WO2021064785A1 - 直流電源装置、電力変換システムおよび空気調和機 - Google Patents

直流電源装置、電力変換システムおよび空気調和機 Download PDF

Info

Publication number
WO2021064785A1
WO2021064785A1 PCT/JP2019/038486 JP2019038486W WO2021064785A1 WO 2021064785 A1 WO2021064785 A1 WO 2021064785A1 JP 2019038486 W JP2019038486 W JP 2019038486W WO 2021064785 A1 WO2021064785 A1 WO 2021064785A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
drive circuit
power supply
backflow prevention
converter device
Prior art date
Application number
PCT/JP2019/038486
Other languages
English (en)
French (fr)
Inventor
知宏 沓木
正城 村松
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/038486 priority Critical patent/WO2021064785A1/ja
Priority to JP2021550745A priority patent/JPWO2021064785A1/ja
Publication of WO2021064785A1 publication Critical patent/WO2021064785A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a DC power supply device, a power conversion system, and an air conditioner that convert alternating current into direct current.
  • the converter device is a device that converts alternating current to direct current.
  • the converter device described in Patent Document 1 is connected to an AC power supply and includes a rectifier circuit, a reactor, two switching elements, two capacitors, and two backflow prevention elements.
  • the converter device described in Patent Document 1 outputs pulse signals having the same pulse width to two switching elements at the same timing, thereby passing through a rectifier circuit, a reactor, and a switching element during a period when there is no current conduction. A short circuit current is flowing. As a result, the current conduction angle can be widened, so that the power factor can be improved.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a DC power supply device capable of improving the power factor in a circuit whose size is suppressed.
  • the present invention is a DC power supply device that converts alternating current into direct current and supplies it to a load, and rectifies the alternating current power output from the alternating current power supply to direct current power. It includes a rectifier circuit that converts to rectifier circuit and a reactor connected to the rectifier circuit. Further, the DC power supply device of the present invention is a first switching element that switches between charging and non-charging of the first capacitor and the second capacitor connected in series between the output terminals to the load and the first capacitor. And a second switching element that switches between charging and non-charging of the second capacitor.
  • the charge charge of the first capacitor is switched between the first backflow prevention element that prevents the charge charge of the first capacitor from flowing back to the first switching element and the charge charge of the second capacitor is the second switching. It includes a second backflow prevention element that prevents backflow to the element, a first drive circuit that drives the first switching element, and a second drive circuit that drives the second switching element. Further, in the DC power supply device of the present invention, the first drive circuit controls the first switching element to be turned on at the first timing, and the second drive circuit controls the second switching element to the second.
  • the first switching element, the second switching element, the first drive circuit, and the second drive circuit, which are controlled to be turned on at the timing, are modules contained in one package.
  • the DC power supply device has the effect of being able to improve the power factor in a circuit whose size is suppressed.
  • FIG. 1 is a diagram showing a first configuration example of the converter device according to the first embodiment.
  • the converter device 11 which is a DC power supply device is a power conversion device that converts alternating current into direct current.
  • the converter device 11 is connected to a three-phase AC AC power supply AC3 and a load L.
  • the converter device 11 converts the AC power supplied from the three-phase (R, S, T) AC power supply AC3 into DC power, and outputs this DC power to the load L.
  • the circuit constituting the converter device 11 is the same circuit as the circuit of Patent Document 1, and the converter device 11 operates in the same manner as the converter device of Patent Document 1 to improve the power factor or boost the DC voltage. Do it.
  • the converter device 11 includes a rectifier circuit DBa that rectifies the AC power sent from the AC power supply AC3 and outputs DC power, and a reactor DCL connected to the output terminal on the positive side of the rectifier circuit DBa. Further, the converter device 11 includes switching elements Q1H and Q1L, backflow prevention elements D1 and D2, smoothing capacitors C1 and C2, and drive circuits HV and LV which are gate drive circuits.
  • the smoothing capacitor C1 is the first capacitor and the smoothing capacitor C2 is the second capacitor.
  • the switching element Q1H is the first switching element, and the switching element Q1L is the second switching element.
  • the backflow prevention element D1 is the first backflow prevention element (third switching element), and the backflow prevention element D2 is the second backflow prevention element (fourth switching element).
  • the drive circuit HV is the first drive circuit, and the drive circuit LV is the second drive circuit.
  • the drive circuits HV and LV and the switching elements Q1H and Q1L are packaged in one module MDa.
  • the occupied area of the semiconductor element constituting the converter device 11 can be suppressed, and the increase in the circuit size of the circuit constituting the converter device 11 can be suppressed, so that the space-saving and low-cost converter device can be suppressed. 11 can be obtained.
  • the switching elements Q1H and Q1L are, for example, IGBTs (Insulated Gate Bipolar Transistors).
  • the backflow prevention elements D1 and D2 are, for example, backflow prevention diodes.
  • the drive circuit HV drives the switching element Q1H, and the drive circuit LV drives the switching element Q1L.
  • the drive circuit HV is a level shift circuit that shifts the voltage reference point of the operation power supply Vdd1 of the switching element Q1H to create a power supply for operating the switching element Q1H, and a first gate drive for driving the gate of the switching element Q1H. It has a circuit.
  • As the level shift circuit of the drive circuit HV for example, a bootstrap circuit is used.
  • the drive circuit LV includes a second gate drive circuit that drives the gate of the switching element Q1L.
  • the AC power supply AC3 is connected to the load L via a rectifier circuit DBa, a reactor DCL, switching elements Q1H and Q1L, backflow prevention elements D1 and D2, and smoothing capacitors C1 and C2.
  • the load L is, for example, an inverter device that drives a motor of a compressor used in an air conditioner.
  • the inverter device is an AC power supply device that converts DC power into AC power.
  • the backflow prevention element D1 is arranged in the forward direction from the collector of the switching element Q1H toward the connection point 32 between the smoothing capacitor C1 and the load L.
  • the backflow prevention element D2 is arranged in the forward direction from the connection point 33 between the smoothing capacitor C2 and the load L toward the emitter of the switching element Q1L.
  • the output side of the reactor DCL is connected to the anode of the backflow prevention element D1 and the collector of the switching element Q1H via the connection point 35.
  • the negative output terminal of the rectifier circuit DBa is connected to the cathode of the backflow prevention element D2 and the emitter of the switching element Q1L via the connection point 36.
  • the collector of the switching element Q1H is connected to the positive side of the rectifier circuit DBa via the reactor DCL, and is also connected to the anode of the backflow prevention element D1.
  • the emitter of the switching element Q1H is connected to the intermediate point 30 of the switching elements Q1H and Q1L, and the gate of the switching element Q1H is connected to the output side of the drive circuit HV.
  • the collector of the switching element Q1L is connected to the intermediate point 30 of the switching elements Q1H and Q1L.
  • the emitter of the switching element Q1L is connected to the negative side of the rectifier circuit DBa and the cathode of the backflow prevention element D2, and the gate of the switching element Q1L is connected to the output side of the drive circuit LV.
  • the load L is connected between the cathode of the backflow prevention element D1 and the anode of the backflow prevention element D2.
  • the connection point 32 between the cathode of the backflow prevention element D1 and the load L is connected to the smoothing capacitor C1.
  • the connection point 33 between the anode of the backflow prevention element D2 and the load L is connected to the smoothing capacitor C2.
  • the smoothing capacitors C1 and C2 are connected in series between the output terminals to the load L.
  • the smoothing capacitors C1 and C2 are connected in series between the connection points 32 and 33.
  • smoothing capacitors C1 and C2 are connected in series between the cathode of the backflow prevention element D1 and the anode of the backflow prevention element D2.
  • the intermediate point 31 of the smoothing capacitors C1 and C2 is connected to the intermediate point 30 of the switching elements Q1H and Q1L.
  • the drive circuit HV is connected to an input terminal to which the operating power supply Vdd1 is input and an input terminal to which the drive signal Sigma1H of the switching element Q1H is input.
  • the drive circuit LV is connected to an input terminal to which the operating power supply Vdd1 is input and an input terminal to which the drive signal Sigma1L of the switching element Q1L is input.
  • the drive circuit HV is connected to the emitter of the switching element Q1H.
  • the drive circuit LV is connected to a connection point 34 that connects the emitter of the switching element Q1L and the ground GND1.
  • the rectifier circuit DBa is a three-phase full-wave rectifier circuit in which a rectifier diode is fully bridge-connected.
  • the reactor DCL is shown as a DC reactor arranged on the output side of the rectifier circuit DBa, it may be an AC reactor arranged on the input side of the rectifier circuit DBa.
  • the drive circuit HV is an HVIC (High Voltage Integrated Circuit: high withstand voltage IC).
  • the drive circuit LV is an LVIC (Low Voltage Integrated Circuit: low withstand voltage IC).
  • the drive circuit HV receives the drive signal Sigma1H of the operation power supply Vdd1 and the switching element Q1H.
  • the drive circuit LV receives the drive signal Sigma1L of the operation power supply Vdd1 and the switching element Q1L.
  • the drive circuit HV controls the on / off of the switching element Q1H according to the drive signal Sigma1H
  • the drive circuit LV controls the on / off of the switching element Q1L according to the drive signal Sigma1L.
  • the drive circuits HV and LV drive the switching elements Q1H and Q1L to boost-control the bus voltage.
  • the switching element Q1H is turned on when the drive signal Sigma1H is High, and charges the smoothing capacitor C1.
  • the switching element Q1L is turned on when the drive signal Sigma1L is High, and charges the smoothing capacitor C2.
  • the switching element Q1H may have a circuit configuration that turns on when the drive signal Sigma1H is Low. Further, the switching element Q1L may have a circuit configuration that turns on when the drive signal Sigma1L is Low.
  • the switching element Q1H switches between charging and non-charging of the smoothing capacitor C1.
  • the switching element Q1L switches between charging and non-charging of the smoothing capacitor C2.
  • the switching elements Q1H and Q1L are controlled by the drive circuits HV and LV to selectively charge one or both of the smoothing capacitors C1 and C2.
  • the backflow prevention element D1 prevents backflow from the positive side of the smoothing capacitor C1 to the switching element Q1H. That is, the backflow prevention element D1 prevents the charge charge of the smoothing capacitor C1 from flowing back to the switching element Q1H.
  • the backflow prevention element D2 prevents backflow from the switching element Q1L to the negative side of the smoothing capacitor C2. That is, the backflow prevention element D2 prevents the charge charge of the smoothing capacitor C2 from flowing back to the switching element Q1L.
  • the converter device 11 turns on at least one of the switching elements Q1H and Q1L in a half cycle of the output waveform by the AC power supply AC3.
  • the converter device 11 outputs pulse signals having the same pulse width to the two switching elements Q1H and Q1L at the same timing, for example.
  • the short-circuit current flows through the rectifier circuit DBa, the reactor DCL, and the switching elements Q1H and Q1L during the period when there is no current conduction, so that the current conduction angle can be widened. Therefore, the converter device 11 can obtain a sufficiently high power factor and can suppress the harmonic component included in the input current. As a result, the converter device 11 can improve the power factor or boost the DC voltage.
  • the drive circuits HV and LV and the switching elements Q1H and Q1L are packaged in one module MDa.
  • the two drive circuits and the two switching elements are not packaged in one module but individually packaged, the number of parts increases, so that the circuit size of the converter device becomes large, and the converter device. Cannot be miniaturized.
  • the module MDa is a power module provided with a pin or a connector, and can be connected to the outside of the module via the pin or the connector.
  • the module MDa receives the drive signal Sigma1H of the switching element Q1H, the drive signal Sigma1L of the switching element Q1L, and the operation power supply Vdd1 of the module MDa via a pin or a connector. Further, the module MDa is connected to the ground GND1 of the module MDa via a pin or a connector.
  • the collector of the switching element Q1H is connected to the backflow prevention element D1 via a pin or a connector
  • the emitter of the switching element Q1L is connected to the backflow prevention element D2 via a pin or a connector.
  • the intermediate point 30 of the switching elements Q1H and Q1L is connected to the intermediate point 31 via a pin or a connector.
  • the switching elements Q1H and Q1L and the drive circuits HV and LV can also be applied to the components of the inverter device. Therefore, the module MDa is not a module dedicated to the converter device, but a module applicable to both the converter device 11 and the inverter device. Therefore, by applying the module MDa to the converter device 11, the cost can be suppressed as compared with the case where the module dedicated to the converter device is applied to the converter device 11.
  • the single-phase AC power may be input to the converter device 11.
  • FIG. 2 is a diagram showing a second configuration example of the converter device according to the first embodiment.
  • the components of the converter device 12 shown in FIG. 2 the components that achieve the same functions as the components of the converter device 11 shown in FIG. 1 are designated by the same reference numerals, and redundant description will be omitted.
  • the converter device 12 is connected to a single-phase alternating current (L, N) alternating current power supply AC1 and a load L.
  • the converter device 12 converts the AC power supplied from the single-phase AC AC power supply AC1 into DC power, and outputs this DC power to the load L.
  • the converter device 12 includes a rectifier circuit DBb instead of the rectifier circuit DBa.
  • the rectifier circuit DBb is a single-phase full-wave rectifier circuit in which a rectifier diode is fully bridge-connected.
  • the rectifier circuit DBb receives single-phase AC power from the AC power supply AC1.
  • An example of the load L connected to the converter device 11 or the converter device 12 is an inverter device that drives a motor. Further, this inverter device may be configured by using a plurality of modules MDa.
  • FIG. 3 is a diagram showing a configuration example of the inverter device according to the first embodiment.
  • the inverter device 21 is connected to, for example, the converter device 11 or the converter device 12 and operates as a load L.
  • the case where the inverter device 21 is connected to the converter device 11 will be described.
  • the power conversion system 101 including the converter device 11 and the inverter device 21 is connected to the motor 51 to drive the motor 51.
  • the inverter device 21 includes three modules MDa. In the inverter device 21, three modules MDa are connected in parallel between the bus on the high potential side and the bus on the low potential side.
  • the bus on the high potential side of the three modules MDa is connected to the cathode of the backflow prevention element D1 included in the converter device 11, and the bus on the low potential side of the three modules MDa is the anode of the backflow prevention element D2 included in the converter device 11. Connected to.
  • the first module MDa is connected to the U-phase terminal
  • the second module MDa is connected to the V-phase terminal
  • the third module MDa is the W-phase terminal. Connected to. Then, the U-phase terminal, the V-phase terminal, and the W-phase terminal are connected to the motor 51 or the like. In FIG. 3, the connection line connecting the three modules MDa and the motor 51 is not shown.
  • the drive circuits HV, LV and the switching elements Q1H, Q1L are packaged in one module MDa in the converter devices 11 and 12. Therefore, the converter devices 11 and 12 can improve the power factor in a low-cost circuit whose size is suppressed.
  • Embodiment 2 Next, a second embodiment of the present invention will be described with reference to FIGS. 4 and 5.
  • the drive circuits HV, LV, the switching elements Q1H, Q1L, and the backflow prevention elements D1 and D2 are stored in one module MDb.
  • FIG. 4 is a diagram showing a first configuration example of the converter device according to the second embodiment.
  • the components that achieve the same functions as the components of the converter device 11 shown in FIG. 1 are designated by the same reference numerals, and redundant description will be omitted.
  • the converter device 13 includes a rectifier circuit DBa, a reactor DCL, switching elements Q1H and Q1L, backflow prevention elements D1 and D2, smoothing capacitors C1 and C2, and drive circuits HV and LV. I have.
  • the converter device 13 of the second embodiment includes a module MDb instead of the module MDa as compared with the converter device 11.
  • the module MDb includes switching elements Q1H and Q1L, drive circuits HV and LV, and backflow prevention elements D1 and D2. That is, in the converter device 11, the backflow prevention elements D1 and D2 are not included in the module MDa, but in the converter device 13, the backflow prevention elements D1 and D2 are included in the module MDb.
  • the converter device 13 With such a configuration of the module MDb, the converter device 13 becomes more compact than the converter device 11.
  • the module MDb is applied when the number of converter devices 13 to be manufactured is large and the cost can be suppressed even if the module MDb dedicated to the converter device 13 is manufactured.
  • FIG. 5 is a diagram showing a second configuration example of the converter device according to the second embodiment.
  • the components that achieve the same functions as the components of the converter device 13 shown in FIG. 4 are designated by the same reference numerals, and redundant description will be omitted.
  • the converter device 14 is connected to the single-phase AC AC power supply AC1 and the load L.
  • the converter device 14 converts the AC power supplied from the single-phase AC AC power supply AC1 into DC power, and outputs this DC power to the load L.
  • the converter device 14 includes a rectifier circuit DBb instead of the rectifier circuit DBa.
  • the load L connected to the converter device 13 or the converter device 14 may be the above-mentioned inverter device 21.
  • the drive circuits HV, LV, the switching elements Q1H, Q1L, and the backflow prevention elements D1 and D2 are packaged in one module MDb in the converter devices 13 and 14. Therefore, the converter devices 13 and 14 can improve the power factor in a circuit whose size is smaller than that of the converter devices 11 and 12.
  • Embodiment 3 Next, a third embodiment of the present invention will be described with reference to FIGS. 6 to 8.
  • the components included in the converter device having a configuration different from that of the converter devices 11 and 12 described in the first embodiment are packaged in one module.
  • FIG. 6 is a diagram showing a first configuration example of the converter device according to the third embodiment.
  • the components that achieve the same functions as the components of the converter device 11 shown in FIG. 1 are designated by the same reference numerals, and redundant description will be omitted.
  • the circuit constituting the converter device 15 is a circuit similar to the circuit of the DC power supply device described in International Publication No. 2017/145339, and the converter device 15 is the same as the DC power supply device of International Publication No. 2017/145339. By performing the same operation, conduction loss is suppressed and high efficiency is realized.
  • the converter device 15 includes a rectifier circuit DBa, a reactor DCL, and smoothing capacitors C1 and C2. Further, the converter device 15 includes two modules MDc and MDd. The module MDc and the module MDd have the same configuration.
  • the module MDc includes switching elements Q2Hc and Q2Lc and drive circuits HVc and LVc.
  • the module MDd includes switching elements Q2Hd and Q2Ld, and drive circuits HVd and LVd. That is, the modules MDc and MDd have two switching elements and two drive circuits, respectively, like the modules MDa and MDb.
  • the smoothing capacitor C1 is the first capacitor
  • the smoothing capacitor C2 is the second capacitor.
  • the switching element Q2Lc is the first switching element
  • the switching element Q2Hd is the second switching element.
  • the switching element Q2Hc is the first backflow prevention element
  • the switching element Q2Ld is the second backflow prevention element.
  • the drive circuit LVc is the first drive circuit
  • the drive circuit HVd is the second drive circuit
  • the drive circuit HVc is the third drive circuit
  • the drive circuit LVd is the fourth drive circuit.
  • the switching element Q2Hc is the same element as the switching element Q2Hd, and the switching element Q2Lc is the same element as the switching element Q2Ld.
  • the switching elements Q2Hc, Q2Lc, Q2Hd, and Q2Ld are, for example, MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors).
  • the drive circuits HVc and HVd are both HVICs similar to the drive circuit HV, and the drive circuits LVc and LVd are both LVICs similar to the drive circuit LV.
  • the drive circuit HVc drives the switching element Q2Hc, and the drive circuit LVc drives the switching element Q2Lc.
  • the drive circuit HVc is a first level shift circuit that shifts the voltage reference point of the operation power supply Vdd1 of the switching element Q2Hc to create a power supply for operating the switching element Q2Hc, and a first level shift circuit that drives the gate of the switching element Q2Hc. It is equipped with a gate drive circuit.
  • the drive circuit HVd has a second level shift circuit that shifts the voltage reference point of the power supply Vdd2 for operation of the switching element Q2Hd to create a power supply for operating the switching element Q2Hd, and a second level shift circuit that drives the gate of the switching element Q2Hd. It is equipped with a gate drive circuit.
  • the drive circuit LVc includes a first gate drive circuit that drives the gate of the switching element Q2Lc, and the drive circuit LVd includes a second gate drive circuit that drives the gate of the switching element Q2Ld.
  • the drain of the switching element Q2Hc is connected to the connection point 32, and the source of the switching element Q2Hc is connected to the drain of the switching element Q2Lc. Further, the source of the switching element Q2Lc is connected to the drain of the switching element Q2Hd. The source of the switching element Q2Hd is connected to the drain of the switching element Q2Ld. Further, the source of the switching element Q2Ld is connected to the connection point 33.
  • the drive circuit HVc is connected to the gate and source of the switching element Q2Hc, and the drive circuit LVc is connected to the gate of the switching element Q2Lc, the source of the switching element Q2Lc, and the ground GND1.
  • the drive circuit HVd is connected to the gate and source of the switching element Q2Hd, and the drive circuit LVd is connected to the gate of the switching element Q2Ld, the source of the switching element Q2Ld, and the ground GND2.
  • the drive circuit HVc receives the drive signal Sigma1H of the operation power supply Vdd1 and the switching element Q2Hc, similarly to the drive circuit HV.
  • the drive circuit LVc receives the drive signal Sigma1L of the operation power supply Vdd1 and the switching element Q2Lc, similarly to the drive circuit LV.
  • the drive circuit HVd receives the drive signal Sigma2H of the operation power supply Vdd2 and the switching element Q2Hd, similarly to the drive circuit HV.
  • the drive circuit LVd receives the drive signal Sigma2L of the operation power supply Vdd2 and the switching element Q2Ld, similarly to the drive circuit LV.
  • the operating power supply Vdd2 is the same power supply as the operating power supply Vdd1.
  • the drive signal Sigma2H is a signal similar to the drive signal Sigma1H
  • the drive signal Sigma2L is a signal similar to the drive signal Sigma1L.
  • the drive circuit HVc controls the switching element Q2Hc on and off according to the drive signal Sigma1H
  • the drive circuit LVc controls the switching element Q2Lc on and off according to the drive signal Sigma1L.
  • the drive circuit HVd controls the switching element Q2Hd on and off according to the drive signal Sigma2H
  • the drive circuit LVd controls the switching element Q2Ld on and off according to the drive signal Sigma2L.
  • the switching element Q2Lc operates with reference to the operating power supply Vdd1, and the switching element Q2Hc operates with reference to the power supply generated by the level shift circuit using the operating power supply Vdd1.
  • the switching element Q2Ld operates with reference to the operating power supply Vdd2, and the switching element Q2Hd operates with reference to the power supply generated by the level shift circuit using the operating power supply Vdd2.
  • the converter device 15 includes drive circuits HVc, LVc and switching elements Q2Hc, Q2Lc instead of the drive circuit HV, the switching element Q1H, and the backflow prevention element D1.
  • the converter device 15 includes drive circuits HVd, LVd and switching elements Q2Hd, Q2Ld instead of the drive circuit LV, the switching element Q1L, and the backflow prevention element D2.
  • the switching element Q2Hc is a backflow prevention element that prevents backflow to the switching element Q2Lc
  • the switching element Q2Ld is a backflow prevention element that prevents backflow to the switching element Q2Hd.
  • the converter device 15 includes a switching element Q2Hc which is a bidirectional switching element instead of the backflow prevention element D1, and a switching element Q2Ld which is a bidirectional switching element instead of the backflow prevention element D2. It has.
  • the converter device 15 of the present embodiment is packaged in one module MDc in which the drive circuits HVc and LVc and the switching elements Q2Hc and Q2Lc are the first package. Further, the converter device 15 is packaged in one module MDd in which the drive circuits HVd, LVd and the switching elements Q2Hd, Q2Ld are the second package. With these configurations, the occupied area of the semiconductor element constituting the converter device 15 can be suppressed, and the increase in the circuit size of the circuit constituting the converter device 15 can be suppressed. Therefore, the space-saving converter device 15 can be used. Obtainable.
  • the module MDc is provided with a pin or a connector, and can be connected to the outside of the module via the pin or the connector.
  • the module MDc receives the drive signals Sigma1H, Sigma1L and the operation power supply Vdd1 of the module MDc via a pin or a connector. Further, the module MDc is connected to the ground GND1 of the module MDc via a pin or a connector.
  • the module MDd is provided with a pin or a connector, and can be connected to the outside of the module via the pin or the connector.
  • the module MDd receives the drive signals Sigma2H, Sigma2L and the operation power supply Vdd2 of the module MDd via a pin or a connector. Further, the module MDd is connected to the ground GND2 of the module MDd via a pin or a connector.
  • connection point 42 between the switching element Q2Hc and the switching element Q2Lc is connected to the reactor DCL via a pin or a connector.
  • the connection point 43 between the switching element Q2Hd and the switching element Q2Ld is connected to the negative output terminal of the rectifier circuit DBa via a pin or a connector.
  • the connection point 41 between the switching element Q2Lc and the switching element Q2Hd is the connection point between the module MDc and the module MDd.
  • the connection point 41 is connected to the intermediate point 31.
  • the converter device 15 turns on the switching elements Q2Hc and Q2Ld at the same timing as while the backflow prevention elements D1 and D2 are energized in the first embodiment. That is, the converter device 15 controls the switching element Q2Hc to the on state at the timing when the charging of the smoothing capacitor C1 is started, and controls the switching element Q2Ld to the on state at the timing when the charging of the smoothing capacitor C2 is started.
  • a MOSFET has a lower voltage at which current starts to flow, and the product of current and voltage, which is a loss, becomes smaller, particularly in a region where the current is low.
  • the converter device 15 can suppress the power loss while improving the power factor or boosting the DC voltage.
  • the converter device 15 controls the switching element Q2Hc to be in the ON state when the voltage applied to the switching element Q2Hc is equal to or less than a predetermined voltage value, and starts charging the smoothing capacitor C2.
  • the switching element Q2Ld may be controlled to be in the ON state.
  • the modules MDc and MDd can also be applied to the components of the inverter device. Therefore, the modules MDc and MDd are not modules dedicated to the converter device, but modules that can be applied to both the converter device 15 and the inverter device. Therefore, by applying the modules MDc and MDd to the converter device 15, the cost can be suppressed as compared with the case where the module dedicated to the converter device is applied to the converter device 15.
  • the case where the AC power supply AC3 inputs the three-phase AC power to the converter device 15 has been described, but the single-phase AC power may be input to the converter device 15. ..
  • FIG. 7 is a diagram showing a second configuration example of the converter device according to the third embodiment.
  • the components of the converter device 16 shown in FIG. 7 the components that achieve the same functions as the components of the converter devices 12 and 15 are designated by the same reference numerals, and redundant description will be omitted.
  • the converter device 16 is connected to the single-phase AC AC power supply AC1 and the load L.
  • the converter device 16 converts the AC power supplied from the single-phase AC AC power supply AC1 into DC power, and outputs this DC power to the load L.
  • the converter device 16 includes a rectifier circuit DBb instead of the rectifier circuit DBa.
  • An example of the load L connected to the converter device 15 or the converter device 16 is an inverter device that drives a motor. Further, the inverter device may be configured by using a plurality of modules MDc.
  • FIG. 8 is a diagram showing a configuration example of the inverter device according to the third embodiment.
  • the inverter device 22 is connected to, for example, the converter device 15 or the converter device 16 and operates as a load L.
  • the case where the inverter device 22 is connected to the converter device 15 will be described.
  • the power conversion system 102 including the converter device 15 and the inverter device 22 is connected to the motor 51 to drive the motor 51.
  • the inverter device 22 includes three modules MDc. In the inverter device 22, three modules MDc are connected in parallel between the bus on the high potential side and the bus on the low potential side.
  • the bus on the high potential side of the three modules MDc is connected to the drain of the switching element Q2Hc included in the converter device 15, and the bus on the low potential side of the three modules MDc is connected to the source of the switching element Q2Ld included in the converter device 15. Will be done.
  • the first module MDc is connected to the U-phase terminal
  • the second module MDc is connected to the V-phase terminal
  • the third module MDc is the W-phase terminal. Connected to. Then, the U-phase terminal, the V-phase terminal, and the W-phase terminal are connected to the motor 51 or the like. In FIG. 8, the connection line connecting the three modules MDc and the motor 51 is not shown.
  • the drive circuits HVc and LVc and the switching elements Q2Hc and Q2Lc are packaged in one module MDc in the converter devices 15 and 16. Further, in the converter devices 15 and 16, the drive circuits HVd and LVd and the switching elements Q2Hd and Q2Ld are packaged in one module MDd. Therefore, the converter devices 15 and 16 can suppress power loss while improving the power factor or boosting the DC voltage in a low-cost circuit whose size is suppressed.
  • the motor 51 connected to the inverter devices 21 and 22 may be applied to the compressor of the air conditioner or the device for operating the fan.
  • FIG. 9 is a diagram showing a configuration example of an air conditioner including the converter device according to the first to third embodiments. Although the configuration of the air conditioner 100 provided with the converter device 11 will be described here, the air conditioner provided with any of the converter devices 12 to 16 is the same as the configuration of the air conditioner 100.
  • the air conditioner 100 includes a converter device 11, and uses the DC power generated by the converter device 11 to perform air conditioning.
  • the air conditioner 100 includes an AC power supply AC3, a converter device 11, an inverter device 21, a compressor 50, and a refrigeration cycle mechanism 60.
  • the compressor 50 includes a motor 51 and a compression element 52.
  • the refrigeration cycle mechanism 60 includes a four-way valve 61, an indoor heat exchanger 62, an expansion valve 63, and an outdoor heat exchanger 64, and each of these parts is connected via a refrigerant pipe.
  • the inverter device 21 converts the DC power output by the converter device 11 into AC power and supplies it to the motor 51 of the compressor 50.
  • the motor 51 is driven by receiving the supply of AC power from the inverter device 21.
  • the compression element 52 performs an operation of compressing the refrigerant in the refrigerant pipe by rotating the motor 51, and circulates the refrigerant inside the refrigeration cycle mechanism 60.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

直流電源装置であって、整流回路(DBa)と、リアクタ(DCL)と、負荷(L)への出力端子間に直列接続された平滑コンデンサ(C1,C2)と、平滑コンデンサ(C1,C2)の充電と非充電とをスイッチングするスイッチング素子(Q1H,Q1L)と、充電電荷がスイッチング素子(Q1H,Q1L)に逆流するのを防止する逆流防止素子(D1,D2)と、スイッチング素子(Q1H)を駆動する駆動回路(HV)と、スイッチング素子(Q1L)を駆動する駆動回路(LV)と、を備え、駆動回路(HV)は、スイッチング素子(Q1H)を第1のタイミングでオン状態に制御し、駆動回路(LV)は、スイッチング素子(Q1L)を第2のタイミングでオン状態に制御し、スイッチング素子(Q1H,Q1L)および駆動回路(HV,LV)は、1つのパッケージに収められたモジュール(MDa)である。

Description

直流電源装置、電力変換システムおよび空気調和機
 本発明は、交流を直流に変換する直流電源装置、電力変換システムおよび空気調和機に関する。
 コンバータ装置は、交流を直流に変換する装置である。特許文献1に記載のコンバータ装置は、交流電源に接続されるとともに、整流回路、リアクタ、2つのスイッチング素子、2つのコンデンサ、および2つの逆流防止素子を備えている。この特許文献1に記載のコンバータ装置は、2つのスイッチング素子に対して同じタイミングで同じパルス幅のパルス信号を出力することで、電流導通の無い期間において、整流回路、リアクタ、およびスイッチング素子を介して短絡電流を流している。これにより、電流導通角を広げることができるので、力率改善を行なうことができる。
特開2000-278955号公報
 しかしながら、上記特許文献1の技術では、2つのスイッチング素子と、2つのスイッチング素子を駆動する駆動回路が、それぞれ別々の部品としてコンバータ装置内に配置されているので、コンバータ装置である直流電源装置が備える回路のサイズが大きくなるという問題があった。
 本発明は、上記に鑑みてなされたものであって、サイズが抑制された回路で力率改善を行なうことができる直流電源装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、交流を直流に変換して負荷に供給する直流電源装置であって、交流電源から出力された交流電力を整流して直流電力に変換する整流回路と、整流回路に接続されたリアクタと、を備える。また、本発明の直流電源装置は、負荷への出力端子間に直列接続された第1のコンデンサおよび第2のコンデンサと、第1のコンデンサの充電と非充電とをスイッチングする第1のスイッチング素子と、第2のコンデンサの充電と非充電とをスイッチングする第2のスイッチング素子と、を備える。また、本発明の直流電源装置は、第1のコンデンサの充電電荷が第1のスイッチング素子へ逆流するのを防止する第1の逆流防止素子と、第2のコンデンサの充電電荷が第2のスイッチング素子へ逆流するのを防止する第2の逆流防止素子と、第1のスイッチング素子を駆動する第1の駆動回路と、第2のスイッチング素子を駆動する第2の駆動回路と、を備える。また、本発明の直流電源装置は、第1の駆動回路は、第1のスイッチング素子を第1のタイミングでオン状態に制御し、第2の駆動回路は、第2のスイッチング素子を第2のタイミングでオン状態に制御し、第1のスイッチング素子、第2のスイッチング素子、第1の駆動回路、および第2の駆動回路は、1つのパッケージに収められたモジュールである。
 本発明にかかる直流電源装置は、サイズが抑制された回路で力率改善を行なうことができるという効果を奏する。
実施の形態1にかかるコンバータ装置の第1の構成例を示す図 実施の形態1にかかるコンバータ装置の第2の構成例を示す図 実施の形態1にかかるインバータ装置の構成例を示す図 実施の形態2にかかるコンバータ装置の第1の構成例を示す図 実施の形態2にかかるコンバータ装置の第2の構成例を示す図 実施の形態3にかかるコンバータ装置の第1の構成例を示す図 実施の形態3にかかるコンバータ装置の第2の構成例を示す図 実施の形態3にかかるインバータ装置の構成例を示す図 実施の形態1から3にかかるコンバータ装置を備えた空気調和機の構成例を示す図
 以下に、本発明の実施の形態にかかる直流電源装置、電力変換システムおよび空気調和機を図面に基づいて詳細に説明する。なお、これらの実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、実施の形態1にかかるコンバータ装置の第1の構成例を示す図である。直流電源装置であるコンバータ装置11は、交流を直流に変換する電力変換装置である。コンバータ装置11は、三相交流の交流電源AC3および負荷Lに接続される。コンバータ装置11は、三相(R,S,T)の交流電源AC3から供給される交流電力を直流電力に変換し、この直流電力を負荷Lに出力する。
 コンバータ装置11を構成する回路は、特許文献1の回路と同様の回路であり、コンバータ装置11は、特許文献1のコンバータ装置と同様の動作をすることで、力率改善または直流電圧の昇圧を行なう。
 コンバータ装置11は、交流電源AC3から送られてくる交流電力を整流して直流電力を出力する整流回路DBaと、整流回路DBaの正側の出力端子に接続されたリアクタDCLとを備えている。また、コンバータ装置11は、スイッチング素子Q1H,Q1Lと、逆流防止素子D1,D2と、平滑コンデンサC1,C2と、ゲートの駆動回路である駆動回路HV,LVとを備えている。
 実施の形態1および後述する実施の形態2では、平滑コンデンサC1が第1のコンデンサであり、平滑コンデンサC2が第2のコンデンサである。スイッチング素子Q1Hが第1のスイッチング素子であり、スイッチング素子Q1Lが第2のスイッチング素子である。逆流防止素子D1が第1の逆流防止素子(第3のスイッチング素子)であり、逆流防止素子D2が第2の逆流防止素子(第4のスイッチング素子)である。駆動回路HVが第1の駆動回路であり、駆動回路LVが第2の駆動回路である。
 本実施の形態のコンバータ装置11は、駆動回路HV,LVおよびスイッチング素子Q1H,Q1Lが1つのモジュールMDaにパッケージ化されている。この構成により、コンバータ装置11を構成する半導体素子の占有面積を抑制することができ、コンバータ装置11を構成する回路の回路サイズの増大を抑制することができるので、省スペースかつ低コストのコンバータ装置11を得ることができる。
 スイッチング素子Q1H,Q1Lは、例えば、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)である。逆流防止素子D1,D2は、例えば、逆流防止ダイオードである。
 駆動回路HVは、スイッチング素子Q1Hを駆動し、駆動回路LVは、スイッチング素子Q1Lを駆動する。駆動回路HVは、スイッチング素子Q1Hの動作用電源Vdd1の電圧基準点をシフトしてスイッチング素子Q1Hを動作させるための電源を作るレベルシフト回路と、スイッチング素子Q1Hのゲートを駆動する第1のゲート駆動回路とを備えている。駆動回路HVのレベルシフト回路としては、例えば、ブートストラップ回路が用いられる。駆動回路LVは、スイッチング素子Q1Lのゲートを駆動する第2のゲート駆動回路を備えている。
 交流電源AC3は、整流回路DBa、リアクタDCL、スイッチング素子Q1H,Q1L、逆流防止素子D1,D2、および平滑コンデンサC1,C2を介して、負荷Lに接続されている。負荷Lは、例えば、空気調和機に用いられる圧縮機のモータを駆動するインバータ装置である。インバータ装置は、直流電力を交流電力に変換する交流電源装置である。
 逆流防止素子D1は、スイッチング素子Q1Hのコレクタから、平滑コンデンサC1と負荷Lとの接続点32に向けて順方向に配置されている。逆流防止素子D2は、平滑コンデンサC2と負荷Lとの接続点33から、スイッチング素子Q1Lのエミッタに向けて順方向に配置されている。
 リアクタDCLの出力側は、接続点35を介して、逆流防止素子D1のアノードおよびスイッチング素子Q1Hのコレクタに接続されている。整流回路DBaの負側の出力端子は、接続点36を介して、逆流防止素子D2のカソードおよびスイッチング素子Q1Lのエミッタに接続されている。
 スイッチング素子Q1Hのコレクタは、リアクタDCLを介して整流回路DBaの正側に接続されるとともに、逆流防止素子D1のアノードに接続されている。スイッチング素子Q1Hのエミッタは、スイッチング素子Q1H,Q1Lの中間点30に接続され、スイッチング素子Q1Hのゲートは駆動回路HVの出力側に接続されている。
 スイッチング素子Q1Lのコレクタは、スイッチング素子Q1H,Q1Lの中間点30に接続されている。スイッチング素子Q1Lのエミッタは、整流回路DBaの負側および逆流防止素子D2のカソードに接続され、スイッチング素子Q1Lのゲートは駆動回路LVの出力側に接続されている。
 負荷Lは、逆流防止素子D1のカソードと逆流防止素子D2のアノードとの間に接続されている。逆流防止素子D1のカソードと負荷Lとの間の接続点32は、平滑コンデンサC1に接続されている。逆流防止素子D2のアノードと負荷Lとの間の接続点33は、平滑コンデンサC2に接続されている。これにより、平滑コンデンサC1,C2は、負荷Lへの出力端子間に直列接続されている。具体的には、平滑コンデンサC1,C2は、接続点32,33の間に直列に接続されている。換言すると、逆流防止素子D1のカソードと逆流防止素子D2のアノードとの間には、直列に平滑コンデンサC1,C2が接続されている。平滑コンデンサC1,C2の中間点31はスイッチング素子Q1H,Q1Lの中間点30に接続されている。
 駆動回路HVは、動作用電源Vdd1が入力される入力端子およびスイッチング素子Q1Hの駆動信号Sig1Hが入力される入力端子に接続されている。駆動回路LVは、動作用電源Vdd1が入力される入力端子およびスイッチング素子Q1Lの駆動信号Sig1Lが入力される入力端子に接続されている。また、駆動回路HVは、スイッチング素子Q1Hのエミッタに接続されている。駆動回路LVは、スイッチング素子Q1LのエミッタとグランドGND1とを接続する接続点34に接続されている。
 整流回路DBaは、整流ダイオードがフルブリッジ接続された三相全波整流回路である。リアクタDCLは、整流回路DBaの出力側に配置された直流リアクタとして示しているが、整流回路DBaの入力側に配置された交流リアクタであってもよい。
 駆動回路HVは、HVIC(High Voltage Integrated Circuit:高耐圧IC)である。
 駆動回路LVは、LVIC(Low Voltage Integrated Circuit:低耐圧IC)である。
 駆動回路HVは、動作用電源Vdd1およびスイッチング素子Q1Hの駆動信号Sig1Hを受け付ける。駆動回路LVは、動作用電源Vdd1およびスイッチング素子Q1Lの駆動信号Sig1Lを受け付ける。
 駆動回路HVは、駆動信号Sig1Hに従ってスイッチング素子Q1Hのオンとオフとを制御し、駆動回路LVは、駆動信号Sig1Lに従ってスイッチング素子Q1Lのオンとオフとを制御する。駆動回路HV,LVは、スイッチング素子Q1H,Q1Lを駆動して母線電圧を昇圧制御する。
 スイッチング素子Q1Hは、駆動信号Sig1HがHigh(ハイ)のときオンになり、平滑コンデンサC1を充電する。スイッチング素子Q1Lは、駆動信号Sig1LがHighのときオンになり、平滑コンデンサC2を充電する。なお、スイッチング素子Q1Hは、駆動信号Sig1HがLow(ロー)のときにオンとなる回路構成であってもよい。また、スイッチング素子Q1Lは、駆動信号Sig1LがLowのときにオンとなる回路構成であってもよい。
 このように、スイッチング素子Q1Hは、平滑コンデンサC1の充電と非充電とをスイッチングする。スイッチング素子Q1Lは、平滑コンデンサC2の充電と非充電とをスイッチングする。スイッチング素子Q1H,Q1Lは、駆動回路HV,LVによって制御されることによって、平滑コンデンサC1,C2の一方または両方を選択的に充電する。
 逆流防止素子D1は、平滑コンデンサC1の正側からスイッチング素子Q1Hへの逆流を防止する。すなわち、逆流防止素子D1は、平滑コンデンサC1の充電電荷がスイッチング素子Q1Hへ逆流することを防止する。
 逆流防止素子D2は、スイッチング素子Q1Lから平滑コンデンサC2の負側への逆流を防止する。すなわち、逆流防止素子D2は、平滑コンデンサC2の充電電荷がスイッチング素子Q1Lへ逆流することを防止する。
 コンバータ装置11は、交流電源AC3による出力波形の半周期においてスイッチング素子Q1H,Q1Lのうち少なくとも1つをオン状態にする。コンバータ装置11は、例えば、2つのスイッチング素子Q1H,Q1Lに対して同じタイミングで同じパルス幅のパルス信号を出力する。これにより、電流導通の無い期間において、整流回路DBa、リアクタDCL、およびスイッチング素子Q1H,Q1Lを介して短絡電流が流れるので、電流導通角を広げることができる。したがって、コンバータ装置11は、十分に高い力率を得ることができ、入力電流に含まれる高調波成分を抑制することができる。この結果、コンバータ装置11は、力率改善または直流電圧の昇圧を行なうことができる。
 前述したように、コンバータ装置11は、駆動回路HV,LVおよびスイッチング素子Q1H,Q1Lが1つのモジュールMDaにパッケージ化されている。一方、2つの駆動回路および2つのスイッチング素子が1つのモジュールにパッケージ化されず、個別にパッケージ化されている場合、部品数が多くなるので、コンバータ装置の回路サイズが大きくなってしまい、コンバータ装置を小型化できない。
 モジュールMDaは、ピンまたはコネクタを備えたパワーモジュールであり、ピンまたはコネクタを介してモジュール外部と接続可能となっている。モジュールMDaは、ピンまたはコネクタを介して、スイッチング素子Q1Hの駆動信号Sig1H、スイッチング素子Q1Lの駆動信号Sig1L、モジュールMDaの動作用電源Vdd1を受け付ける。また、モジュールMDaは、ピンまたはコネクタを介して、モジュールMDaのグランドGND1に接続されている。
 また、モジュールMDaでは、スイッチング素子Q1Hのコレクタがピンまたはコネクタを介して、逆流防止素子D1に接続され、スイッチング素子Q1Lのエミッタがピンまたはコネクタを介して、逆流防止素子D2に接続されている。また、モジュールMDaでは、スイッチング素子Q1H,Q1Lの中間点30が、ピンまたはコネクタを介して、中間点31に接続されている。
 ところで、スイッチング素子Q1H,Q1Lおよび駆動回路HV,LVは、インバータ装置の構成要素にも適用可能である。このため、モジュールMDaは、コンバータ装置専用モジュールではなく、コンバータ装置11にもインバータ装置にも適用可能なモジュールである。したがって、モジュールMDaをコンバータ装置11に適用することにより、コンバータ装置専用モジュールをコンバータ装置11に適用する場合よりも、コストを安価に抑えることができる。
 なお、実施の形態1では、交流電源AC3が、三相交流の電力をコンバータ装置11に入力する場合について説明したが、コンバータ装置11へは、単相交流の電力が入力されてもよい。
 図2は、実施の形態1にかかるコンバータ装置の第2の構成例を示す図である。図2に示すコンバータ装置12の各構成要素のうち図1に示すコンバータ装置11の構成要素と同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。
 コンバータ装置12は、単相交流(L,N)の交流電源AC1および負荷Lに接続される。コンバータ装置12は、単相交流の交流電源AC1から供給される交流電力を直流電力に変換し、この直流電力を負荷Lに出力する。
 コンバータ装置12は、コンバータ装置11と比較して、整流回路DBaの代わりに整流回路DBbを備えている。整流回路DBbは、整流ダイオードがフルブリッジ接続された単相全波整流回路である。整流回路DBbは、交流電源AC1から単相交流の電力を受け付ける。
 コンバータ装置11またはコンバータ装置12に接続される負荷Lの例は、モータを駆動させるインバータ装置である。また、このインバータ装置は、複数のモジュールMDaを用いて構成されてもよい。
 図3は、実施の形態1にかかるインバータ装置の構成例を示す図である。インバータ装置21は、例えば、コンバータ装置11またはコンバータ装置12に接続され、負荷Lとして動作する。ここでは、インバータ装置21がコンバータ装置11に接続される場合について説明する。
 コンバータ装置11とインバータ装置21とを備えた電力変換システム101は、モータ51に接続されてモータ51を駆動する。インバータ装置21は、3つのモジュールMDaを備えている。インバータ装置21では、3つのモジュールMDaが、高電位側の母線と低電位側の母線との間に、並列に接続されている。3つのモジュールMDaの高電位側の母線は、コンバータ装置11が備える逆流防止素子D1のカソードに接続され、3つのモジュールMDaの低電位側の母線は、コンバータ装置11が備える逆流防止素子D2のアノードに接続される。
 インバータ装置21が備える3つのモジュールMDaのうち、第1のモジュールMDaは、U相端子に接続され、第2のモジュールMDaは、V相端子に接続され、第3のモジュールMDaは、W相端子に接続される。そして、U相端子、V相端子、およびW相端子がモータ51などに接続される。なお、図3では、3つのモジュールMDaと、モータ51とを接続する接続線の図示を省略している。
 このように、実施の形態1では、コンバータ装置11,12において、駆動回路HV,LVおよびスイッチング素子Q1H,Q1Lが1つのモジュールMDaにパッケージ化されている。したがって、コンバータ装置11,12は、サイズが抑制された低コストの回路で力率改善を行なうことが可能になる。
実施の形態2.
 つぎに、図4および図5を用いてこの発明の実施の形態2について説明する。実施の形態2では、1つのモジュールMDb内に、駆動回路HV,LV、スイッチング素子Q1H,Q1L、および逆流防止素子D1,D2が格納される。
 図4は、実施の形態2にかかるコンバータ装置の第1の構成例を示す図である。図4に示すコンバータ装置13の各構成要素のうち図1に示すコンバータ装置11の構成要素と同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。
 コンバータ装置13は、コンバータ装置11と同様に、整流回路DBaと、リアクタDCLと、スイッチング素子Q1H,Q1Lと、逆流防止素子D1,D2と、平滑コンデンサC1,C2と、駆動回路HV,LVとを備えている。
 実施の形態2のコンバータ装置13は、コンバータ装置11と比較して、モジュールMDaの代わりにモジュールMDbを備えている。モジュールMDbは、スイッチング素子Q1H,Q1L、駆動回路HV,LV、および逆流防止素子D1,D2を含んで構成されている。すなわち、コンバータ装置11では、モジュールMDa内に逆流防止素子D1,D2が含まれていなかったが、コンバータ装置13では、モジュールMDb内に逆流防止素子D1,D2が含まれている。
 このようなモジュールMDbの構成により、コンバータ装置13は、コンバータ装置11よりもコンパクトになる。モジュールMDbは、製造されるコンバータ装置13の台数が多く、コンバータ装置13専用のモジュールMDbを製造してもコストが抑えられる場合などに適用される。
 図5は、実施の形態2にかかるコンバータ装置の第2の構成例を示す図である。図5に示すコンバータ装置14の各構成要素のうち図4に示すコンバータ装置13の構成要素と同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。
 コンバータ装置14は、単相交流の交流電源AC1および負荷Lに接続される。コンバータ装置14は、単相交流の交流電源AC1から供給される交流電力を直流電力に変換し、この直流電力を負荷Lに出力する。
 コンバータ装置14は、コンバータ装置13と比較して、整流回路DBaの代わりに整流回路DBbを備えている。なお、コンバータ装置13またはコンバータ装置14に接続される負荷Lは、前述のインバータ装置21であってもよい。
 このように、実施の形態2では、コンバータ装置13,14において、駆動回路HV,LV、スイッチング素子Q1H,Q1L、および逆流防止素子D1,D2が1つのモジュールMDbにパッケージ化されている。したがって、コンバータ装置13,14は、コンバータ装置11,12よりもサイズが抑制された回路で力率改善を行なうことが可能になる。
実施の形態3.
 つぎに、図6から図8を用いてこの発明の実施の形態3について説明する。実施の形態3では、実施の形態1で説明したコンバータ装置11,12とは異なる構成のコンバータ装置が備える構成要素を1つのモジュールにパッケージ化する。
 図6は、実施の形態3にかかるコンバータ装置の第1の構成例を示す図である。図6に示すコンバータ装置15の各構成要素のうち図1に示すコンバータ装置11の構成要素と同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。
 コンバータ装置15を構成する回路は、国際公開第2017/145339号に記載されている直流電源装置の回路と同様の回路であり、コンバータ装置15は、国際公開第2017/145339号の直流電源装置と同様の動作をすることで、導通損失を抑制して高効率化を実現する。
 コンバータ装置15は、コンバータ装置11と同様に、整流回路DBaと、リアクタDCLと、平滑コンデンサC1,C2とを備えている。また、コンバータ装置15は、2つのモジュールMDc,MDdを備えている。モジュールMDcとモジュールMDdとは、同様の構成を有している。
 モジュールMDcは、スイッチング素子Q2Hc,Q2Lcと、駆動回路HVc,LVcとを備えている。モジュールMDdは、スイッチング素子Q2Hd,Q2Ldと、駆動回路HVd,LVdとを備えている。すなわち、モジュールMDc,MDdは、モジュールMDa,MDbと同様に、それぞれ2つのスイッチング素子と2つの駆動回路とを有している。
 実施の形態3では、平滑コンデンサC1が第1のコンデンサであり、平滑コンデンサC2が第2のコンデンサである。スイッチング素子Q2Lcが第1のスイッチング素子であり、スイッチング素子Q2Hdが第2のスイッチング素子である。スイッチング素子Q2Hcが第1の逆流防止素子であり、スイッチング素子Q2Ldが第2の逆流防止素子である。駆動回路LVcが第1の駆動回路であり、駆動回路HVdが第2の駆動回路であり、駆動回路HVcが第3の駆動回路であり、駆動回路LVdが第4の駆動回路である。
 スイッチング素子Q2Hcは、スイッチング素子Q2Hdと同様の素子であり、スイッチング素子Q2Lcは、スイッチング素子Q2Ldと同様の素子である。スイッチング素子Q2Hc,Q2Lc,Q2Hd,Q2Ldは、例えば、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor:電界効果トランジスタ)である。
 駆動回路HVc,HVdは、何れも駆動回路HVと同様のHVICであり、駆動回路LVc,LVdは、何れも駆動回路LVと同様のLVICである。駆動回路HVcは、スイッチング素子Q2Hcを駆動し、駆動回路LVcは、スイッチング素子Q2Lcを駆動する。
 駆動回路HVcは、スイッチング素子Q2Hcの動作用電源Vdd1の電圧基準点をシフトしてスイッチング素子Q2Hcを動作させるための電源を作る第1のレベルシフト回路と、スイッチング素子Q2Hcのゲートを駆動する第1のゲート駆動回路とを備えている。
 駆動回路HVdは、スイッチング素子Q2Hdの動作用電源Vdd2の電圧基準点をシフトしてスイッチング素子Q2Hdを動作させるための電源を作る第2のレベルシフト回路と、スイッチング素子Q2Hdのゲートを駆動する第2のゲート駆動回路とを備えている。
 駆動回路LVcは、スイッチング素子Q2Lcのゲートを駆動する第1のゲート駆動回路を備え、駆動回路LVdは、スイッチング素子Q2Ldのゲートを駆動する第2のゲート駆動回路を備えている。
 スイッチング素子Q2Hcのドレインは、接続点32に接続され、スイッチング素子Q2Hcのソースは、スイッチング素子Q2Lcのドレインに接続されている。また、スイッチング素子Q2Lcのソースは、スイッチング素子Q2Hdのドレインに接続されている。スイッチング素子Q2Hdのソースは、スイッチング素子Q2Ldのドレインに接続されている。また、スイッチング素子Q2Ldのソースは、接続点33に接続されている。
 駆動回路HVcは、スイッチング素子Q2Hcのゲートおよびソースに接続され、駆動回路LVcは、スイッチング素子Q2Lcのゲート、スイッチング素子Q2Lcのソースおよび、グランドGND1に接続されている。駆動回路HVdは、スイッチング素子Q2Hdのゲートおよびソースに接続され、駆動回路LVdは、スイッチング素子Q2Ldのゲート、スイッチング素子Q2Ldのソース、およびグランドGND2に接続されている。
 駆動回路HVcは、駆動回路HVと同様に、動作用電源Vdd1およびスイッチング素子Q2Hcの駆動信号Sig1Hを受け付ける。駆動回路LVcは、駆動回路LVと同様に、動作用電源Vdd1およびスイッチング素子Q2Lcの駆動信号Sig1Lを受け付ける。
 駆動回路HVdは、駆動回路HVと同様に、動作用電源Vdd2およびスイッチング素子Q2Hdの駆動信号Sig2Hを受け付ける。駆動回路LVdは、駆動回路LVと同様に、動作用電源Vdd2およびスイッチング素子Q2Ldの駆動信号Sig2Lを受け付ける。
 動作用電源Vdd2は、動作用電源Vdd1と同様の電源である。駆動信号Sig2Hは、駆動信号Sig1Hと同様の信号であり、駆動信号Sig2Lは、駆動信号Sig1Lと同様の信号である。
 駆動回路HVcは、駆動信号Sig1Hに従ってスイッチング素子Q2Hcのオンとオフとを制御し、駆動回路LVcは、駆動信号Sig1Lに従ってスイッチング素子Q2Lcのオンとオフとを制御する。
 駆動回路HVdは、駆動信号Sig2Hに従ってスイッチング素子Q2Hdのオンとオフとを制御し、駆動回路LVdは、駆動信号Sig2Lに従ってスイッチング素子Q2Ldのオンとオフとを制御する。
 スイッチング素子Q2Lcは、動作用電源Vdd1を基準に動作し、スイッチング素子Q2Hcは、動作用電源Vdd1を用いてレベルシフト回路で生成された電源を基準に動作する。スイッチング素子Q2Ldは、動作用電源Vdd2を基準に動作し、スイッチング素子Q2Hdは、動作用電源Vdd2を用いてレベルシフト回路で生成された電源を基準に動作する。
 このように、コンバータ装置15は、コンバータ装置11と比較すると、駆動回路HV、スイッチング素子Q1H、および逆流防止素子D1の代わりに、駆動回路HVc,LVcおよびスイッチング素子Q2Hc,Q2Lcを備えている。
 また、コンバータ装置15は、コンバータ装置11と比較すると、駆動回路LV、スイッチング素子Q1L、および逆流防止素子D2の代わりに、駆動回路HVd,LVdおよびスイッチング素子Q2Hd,Q2Ldを備えている。コンバータ装置15では、スイッチング素子Q2Hcが、スイッチング素子Q2Lcへ逆流するのを防止する逆流防止素子であり、スイッチング素子Q2Ldが、スイッチング素子Q2Hdへ逆流するのを防止する逆流防止素子である。
 このように、本実施の形態では、コンバータ装置15が、逆流防止素子D1の代わりに双方向スイッチング素子であるスイッチング素子Q2Hcを備え、逆流防止素子D2の代わりに双方向スイッチング素子であるスイッチング素子Q2Ldを備えている。
 本実施の形態のコンバータ装置15は、駆動回路HVc,LVcおよびスイッチング素子Q2Hc,Q2Lcが第1のパッケージである1つのモジュールMDcにパッケージ化されている。また、コンバータ装置15は、駆動回路HVd,LVdおよびスイッチング素子Q2Hd,Q2Ldが第2のパッケージである1つのモジュールMDdにパッケージ化されている。これらの構成により、コンバータ装置15を構成する半導体素子の占有面積を抑制することができ、コンバータ装置15を構成する回路の回路サイズの増大を抑制することができるので、省スペースなコンバータ装置15を得ることができる。
 モジュールMDcは、ピンまたはコネクタを備えており、ピンまたはコネクタを介してモジュール外部と接続可能となっている。モジュールMDcは、ピンまたはコネクタを介して、駆動信号Sig1H,Sig1L、モジュールMDcの動作用電源Vdd1を受け付ける。また、モジュールMDcは、ピンまたはコネクタを介して、モジュールMDcのグランドGND1に接続されている。
 同様に、モジュールMDdは、ピンまたはコネクタを備えており、ピンまたはコネクタを介してモジュール外部と接続可能となっている。モジュールMDdは、ピンまたはコネクタを介して、駆動信号Sig2H,Sig2L、モジュールMDdの動作用電源Vdd2を受け付ける。また、モジュールMDdは、ピンまたはコネクタを介して、モジュールMDdのグランドGND2に接続されている。
 スイッチング素子Q2Hcとスイッチング素子Q2Lcとの接続点42は、ピンまたはコネクタを介して、リアクタDCLに接続されている。スイッチング素子Q2Hdとスイッチング素子Q2Ldとの接続点43は、ピンまたはコネクタを介して、整流回路DBaの負側の出力端子に接続されている。スイッチング素子Q2Lcとスイッチング素子Q2Hdとの接続点41が、モジュールMDcとモジュールMDdとの接続点である。接続点41は、中間点31に接続されている。
 コンバータ装置15は、実施の形態1で逆流防止素子D1,D2が通電する間と同じタイミングで、スイッチング素子Q2Hc,Q2Ldをオンとする。すなわち、コンバータ装置15は、平滑コンデンサC1の充電を開始するタイミングでスイッチング素子Q2Hcをオン状態に制御し、平滑コンデンサC2の充電を開始するタイミングでスイッチング素子Q2Ldをオン状態に制御する。MOSFETは、ダイオードに比べて電流が流れ始める電圧が低く、特に電流が低い領域においては損失である電流と電圧の積が小さくなる。このため、MOSFETであるスイッチング素子Q2Hc,Q2Ldに電流を流す場合、ダイオードに電流を流す場合よりも導通損失を低減させることが可能となる。したがって、コンバータ装置15は、力率改善または直流電圧の昇圧を実現しつつ、電力損失を抑えることができる。
 また、コンバータ装置15は、平滑コンデンサC1の充電を開始した後、スイッチング素子Q2Hcへの印加電圧が所定の電圧値以下の時にはスイッチング素子Q2Hcをオン状態に制御し、平滑コンデンサC2の充電を開始した後、スイッチング素子Q2Ldへの印加電圧が所定の電圧値以下の時にはスイッチング素子Q2Ldをオン状態に制御してもよい。
 ところで、モジュールMDc,MDdは、インバータ装置の構成要素にも適用可能である。このため、モジュールMDc,MDdは、コンバータ装置専用モジュールではなく、コンバータ装置15にもインバータ装置にも適用可能なモジュールである。したがって、モジュールMDc,MDdをコンバータ装置15に適用することにより、コンバータ装置専用モジュールをコンバータ装置15に適用する場合よりも、コストを安価に抑えることができる。
 なお、実施の形態3では、交流電源AC3が、三相交流の電力をコンバータ装置15に入力するである場合について説明したが、コンバータ装置15へは、単相交流の電力が入力されてもよい。
 図7は、実施の形態3にかかるコンバータ装置の第2の構成例を示す図である。図7に示すコンバータ装置16の各構成要素のうち、コンバータ装置12,15の構成要素と同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。
 コンバータ装置16は、単相交流の交流電源AC1および負荷Lに接続される。コンバータ装置16は、単相交流の交流電源AC1から供給される交流電力を直流電力に変換し、この直流電力を負荷Lに出力する。
 コンバータ装置16は、コンバータ装置15と比較して、整流回路DBaの代わりに整流回路DBbを備えている。
 コンバータ装置15またはコンバータ装置16に接続される負荷Lの例は、モータを駆動させるインバータ装置である。また、インバータ装置は、複数のモジュールMDcを用いて構成されてもよい。
 図8は、実施の形態3にかかるインバータ装置の構成例を示す図である。インバータ装置22は、例えば、コンバータ装置15またはコンバータ装置16に接続され、負荷Lとして動作する。ここでは、インバータ装置22がコンバータ装置15に接続される場合について説明する。
 コンバータ装置15とインバータ装置22とを備えた電力変換システム102は、モータ51に接続されてモータ51を駆動する。インバータ装置22は、3つのモジュールMDcを備えている。インバータ装置22では、3つのモジュールMDcが、高電位側の母線と低電位側の母線との間に、並列に接続されている。3つのモジュールMDcの高電位側の母線は、コンバータ装置15が備えるスイッチング素子Q2Hcのドレインに接続され、3つのモジュールMDcの低電位側の母線は、コンバータ装置15が備えるスイッチング素子Q2Ldのソースに接続される。
 インバータ装置22が備える3つのモジュールMDcのうち、第1のモジュールMDcは、U相端子に接続され、第2のモジュールMDcは、V相端子に接続され、第3のモジュールMDcは、W相端子に接続される。そして、U相端子、V相端子、およびW相端子がモータ51などに接続される。なお、図8では、3つのモジュールMDcと、モータ51とを接続する接続線の図示を省略している。
 このように、実施の形態3では、コンバータ装置15,16において、駆動回路HVc,LVcおよびスイッチング素子Q2Hc,Q2Lcが1つのモジュールMDcにパッケージ化されている。また、コンバータ装置15,16において、駆動回路HVd,LVdおよびスイッチング素子Q2Hd,Q2Ldが1つのモジュールMDdにパッケージ化されている。したがって、コンバータ装置15,16は、サイズが抑制された低コストの回路で力率改善または直流電圧の昇圧を実現しつつ、電力損失を抑えることができる。
 なお、実施の形態1から3において、インバータ装置21,22に接続されるモータ51は、空気調和機の圧縮機に適用されてもよいし、ファンを動作させる装置に適用されてもよい。
 図9は、実施の形態1から3にかかるコンバータ装置を備えた空気調和機の構成例を示す図である。なお、ここでは、コンバータ装置11を備えた空気調和機100の構成について説明するが、コンバータ装置12~16の何れかを備えた空気調和機は、空気調和機100の構成と同様である。
 空気調和機100は、コンバータ装置11を備えており、コンバータ装置11が生成する直流電力を利用して空気調和を行なう。空気調和機100は、交流電源AC3と、コンバータ装置11と、インバータ装置21と、圧縮機50と、冷凍サイクル機構60とを備える。
 圧縮機50は、モータ51および圧縮要素52を備える。冷凍サイクル機構60は、四方弁61、室内熱交換器62、膨張弁63および室外熱交換器64を備え、これらの各部は冷媒配管を介して接続されている。
 インバータ装置21は、コンバータ装置11が出力する直流電力を交流電力に変換して圧縮機50のモータ51に供給する。モータ51は、インバータ装置21から交流電力の供給を受けて駆動する。圧縮要素52は、モータ51が回転することによって、冷媒配管内の冷媒を圧縮する動作を行い、冷媒を冷凍サイクル機構60の内部で循環させる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 11~16 コンバータ装置、21,22 インバータ装置、30,31 中間点、32~36,41~43 接続点、50 圧縮機、51 モータ、52 圧縮要素、60 冷凍サイクル機構、61 四方弁、62 室内熱交換器、63 膨張弁、64 室外熱交換器、100 空気調和機、101,102 電力変換システム、AC1,AC3 交流電源、C1,C2 平滑コンデンサ、D1,D2 逆流防止素子、DBa,DBb 整流回路、DCL リアクタ、GND1,GND2 グランド、HV,HVc,HVd,LV,LVc,LVd 駆動回路、L 負荷、MDa~MDd モジュール、Q1H,Q1L,Q2Hc,Q2Hd,Q2Lc,Q2Ld スイッチング素子、Sig1H,Sig1L,Sig2H,Sig2L 駆動信号、Vdd1,Vdd2 動作用電源。

Claims (8)

  1.  交流を直流に変換して負荷に供給する直流電源装置であって、
     交流電源から出力された交流電力を整流して直流電力に変換する整流回路と、
     前記整流回路に接続されたリアクタと、
     前記負荷への出力端子間に直列接続された第1のコンデンサおよび第2のコンデンサと、
     前記第1のコンデンサの充電と非充電とをスイッチングする第1のスイッチング素子と、
     前記第2のコンデンサの充電と非充電とをスイッチングする第2のスイッチング素子と、
     前記第1のコンデンサの充電電荷が前記第1のスイッチング素子へ逆流するのを防止する第1の逆流防止素子と、
     前記第2のコンデンサの充電電荷が前記第2のスイッチング素子へ逆流するのを防止する第2の逆流防止素子と、
     前記第1のスイッチング素子を駆動する第1の駆動回路と、
     前記第2のスイッチング素子を駆動する第2の駆動回路と、
     を備え、
     前記第1の駆動回路は、前記第1のスイッチング素子を第1のタイミングでオン状態に制御し、
     前記第2の駆動回路は、前記第2のスイッチング素子を第2のタイミングでオン状態に制御し、
     前記第1のスイッチング素子、前記第2のスイッチング素子、前記第1の駆動回路、および前記第2の駆動回路は、1つのパッケージに収められたモジュールである直流電源装置。
  2.  前記第1の駆動回路は、前記第1のスイッチング素子の電源を生成するレベルシフト回路と、前記第1のスイッチング素子が有するゲートを駆動する第1のゲート駆動回路と、を含み、
     前記第2の駆動回路は、前記第2のスイッチング素子が有するゲートを駆動する第2のゲート駆動回路と、を含む、
     請求項1に記載の直流電源装置。
  3.  前記1つのパッケージには、前記第1のスイッチング素子、前記第2のスイッチング素子、前記第1の駆動回路、および前記第2の駆動回路とともに、前記第1の逆流防止素子および前記第2の逆流防止素子が収められている、
     請求項1または2に記載の直流電源装置。
  4.  交流を直流に変換して負荷に供給する直流電源装置であって、
     交流電源の出力電圧を整流して直流電圧に変換する整流回路と、
     前記整流回路に接続されたリアクタと、
     前記負荷への出力端子間に直列接続された第1のコンデンサおよび第2のコンデンサと、
     前記第1のコンデンサの充電と非充電とをスイッチングする第1のスイッチング素子と、
     前記第2のコンデンサの充電と非充電とをスイッチングする第2のスイッチング素子と、
     前記第1のコンデンサの充電電荷が前記第1のスイッチング素子へ逆流するのを防止する第1の逆流防止素子と、
     前記第2のコンデンサの充電電荷が前記第2のスイッチング素子へ逆流するのを防止する第2の逆流防止素子と、
     前記第1のスイッチング素子を駆動する第1の駆動回路と、
     前記第2のスイッチング素子を駆動する第2の駆動回路と、
     前記第1の逆流防止素子を駆動する第3の駆動回路と、
     前記第2の逆流防止素子を駆動する第4の駆動回路と、
     を備え、
     前記第1の駆動回路は、前記第1のスイッチング素子を第1のタイミングでオン状態に制御し、
     前記第2の駆動回路は、前記第2のスイッチング素子を第2のタイミングでオン状態に制御し、
     前記第1のスイッチング素子、前記第1の逆流防止素子、前記第1の駆動回路、および前記第3の駆動回路は、1つのパッケージである第1のパッケージに収められたモジュールであり、
     前記第2のスイッチング素子、前記第2の逆流防止素子、前記第2の駆動回路、および前記第4の駆動回路は、1つのパッケージである第2のパッケージに収められたモジュールである直流電源装置。
  5.  前記第1の逆流防止素子は、第3のスイッチング素子であり、
     前記第2の逆流防止素子は、第4のスイッチング素子であり、
     前記第3の駆動回路は、前記第3のスイッチング素子の電源を生成する第1のレベルシフト回路と、前記第3のスイッチング素子が有するゲートを駆動する第1のゲート駆動回路と、を含み、
     前記第2の駆動回路は、前記第2のスイッチング素子の電源を生成する第2のレベルシフト回路と、前記第2のスイッチング素子が有するゲートを駆動する第2のゲート駆動回路と、を含む、
     請求項4に記載の直流電源装置。
  6.  請求項1から3の何れか1つに記載の直流電源装置と、
     前記負荷と、
     を有し、
     前記負荷は、直流電力を交流電力に変換する交流電源装置であり、
     前記交流電源装置は、前記パッケージと同じ構成のパッケージを具備している電力変換システム。
  7.  請求項4または5に記載の直流電源装置と、
     前記負荷と、
     を有し、
     前記負荷は、直流電力を交流電力に変換する交流電源装置であり、
     前記交流電源装置は、前記第1のパッケージまたは前記第2のパッケージと同じ構成のパッケージを具備している電力変換システム。
  8.  請求項1から5の何れか1つに記載の直流電源装置を備える空気調和機。
PCT/JP2019/038486 2019-09-30 2019-09-30 直流電源装置、電力変換システムおよび空気調和機 WO2021064785A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/038486 WO2021064785A1 (ja) 2019-09-30 2019-09-30 直流電源装置、電力変換システムおよび空気調和機
JP2021550745A JPWO2021064785A1 (ja) 2019-09-30 2019-09-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/038486 WO2021064785A1 (ja) 2019-09-30 2019-09-30 直流電源装置、電力変換システムおよび空気調和機

Publications (1)

Publication Number Publication Date
WO2021064785A1 true WO2021064785A1 (ja) 2021-04-08

Family

ID=75337778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038486 WO2021064785A1 (ja) 2019-09-30 2019-09-30 直流電源装置、電力変換システムおよび空気調和機

Country Status (2)

Country Link
JP (1) JPWO2021064785A1 (ja)
WO (1) WO2021064785A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3170188U (ja) * 2011-06-16 2011-09-08 加賀電子株式会社 電源システム
JP2011217427A (ja) * 2010-03-31 2011-10-27 Renesas Electronics Corp 電子装置及び半導体装置
WO2017145339A1 (ja) * 2016-02-25 2017-08-31 三菱電機株式会社 直流電源装置および冷凍サイクル適用機器
JP2018022849A (ja) * 2016-08-05 2018-02-08 ローム株式会社 パワーモジュール及びモータ駆動回路
JP2018107364A (ja) * 2016-12-28 2018-07-05 ルネサスエレクトロニクス株式会社 半導体装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4313658B2 (ja) * 2003-11-28 2009-08-12 三菱電機株式会社 インバータ回路
JP2005304218A (ja) * 2004-04-14 2005-10-27 Renesas Technology Corp 電源ドライバ装置及びスイッチング電源装置
JP5334189B2 (ja) * 2009-08-26 2013-11-06 シャープ株式会社 半導体装置および電子機器
JP6483997B2 (ja) * 2014-10-10 2019-03-13 ローム株式会社 パワー半導体駆動回路、パワー半導体回路、及びパワーモジュール回路装置
WO2018034084A1 (ja) * 2016-08-18 2018-02-22 富士電機株式会社 半導体モジュール、半導体モジュールに使われるスイッチング素子の選定方法、及びスイッチング素子のチップ設計方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011217427A (ja) * 2010-03-31 2011-10-27 Renesas Electronics Corp 電子装置及び半導体装置
JP3170188U (ja) * 2011-06-16 2011-09-08 加賀電子株式会社 電源システム
WO2017145339A1 (ja) * 2016-02-25 2017-08-31 三菱電機株式会社 直流電源装置および冷凍サイクル適用機器
JP2018022849A (ja) * 2016-08-05 2018-02-08 ローム株式会社 パワーモジュール及びモータ駆動回路
JP2018107364A (ja) * 2016-12-28 2018-07-05 ルネサスエレクトロニクス株式会社 半導体装置

Also Published As

Publication number Publication date
JPWO2021064785A1 (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
US8884560B2 (en) Inverter device and air conditioner including the same
JP5584357B2 (ja) 可変速駆動装置
JP4935251B2 (ja) 電力変換装置
EP3190693A1 (en) Electric power converter
JP2008086107A (ja) モータ駆動制御装置
JP6522228B2 (ja) 直流電源装置および冷凍サイクル適用機器
WO2021064785A1 (ja) 直流電源装置、電力変換システムおよび空気調和機
WO2014024596A1 (ja) インバータ駆動回路
US20040223281A1 (en) Power converter
JP5590015B2 (ja) インバータ装置及びそれを備えた空気調和機
CN111355431A (zh) 电机驱动控制电路、线路板及空调器
JP6518506B2 (ja) 電源装置、並びにそれを用いる空気調和機
JP6602466B2 (ja) モータ駆動装置
WO2021171562A1 (ja) 電動機駆動装置及び空気調和機
US20190140553A1 (en) Ac/dc converter, module, power conversion device, and air conditioning apparatus
TWI806989B (zh) 電力轉換裝置及具備此之空調機
JP7340606B2 (ja) 電力変換装置、モータ制御装置、および空気調和機
JP7471509B2 (ja) 直流電源装置、冷凍サイクル装置、空気調和機および冷蔵庫
WO2021166111A1 (ja) 直流電源装置および冷凍サイクル適用機器
WO2022168222A1 (ja) 電力変換装置及び空調機
JP7145965B2 (ja) 電力変換回路および空気調和機
JP7246259B2 (ja) 制御装置および空気調和装置
JPH11146660A (ja) 単相インバータ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947633

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550745

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947633

Country of ref document: EP

Kind code of ref document: A1