acrylate (2HEA). A solution (adhesive main agent) of a resin (acrylic A) to which 2-isocyanate ethyl methacrylate (manufactured by Showa Denko KK, product name "Karenzu MOI" (registered trademark)) is added to this acrylic copolymer. Prepared. The addition rate was 90 mol% of 2-isocyanate ethyl methacrylate with respect to 100 mol% of 2HEA of the acrylic copolymer.
The weight average molecular weight (Mw) of the obtained resin (acrylic A) was 600,000, and Mw / Mn was 4.5. The weight average molecular weight Mw and the number average molecular weight Mn in terms of standard polystyrene were measured by gel permeation chromatography (GPC) method, and the molecular weight distribution (Mw / Mn) was obtained from each measured value.
Energy ray curable resin A (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd., product name "SA-TE60"), photopolymerization initiator (manufactured by IGM Resins BV, product name "Omnirad 127D") and A cross-linking agent (TMP-TDI (trimethylol propan adduct of tolylene diisocyanate) manufactured by Toyochem Co., Ltd.) was added at the following ratio, ethyl acetate was further added, and the mixture was stirred for 30 minutes to have a solid content of 35.0. A mass% pressure-sensitive adhesive composition A1 was prepared.
Adhesive Main agent: Solid content 100 parts by mass Energy ray curable resin A: Solid content 51.4 parts by mass Photopolymerization initiator: Solid content 3.7 parts by mass Crosslinker: Solid content 0.2 parts by mass
 次いで、調製した粘着剤組成物A1の溶液をポリエチレンテレフタレート(PET)系剥離フィルム(リンテック株式会社製、製品名「PET752150」)に塗布して、塗膜を90℃で90秒間乾燥させ、さらに100℃で90秒間乾燥させて、厚さ30μmの粘着剤層を剥離フィルム上に形成した。
 当該粘着剤層に、ウレタン基材(倉敷紡績株式会社製,製品名「U-1490」,厚さ100μm,硬度90度(A型))を貼り合わせた後、幅方向における端部の不要部分を裁断除去して粘着シートSA1を作製した。
 エネルギー線硬化性樹脂の性質等を表1に示す。
Next, the prepared solution of the pressure-sensitive adhesive composition A1 was applied to a polyethylene terephthalate (PET) -based release film (manufactured by Lintec Corporation, product name "PET752150"), the coating film was dried at 90 ° C. for 90 seconds, and further 100. Drying at ° C. for 90 seconds formed a 30 μm thick pressure-sensitive adhesive layer on the release film.
After laminating a urethane base material (manufactured by Kurabo Industries Ltd., product name "U-1490", thickness 100 μm, hardness 90 degrees (A type)) to the pressure-sensitive adhesive layer, unnecessary parts at the ends in the width direction Was cut and removed to prepare an adhesive sheet SA1.
Table 1 shows the properties of the energy ray-curable resin and the like.
(実施例2)
 実施例1に係る粘着シートSA1の作製において、エネルギー線硬化性樹脂A(「SA-TE60」)に代えて、エネルギー線硬化性樹脂B(阪本薬品工業株式会社製、製品名「SA-TE6」)を用いたこと以外、実施例1と同様にして、実施例2に係る粘着シートSA2を作製した。
(Example 2)
In the production of the pressure-sensitive adhesive sheet SA1 according to Example 1, instead of the energy ray-curable resin A (“SA-TE60”), the energy ray-curable resin B (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd., product name “SA-TE6”” ) Was used, and the pressure-sensitive adhesive sheet SA2 according to Example 2 was produced in the same manner as in Example 1.
(実施例3)
 実施例1に係る粘着シートSA1の作製において、エネルギー線硬化性樹脂A(「SA-TE60」)に代えて、エネルギー線硬化性樹脂C(新中村化学工業株式会社製、製品名「ATM-35E」)を用いたこと以外、実施例1と同様にして、実施例3に係る粘着シートSA3を作製した。
(Example 3)
In the production of the pressure-sensitive adhesive sheet SA1 according to Example 1, instead of the energy ray-curable resin A (“SA-TE60”), the energy ray-curable resin C (manufactured by Shin-Nakamura Chemical Industry Co., Ltd., product name “ATM-35E”) The pressure-sensitive adhesive sheet SA3 according to Example 3 was produced in the same manner as in Example 1 except that ") was used.
(実施例4)
 実施例1に係る粘着シートSA1の作製において、粘着剤主剤中の固形分100質量部に対して、エネルギー線硬化性樹脂Aを固形分22質量部に変更することにより、エネルギー線硬化性樹脂の含有率が38質量%である粘着剤層を作製したこと以外、実施例1と同様にして、実施例4に係る粘着シートSA4を作製した。
(Example 4)
In the production of the pressure-sensitive adhesive sheet SA1 according to Example 1, the energy ray-curable resin A was changed to 22 parts by mass of the solid content with respect to 100 parts by mass of the solid content in the pressure-sensitive adhesive main agent. The pressure-sensitive adhesive sheet SA4 according to Example 4 was produced in the same manner as in Example 1 except that the pressure-sensitive adhesive layer having a content of 38% by mass was produced.
(比較例1)
 実施例1に係る粘着シートSA1の作製において、エネルギー線硬化性樹脂A(「SA-TE60」)に代えて、エネルギー線硬化性樹脂D(新中村化学工業株式会社製、製品名「A-DOD-N」)を用いたこと以外、実施例1と同様にして、比較例1に係る粘着シートR-SA1を作製した。
(Comparative Example 1)
In the production of the pressure-sensitive adhesive sheet SA1 according to Example 1, instead of the energy ray-curable resin A (“SA-TE60”), the energy ray-curable resin D (manufactured by Shin-Nakamura Chemical Industry Co., Ltd., product name “A-DOD”) The pressure-sensitive adhesive sheet R-SA1 according to Comparative Example 1 was produced in the same manner as in Example 1 except that -N ") was used.
(比較例2)
 実施例1に係る粘着シートSA1の作製において、エネルギー線硬化性樹脂A(「SA-TE60」)に代えて、エネルギー線硬化性樹脂E(三菱ケミカル株式会社製、製品名「UV-5806」)を用いたこと以外、実施例1と同様にして、比較例2に係る粘着シートR-SA2を作製した。
(Comparative Example 2)
In the production of the pressure-sensitive adhesive sheet SA1 according to Example 1, instead of the energy ray-curable resin A (“SA-TE60”), the energy ray-curable resin E (manufactured by Mitsubishi Chemical Corporation, product name “UV-5806”). The pressure-sensitive adhesive sheet R-SA2 according to Comparative Example 2 was produced in the same manner as in Example 1 except that
[粘着シートの評価]
 作製した粘着シートについて、以下の評価を行った。評価結果を表1に示す。
[Evaluation of adhesive sheet]
The prepared adhesive sheet was evaluated as follows. The evaluation results are shown in Table 1.
(SS特性)
 実施例1~4並びに比較例1~2の粘着シートの粘着剤層のみを積層し、厚さ200μm、幅15mm、長さ50mmのSS特性評価用サンプルを作製した。その後、チャック間距離を30mmに調整した引張試験機に、SS特性評価用サンプルをチャックで固定した。チャックで固定したSS特性評価用サンプルを、50mm/minの速度で引張り、その際の変位及び応力を記録した。記録した変位及び応力に基づいて、変位-応力曲線を作成した。引張試験機として、株式会社島津製作所製の製品名「オートグラフAG-IS 500N」を用いた。
 SS特性評価用サンプルが破断した際の変位を破断伸度(単位:%)とした。表1中、「>2000」と記載されているのは、変位2000%であっても、SS特性評価用サンプルが破断しなかったことを示す。
 変位-応力曲線において1500%変位時の応力(単位:MPa)を表1に示す。
 SS特性の評価基準は、次のように設定した。本実施例においては、評価Aを合格と判定した。
 ・SS特性の評価基準
  評価A:破断伸度が1500%以上、かつ1500%変位時の応力が0.22MPa以下であった。
  評価B:破断伸度が1500%未満であった場合、並びに1500%変位時の応力が0.22MPaを超えた場合の少なくともいずれかに該当した。
(SS characteristics)
Only the pressure-sensitive adhesive layers of the pressure-sensitive adhesive sheets of Examples 1 to 4 and Comparative Examples 1 and 2 were laminated to prepare a sample for SS characteristic evaluation having a thickness of 200 μm, a width of 15 mm, and a length of 50 mm. Then, the SS characteristic evaluation sample was fixed with a chuck to a tensile tester in which the distance between the chucks was adjusted to 30 mm. The SS characteristic evaluation sample fixed with a chuck was pulled at a speed of 50 mm / min, and the displacement and stress at that time were recorded. A displacement-stress curve was created based on the recorded displacements and stresses. As the tensile tester, the product name "Autograph AG-IS 500N" manufactured by Shimadzu Corporation was used.
The displacement when the SS characteristic evaluation sample broke was defined as the elongation at break (unit:%). In Table 1, ">2000" indicates that the SS characteristic evaluation sample did not break even when the displacement was 2000%.
Table 1 shows the stress (unit: MPa) at 1500% displacement in the displacement-stress curve.
The evaluation criteria for SS characteristics were set as follows. In this embodiment, the evaluation A was judged to be acceptable.
-Evaluation Criteria for SS Characteristics Evaluation A: The elongation at break was 1500% or more, and the stress at the time of 1500% displacement was 0.22 MPa or less.
Evaluation B: Corresponds to at least one of the cases where the elongation at break is less than 1500% and the stress at the time of displacement of 1500% exceeds 0.22 MPa.
(整列性の評価方法)
 実施例1~4並びに比較例1~2で作製した粘着シートを210mm×210mmに切断し試験用粘着シートを得た。このとき、裁断後のシートの各辺が、粘着シートにおける基材のMD方向と平行または垂直となるように裁断した。
 シリコンウエハをダイシングして、3mm×3mmのサイズのチップがX軸方向に7列、及びY軸方向に7列となるように、計49個のチップを切り出した。
 試験用粘着シートの剥離フィルムを剥離し、露出した粘着剤層の中心部に、上述の通り切り出した計49個のチップを貼付した。このとき、チップがX軸方向に7列、及びY軸方向に7列で並んでおり、チップ間の距離は、X軸方向およびY軸方向ともに35μmだった。
(Evaluation method of alignment)
The pressure-sensitive adhesive sheets prepared in Examples 1 to 4 and Comparative Examples 1 and 2 were cut into 210 mm × 210 mm to obtain a test pressure-sensitive adhesive sheet. At this time, each side of the sheet after cutting was cut so as to be parallel or perpendicular to the MD direction of the base material in the adhesive sheet.
The silicon wafer was diced, and a total of 49 chips were cut out so that the chips having a size of 3 mm × 3 mm had 7 rows in the X-axis direction and 7 rows in the Y-axis direction.
The release film of the test pressure-sensitive adhesive sheet was peeled off, and a total of 49 chips cut out as described above were attached to the center of the exposed pressure-sensitive adhesive layer. At this time, the chips were arranged in 7 rows in the X-axis direction and 7 rows in the Y-axis direction, and the distance between the chips was 35 μm in both the X-axis direction and the Y-axis direction.
 次に、チップが貼付された試験用粘着シートを、2軸延伸可能なエキスパンド装置(離間装置)に設置した。図3には、当該エキスパンド装置100を説明する平面図が示される。図3中、X軸及びY軸は、互いに直交する関係にあり、当該X軸の正の方向を+X軸方向、当該X軸の負の方向を-X軸方向、当該Y軸の正の方向を+Y軸方向、当該Y軸の負の方向を-Y軸方向とする。試験用粘着シート200は、各辺がX軸またはY軸と平行となるように、エキスパンド装置100に設置した。その結果、試験用粘着シート200における基材のMD方向は、X軸またはY軸と平行となる。なお、図3中、チップは省略されている。 Next, the test adhesive sheet to which the chip was attached was installed in a biaxially stretchable expanding device (separation device). FIG. 3 shows a plan view illustrating the expanding device 100. In FIG. 3, the X-axis and the Y-axis are orthogonal to each other, the positive direction of the X-axis is the + X-axis direction, the negative direction of the X-axis is the -X-axis direction, and the positive direction of the Y-axis. Is the + Y-axis direction, and the negative direction of the Y-axis is the −Y-axis direction. The test adhesive sheet 200 was installed in the expanding device 100 so that each side was parallel to the X-axis or the Y-axis. As a result, the MD direction of the base material in the test pressure-sensitive adhesive sheet 200 is parallel to the X-axis or the Y-axis. In FIG. 3, the chip is omitted.
 図3に示されるように、エキスパンド装置100は、+X軸方向、-X軸方向、+Y軸方向及び-Y軸方向のそれぞれに5つの保持手段101(計20個の保持手段101)を備える。各方向における5つの保持手段101のうち、保持手段101Aは、両端に位置し、保持手段101Cは、中央に位置し、保持手段101Bは、保持手段101Aと保持手段101Cとの間に位置する。試験用粘着シート200の各辺を、これらの保持手段101によって把持させた。 As shown in FIG. 3, the expanding device 100 includes five holding means 101 (a total of 20 holding means 101) in each of the + X-axis direction, the −X-axis direction, the + Y-axis direction, and the −Y-axis direction. Of the five holding means 101 in each direction, the holding means 101A is located at both ends, the holding means 101C is located at the center, and the holding means 101B is located between the holding means 101A and the holding means 101C. Each side of the test adhesive sheet 200 was gripped by these holding means 101.
 ここで、図3に示されるように、試験用粘着シート200の一辺は210mmである。また、各辺における保持手段101同士の間隔は40mmである。また、試験用粘着シート200の一辺における端部(シートの頂点)と、当該辺に存在し、当該端部に最も近い保持手段101Aとの間隔は25mmである。 Here, as shown in FIG. 3, one side of the test adhesive sheet 200 is 210 mm. Further, the distance between the holding means 101 on each side is 40 mm. Further, the distance between the end portion (the apex of the sheet) on one side of the test adhesive sheet 200 and the holding means 101A existing on the side and closest to the end portion is 25 mm.
・第1エキスパンド試験
 続いて、保持手段101のそれぞれに対応する、図示されていない複数の張力付与手段を駆動させて、保持手段101をそれぞれ独立に移動させた。試験用粘着シートの四辺をつかみ治具で固定し、X軸方向、及びY軸方向にそれぞれ5mm/sの速度で、200mmの拡張量で試験用粘着シートをエキスパンドした。第1エキスパンド試験の結果、試験用粘着シートの面積は、エキスパンド前に対して381%に拡張された。本実施例においては、この拡張量200mmのエキスパンド試験を、第1エキスパンド試験と称する場合がある。第1エキスパンド試験後において、実施例1~4に係る粘着シートの基材及び粘着剤層は、破断しなかった。
First Expanding Test Subsequently, a plurality of tension applying means (not shown) corresponding to each of the holding means 101 were driven to move the holding means 101 independently. The four sides of the test adhesive sheet were fixed with a gripping jig, and the test adhesive sheet was expanded at a speed of 5 mm / s in the X-axis direction and the Y-axis direction with an expansion amount of 200 mm. As a result of the first expanding test, the area of the adhesive sheet for testing was expanded to 381% compared to before expanding. In this example, this expansion test having an expansion amount of 200 mm may be referred to as a first expansion test. After the first expanding test, the base material and the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet according to Examples 1 to 4 did not break.
・第2エキスパンド試験
 前述の第1エキスパンド試験におけるX軸方向、及びY軸方向の拡張量を350mmに変更したこと以外、第1エキスパンド試験と同様にして試験用粘着シートをエキスパンドした。第2エキスパンド試験の結果、試験用粘着シートの面積は、エキスパンド前に対して711%に拡張された。本実施例においては、この拡張量350mmのエキスパンド試験を、第2エキスパンド試験と称する場合がある。なお、第2エキスパンド試験は、第1エキスパンド試験の結果、整列性評価が後述する評価Aであった粘着シートについて実施した。第2エキスパンド試験後において、実施例1~4に係る粘着シートの基材及び粘着剤層は、破断しなかった。
-Second expand test The test adhesive sheet was expanded in the same manner as in the first expand test, except that the expansion amount in the X-axis direction and the Y-axis direction in the above-mentioned first expand test was changed to 350 mm. As a result of the second expanding test, the area of the adhesive sheet for testing was expanded to 711% compared to before expanding. In this example, this expansion test with an expansion amount of 350 mm may be referred to as a second expansion test. The second expand test was carried out on the pressure-sensitive adhesive sheet whose alignment evaluation was evaluation A, which will be described later, as a result of the first expand test. After the second expanding test, the base material and the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet according to Examples 1 to 4 did not break.
 第1エキスパンド試験又は第2エキスパンド試験によって試験用粘着シートを拡張した後、リングフレームにより試験用粘着シート200の拡張状態を保持した。
 拡張状態を保持した状態で、チップ同士の位置関係に基づいてチップ間距離の標準偏差を算出することにより、整列性を評価した。具体的には、各チップの角から、チップの中心を求め、隣り合うチップの中心間距離を測定した。その中心間距離から、チップの辺の長さである3mmを差し引き、チップ間距離とした。試験用粘着シート上のチップの位置は、CNC画像測定機(株式会社ミツトヨ製、製品名「Vision ACCEL」)を用いて測定した。標準偏差は、JMP社製のデータ分析ソフトウェアJMP13を用いて算出した。整列性の評価基準は、次のように設定した。本実施例においては、評価A又は評価Bを合格と判定した。
 ・整列性の評価基準
  評価A:標準偏差が100μm以下
  評価B:標準偏差が200μm以下
  評価C:標準偏差が201μm以上
After expanding the test pressure-sensitive adhesive sheet by the first expand test or the second expand test, the expanded state of the test pressure-sensitive adhesive sheet 200 was maintained by a ring frame.
The alignment was evaluated by calculating the standard deviation of the inter-chip distance based on the positional relationship between the chips while maintaining the expanded state. Specifically, the center of the chip was obtained from the corner of each chip, and the distance between the centers of adjacent chips was measured. The distance between the chips was obtained by subtracting 3 mm, which is the length of the side of the chip, from the distance between the centers. The position of the chip on the test adhesive sheet was measured using a CNC image measuring machine (manufactured by Mitutoyo Co., Ltd., product name "Vision ACCEL"). The standard deviation was calculated using JMP13, a data analysis software manufactured by JMP. The evaluation criteria for alignment were set as follows. In this example, evaluation A or evaluation B was judged to be acceptable.
-Evaluation criteria for alignment Evaluation A: Standard deviation is 100 μm or less Evaluation B: Standard deviation is 200 μm or less Evaluation C: Standard deviation is 201 μm or more
(チップ浮きの評価方法)
 前述の整列性の評価方法の説明における第1エキスパンド試験により試験用粘着シートを拡張した後、リングフレームにより試験用粘着シート200の拡張状態を保持した。拡張状態を保持した状態で、試験用粘着シート200越しにチップの粘着剤層側の面と粘着剤層との貼合状態をデジタル顕微鏡(株式会社キーエンス製、製品名「VHX-1000」)を用いて観察した。チップ浮きの評価基準は、次のように設定した。本実施例においては、評価Aを合格と判定した。
 ・チップ浮きの評価基準
  評価A:全てのチップが粘着シートから浮いていない(チップの端部が粘着剤層から離間していない)。
  評価B:少なくとも1つのチップが粘着シートから浮いている(チップの端部が粘着剤層から離間している)。
(Evaluation method of chip float)
After the test pressure-sensitive adhesive sheet was expanded by the first expansion test in the above description of the alignment evaluation method, the expanded state of the test pressure-sensitive adhesive sheet 200 was maintained by the ring frame. While maintaining the expanded state, use a digital microscope (manufactured by KEYENCE Co., Ltd., product name "VHX-1000") to check the bonding state between the adhesive layer side surface of the chip and the adhesive layer through the test adhesive sheet 200. Observed using. The evaluation criteria for chip floating were set as follows. In this embodiment, the evaluation A was judged to be acceptable.
-Evaluation criteria for chip floating Evaluation A: All chips are not floating from the adhesive sheet (the ends of the chips are not separated from the adhesive layer).
Evaluation B: At least one chip is floating from the pressure-sensitive adhesive sheet (the end of the chip is separated from the pressure-sensitive adhesive layer).
(糊残りの評価方法)
 前述の整列性の評価における第1エキスパンド試験で試験用粘着シートを拡張した後に、次の照射条件で紫外線を照射した。
 ・紫外線照射条件:220mW/cm,160mJ/cm
 紫外線照射後、リンテック株式会社製UV硬化型テープD-218を用いてチップを試験用粘着シートから剥離した。
 粘着剤層と接していたチップ表面をデジタル顕微鏡(株式会社キーエンス製、製品名「VHX-1000」)を用いて光学100倍で確認した。
 糊残りの有無の判定基準としては、1チップ内に、1個以上、糊残りがあれば、糊残りチップとしてカウントした。糊残りの評価基準は、次のように設定した。本実施例においては、評価A又は評価Bを合格と判定した。
 ・糊残りの評価基準
  評価A:全チップに糊残りなし
  評価B:糊残りチップの発生割合が40%以下
  評価C:糊残りチップの発生割合が41%以上
(Evaluation method of adhesive residue)
After expanding the test pressure-sensitive adhesive sheet in the first expansion test in the above-mentioned evaluation of alignment, ultraviolet rays were irradiated under the following irradiation conditions.
-Ultraviolet irradiation conditions: 220 mW / cm 2 , 160 mJ / cm 2
After irradiation with ultraviolet rays, the chip was peeled off from the test adhesive sheet using a UV curable tape D-218 manufactured by Lintec Corporation.
The surface of the chip in contact with the pressure-sensitive adhesive layer was confirmed at 100 times optical using a digital microscope (manufactured by KEYENCE CORPORATION, product name "VHX-1000").
As a criterion for determining the presence or absence of adhesive residue, if there is one or more adhesive residue in one chip, it is counted as an adhesive residue chip. The evaluation criteria for the adhesive residue were set as follows. In this example, evaluation A or evaluation B was judged to be acceptable.
-Evaluation criteria for adhesive residue Evaluation A: No adhesive residue on all chips Evaluation B: Occurrence rate of adhesive residue chips is 40% or less Evaluation C: Occurrence rate of adhesive residue chips is 41% or more
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1中の記号の説明は、以下の通りである。
 EG:エチレングリコール
 EGユニット数MEG:エネルギー線硬化性樹脂が一分子当たり有するエチレングリコール単位の総数
 UV硬化性官能基の数MUV:エネルギー線硬化性樹脂が一分子当たり有するエネルギー線(本実施例においては、紫外線。)硬化性の官能基の総数
 MEG/MUV:エネルギー線(UV)硬化性官能基当たりのエチレングリコール(EG)単位数
The explanation of the symbols in Table 1 is as follows.
EG: Number of ethylene glycol EG units M EG : Total number of ethylene glycol units that the energy ray-curable resin has per molecule Number of UV curable functional groups M UV : Energy rays that the energy ray-curable resin has per molecule (this implementation) In the example, ultraviolet rays.) Total number of curable functional groups M EG / M UV : Energy ray (UV) Number of ethylene glycol (EG) units per curable functional group
 表1に示すように、粘着剤層単体の変位-応力曲線における破断伸度が1500%以上であり、粘着剤層単体の変位-応力曲線における変位が1500%の際に、応力が0.22MPa以下であったので、実施例1~4に係る粘着シートは、整列性に優れ、チップ浮きが発生し難い粘着シートであった。 As shown in Table 1, when the elongation at break in the displacement-stress curve of the pressure-sensitive adhesive layer alone is 1500% or more and the displacement of the pressure-sensitive adhesive layer alone in the displacement-stress curve is 1500%, the stress is 0.22 MPa. As described below, the adhesive sheets according to Examples 1 to 4 were excellent in alignment and were less likely to cause chip floating.
 10…第一の粘着シート、11…第一の基材、12…第一の粘着剤層、13…第二の粘着剤層、110…基材。 10 ... first pressure-sensitive adhesive sheet, 11 ... first base material, 12 ... first pressure-sensitive adhesive layer, 13 ... second pressure-sensitive adhesive layer, 110 ... base material.

Claims (4)

  1.  基材と、粘着剤層と、を有し、
     前記粘着剤層は、エネルギー線硬化性樹脂を含有し、
     前記粘着剤層単体の変位-応力曲線における破断伸度が1500%以上であり、
     前記粘着剤層単体の変位-応力曲線における変位が1500%の際に、
    応力が0.22MPa以下である、
     粘着シート。
    It has a base material and an adhesive layer,
    The pressure-sensitive adhesive layer contains an energy ray-curable resin and contains
    The elongation at break in the displacement-stress curve of the pressure-sensitive adhesive layer alone is 1500% or more.
    When the displacement of the pressure-sensitive adhesive layer alone in the stress-strain curve is 1500%,
    The stress is 0.22 MPa or less,
    Adhesive sheet.
  2.  請求項1に記載の粘着シートにおいて、
     前記粘着剤層単体の変位-応力曲線における変位が1500%の際に、
    応力が0.17MPa以下である、
     粘着シート。
    In the adhesive sheet according to claim 1,
    When the displacement of the pressure-sensitive adhesive layer alone in the stress-strain curve is 1500%,
    The stress is 0.17 MPa or less,
    Adhesive sheet.
  3.  請求項1又は請求項2に記載の粘着シートにおいて、
     前記粘着剤層単体の変位-応力曲線における変位が1500%の際に、
    応力が0.0001MPa以上である、
     粘着シート。
    In the adhesive sheet according to claim 1 or 2.
    When the displacement of the pressure-sensitive adhesive layer alone in the stress-strain curve is 1500%,
    The stress is 0.0001 MPa or more,
    Adhesive sheet.
  4.  請求項1から請求項3のいずれか一項に記載の粘着シートにおいて、
     前記粘着シートを、第一方向、前記第一方向とは反対方向である第二方向、前記第一方向に対して鉛直方向である第三方向、及び前記第三方向とは反対方向である第四方向に伸長させて、伸長前の前記粘着シートの面積S1と、伸長後の前記粘着シートの面積S2との面積比(S2/S1)×100が300%であるときに、前記基材及び前記粘着剤層が破断しない、
     粘着シート。
    In the adhesive sheet according to any one of claims 1 to 3,
    The adhesive sheet is placed in the first direction, the second direction opposite to the first direction, the third direction perpendicular to the first direction, and the direction opposite to the third direction. When the area ratio (S2 / S1) × 100 of the area S1 of the pressure-sensitive adhesive sheet before stretching and the area S2 of the pressure-sensitive adhesive sheet after stretching in four directions is 300%, the base material and the base material and The pressure-sensitive adhesive layer does not break,
    Adhesive sheet.
PCT/JP2020/020330 2019-10-04 2020-05-22 Pressure-sensitive adhesive sheet WO2021065073A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021551131A JP7541020B2 (en) 2019-10-04 2020-05-22 Expanded Sheet
TW109119403A TWI853036B (en) 2019-10-04 2020-06-10 Adhesive sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019183566 2019-10-04
JP2019-183566 2019-10-04

Publications (1)

Publication Number Publication Date
WO2021065073A1 true WO2021065073A1 (en) 2021-04-08

Family

ID=75337973

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/JP2020/020328 WO2021065071A1 (en) 2019-10-04 2020-05-22 Pressure-sensitive-adhesive sheet
PCT/JP2020/020331 WO2021065074A1 (en) 2019-10-04 2020-05-22 Adhesive sheet
PCT/JP2020/020330 WO2021065073A1 (en) 2019-10-04 2020-05-22 Pressure-sensitive adhesive sheet
PCT/JP2020/020327 WO2021065070A1 (en) 2019-10-04 2020-05-22 Adhesive sheet and method for producing adhesive sheet
PCT/JP2020/020329 WO2021065072A1 (en) 2019-10-04 2020-05-22 Adhesive sheet

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/020328 WO2021065071A1 (en) 2019-10-04 2020-05-22 Pressure-sensitive-adhesive sheet
PCT/JP2020/020331 WO2021065074A1 (en) 2019-10-04 2020-05-22 Adhesive sheet

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/020327 WO2021065070A1 (en) 2019-10-04 2020-05-22 Adhesive sheet and method for producing adhesive sheet
PCT/JP2020/020329 WO2021065072A1 (en) 2019-10-04 2020-05-22 Adhesive sheet

Country Status (5)

Country Link
JP (6) JP7541020B2 (en)
KR (3) KR20220075341A (en)
CN (3) CN114502679A (en)
TW (2) TW202116947A (en)
WO (5) WO2021065071A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7188658B1 (en) * 2021-09-27 2022-12-13 昭和電工マテリアルズ株式会社 Semiconductor device manufacturing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138183A (en) * 2007-11-12 2009-06-25 Lintec Corp Adhesive sheet
JP2010229342A (en) * 2009-03-27 2010-10-14 Lintec Corp Adhesive for optical use, adhesive sheet for optical use, and optical member with adhesive
WO2012124389A1 (en) * 2011-03-17 2012-09-20 リンテック株式会社 Energy-ray-curable adhesive agent and adhesive sheet
JP2014232251A (en) * 2013-05-30 2014-12-11 住友化学株式会社 Optical film laminate and composite polarizing plate using the same
WO2016140163A1 (en) * 2015-03-03 2016-09-09 リンテック株式会社 Sheet for semiconductor processing
WO2018181511A1 (en) * 2017-03-31 2018-10-04 リンテック株式会社 Method for delaminating adhesive sheet
JP2018159014A (en) * 2017-03-23 2018-10-11 リンテック株式会社 Adhesive film and method for producing the same
WO2019172219A1 (en) * 2018-03-07 2019-09-12 リンテック株式会社 Adhesive sheet
WO2019181732A1 (en) * 2018-03-20 2019-09-26 リンテック株式会社 Adhesive tape, and method for producing semiconductor device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3723278B2 (en) * 1996-05-21 2005-12-07 日東電工株式会社 Resist removal adhesive sheet and resist removal method
JP2006152072A (en) * 2004-11-26 2006-06-15 Teijin Chem Ltd Anti-static film for producing semiconductor and method for producing the same
JP2009064975A (en) * 2007-09-06 2009-03-26 Nitto Denko Corp Dicing adhesive sheet and dicing method
WO2010058646A1 (en) 2008-11-21 2010-05-27 インターナショナル・ビジネス・マシーンズ・コーポレーション Semiconductor package and method for manufacturing same
JP2014043548A (en) * 2012-07-31 2014-03-13 Nitto Denko Corp Adhesive composition, adhesive layer, adhesive sheet and optical film
JP6207192B2 (en) * 2013-03-25 2017-10-04 リンテック株式会社 Adhesive sheet for semiconductor processing
CN105378899B (en) * 2013-07-05 2018-05-11 琳得科株式会社 Cutting sheet
JP6424205B2 (en) * 2014-03-03 2018-11-14 リンテック株式会社 Semiconductor-related member processing sheet and chip manufacturing method using the sheet
JP6156443B2 (en) * 2014-08-13 2017-07-05 Jsr株式会社 LAMINATE AND SUBSTRATE PROCESSING METHOD
KR20230066116A (en) * 2016-06-30 2023-05-12 린텍 가부시키가이샤 Semiconductor processing sheet
JP7052726B2 (en) * 2016-12-07 2022-04-12 三菱ケミカル株式会社 Adhesive sheet and its manufacturing method
JP6350845B1 (en) * 2018-01-29 2018-07-04 サイデン化学株式会社 Pressure-sensitive adhesive composition, pressure-sensitive adhesive sheet, and method for producing pressure-sensitive adhesive
JP2018115331A (en) * 2018-03-20 2018-07-26 リンテック株式会社 Pressure-sensitive adhesive tape and production method of semiconductor device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138183A (en) * 2007-11-12 2009-06-25 Lintec Corp Adhesive sheet
JP2010229342A (en) * 2009-03-27 2010-10-14 Lintec Corp Adhesive for optical use, adhesive sheet for optical use, and optical member with adhesive
WO2012124389A1 (en) * 2011-03-17 2012-09-20 リンテック株式会社 Energy-ray-curable adhesive agent and adhesive sheet
JP2014232251A (en) * 2013-05-30 2014-12-11 住友化学株式会社 Optical film laminate and composite polarizing plate using the same
WO2016140163A1 (en) * 2015-03-03 2016-09-09 リンテック株式会社 Sheet for semiconductor processing
JP2018159014A (en) * 2017-03-23 2018-10-11 リンテック株式会社 Adhesive film and method for producing the same
WO2018181511A1 (en) * 2017-03-31 2018-10-04 リンテック株式会社 Method for delaminating adhesive sheet
WO2019172219A1 (en) * 2018-03-07 2019-09-12 リンテック株式会社 Adhesive sheet
WO2019181732A1 (en) * 2018-03-20 2019-09-26 リンテック株式会社 Adhesive tape, and method for producing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7188658B1 (en) * 2021-09-27 2022-12-13 昭和電工マテリアルズ株式会社 Semiconductor device manufacturing method
WO2023047592A1 (en) * 2021-09-27 2023-03-30 株式会社レゾナック Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
TW202122534A (en) 2021-06-16
JP7541019B2 (en) 2024-08-27
CN114514295B (en) 2024-02-06
WO2021065072A1 (en) 2021-04-08
JPWO2021065074A1 (en) 2021-04-08
KR20220075341A (en) 2022-06-08
JPWO2021065072A1 (en) 2021-04-08
TW202122532A (en) 2021-06-16
JPWO2021065070A1 (en) 2021-04-08
KR20220080093A (en) 2022-06-14
WO2021065071A1 (en) 2021-04-08
CN114514296A (en) 2022-05-17
JP7541021B2 (en) 2024-08-27
CN114502679A (en) 2022-05-13
JPWO2021065073A1 (en) 2021-04-08
TW202115214A (en) 2021-04-16
JP7541020B2 (en) 2024-08-27
JPWO2021065071A1 (en) 2021-04-08
WO2021065074A1 (en) 2021-04-08
TW202116947A (en) 2021-05-01
WO2021065070A1 (en) 2021-04-08
JP2024103614A (en) 2024-08-01
KR20220080092A (en) 2022-06-14
TW202122533A (en) 2021-06-16
CN114514296B (en) 2024-03-29
CN114514295A (en) 2022-05-17

Similar Documents

Publication Publication Date Title
JP7336548B2 (en) Semiconductor device manufacturing method
JP7256788B2 (en) Adhesive sheet
JP7256787B2 (en) Adhesive sheet
WO2021065073A1 (en) Pressure-sensitive adhesive sheet
JP7256786B2 (en) Adhesive sheet
JP7267990B2 (en) EXPANDING METHOD, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, AND ADHESIVE SHEET
TWI846884B (en) Adhesive sheet
TWI845701B (en) Adhesive sheet
JP7438990B2 (en) Expanding method and semiconductor device manufacturing method
TW202036741A (en) Expansion method and semiconductor device production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551131

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20873070

Country of ref document: EP

Kind code of ref document: A1