WO2021062630A1 - 背板以及玻璃基线路板 - Google Patents

背板以及玻璃基线路板 Download PDF

Info

Publication number
WO2021062630A1
WO2021062630A1 PCT/CN2019/109452 CN2019109452W WO2021062630A1 WO 2021062630 A1 WO2021062630 A1 WO 2021062630A1 CN 2019109452 W CN2019109452 W CN 2019109452W WO 2021062630 A1 WO2021062630 A1 WO 2021062630A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
electrical contact
light
contact point
connection
Prior art date
Application number
PCT/CN2019/109452
Other languages
English (en)
French (fr)
Inventor
苏文刚
孙海威
时凌云
郝卫
王飞飞
石蕊
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/961,439 priority Critical patent/US11469359B2/en
Priority to EP19945408.3A priority patent/EP4040227A4/en
Priority to CN201980001889.6A priority patent/CN113287059B/zh
Priority to PCT/CN2019/109452 priority patent/WO2021062630A1/zh
Publication of WO2021062630A1 publication Critical patent/WO2021062630A1/zh
Priority to US17/930,514 priority patent/US20230006121A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133612Electrical details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133613Direct backlight characterized by the sequence of light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • H05K1/112Pads for surface mounting, e.g. lay-out directly combined with via connections
    • H05K1/113Via provided in pad; Pad over filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0179Thin film deposited insulating layer, e.g. inorganic layer for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2054Light-reflecting surface, e.g. conductors, substrates, coatings, dielectrics

Definitions

  • At least one embodiment of the present disclosure relates to a backplane and a glass-based circuit board.
  • PCB board printed circuit board
  • At least one embodiment of the present disclosure provides a backplane and a glass-based circuit board.
  • At least one embodiment of the present disclosure provides a backplane including a base substrate and a plurality of light-emitting units arrayed on the base substrate.
  • Each of the light-emitting units includes at least one light-emitting sub-unit, the light-emitting sub-unit includes a connection line and a plurality of light-emitting diode chips connected to the connection line, and the light-emitting diode chip is located on the connection line away from the substrate On one side of the substrate, the plurality of light-emitting diode chips in the at least one light-emitting subunit are connected in series.
  • the connecting line includes a first connecting portion and a second connecting portion, the first connecting portion includes a first input terminal, and the second connecting portion includes a second connecting portion. Input end, and the first connecting portion and the second connecting portion respectively include electrical contact points; the connecting line further includes a third connecting portion, and both ends of the third connecting portion each include an electrical contact point, The electrical contact point of one end of the third connecting portion and the electrical contact point of the first connecting portion form an electrical contact point pair, and the electrical contact point of the other end of the third connecting portion is connected to the electrical contact point of the second connecting portion.
  • the electrical contact points form electrical contact point pairs, and each of the electrical contact point pairs is respectively connected to the anode and the cathode of a light emitting diode chip in a one-to-one correspondence.
  • the third connecting part includes a plurality of connecting sub-parts, and both ends of each of the connecting sub-parts each include an electrical contact point.
  • the electrical contact points at the adjacent ends of the connecting sub-parts constitute electrical contact point pairs, each of the electrical contact point pairs is respectively connected to the anode and the cathode of a light-emitting diode chip in a one-to-one correspondence, and a plurality of the connecting sub-parts pass through the The light-emitting diode chips are connected in series.
  • the plurality of connecting sub-parts includes a first connecting sub-part and a second connecting sub-part, the first connecting sub-part extends in a first direction parallel to the base substrate, and the first The connecting sub-portion has a shape in which notches are formed at two corners of a substantially rectangular shape that are opposite to each other in a diagonal direction, the first connecting sub-portion includes a connecting area corresponding to the notch, and the first connecting sub-portion
  • the electrical contact point is located on the side of the connection area facing the gap
  • the second connection sub-portion extends in a second direction parallel to the base substrate and intersecting the first direction
  • the second The electrical contact points of the connecting sub-part are located at both ends of the second connecting sub-part in the second direction.
  • the light-emitting subunit includes a plurality of first connecting sub-part rows extending along the first direction and arranged along the second direction, and each of the first connecting sub-part rows includes at least one first connecting sub-part row.
  • a connecting sub-part, two ends of the second connecting sub-part are respectively located in the gaps opposite to each other at the ends of the adjacent first connecting sub-parts, so that the adjacent first connecting The row of subsections is connected to the second connector section through the light-emitting diode chip, and the second connector sections connected to the same first connector section through the light-emitting diode chip are respectively located in the first connector section row
  • the two sides in the second direction are respectively located at the two ends of the row of the first connecting sub-parts in the first direction.
  • each row of the first connecting sub-parts includes a plurality of first connecting sub-parts, and the connecting area of one first connecting sub-part of the adjacent first connecting sub-parts is located in the other first connecting sub-part. In the gap of the connecting sub-part, the adjacent connecting areas are electrically connected through the light-emitting diode chip.
  • each first connecting sub-section row includes a first end and a second end, and the first ends of the plurality of first connecting sub-section rows are aligned along the second direction, and the multiple The second ends of the first connecting sub-part rows are aligned along the second direction, and the plurality of first connecting sub-part rows and the second connecting sub-parts are integrally connected in a square wave shape.
  • the size of the first connecting sub-section row along the second direction at each position in the first direction is substantially the same.
  • the first connection portion includes a first protrusion, and the first protrusion is located in a gap at a connection area of the first connection sub-portion row connected to the light-emitting diode chip.
  • the second connecting portion includes a second protruding portion, the second protruding portion is located in the gap at the connection area of the first connecting sub-section row connected to the light-emitting diode chip.
  • the at least one light-emitting sub-unit includes a plurality of light-emitting sub-units, and the plurality of light-emitting sub-units in each of the light-emitting units share the first connecting portion and the second connecting portion so that The multiple light-emitting subunits are connected in parallel.
  • the light-emitting diode chips in each light-emitting unit are evenly distributed.
  • the orthographic projection of the light-emitting diode chip on the base substrate is opposite to the frontal projection of the light-emitting diode chip on the base substrate.
  • the projections overlap at least partially.
  • the backplane further includes: a reflective layer located between the connecting line and the light emitting diode chip.
  • the backplane further includes: a plurality of traces parallel to each other, located on a side of the connection line facing the base substrate, and including a plurality of first traces and a plurality of second traces; An insulating layer is located between the multiple parallel traces and the connecting lines; a second insulating layer is located between the reflective layer and the connecting lines to isolate the reflective layer and the connecting lines from each other .
  • the first input end of the connection line is connected to the first wiring, and the second input end of the connection line is connected to the second wiring.
  • the thickness of the trace is greater than the thickness of the connection line, and the widths of the first connection portion and the second connection portion are both larger than the width of the trace.
  • the backplane further includes: a white glue layer located on the side of the reflective layer away from the base substrate and having an opening exposing the light-emitting diode chip; and a transparent layer located on the white glue layer A side away from the base substrate to cover the white glue layer and the light-emitting diode chip.
  • At least one embodiment of the present disclosure provides a glass-based circuit board, which includes a glass substrate and a plurality of connection circuit units arrayed on the glass substrate.
  • Each of the connection line units includes at least one connection line sub-unit, and the connection line sub-unit includes a plurality of electrical contact point pairs, and each of the electrical contact point pairs is configured to be connected to an anode and a cathode of a light emitting diode chip.
  • One corresponding connection is such that the plurality of light-emitting diode chips connected to the plurality of electrical contact point pairs are connected in series.
  • the connecting line subunit includes a first connecting portion and a second connecting portion, the first connecting portion includes a first input end, the second connecting portion includes a second input end, and the first connecting portion includes a second input end.
  • a connecting portion and the second connecting portion respectively include electrical contact points;
  • the connecting line sub-unit further includes a third connecting portion, both ends of the third connecting portion each include an electrical contact point, the third connection
  • the electrical contact point of one end of the third connecting portion and the electrical contact point of the first connecting portion constitute the electrical contact point pair, and the electrical contact point of the other end of the third connecting portion is the electrical contact point of the second connecting portion.
  • the electrical contact point pair is formed.
  • the third connecting portion includes a plurality of connecting sub-portions, and both ends of each of the connecting sub-portions each include an electrical contact point.
  • the connecting sub-parts are adjacent to each other end to end, so that the adjacent electrical contact points of the adjacent connecting sub-parts form the electrical contact point pair.
  • the plurality of connecting sub-parts includes a first connecting sub-part and a second connecting sub-part, the first connecting sub-part extends in a first direction parallel to the glass substrate, and the first connecting The sub-portion has a shape in which notches are formed at two corners of a substantially rectangular shape opposite to each other in a diagonal direction, the first connecting sub-portion includes a connecting area corresponding to the notch, and the first connecting sub-portion
  • the electrical contact point is located on the side of the connection area facing the gap
  • the second connector portion extends in a second direction that is parallel to the glass substrate and intersects the first direction
  • the second connector The electrical contact points of the part are located at the two ends of the second connector part in the second direction.
  • the connecting line subunit includes a plurality of first connecting sub-part rows extending along the first direction and arranged in the second direction, and each of the first connecting sub-part rows includes at least one The first connecting sub-portion, the two ends of the second connecting sub-portion are respectively located in the gaps of the ends of the adjacent first connecting sub-portion, so that the second connecting sub-portion
  • the electrical contact points of the two end portions and the electrical contact points of the adjacent first connecting sub-section rows form the electrical contact point pairs, and all of the electrical contact point pairs are formed with the same first connecting sub-section row.
  • the second connecting sub-parts are respectively located on two sides of the first connecting sub-part row in the second direction and are respectively located at two ends of the first connecting sub-part row in the first direction.
  • each row of the first connecting sub-parts includes a plurality of first connecting sub-parts, and the connecting area of one first connecting sub-part of the adjacent first connecting sub-parts is located in the other first connecting sub-part. Connect the gap in the sub-part.
  • the size of the first connecting sub-section row along the second direction at each position in the first direction is substantially the same.
  • the first connecting portion includes a first protruding portion, an electrical contact point of the first connecting portion is located on the first protruding portion, and the first protruding portion is located adjacent to the first protruding portion.
  • the electrical contact points on the first protrusion and the electrical contact points of the connection area of the first connection sub-section row form the electrical Contact point pair;
  • the second connecting portion includes a second protruding portion, the electrical contact point of the second connecting portion is located on the second protruding portion, the second protruding portion is located adjacent to it In the gap corresponding to the connecting area of the first connecting sub-section row, so that the electrical contact points on the second protruding portion and the electrical contact points of the connecting area of the first connecting sub-section row form the electrical contact Point right.
  • the at least one connection line subunit includes a plurality of connection line subunits, and a plurality of the connection line subunits in each of the connection line units share the first connection part and the second connection part. Connecting part.
  • the electrical contact point pairs in each of the connection line units are evenly distributed.
  • FIG. 1 is a schematic diagram of a partial plane structure of a backplane provided according to an embodiment of the present disclosure
  • FIG. 2 is a schematic plan view of a light-emitting unit in the backplane shown in FIG. 1;
  • FIG. 3 is a schematic plan view of a third connecting portion in a light-emitting subunit shown in FIG. 2;
  • FIG. 4 is a schematic plan view of a first connecting sub-part shown in FIG. 3;
  • FIG. 5 is a schematic diagram of a partial structure of a light-emitting subunit provided by another example of an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a partial plane structure of a backplane provided by another example of an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a planar structure of a light-emitting unit provided by another example of an embodiment of the present disclosure.
  • FIG. 8 is a schematic partial cross-sectional structure diagram taken along line AA shown in FIG. 6;
  • FIG. 9 is a schematic partial plan view of a glass-based circuit board according to another embodiment of the present disclosure.
  • FIG. 10 is a schematic plan view of a connecting circuit unit in the glass-based circuit board shown in FIG. 9;
  • FIG. 11 is a schematic plan view of a third connecting portion in a connecting line subunit in FIG. 10.
  • FIG. 12 is a schematic diagram of a partial plane structure of a connection line subunit provided by another example of an embodiment of the present disclosure.
  • the embodiments of the present disclosure provide a backplane and a glass-based circuit board.
  • the backplane includes a base substrate and a plurality of light-emitting units arrayed on the base substrate.
  • Each light-emitting unit includes a connection line and a plurality of light-emitting diode chips connected with the connection line, and the light-emitting diode chip is located on the side of the connection line away from the base substrate.
  • Each light-emitting unit includes at least one light-emitting sub-unit, and the light-emitting diode chips in the light-emitting sub-units are connected in series.
  • the connecting circuit unit is used to connect the light emitting diode chips in the light emitting subunits in series, which can increase the space utilization rate of the backplane and reduce the driving cost.
  • FIG. 1 is a schematic partial plan view of a backplane according to an embodiment of the present disclosure
  • FIG. 2 is a schematic plan view of a light-emitting unit in the backplane shown in FIG. 1.
  • the backplane includes a base substrate 100 and a plurality of light-emitting units 110 arrayed on the base substrate 100.
  • Each light-emitting unit 110 includes a connection line 200 and a plurality of light-emitting diode chips 300 connected to the connection line 200, and the light-emitting diode chip 300 is located on a side of the connection line 200 away from the base substrate 100.
  • Each light emitting unit 110 includes at least one light emitting subunit 101, and the light emitting diode chips 300 in the light emitting subunit 101 are connected in series.
  • the connecting circuit unit is used to connect the light emitting diode chips in the light emitting subunits in series, which can increase the space utilization rate of the backplane, improve efficiency, help maintain product consistency, and reduce driving costs.
  • the light emitting diode chip 300 may be a micro light emitting diode chip, and the array is arranged on the base substrate 100.
  • the maximum dimension of the micro light emitting diode chip 300 in a direction parallel to the base substrate 100 is not greater than 100 microns.
  • the light emitting diode chip 300 may also be a mini light emitting diode chip (mini LED), and the array is arranged on the base substrate 100.
  • mini LED mini light emitting diode chip
  • the maximum dimension of the mini LED 300 in the direction parallel to the base substrate 100 is not greater than 500 microns.
  • the size of the mini LED 300 can be 0.2mm ⁇ 0.4mm.
  • the backplane provided by the embodiment of the present disclosure can be used as a backlight source or a display panel, which is not limited by the embodiment of the present disclosure.
  • the base substrate 100 is a glass substrate.
  • the inventor of the present application found that the substrate of a single PCB board is prone to warpage. Therefore, in the process of making a large-size backplane, multiple PCB boards need to be spliced to ensure that the entire backplane includes The circuit board has high flatness. However, the splicing of multiple PCB boards will increase manufacturing and driving costs. In addition, the poor heat dissipation performance of the PCB substrate (with a thermal diffusion coefficient of 0.4W/m ⁇ K) will cause the backplane to be prone to defects due to excessive temperature during the working process.
  • a glass substrate provided with a line connection unit is used to replace a commonly used substrate, such as a PCB board used to electrically connect light-emitting diode chips in a backlight, which can overcome the problem of poor heat dissipation performance of general PCB substrates; and Since the glass substrate is not easy to deform, only one large-size glass substrate can be used in the process of manufacturing a large-size backplane, and there is no need to splice multiple substrates, which can reduce the manufacturing cost and driving cost.
  • a commonly used substrate such as a PCB board used to electrically connect light-emitting diode chips in a backlight
  • connection line 200 in each light-emitting subunit 101, includes a first connection portion 210 and a second connection portion 220, and the first connection portion 210 includes a first input terminal 211,
  • the second connection part includes a second input terminal 221.
  • the connection line 200 in each light-emitting subunit 101 connects a plurality of light-emitting diode chips 300 in series.
  • the first connection portion 210 and the second connection portion 220 respectively include electrical contact points, for example, the first connection portion 210 includes a first electrical contact point 2021, and the second connection portion 220 The second electrical contact point 2022 is included.
  • the connection line 200 further includes a third connection portion 230. Both ends of the third connection portion 230 each include an electrical contact point. For example, both ends of the third connection portion 230 each include a third electrical contact. Point 2023.
  • the third electrical contact point 2023 at one end of the third connecting portion 230 and the first electrical contact point 2021 of the first connecting portion 210 form an electrical contact point pair 202, and the third electrical contact point 2023 at the other end of the third connecting portion 230 is connected to
  • the second electrical contact points 2022 of the second connecting portion 220 constitute electrical contact point pairs 202, and each electrical contact point pair 202 is respectively connected to the anode 310 and the cathode 320 of a light emitting diode chip 300 in a one-to-one correspondence.
  • each light-emitting sub-unit 101 includes a first connection portion 210, a second connection portion 220, a third connection portion 230, and a plurality of light-emitting diode chips 300, that is, the light-emitting sub-unit starts from the first
  • the first input terminal 211 of a connecting portion 210 is connected to the second input terminal 221 of the second connecting portion 220 through the light emitting diode chip 300 and the third connecting portion 230, so that the light emitting diode chips 300 in the light emitting subunit 110 are connected in series.
  • the first connecting portion 210, the second connecting portion 220, and the third connecting portion 230 are arranged in the same layer and have the same material.
  • the "same layer” here and below refers to the relationship between multiple film layers formed by the same material after the same step (for example, one-step patterning process). For example, a metal layer may be deposited first, and then each connection portion may be formed by patterning the metal layer.
  • the “same layer” here does not always mean that multiple film layers have the same thickness or that multiple film layers have the same height in the cross-sectional view.
  • each connection part may be copper, but it is not limited to this, and may also be other conductive materials.
  • an insulating layer (the first insulating layer 700 shown in FIG. 8) is provided between the light-emitting diode chip 300 and the connection line 200, and the anode 310 and the cathode 320 of the light-emitting diode chip 300 can pass through via holes located in the insulating layer, respectively.
  • the electrical contact point on each connection part refers to the electrical connection point where the anode or the cathode of the light emitting diode chip 300 is connected to the connection part through a via hole.
  • the electrical contact point may be a part of the connecting portion for electrically connecting with the anode or cathode of the light emitting diode 300, such as the electrical contact point 2021 on the first connecting portion 210 shown in FIG. 8 later.
  • the orthographic projection of the light-emitting diode chip 300 on the base substrate 100 and the spacing are on the base substrate 100.
  • the orthographic projection of the anode 310 and the cathode 320 of the light-emitting diode chip 300 on the base substrate 100 may be located in the orthographic projection of the connection portion on the base substrate 100, but is not limited to this, as long as the anode and cathode of the light-emitting diode chip are respectively It suffices to be electrically connected to the adjacent connection part.
  • connection parts there is no connection between adjacent connection parts, and the light-emitting diode chip electrically connected to the adjacent connection part connects the adjacent connection parts.
  • adjacent connection parts are spaced apart from each other.
  • the space between adjacent connection parts may be filled with insulating material.
  • the third connecting portion 230 includes a plurality of connecting sub-portions 231, and both ends of each connecting sub-portion 231 include one for connecting with each other.
  • the electrical contact point where the anode 310 or the cathode 320 of the light emitting diode chip 300 is electrically connected for example, the third electrical contact point 2023.
  • the third electrical contact points 2023 at the adjacent ends of the adjacent connecting sub-parts 231 constitute electrical contact point pairs 203. Two electrical contact points in each electrical contact point pair 203 are respectively connected to the anode 310 and the cathode of a light emitting diode chip 300.
  • 320 are connected in a one-to-one correspondence, and a plurality of connecting sub-parts 231 are connected end to end through the light emitting diode chip 300, that is, the connecting sub-parts 231 are connected in series.
  • adjacent ends of adjacent connector parts means that the parts of adjacent connector parts immediately adjacent to each other are the ends of two connector parts, respectively.
  • a plurality of connecting sub-parts are connected end to end through a light-emitting diode chip means that the head end of one connecting sub-part is connected to the tail end of another connecting sub-part through the light-emitting diode chip, and the connecting sub-parts are connected in sequence.
  • FIG. 3 is a schematic diagram of a third connection part in a connection line in a light-emitting subunit in FIG. 2, and FIG. 4 is a schematic diagram of a first connection sub-part in FIG. 3.
  • FIG. 3 is a schematic diagram of a third connection part in a connection line in a light-emitting subunit in FIG. 2
  • FIG. 4 is a schematic diagram of a first connection sub-part in FIG. 3.
  • FIG. 3 is a schematic diagram of a third connection part in a connection line in a light-emitting subunit in FIG. 2
  • FIG. 4 is a schematic diagram of a first connection sub-part in FIG. 3.
  • the plurality of connecting sub-parts 231 includes a first connecting sub-part 2311 and a second connecting sub-part 2312.
  • the plurality of connecting sub-parts 231 may be divided into a plurality of first connecting sub-parts 2311 and a plurality of second connecting sub-parts 2312.
  • a certain connecting sub-part 231 may be the first connecting sub-part 2311, or a certain connecting sub-part 231 may be a second connecting sub-part 2312.
  • the first connecting sub-portion 2311 extends in a first direction (that is, the X direction) parallel to the base substrate 100.
  • the shape of the first connecting sub-portion 2311 is an irregular shape, and it has a shape in which notches 2313 are formed at two corners of a substantially rectangular shape (the dashed frame shown in FIG. 4) that are opposite to each other in a diagonal direction.
  • the shape of the first connecting sub-portion 2311 is a shape obtained by cutting off two diagonally opposite corners of a rectangle.
  • substantially rectangular shape means that the shape formed by the first connecting portion and the notch may be a standard right-angled rectangle, or may be an approximate rectangle such as a rounded rectangle.
  • the shape of the notch 2313 may be rectangular, but is not limited to this.
  • the first connecting sub-portion 2311 includes a connecting area 2314 (the area shown by the dashed line) corresponding to the gap 2313, and the electrical contact point 2023 of the first connecting sub-portion 2311 is located
  • the connecting area 2314 faces one side of the gap 2313.
  • the above-mentioned “connection area corresponding to the gap” refers to the portion of the first connection sub-portion 2311 adjacent to the gap 2313 in the Y direction.
  • the connecting area 2314 is the remaining two corners of the two corners of the substantially rectangular shape that are opposite to each other in the diagonal direction, that is, the two opposite corners of the above-mentioned rectangle that are not cut off.
  • the electrical contact point 2023 is located at a position where the connection area 2314 is close to the gap 2313 adjacent to it.
  • the multiple light-emitting diode chips 300 in each light-emitting unit 110 have the same orientation from the anode 310 to the cathode 320.
  • each light-emitting diode chip 300 from the cathode 320 to the anode 310 is the direction indicated by the Y-direction arrow in FIGS.
  • the light-emitting diode chips 300 in the first connection part 2311 need to be connected to the anode 310 of one light-emitting diode chip 300, and the other connection area 2314 needs to be connected to the cathode of the other light-emitting diode chip 300.
  • the two connecting regions 2314 of the first connecting sub-portion 2311 are respectively located on both sides of the first connecting sub-portion 2311 in the Y direction and at both ends of the first connecting sub-portion 2311 in the X direction.
  • the size of the first connecting sub-part 2311 excluding the connecting area 2314 along the Y direction at each position is the same.
  • the portion of the first connecting sub-part 2311 other than the connecting area 2314 may be rectangular.
  • the first connecting sub-portion 2311 may include a rectangular center portion, and a first edge portion and a second edge portion respectively located on both sides of the first center line extending in the Y direction of the rectangular center portion.
  • the size of the first edge portion and the second edge portion are both smaller than the size of the center portion, and the first edge portion and the second edge portion are away from the edge and the center portion of the second center line extending in the X direction.
  • the edges extending in the X direction are flush.
  • the first edge portion and the second edge portion here are the connecting area 2314 in FIG. 4, and the central portion is the part of the first connecting sub-portion excluding the connecting area.
  • the second connector portion 2312 extends in a second direction (Y direction) parallel to the base substrate 100 and intersecting the first direction (X direction), and the second connector
  • the electrical contact points 2023 of the portion 2312 are located at both ends of the second connecting sub-portion 2312 in the second direction.
  • the electrical contact point pair 203 composed of the electrical contact point 2023 of the second connector part 2312 and the electrical contact point 2023 of the adjacent first connector part 2311 is configured to connect a plurality of light emitting diode chips 300 in series.
  • the light-emitting subunit 101 includes a plurality of first connecting sub-part rows 2310 that extend along the first direction and are arranged in the second direction, each of the first connecting sub-part rows 2310 includes At least one first connecting sub-portion 2311, FIG. 3 schematically shows that the first connecting sub-portion 2310 includes one first connecting sub-portion 2311.
  • the two ends of the second connecting sub-parts 2312 are respectively located in the gaps 2313 opposite to each other at the ends of the two adjacent first connecting sub-part rows 2310, so that the adjacent first connecting sub-part rows 2310 can pass light.
  • the diode chip 300 is connected.
  • the end of the second connector portion 2312 extends into the gap 2313 of the first connector portion 2311 so that the third electrical contact point 2023 at the end of the second connector portion 2312 can be connected to the first connector portion 2312.
  • the third electrical contact point 2023 of the connection area 2314 of the portion 2311 constitutes an electrical contact point pair 203.
  • the second connecting sub-portions 2312 connected to the same first connecting sub-portion row 2310 through the light-emitting diode chip 300 are respectively located in the second direction of the first connecting sub-portion row 2310.
  • the two sides are respectively located at the two ends of the first connecting sub-part row 2310 in the first direction.
  • first connecting sub-part row 2310 including one first connecting sub-part 2311
  • the two notches 2313 of the first connecting sub-part 2311 are respectively located on both sides of the first connecting sub-part 2311 along the Y direction and are located in the first The two ends of the connecting sub-portion 2311 along the X direction, therefore, the two second connecting sub-portions 2312 connected to the first connecting sub-portion 2311 through the light-emitting diode chip 300 are respectively located on both sides of the first connecting sub-portion 2311 in the Y direction And it is located at both ends of the first connecting sub-part 2311 along the X direction.
  • FIG. 5 is a schematic diagram of a partial structure of a light-emitting subunit included in a backplane provided by another example of an embodiment of the present disclosure.
  • each first connecting sub-part row 2310 may include a plurality of first connecting sub-parts 2311, and the connecting area 2314 of one of the adjacent first connecting sub-parts 2311 is located in another one.
  • One first connecting sub-part 2311 has a gap 2313 in the gap 2313 so that adjacent connecting areas 2314 are connected through the light emitting diode chip 300.
  • the adjacent connection areas are connected through the light emitting diode chip, and the adjacent connection areas may be electrically connected through the light emitting diode chip.
  • the connecting area 2314 of one first connecting sub-part 2311 of the adjacent first connecting sub-parts 2311 extends into the gap 2313 of the other first connecting sub-part 2311, so that the two first connecting sub-parts 2311 can be
  • the electrical contact points on the two connection areas 2314 adjacent to each other are electrically connected to the anode and the cathode of the light emitting diode chip 300, respectively. That is, the adjacent first connecting sub-parts 2311 in the row 2310 of the first connecting sub-parts have complementary shapes at positions where the connection is achieved by the light-emitting diode chip 300.
  • each first connecting sub-part row 2310 includes a first end 2315 and a second end 2316, and the first end 2315 of the plurality of connecting sub-part rows 2310 runs along the first end 2315.
  • Two-direction alignment, the second ends 2316 of the plurality of connecting sub-part rows 2310 are aligned in the second direction, and the plurality of first connecting sub-part rows 2310 and the second connecting sub-parts 2312 are integrally connected in a square wave shape to efficiently use the back Board space.
  • the size of the first connecting sub-section row 2310 in the second direction at each position in the first direction D is roughly equal.
  • the subsequent "substantially equal” means that the ratio of the difference in the size along the second direction at each position to the size at each position is not more than 5%.
  • the first connecting sub-part row 2310 includes a plurality of first connecting sub-parts 2311, along the Y direction, the two connecting areas 2314 and the two connecting areas forming the electrical contact point pair 203 in the adjacent first connecting sub-parts 2311
  • the total size of the space between 2314 is the same as the size of the part of the first connecting sub-part 2311 excluding the connecting area 2314 to efficiently use the space of the back plate.
  • At least one light-emitting unit 110 includes a plurality of light-emitting sub-units 101, and the plurality of light-emitting sub-units 101 share the first connection portion 210 and the second connection portion 220 to be connected in parallel with each other, namely The plurality of light-emitting sub-units 101 share the first connection portion 210 and the second connection portion 220 so that the plurality of light-emitting sub-units 101 are connected in parallel.
  • FIG. 1 schematically shows that the first connecting portion and the second connecting portion of two light emitting units 110 adjacent in the first direction are both separated from each other, but it is not limited thereto.
  • the second connection portion (with the second connection portion and the second connection portion) of at least two light-emitting units arranged in the first direction Take the cathode connection of the light-emitting diode chip as an example) electrical connection.
  • the second connecting portions of at least two light-emitting units arranged in the second direction can be connected to the same cathode wiring to save the number of wirings and reduce the manufacturing process cost.
  • multiple light-emitting subunits 101 in each light-emitting unit 110 are connected in parallel, and multiple light-emitting diode chips 300 in each light-emitting subunit 101 are connected in series.
  • FIG. 6 is a schematic diagram of a partial plane structure of a backplane provided by another example of an embodiment of the present disclosure. As shown in FIG. 6, the difference between the backplane in this example and the backplane shown in FIG. 1 is that each light-emitting unit 110 in this example includes only one light-emitting sub-unit, so multiple light-emitting diode chips in the light-emitting unit 110 300 is connected in series through the first connection portion 210, the second connection portion 220, and the third connection portion 230 included in the connection line 200.
  • FIG. 6 schematically shows that the second connecting portions of two adjacent light emitting units 110 arranged in the second direction are connected to different cathode traces, but it is not limited thereto.
  • the second connecting portions of at least two light-emitting units arranged in the second direction can also be connected to the same cathode wire. Save the number of wires and reduce the cost of the production process.
  • a glass substrate provided with a line connection unit is used instead of a conventional substrate, for example, a PCB board used for electrically connecting light-emitting diode chips in a backlight source, which eliminates the need for multiple substrates to be spliced to achieve more production on only one glass substrate.
  • the purpose of the light zone is to save costs.
  • the first connecting portion 210 includes a first protruding portion 212, and the first protruding portion 212 is located in a gap at the connecting area 2314 of the first connecting sub-portion row 2310 connected to the light emitting diode chip 300. Within 2313.
  • the first electrical contact point 2021 of the first connecting portion 210 is located at the first protruding portion 212, and the first protruding portion 212 extends into the gap 2313 of the first connecting sub-portion row 2310 to make the first electrical contact of the first connecting portion 210
  • the contact point 2021 and the third electrical contact point 2023 of the third connecting portion 230 are electrically connected to the anode 310 and the cathode 320 of the light emitting diode chip 300, respectively.
  • the first protrusion 212 is complementary to the shape at the corresponding notch 2313 of the first connecting sub-part row.
  • the second connecting portion 220 includes a second protruding portion 222, and the second protruding portion 222 is located in connection with the first connecting sub-portion row 2310 connected to the light emitting diode chip 300. Area 2314 in the gap 2313.
  • the second electrical contact point 2022 of the second connecting portion 220 is located at the second protruding portion 222, and the second protruding portion 222 extends into the gap 2313 of the first connecting sub-portion row 2310 to make the second electrical contact of the second connecting portion 220
  • the contact point 2022 and the third electrical contact point 2023 of the third connecting portion 230 are electrically connected to the anode 310 and the cathode 320 of the light emitting diode chip 300, respectively.
  • the second protrusion 222 is complementary to the shape at the corresponding notch 2313 of the first connecting sub-part row.
  • FIG. 7 is a schematic diagram of a planar structure of a light-emitting unit provided by another example of an embodiment of the present disclosure.
  • the third connecting portion 230 in this example includes only one connecting sub-portion, and both ends of the third connecting portion 230 are provided with a third electrical connector.
  • Contact point 2023, and the third electrical contact point 2023 at one end of the third connecting portion 230 and the first electrical contact point 2021 at the end of the first connecting portion 210 form an electrical contact point pair, and the other end of the third connecting portion 230
  • the third electrical contact point 2023 and the second electrical contact point 2022 of the second connecting portion 220 form an electrical contact point pair.
  • each light-emitting subunit 101 includes only two light-emitting diode chips 300 connected in series, and the multiple light-emitting subunits 101 included in the light-emitting unit 110 are connected in parallel through the first connection portion 210 and the second connection portion 220.
  • the light-emitting unit 110 may also include more than three light-emitting sub-units 101, and the third connection part 230 in each light-emitting sub-unit 101 includes only one connection sub-part.
  • the third connecting portion 230 in each light-emitting subunit 101 included in the light-emitting unit 110 may also include a plurality of connecting sub-portions, and each connecting sub-portion extends in the Y direction, and each connecting sub-portion extends along two sides of the Y direction. The ends respectively have an electrical contact point, and the adjacent connecting sub-parts are connected by the light-emitting diode chip 300, that is, the adjacent connecting sub-parts are connected end-to-end by the light-emitting diode chip 300.
  • a plurality of light-emitting diode chips 300 in each light-emitting unit 110 are evenly distributed.
  • the plurality of light-emitting diode chips 300 in the backplane may also be uniformly distributed.
  • the minimum distance between two light emitting diode chips 300 adjacent to each other in the first direction is the first distance
  • the minimum distance between two light emitting diode chips 300 adjacent to each other in the second direction is the second distance.
  • the first distances of all positions are equal, or the second distances of all positions are equal; or the first distances of all positions are equal and the second distances of all positions are equal.
  • each connection part in the connection line 200 on the base substrate 100 are designed according to the position of the light-emitting diode chip 300.
  • the line width of each connecting part along the direction perpendicular to its extension direction should be set to be larger, but the line width can be as wide as possible while increasing Make the distance between adjacent connecting parts not less than 15 microns.
  • the glass substrate is covered, which can improve the flatness of the entire backplane before the light-emitting diode chip is arranged.
  • FIG. 8 is a schematic partial cross-sectional structure diagram taken along the AA line shown in FIG. 6.
  • the backplane further includes a plurality of parallel traces 500, the trace 500 is located on the side of the connecting line 200 facing the base substrate 100, and includes a plurality of first traces 510 and a plurality of traces 510.
  • the wiring 500 extends in the second direction, for example.
  • the embodiment of the present disclosure deposits a first conductive layer on a base substrate 100 and patterning the first conductive layer can form a plurality of first traces extending in the second direction.
  • the first conductive layer can be deposited directly on the glass substrate.
  • a first insulating layer 600 is provided between a plurality of parallel wires 500 and the connecting circuit 200 to provide insulation.
  • the thickness of the first insulating layer 600 is relatively thin, and may be on the order of micrometers.
  • the first insulating layer 600 may include a first buffer layer 610, a first resin layer 620, and a first passivation layer 630, and the first resin layer 620 may function to bond the first buffer layer 610 and the first passivation layer 630 The role of.
  • a first insulating material layer may be deposited on the wiring 500, and the first insulating material layer may be patterned to form via holes exposing the first wiring 510 and exposing the second wiring 520 vias.
  • FIG. 8 schematically shows the via hole exposing the first trace 510.
  • the material of the wiring 500 includes copper
  • the material of the first buffer layer 610 in the first insulating layer 600 that is in contact with the wiring 500 includes silicon nitride, so the adhesion between the wiring 500 and the first buffer layer 610 is better.
  • a second conductive layer may be deposited on the first insulating layer 600, and the second conductive layer may be patterned to form the connection lines 200 in each light-emitting unit.
  • connection line 200 includes copper
  • the material of the first passivation layer 630 in the first insulating layer 600 that is in contact with the connection line 200 includes silicon nitride, so that the bonding of the connection line 200 and the first passivation layer 630 Good fit.
  • the first input terminal 211 of the connecting line 200 is connected to the first wiring 510, and the second input terminal 221 of the connecting line 200 is connected to the second wiring 520. That is, the first input terminal 211 of the first connection portion 210 is electrically connected to the first trace 510 through the via 601 located in the first insulating layer 600 to electrically connect the first electrical contact point of the first connection portion 210
  • One of the anode and the cathode of the light emitting diode chip 300 is connected to the first wiring 510; the second input terminal 221 of the second connecting portion 220 is electrically connected to the second wiring 520 through the via hole located in the first insulating layer 600 to connect
  • the other of the anode and the cathode of the light emitting diode chip 300 electrically connected to the second electrical contact point of the second connection part 220 is connected to the second wiring 520.
  • the base substrate 100 is a glass substrate, and its thickness may be approximately 5 mm. Since the thickness of each conductive layer and insulating layer can be formed thinner, therefore, along the direction perpendicular to the base substrate 100, the thickness of the glass-based circuit board including the connecting lines in the backplane excluding the light-emitting diode chip is not greater than 8 Mm, which can ensure that the overall thickness of the back plate is thin.
  • the backplane further includes a circuit board 900 on the base substrate 100, and the circuit board 900 is configured to be electrically connected to the first wiring 510 and the second wiring 520.
  • the circuit board 900 may be a flexible printed circuit board, which is connected to an external power source to drive each light-emitting unit such as partitioning and/or time-sharing voltage signals.
  • the external power supply may include a 12V voltage source and a serial peripheral interface (SPI).
  • SPI serial peripheral interface
  • the external power supply may be connected to the circuit board 900 through a plurality of circuit controllers, so as to realize the zone control of the plurality of light-emitting units.
  • each circuit controller can be connected by signal lines such as power lines, clock lines, input/output lines (I/O lines) to control the working sequence of each circuit controller, and each circuit controller can be connected to one or more light-emitting
  • the unit is electrically connected to control the light-emitting unit to emit light in a time-sharing manner.
  • the backplane can achieve the effects of good contrast and high brightness by zone control of the light-emitting units.
  • the thickness of the trace 500 (for example, less than 0.1 mm) is greater than the thickness of the connection line 200, and the connection line 200 includes a first connection portion 210, a second connection portion 220, and The width of the third connecting portion 230 is greater than the width of the trace 500.
  • a plurality of wirings 500 parallel to each other are distributed on the base substrate 100 to connect the anode and cathode of the light-emitting diode chip 300 in each light-emitting unit to the circuit board 900, ensuring that the spacing between adjacent wirings 500 meets electrical safety If it is required (for example, not less than 15 microns), the line width of the wiring 500 needs to be set narrower to increase the number of light-emitting units. At the same time, in order to ensure the current carrying capacity of the wiring 500, the thickness of the wiring 500 may be set thicker.
  • the line width of the wiring and each connection part can be obtained according to the temperature rise of the material used, that is, the line width can be obtained according to the relationship between the temperature rise of the material and the load current. Since the insulating layer between the wiring and the connecting circuit is thin, the line width of the connection part in the connecting circuit should be designed to avoid signal crosstalk due to the large overlap area of the wiring and the connecting circuit.
  • the backplane further includes a reflective layer 400 between the connection line 200 and the plurality of light-emitting diode chips 300.
  • a second insulating layer 700 is also provided between the reflective layer 400 and the connection line 200 to isolate the reflective layer 400 and the connection line 200 from each other.
  • the reflective layer 400 may be a metal layer with a smooth surface to reflect light.
  • the reflective layer in the embodiment of the present disclosure is used to reflect the light emitted by the light-emitting diode chip to improve the light efficiency.
  • the reflective layer by providing the reflective layer, a better light reflection effect can be achieved and the light effect can be improved.
  • the second insulating layer 700 includes a second buffer layer 710 and a second resin layer 720.
  • connection line 200 includes copper
  • the material of the second buffer layer 710 in the second insulating layer 700 that is in contact with the connection line 200 includes silicon nitride, so the adhesion between the connection line 200 and the second buffer layer 710 is better.
  • a second insulating material layer may be deposited on the connecting line 200, and the second insulating material layer may be patterned to form a second insulating layer 700 with via holes.
  • the via hole is used to expose the connection line 200.
  • a reflective material layer is deposited on the second insulating layer 700, and the reflective material layer is patterned to form the reflective layer 400 exposing the connection line 200. That is, the reflective layer 400 exposes the via holes provided in the second insulating layer 700 to ensure that subsequent light emitting diode chips can be electrically connected to the connection lines 200 through the via holes provided in the second insulating layer 700.
  • a third insulating layer 730 is further provided on the side of the reflective layer 400 away from the second insulating layer 700 to insulate the reflective layer 400 from the light emitting diode chip 300.
  • the backplane further includes a white glue layer 810 on the side of the reflective layer 400 away from the base substrate 100, and the white glue layer 810 has an opening for exposing the light emitting diode chip 300.
  • the white glue layer 810 may be formed after the electrical connection between the light emitting diode chip 300 and the connection circuit 200 is completed.
  • the white glue layer 810 before forming the white glue layer 810, the area surrounding the LED chip 300 and adjacent to the LED chip 300 and the surface outside the area can be treated, such as hydrophobization and hydrophilization treatments, respectively, so as to spray
  • the white glue layer 810 located between adjacent light-emitting diode chips 300 will not cover the light-emitting diode chips 300 during the diffusion process.
  • the white glue layer 810 and the light emitting diode chip 300 are both disposed on the same layer.
  • the white glue layer 810 and the light emitting diode chip 300 are both located on the third insulating layer 730.
  • the area surrounding the light emitting diode chip 300 may expose the reflective layer 400 to realize the reflection of the light emitted by the light emitting diode chip 300 by the reflective layer 400 and improve the light efficiency.
  • the thickness of the white glue layer 810 located between the light emitting diode chips 300 is large so that the distance between the flat surface of the base substrate 100 and the base substrate 100 is greater than that of the surface of the light emitting diode chip 300 away from the base substrate 100 and the substrate.
  • the distance of the substrate 100, so that the white glue layer surrounding the light-emitting diode chip can also reflect light to further increase the reflectivity of the backplane.
  • the backplane further includes a transparent layer 820 on the side of the white glue layer 810 away from the base substrate 100 to cover the white glue layer 810 and the light-emitting diode chip 300, thereby protecting the light-emitting diode chip 300 effect.
  • the base substrate 100 may include a plurality of coating areas that extend in the second direction and are closely arranged in the first direction, and the transparent layer 820 may be sequentially coated on each coating area. Zone to complete the coating.
  • FIG. 9 is a schematic plan view of a glass-based circuit board according to another embodiment of the present disclosure
  • FIG. 10 is one of the glass-based circuit boards shown in FIG. 9 Schematic diagram of the plane structure of the connecting line unit.
  • the glass-based circuit board includes a glass substrate 10 and a plurality of connection circuit units 200 arranged on the glass substrate 10 in an array.
  • Each connection line unit 200 includes at least one connection line subunit 201, and the connection line subunit 201 includes a plurality of electrical contact point pairs, and each electrical contact point pair is configured to be connected to the anode and the cathode of a light emitting diode chip in a one-to-one correspondence.
  • the connection line sub-unit 201 shown in FIG. 9 includes a connecting portion that connects a plurality of light-emitting diode chips in the light-emitting sub-unit shown in FIG. 1 in series.
  • the glass-based circuit board provided in this embodiment may be a circuit board of the backplane shown in FIG. 1 before the light-emitting diode chip is provided.
  • the glass-based circuit board in the embodiment of the present disclosure replaces the general PCB board, such as the PCB board used to electrically connect the light-emitting diode chip in the backlight, which can overcome the problem of poor heat dissipation performance of the general PCB substrate; and, because the glass substrate is not easily deformed Therefore, in the process of manufacturing a large-size backplane, only one large-size glass substrate can be used, and there is no need to splice multiple substrates, which can reduce the manufacturing cost and the driving cost.
  • the general PCB board such as the PCB board used to electrically connect the light-emitting diode chip in the backlight
  • the connecting line subunit 201 includes a first connecting portion 210 and a second connecting portion 220.
  • the first connecting portion 210 includes a first input terminal 211
  • the second connecting portion includes a first connecting portion 211.
  • the first connecting portion 210 includes a first electrical contact point 2021
  • the second connecting portion 220 includes a second electrical contact point 2022.
  • the connection line subunit 201 is configured to connect a plurality of light emitting diode chips 300 in series.
  • the connecting line subunit 201 further includes a third connecting portion 230, and both ends of the third connecting portion 230 each include an electrical contact point, such as two of the third connecting portion 230.
  • Each end includes a third electrical contact point 2023.
  • the third electrical contact point 2023 at one end of the third connecting portion 230 and the first electrical contact point 2021 of the first connecting portion 210 form an electrical contact point pair 202, and the third electrical contact point 2023 at the other end of the third connecting portion 230 is connected to
  • the second electrical contact points 2022 of the second connecting portion 220 constitute an electrical contact point pair 202.
  • each electrical contact point pair 202 can be respectively connected to the anode 310 and the cathode 320 of a light emitting diode chip 300 in a one-to-one correspondence.
  • the first connecting portion 210, the second connecting portion 220, and the third connecting portion 230 are arranged in the same layer and have the same material.
  • the material of each connection part may be copper, but it is not limited to this, and may also be other conductive materials.
  • the third connection part 230 includes a plurality of connection sub-parts 231, and both ends of each connection sub-part 231 each include an electrical connection.
  • the contact point such as the third electrical contact point 2023.
  • the multiple connecting sub-parts 231 are adjacent to each other end to end, so that the adjacent electrical contact points 2023 of the adjacent connecting sub-parts 231 form an electrical contact point pair 203.
  • a plurality of connecting sub-parts are adjacent end to end
  • the connecting sub-parts each include a first end and a second end, and the first end of one of the two adjacent connecting sub-parts is connected to the other
  • the second ends of the sub-parts are adjacent, and the electrical contact point at the first end of one connecting sub-part and the electrical contact point at the second end of the other connecting sub-part form an electrical contact point pair.
  • each connecting sub-part 231 each include a third electrical contact point 2023 for electrically connecting with the anode 310 or the cathode 320 of the light emitting diode chip 300, and each electrical contact
  • the two electrical contact points in the point pair 203 can be respectively connected to the anode 310 and the cathode 320 of one light-emitting diode chip 300 in a one-to-one correspondence so that the multiple connecting sub-parts 231 are connected end to end through the light emitting diode chip 300. That is, through the light-emitting diode chip 300, a plurality of connecting sub-parts 231 are sequentially connected end to end.
  • FIG. 11 is a schematic diagram of a third connecting portion in a connecting line subunit in FIG. 10, and FIG. 4 is a schematic diagram of a first connecting sub-portion in FIG. 11.
  • the plurality of connecting sub-parts 231 include a first connecting sub-part 2311 and a second connecting sub-part 2312.
  • the first connecting sub-portion 2311 extends in a first direction (X direction) parallel to the glass substrate 10, and the first connecting sub-portion 2311 has a gap 2313 formed at two corners of a substantially rectangular shape that are opposite to each other in a diagonal direction.
  • the first connecting sub-part 2311 includes a connecting area 2314 corresponding to the notch 2313, and the electrical contact point 2023 of the first connecting sub-part 2311 is located on the side of the connecting area 2314 facing the notch 2313.
  • the first connecting sub-part in this embodiment has the same features as the first connecting sub-part shown in FIGS. 3-4, which will not be repeated here.
  • the second connecting sub-portion 2312 extends in a second direction (Y direction) that is parallel to the glass substrate 10 and intersecting the first direction, and the electrical contact of the second connecting sub-portion 2312 is The points 2023 are located at both ends of the second connecting sub-part 2312 in the second direction.
  • the electrical contact point pair 203 composed of the electrical contact point 2023 of the second connector part 2312 and the electrical contact point 2023 of the adjacent first connector part 2311 is configured to connect the plurality of light emitting diode chips 300 shown in FIG. 1 in series. .
  • the second connecting sub-part in this embodiment has the same features as the second connecting sub-part shown in FIGS. 3-4, and will not be repeated here.
  • the connecting line subunit 201 includes a plurality of first connecting sub-part rows 2310 extending in the first direction and arranged in the second direction, each of the first connecting sub-part rows 2310 At least one first connecting sub-portion 2311 is included.
  • FIG. 11 schematically shows that the first connecting sub-portion 2310 includes one first connecting sub-portion 2311.
  • the two ends of the second connecting sub-portion 2312 are respectively located in the gaps 2313 at the ends of the adjacent first connecting sub-portion row 2310, so that the electrical contact points 2023 of the two end portions of the second connecting sub-portion 2312 are respectively
  • the electrical contact points 2023 of the adjacent first connecting sub-part row 2310 form an electrical contact point pair 203.
  • the second connecting sub-parts 2312 that form an electrical contact point pair 203 with the same first connecting sub-part row 2310 are respectively located on both sides of the first connecting sub-part row 2310 in the second direction and are respectively located in the first connecting sub-part row 2310. Both ends in the first direction.
  • the two ends of the second connecting sub-parts 2312 are respectively located in the gaps 2313 opposite to each other at the ends of the two adjacent first connecting sub-part rows 2310, so as to The adjacent first connecting sub-part rows 2310 are connected by the light emitting diode chip 300.
  • the second connecting sub-parts 2312 connected to the same first connecting sub-part row 2310 through the light-emitting diode chip 300 are respectively located on both sides of the first connecting sub-part row 2310 in the second direction and are respectively located in the first connecting sub-part row. 2310 at both ends in the first direction.
  • the first connecting subsection row in the example shown in FIG. 11 has the same characteristics as the first connecting subsection row shown in FIG. 3, and the first connecting subsection row and the second connecting subsection row in the example shown in FIG. 11
  • the positional relationship of the sub-portions is the same as the positional relationship of the first connecting sub-portion row and the second connecting sub-portion shown in FIG. 3, and will not be repeated here.
  • FIG. 12 is a schematic diagram of a partial structure of a connection line subunit provided by another example of an embodiment of the present disclosure.
  • each first connecting sub-part row 2310 includes a plurality of first connecting sub-parts 2311, and the connection of one first connecting sub-part 2311 among adjacent first connecting sub-parts 2311
  • the area 2314 is located in the gap 2313 of the other first connecting part.
  • adjacent connection areas 2314 are connected by light emitting diode chips 300.
  • the first connecting sub-section row in this embodiment has the same characteristics as the first connecting sub-section row shown in FIG. 5, and details are not described herein again.
  • the size of the first connecting sub-section row 2310 in the second direction at various positions in the first direction D is roughly equal.
  • connection line subunit 201 includes a plurality of connection line subunits 201, and the plurality of connection line subunits 201 share the first connection portion 210 and the second connection portion 220.
  • multiple connection line sub-units 201 share the first connection portion 210 and the second connection portion 220 to be connected in parallel with each other, that is, multiple connection line sub-units 201 share the first connection portion 210 and the second connecting portion 220 are connected in parallel to a plurality of light emitting sub-units 101.
  • the first connecting portion 210 includes a first protruding portion 212, the electrical contact point 2021 of the first connecting portion 210 is located on the first protruding portion 212, and the first protruding portion 212 is located in the gap 2313 corresponding to the connection area 2314 of the adjacent first connection sub-section row 2310, so that the electrical contact point 2021 on the first protrusion 212 is in contact with the connection area 2314 of the first connection sub-section row 2310
  • the electrical contact points 2023 form an electrical contact point pair 202;
  • the second connection portion 220 includes a second protrusion 222, the electrical contact point 2022 of the second connection portion 220 is located on the second protrusion 222, and the second protrusion 222 is located In the gap 2313 corresponding to the connection area 2314 of the adjacent first connection sub-section row 2310, so that the electrical contact point 2022 on the second protrusion 222 is in electrical contact with the connection area 2314 of the first connection sub-section row 2310
  • the first protruding portion 212 of the first connecting portion 210 extends into the gap 2313 of the first connecting sub-portion row 2310 to make the first electrical contact point 2021 of the first connecting portion 210
  • the third electrical contact point 2023 with the third connecting portion 230 is electrically connected to the anode 310 and the cathode 320 of the light emitting diode chip 300, respectively.
  • the second protruding portion 222 of the second connecting portion 220 extends into the gap 2313 of the first connecting sub-portion row 2310 to make the second electrical contact point 2022 of the second connecting portion 220 and the third electrical contact of the third connecting portion 230
  • the points 2023 are electrically connected to the anode 310 and the cathode 320 of the light emitting diode chip 300, respectively.
  • the position and connection relationship of the first connecting portion and the first connecting sub-portion row in this embodiment are the same as those of the first connecting portion and the first connecting sub-portion row shown in FIGS. 1-6.
  • This embodiment The position and connection relationship of the second connecting portion and the first connecting sub-portion row are the same as those of the second connecting portion and the first connecting sub-portion row shown in FIGS. 1-6, and will not be repeated here.
  • the connecting circuit unit of the glass-based circuit board provided in this embodiment may further include the connecting portion shown in FIG. 7, and the specific structure of the connecting circuit unit can refer to FIG. 7 and related descriptions, which will not be repeated here.
  • the glass-based circuit board provided in this embodiment further includes a plurality of parallel wirings 500 on the side of the connecting circuit unit 200 facing the base substrate 100 (ie, the glass substrate 10) shown in FIGS. 6 and 8.
  • the wiring 500 includes a plurality of first wirings 510 and a plurality of second wirings 520.
  • the first input terminal 211 of the connection line unit 200 is connected to the first wiring 510
  • the second input terminal 221 of the connection line unit 200 is connected to the second wiring 520.
  • the wiring 500 extends in the second direction, for example.
  • the wiring provided in this embodiment has the same characteristics as the wiring shown in FIG. 6 and FIG. 8, and will not be repeated here.
  • the glass-based circuit board provided in this embodiment further includes the first insulating layer 600 between the wiring 500 and the connecting circuit unit 200 shown in FIGS. 6 and 8 to provide insulation.
  • the first insulating layer provided in this embodiment has the same characteristics as the first insulating layer shown in FIG. 6 and FIG. 8, and will not be repeated here.
  • the glass-based circuit board provided in this embodiment further includes a reflective layer 400 between the connecting circuit unit 200 and the plurality of light-emitting diode chips 300 shown in FIGS. 6 and 8.
  • the reflective layer provided in this embodiment has the same characteristics and functions as the reflective layer shown in FIG. 6 and FIG. 8, and will not be repeated here.
  • the glass-based circuit board provided in this embodiment further includes a second insulating layer 700 between the reflective layer 400 and the connecting line unit 200 shown in FIGS. 6 and 8 to isolate the reflective layer 400 and the connecting line unit 200 from each other.
  • the second insulating layer provided in this embodiment has the same characteristics as the second insulating layer shown in FIG. 6 and FIG. 8, and will not be repeated here.
  • the glass-based circuit board provided in this embodiment may further include the printed circuit board 900 shown in FIG. 6, and the printed circuit board 900 is configured to be electrically connected to the first wiring 510 and the second wiring 520 to realize the partitioning of the connection circuit units. drive.
  • the circuit board provided in this embodiment has the same features and functions as the circuit board shown in FIG. 6, and will not be repeated here.
  • the electrical contact point pairs in each connection line unit 200 are evenly distributed so that the uniformly distributed multiple light-emitting diode chips 300 shown in FIGS. 1-6 can be connected to multiple electrical contacts.
  • the contact points are connected in a one-to-one correspondence.
  • the position of each connection part and the position of each electrical contact pair in the connection circuit unit 200 on the glass-based circuit board in the embodiment of the present disclosure are designed according to the position of the light emitting diode chip 300.
  • the line width of each connecting part in the direction perpendicular to its extension direction can be set to be larger, but the line width can be increased as wide as possible.
  • the distance between adjacent connections is not less than 15 microns.
  • each connecting portion is covered with the glass substrate when the distance from each other is not less than 15 microns, so as to ensure the flatness of the entire glass-based circuit board.
  • the thickness of the glass-based circuit board is not greater than 8 mm, so that the thickness of the backplane including the above-mentioned glass-based circuit board can be ensured to be thin.
  • the glass-based circuit board in the above-mentioned embodiment of the present disclosure may be a circuit board for connecting light-emitting diodes in the backplane of the above-mentioned embodiment. Therefore, the relevant description of the glass-based circuit board in the above-mentioned embodiment of the present disclosure can be applied according to this invention.
  • the backplanes of the embodiments are disclosed, and the related descriptions for the backplanes of the embodiments of the present disclosure can also be applied to the glass-based circuit boards according to the embodiments of the present disclosure.
  • the glass-based circuit board provided by the embodiment of the present disclosure can be applied to a backlight source or a display panel, and the use of the glass-based circuit board provided in this embodiment can reduce manufacturing and driving costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)

Abstract

一种背板以及玻璃基线路板。背板包括衬底基板(100)以及阵列排布在衬底基板(100)上的多个发光单元(110)。每个发光单元(110)包括至少一个发光子单元(101),发光子单元(101)包括连接线路(200)以及与连接线路(200)连接的多个发光二极管芯片(300),发光二极管芯片(300)位于连接线路单元(200)远离衬底基板(100)的一侧。至少一个发光子单元(101)中的发光二极管芯片(300)串联连接。通过采用连接电路单元将发光子单元中的发光二极管芯片串联连接可以增加背板的空间利用率,且减少驱动成本。

Description

背板以及玻璃基线路板 技术领域
本公开至少一个实施例涉及一种背板以及玻璃基线路板。
背景技术
随着微发光二极管芯片技术的发展,采用微发光二极管芯片的背光源得到了广泛的应用。在一般的背光源中,通常采用印刷电路板(PCB板)将多个微发光二极管芯片电连接或将微发光二极管芯片与其他器件电连接。
发明内容
本公开的至少一实施例提供一种背板以及玻璃基线路板。
本公开的至少一实施例提供一种背板,包括衬底基板以及阵列排布在所述衬底基板上的多个发光单元。每个所述发光单元包括至少一个发光子单元,所述发光子单元包括连接线路以及与所述连接线路连接的多个发光二极管芯片,所述发光二极管芯片位于所述连接线路远离所述衬底基板的一侧,所述至少一个发光子单元中的所述多个发光二极管芯片串联连接。
在一些示例中,每个所述发光子单元中,所述连接线路包括第一连接部和第二连接部,所述第一连接部包括第一输入端,所述第二连接部包括第二输入端,且所述第一连接部和所述第二连接部分别包括电接触点;所述连接线路还包括第三连接部,所述第三连接部的两端各包括一个电接触点,所述第三连接部的一端的电接触点与所述第一连接部的电接触点组成电接触点对,所述第三连接部的另一端的电接触点与所述第二连接部的电接触点组成电接触点对,且每个所述电接触点对分别与一个发光二极管芯片的阳极和阴极一一对应连接。
在一些示例中,在每个所述发光子单元中,所述第三连接部包括多个连接子部,每个所述连接子部的两端各包括一个电接触点,相邻的所述连接子部的相邻端的电接触点组成电接触点对,每个所述电接触点对分别与一个发光二极管芯片的阳极和阴极一一对应连接,且多个所述连接子部通过所述发 光二极管芯片串联。
在一些示例中,多个所述连接子部包括第一连接子部和第二连接子部,所述第一连接子部沿平行于所述衬底基板的第一方向延伸,所述第一连接子部具有在大致矩形的沿对角线的方向彼此相对的两个角落处形成缺口的形状,所述第一连接子部包括与所述缺口对应的连接区,所述第一连接子部的电接触点位于所述连接区面向所述缺口的一侧,所述第二连接子部沿平行于所述衬底基板且与所述第一方向相交的第二方向延伸,所述第二连接子部的电接触点位于所述第二连接子部的在所述第二方向上的两个端部。
在一些示例中,所述发光子单元包括沿所述第一方向延伸且沿所述第二方向排列的多个第一连接子部行,每个所述第一连接子部行包括至少一个第一连接子部,所述第二连接子部的两个端部分别位于相邻的所述第一连接子部行的端部的彼此相对的缺口中,以使相邻的所述第一连接子部行通过所述发光二极管芯片和所述第二连接子部连接,与同一第一连接子部行通过所述发光二极管芯片连接的第二连接子部分别位于所述第一连接子部行在所述第二方向上的两侧且分别位于所述第一连接子部行在所述第一方向上的两端。
在一些示例中,每个所述第一连接子部行包括多个第一连接子部,相邻的所述第一连接子部中的一个第一连接子部的连接区位于另一个第一连接子部的缺口中,以使相邻的所述连接区通过所述发光二极管芯片电连接。
在一些示例中,每个第一连接子部行包括第一端部和第二端部,所述多个第一连接子部行的第一端部沿所述第二方向对齐,所述多个第一连接子部行的第二端部沿所述第二方向对齐,且所述多个第一连接子部行和所述第二连接子部整体连接为方波形状。
在一些示例中,除了位于所述第一连接子部行两端的连接区外,所述第一连接子部行在所述第一方向上各个位置处沿所述第二方向的尺寸大致相等。
在一些示例中,所述第一连接部包括第一凸出部,所述第一凸出部位于与其通过所述发光二极管芯片连接的所述第一连接子部行的连接区处的缺口内;所述第二连接部包括第二凸出部,所述第二凸出部位于与其通过所述发光二极管芯片连接的所述第一连接子部行的连接区处的缺口内。
在一些示例中,所述至少一个发光子单元包括多个发光子单元,每个所述发光单元中的所述多个发光子单元共用所述第一连接部和所述第二连接部 以使所述多个发光子单元并联连接。
在一些示例中,每个所述发光单元中的所述发光二极管芯片均匀分布。
在一些示例中,组成所述电接触点对的两个连接部之间具有间隔,所述发光二极管芯片在所述衬底基板上的正投影与所述间隔在所述衬底基板上的正投影至少部分交叠。
在一些示例中,背板还包括:反射层,位于所述连接线路与所述发光二极管芯片之间。
在一些示例中,背板还包括:多条彼此平行的走线,位于所述连接线路面向所述衬底基板的一侧,且包括多条第一走线和多条第二走线;第一绝缘层,位于所述多条彼此平行的走线与所述连接线路之间;第二绝缘层,位于所述反射层与所述连接线路之间以将所述反射层和连接线路彼此隔离。所述连接线路的所述第一输入端与所述第一走线连接,所述连接线路的所述第二输入端与所述第二走线连接。
在一些示例中,所述走线的厚度大于所述连接线路的厚度,且所述第一连接部和所述第二连接部的宽度均大于所述走线的宽度。
在一些示例中,背板还包括:白胶层,位于所述反射层远离所述衬底基板的一侧,且具有露出所述发光二极管芯片的开口;以及透明层,位于所述白胶层远离所述衬底基板的一侧,以覆盖所述白胶层和所述发光二极管芯片。
本公开的至少一实施例提供一种玻璃基线路板,包括玻璃基板以及阵列排布在所述玻璃基板上的多个连接线路单元。每个所述连接线路单元包括至少一个连接线路子单元,所述连接线路子单元包括多个电接触点对,每个所述电接触点对被配置为与一个发光二极管芯片的阳极和阴极一一对应连接以使与多个所述电接触点对连接的多个发光二极管芯片串联连接。
在一些示例中,所述连接线路子单元包括第一连接部和第二连接部,所述第一连接部包括第一输入端,所述第二连接部包括第二输入端,且所述第一连接部和所述第二连接部分别包括电接触点;所述连接线路子单元还包括第三连接部,所述第三连接部的两端各包括一个电接触点,所述第三连接部的一端的电接触点与所述第一连接部的电接触点组成所述电接触点对,所述第三连接部的另一端的电接触点与所述第二连接部的电接触点组成所述电接触点对。
在一些示例中,在每个所述连接线路子单元中,所述第三连接部包括多个连接子部,每个所述连接子部的两端各包括一个电接触点,多个所述连接子部首尾相邻,以使得相邻的所述连接子部的相邻电接触点组成所述电接触点对。
在一些示例中,多个所述连接子部包括第一连接子部和第二连接子部,所述第一连接子部沿平行于所述玻璃基板的第一方向延伸,所述第一连接子部具有在大致矩形的沿对角线的方向彼此相对的两个角落处形成缺口的形状,所述第一连接子部包括与所述缺口对应的连接区,所述第一连接子部的电接触点位于所述连接区面向所述缺口的一侧,所述第二连接子部沿平行于所述玻璃基板且与所述第一方向相交的第二方向延伸,所述第二连接子部的电接触点位于所述第二连接子部的在所述第二方向上的两个端部。
在一些示例中,所述连接线路子单元包括沿所述第一方向延伸且沿所述第二方向排列的多个第一连接子部行,每个所述第一连接子部行包括至少一个第一连接子部,所述第二连接子部的两个端部分别位于相邻的所述第一连接子部行的端部的缺口中,以使所述第二连接子部的所述两个端部的电接触点分别与相邻的所述第一连接子部行的电接触点组成所述电接触点对,与同一第一连接子部行形成所述电接触点对的所述第二连接子部分别位于所述第一连接子部行在所述第二方向上的两侧且分别位于所述第一连接子部行在所述第一方向上的两端。
在一些示例中,每个所述第一连接子部行包括多个第一连接子部,相邻的所述第一连接子部中的一个第一连接子部的连接区位于另一个第一连接子部的缺口中。
在一些示例中,除了位于所述第一连接子部行两端的连接区外,所述第一连接子部行在所述第一方向上各个位置处沿所述第二方向的尺寸大致相等。
在一些示例中,所述第一连接部包括第一凸出部,所述第一连接部的电接触点位于所述第一凸出部上,所述第一凸出部位于与其相邻的所述第一连接子部行的连接区对应的缺口内,以使所述第一凸出部上的电接触点与所述第一连接子部行的连接区的电接触点组成所述电接触点对;所述第二连接部包括第二凸出部,所述第二连接部的电接触点位于所述第二凸出部上,所述第二凸出部位于与其相邻的所述第一连接子部行的连接区对应的缺口内,以 使所述第二凸出部上的电接触点与所述第一连接子部行的连接区的电接触点组成所述电接触点对。
在一些示例中,所述至少一个连接线路子单元包括多个连接线路子单元,每个所述连接线路单元中的多个所述连接线路子单元共用所述第一连接部和所述第二连接部。
在一些示例中,每个所述连接线路单元中的所述电接触点对均匀分布。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为根据本公开一实施例提供的背板的局部平面结构示意图;
图2为图1所示的背板中的一个发光单元的平面结构示意图;
图3为图2所示的一个发光子单元中的第三连接部的平面结构示意图;
图4为图3所示的一个第一连接子部的平面结构示意图;
图5为本公开一实施例的另一示例提供的发光子单元的局部结构示意图;
图6为本公开一实施例的另一示例提供的背板的局部平面结构示意图;
图7为本公开一实施例的另一示例提供的发光单元的平面结构示意图;
图8为沿图6所示的AA线所截的局部截面结构示意图;
图9为根据本公开另一实施例提供的玻璃基线路板的局部平面结构示意图;
图10为图9所示的玻璃基线路板中的一个连接线路单元的平面结构示意图;
图11为图10中的一个连接线路子单元中的第三连接部的平面结构示意图;以及
图12为本公开一实施例的另一示例提供的连接线路子单元的局部平面结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公 开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
本公开的实施例提供一种背板以及玻璃基线路板。背板包括衬底基板以及阵列排布在衬底基板上的多个发光单元。每个发光单元包括连接线路以及与连接线路连接的多个发光二极管芯片,发光二极管芯片位于连接线路远离衬底基板的一侧。每个发光单元包括至少一个发光子单元,发光子单元中的发光二极管芯片串联连接。本公开实施例采用连接电路单元将发光子单元中的发光二极管芯片串联连接可以增加背板的空间利用率,且减少驱动成本。
下面结合附图对本公开实施例提供的背板以及玻璃基线路板进行描述。
图1为根据本公开一实施例提供的背板的局部平面结构示意图,图2为图1所示的背板中的一个发光单元的平面结构示意图。如图1和图2所示,背板包括衬底基板100以及阵列排布在衬底基板100上的多个发光单元110。每个发光单元110包括连接线路200以及与连接线路200连接的多个发光二极管芯片300,发光二极管芯片300位于连接线路200远离衬底基板100的一侧。每个发光单元110包括至少一个发光子单元101,发光子单元101中的发光二极管芯片300串联连接。本公开实施例采用连接电路单元将发光子单元中的发光二极管芯片串联连接可以增加背板的空间利用率、提高效率、利于保持产品的一致性,且减少驱动成本。
例如,发光二极管芯片300可以为微发光二极管芯片,且阵列排布在衬底基板100上。例如,微发光二极管芯片300在平行于衬底基板100的方向的最大尺寸不大于100微米。
例如,发光二极管芯片300也可以为迷你发光二极管芯片(mini LED), 且阵列排布在衬底基板100上。例如,mini LED 300在平行于衬底基板100的方向的最大尺寸不大于500微米。例如,mini LED 300的尺寸可以为0.2mm×0.4mm。
例如,本公开实施例提供的背板可以用作背光源,也可以用作显示面板,本公开实施例对此不作限制。
在一些示例中,衬底基板100为玻璃基板。
在研究中,本申请的发明人发现:单个PCB板的基材容易出现翘曲问题,因此在制作大尺寸背板的过程中,需要将多个PCB板进行拼接,以保证背板包括的整个线路板具有较高的平整度。但是,多个PCB板的拼接会增加制作以及驱动成本。此外,PCB板的基材(其热扩散系数为0.4W/m·K)的散热性能不良,会导致背板在工作过程中容易因温度过高出现不良。
本公开一实施例中采用设置有线路连接单元的玻璃基板替代通常使用的基板,例如背光源中用于电连接发光二极管芯片的PCB板,可以克服一般PCB基材的散热性能不良的问题;并且,由于玻璃基板不易变形,所以在制作大尺寸背板的过程中,仅采用一块大尺寸玻璃基板即可,无需多块基板拼接,可以降低制作成本以及驱动成本。
在一些示例中,如图1和图2所示,每个发光子单元101中,连接线路200包括第一连接部210和第二连接部220,第一连接部210包括第一输入端211,第二连接部包括第二输入端221。每个发光子单元101中的连接线路200将多个发光二极管芯片300串联连接。
在一些示例中,如图1和图2所示,第一连接部210和第二连接部220分别包括电接触点,例如第一连接部210包括第一电接触点2021,第二连接部220包括第二电接触点2022。每个发光子单元101中,连接线路200还包括第三连接部230,第三连接部230的两端各包括一个电接触点,例如第三连接部230的两端各包括一个第三电接触点2023。第三连接部230的一端的第三电接触点2023与第一连接部210的第一电接触点2021组成电接触点对202,第三连接部230的另一端的第三电接触点2023与第二连接部220的第二电接触点2022组成电接触点对202,且每个电接触点对202分别与一个发光二极管芯片300的阳极310和阴极320一一对应连接。
例如,如图1和图2所示,每个发光子单元101包括第一连接部210、 第二连接部220、第三连接部230以及多个发光二极管芯片300,也就是发光子单元从第一连接部210的第一输入端211通过发光二极管芯片300、第三连接部230连接到第二连接部220的第二输入端221,从而使得发光子单元中110的发光二极管芯片300串联连接。
例如,如图1和图2所示,第一连接部210、第二连接部220和第三连接部230同层设置且材料相同。这里以及后面的“同层”指同一材料在经过同一步骤(例如一步图案化工艺)后形成的多个膜层之间的关系。例如,可先沉积金属层,然后通过将该金属层图案化而形成各个连接部。这里的“同层”并不总是指多个膜层的厚度相同或者多个膜层在截面图中的高度相同。
例如,各连接部的材料可以均为铜,但不限于此,还可以是其他导电材料。
例如,在发光二极管芯片300与连接线路200之间设置有绝缘层(图8所示的第一绝缘层700),发光二极管芯片300的阳极310和阴极320可以分别通过位于绝缘层中的过孔与连接线路200的电接触点对应连接以使连接线路200起到电连接发光二极管芯片300的作用。各连接部上的电接触点指发光二极管芯片300的阳极或阴极通过过孔连接至连接部的电连接点。例如,电接触点可以是连接部的用于与发光二极管300的阳极或阴极电连接的一部分,例如后面图8所示的第一连接部210上的电接触点2021。
在一些示例中,如图1和图2所示,组成电接触点对的两个连接部之间具有间隔,发光二极管芯片300在衬底基板100上的正投影与间隔在衬底基板100上的正投影至少部分交叠。例如,发光二极管芯片300的阳极310和阴极320在衬底基板100上的正投影可以位于连接部在衬底基板100上的正投影内,但不限于此,只要发光二极管芯片的阳极和阴极分别电连接至相邻的连接部即可。
例如,在各连接部所在膜层,相邻连接部之间没有连接,与相邻连接部电连接的发光二极管芯片将相邻连接部连接。也就是说,在各连接部所在膜层,相邻连接部之间彼此间隔。例如,在相邻连接部之间的间隔处可以填充有绝缘材料。
在一些示例中,如图1和图2所示,每个发光子单元101中,第三连接部230包括多个连接子部231,每个连接子部231的两端各包括一个用于与 发光二极管芯片300的阳极310或阴极320电连接的电接触点,例如第三电接触点2023。相邻的连接子部231的相邻端的第三电接触点2023组成电接触点对203,每个电接触点对203中的两个电接触点分别与一个发光二极管芯片300的阳极310和阴极320一一对应连接,且多个连接子部231通过发光二极管芯片300首尾相连,也就是,将多个连接子部231串联在一起。上述“相邻的连接子部的相邻端”指相邻的连接子部的彼此紧邻的部分分别为两个连接子部的端部。上述“多个连接子部通过发光二极管芯片首尾相连”指通过一个连接子部的首端通过发光二极管芯片连接到另一连接子部的尾端,且多个连接子部依次连接。
需要说明的是,为了清楚的示意出连接部上的电接触点,图2中的部分发光二极管芯片没有示出。
图3为图2中的一个发光子单元中的连接线路中的第三连接部的示意图,图4为图3中的一个第一连接子部的示意图。为了清楚的示意出连接子部上的电接触点以及相邻连接子部之间的位置关系,图3中示出了部分发光二极管芯片。
在一些示例中,如图1-4所示,多个连接子部231包括第一连接子部2311和第二连接子部2312。多个连接子部231可以划分为多个第一连接子部2311和多个第二连接子部2312。也就是说,某个连接子部231可以为第一连接子部2311,或者某个连接子部231可以为第二连接子部2312。第一连接子部2311沿平行于衬底基板100的第一方向(即X方向)延伸。第一连接子部2311的形状为不规则形状,其具有在大致矩形(图4所示的虚线框)的沿对角线的方向彼此相对的两个角落处形成缺口2313的形状。例如,第一连接子部2311的形状为削去矩形的沿对角线相对的两个角后的形状。上述的“大致矩形形状”指第一连接子部和缺口组成的形状为可以为标准的直角矩形,也可以为圆角矩形等近似矩形。
例如,如图1-4所示,缺口2313的形状可以为矩形,但不限于此。
在一些示例中,如图1-4所示,第一连接子部2311包括与缺口2313对应的连接区2314(点划线所示的区域),第一连接子部2311的电接触点2023位于连接区2314面向缺口2313的一侧。上述与“缺口对应的连接区”指第一连接子部2311的沿Y方向与缺口2313邻接的部分。连接区2314即为大 致矩形形状的沿对角线的方向彼此相对的两个角落保留的两个角,即上述矩形没有被削去的两个相对的角。电接触点2023位于连接区2314靠近与其邻接的缺口2313的位置处。
例如,如图1-4所示,每个发光单元110中的多个发光二极管芯片300的从阳极310到阴极320的朝向方向相同。
例如,每个发光二极管芯片300从阴极320到阳极310的朝向为图1-4中的Y方向的箭头所指的方向,则为了将整体阵列排布的发光二极管芯片300中位于发光子单元101中的发光二极管芯片300串联连接,第一连接子部2311的两个连接区2314之一需要与一个发光二极管芯片300的阳极310连接,另一个连接区2314需要去另一发光二极管芯片300的阴极320连接。由此,第一连接子部2311的两个连接区2314分别位于第一连接子部2311沿Y方向的两侧且位于第一连接子部2311沿X方向的两端。
例如,如图1-4所示,第一连接子部2311除连接区2314以外的部分的各位置处沿Y方向的尺寸均相等。例如,第一连接子部2311除连接区2314以外的部分可以为矩形。
例如,如图1-4所示,第一连接子部2311可以包括矩形中心部以及分别位于矩形中心部的沿Y方向延伸的第一中心线两侧的第一边缘部和第二边缘部。沿Y方向,第一边缘部和第二边缘部的尺寸均小于中心部的尺寸,并且第一边缘部和第二边缘部远离中心部的沿X方向延伸的第二中心线的边缘与中心部的沿X方向延伸的边缘平齐。这里的第一边缘部和第二边缘部即为图4中的连接区2314,中心部为第一连接子部除连接区以外的部分。
在一些示例中,如图1-4所示,第二连接子部2312沿平行于衬底基板100且与第一方向(X方向)相交的第二方向(Y方向)延伸,第二连接子部2312的电接触点2023位于第二连接子部2312的在第二方向上的两个端部。第二连接子部2312的电接触点2023与相邻的第一连接子部2311的电接触点2023组成的电接触点对203被配置为将多个发光二极管芯片300串联连接。
在一些示例中,如图1-4所示,发光子单元101包括沿第一方向延伸且沿第二方向排列的多个第一连接子部行2310,每个第一连接子部行2310包括至少一个第一连接子部2311,图3示意性的示出第一连接子部行2310包括一个第一连接子部2311。第二连接子部2312的两个端部分别位于相邻的 两个第一连接子部行2310的端部的彼此相对的缺口2313中,以将相邻的第一连接子部行2310通过发光二极管芯片300连接。也就是,第二连接子部2312的端部通过伸入第一连接子部2311的缺口2313以使位于第二连接子部2312的端部的第三电接触点2023能够与位于第一连接子部2311的连接区2314的第三电接触点2023组成电接触点对203。
在一些示例中,如图1-4所示,与同一第一连接子部行2310通过发光二极管芯片300连接的第二连接子部2312分别位于第一连接子部行2310在第二方向上的两侧且分别位于第一连接子部行2310在第一方向上的两端。以一个第一连接子部行2310包括一个第一连接子部2311为例,由于第一连接子部2311的两个缺口2313分别位于第一连接子部2311沿Y方向的两侧且位于第一连接子部2311沿X方向的两端,因此,通过发光二极管芯片300与该第一连接子部2311连接的两个第二连接子部2312分别位于第一连接子部2311沿Y方向的两侧且位于第一连接子部2311沿X方向的两端。
图5为本公开一实施例的另一示例提供的背板包括的发光子单元的局部结构示意图。如图5所示,每个第一连接子部行2310可以包括多个第一连接子部2311,相邻的第一连接子部2311中的一个第一连接子部2311的连接区2314位于另一个第一连接子部2311的缺口2313中,以使相邻的连接区2314通过发光二极管芯片300相连。例如,相邻连接区通过发光二极管芯片相连可以是相邻连接区通过发光二极管芯片电连接。相邻的第一连接子部2311中的一个第一连接子部2311的连接区2314通过伸入另一个第一连接子部2311的缺口2313中,可以使两个第一连接子部2311上的彼此相邻的两个连接区2314上的电接触点分别与发光二极管芯片300的阳极和阴极电连接。也就是,第一连接子部行2310中的相邻第一连接子部2311的通过发光二极管芯片300实现连接的位置处的形状互补。
在一些示例中,如图3-5所示,每个第一连接子部行2310包括第一端部2315和第二端部2316,多个连接子部行2310的第一端部2315沿第二方向对齐,多个连接子部行2310的第二端部2316沿第二方向对齐,且多个第一连接子部行2310和第二连接子部2312整体连接为方波形状以高效利用背板的空间。
例如,如图3-5所示,第二连接子部2312的远离该第一连接子部2311的沿Y方向延伸的边缘与第一连接子部行的第一端部2315或第二端部2316对齐。
在一些示例中,如图3-5所示,除了位于第一连接子部行2310两端的连接区2314外,第一连接子部行2310在第一方向上各个位置处沿第二方向的尺寸D大致相等。这里以及后续的“大致相等”指各位置处沿第二方向的尺寸之差与各位置处的尺寸的比值不大于5%。在第一连接子部行2310包括多个第一连接子部2311时,沿Y方向,相邻第一连接子部2311中形成电接触点对203的两个连接区2314与这两个连接区2314之间的间隔的总尺寸与第一连接子部2311的除连接区2314以外部分的尺寸相同以高效利用背板的空间。
在一些示例中,如图1-2所示,至少一个发光单元110包括多个发光子单元101,多个发光子单元101共用第一连接部210和第二连接部220以彼此并联连接,即多个发光子单元101共用第一连接部210和第二连接部220以使多个发光子单元101并联连接。图1示意性的示出沿第一方向相邻的两个发光单元110的第一连接部和第二连接部均彼此分离,但不限于此。为了减少将发光二极管芯片的阴极连接至电路板(例如印刷电路板)的走线的数目,也可以将沿第一方向排列的至少两个发光单元的第二连接部(以第二连接部与发光二极管芯片的阴极连接为例)电连接。同理,沿第二方向排列的至少两个发光单元的第二连接部可以连接至同一阴极走线以节省走线数量,降低制作工艺成本。
例如,本公开一实施例的一示例中,每个发光单元110中的多个发光子单元101并联,每个发光子单元101中的多个发光二极管芯片300串联。
图6为本公开一实施例的另一示例提供的背板的局部平面结构示意图。如图6所示,本示例中的背板与图1所示的背板的区别在于本示例中的每个发光单元110仅包括一个发光子单元,则发光单元110中的多个发光二极管芯片300通过连接线路200包括的第一连接部210、第二连接部220以及第三连接部230串联。图6示意性的示出沿第二方向排列的相邻的两个发光单元110的第二连接部连接至不同的阴极走线,但不限于此。为了减少将发光二极管芯片的阴极连接至电路板(例如印刷电路板)的走线的数目,也可以 将沿第二方向排列的至少两个发光单元的第二连接部连接至同一阴极走线以节省走线数量,降低制作工艺成本。
本公开实施例采用设置有线路连接单元的玻璃基板替代常规的基板,例如背光源中用于电连接发光二极管芯片的PCB板,可以无需多块基板拼接,实现仅在一块玻璃基板上制作较多灯区的目的,节约成本。
如图1-2所示,第一连接部210包括第一凸出部212,第一凸出部212位于与其通过发光二极管芯片300连接的第一连接子部行2310的连接区2314处的缺口2313内。第一连接部210的第一电接触点2021位于第一凸出部212,第一凸出部212伸入第一连接子部行2310的缺口2313内以使第一连接部210的第一电接触点2021和第三连接部230的第三电接触点2023分别与发光二极管芯片300的阳极310和阴极320电连接。例如,第一凸出部212与第一连接子部行的对应缺口2313处的形状互补。
在一些示例中,如图1-2所示,第二连接部220包括第二凸出部222,第二凸出部222位于与其通过发光二极管芯片300连接的第一连接子部行2310的连接区2314处的缺口2313内。第二连接部220的第二电接触点2022位于第二凸出部222,第二凸出部222伸入第一连接子部行2310的缺口2313内以使第二连接部220的第二电接触点2022和第三连接部230的第三电接触点2023分别与发光二极管芯片300的阳极310和阴极320电连接。例如,第二凸出部222与第一连接子部行的对应缺口2313处的形状互补。
图7为本公开一实施例的另一示例提供的发光单元的平面结构示意图。如图7所示,与图1所示的示例的不同之处在于本示例中的第三连接部230仅包括一个连接子部,该第三连接部230的两端各设有一个第三电接触点2023,且第三连接部230的一端的第三电接触点2023与第一连接部210的端部的第一电接触点2021组成电接触点对,第三连接部230的另一端的第三电接触点2023与第二连接部220的第二电接触点2022组成电接触点对。由此,本示例中每个发光子单元101中仅包括两个串联的发光二极管芯片300,发光单元110包括的多个发光子单元101通过第一连接部210和第二连接部220实现并联。
本示例不限于此,例如,该发光单元110还可以包括三个以上发光子单元101,且各发光子单元101中的第三连接部230仅包括一个连接子部。例 如,该发光单元110包括的各发光子单元101中的第三连接部230还可以包括多个连接子部,且每个连接子部均沿Y方向延伸,各连接子部沿Y方向的两端分别具有一个电接触点,相邻连接子部通过发光二极管芯片300连接,即相邻连接子部通过发光二极管芯片300首尾相连。
在一些示例中,如图1-7所示,每个发光单元110中的多个发光二极管芯片300均匀分布。
例如,如图1-7所示,在多个发光元阵列排布的情况下,背板中的多个发光二极管芯片300也可以是均匀分布的。例如,沿第一方向彼此相邻的两个发光二极管芯片300的最小距离为第一距离,沿第二方向彼此相邻的两个发光二极管芯片300的最小距离为第二距离。例如,根据本公开实施例中,各个位置的第一距离均相等,或者各个位置的第二距离均相等;或者各个位置的第一距离均相等且各个位置的第二距离均相等。
例如,衬底基板100上的连接线路200中的各个连接部的位置以及连接关系是根据发光二极管芯片300的位置而设计的。在本公开实施例中,为了实现各个连接部的更好的载流能力,各连接部沿与其延伸方向垂直方向的线宽应设置的较大,但是在增大该线宽尽量宽的同时可以使相邻连接部之间的距离不小于15微米。例如,各个连接部在彼此间距不小于15微米的情况下铺满玻璃基板,可以提高整个背板在设置发光二极管芯片之前的平坦度。
图8为沿图6所示的AA线所截的局部截面结构示意图。如图6和图8所示,背板还包括多条彼此平行的走线500,走线500位于连接线路200面向衬底基板100的一侧,且包括多条第一走线510和多条第二走线520。走线500例如沿第二方向延伸。
例如,如图6和图8所示,本公开实施例通过在衬底基板100上沉积第一导电层,并对第一导电层进行图案化可以形成沿第二方向延伸的多条第一走线510和多条第二走线520。例如,第一导电层可以直接沉积在玻璃基板上。
例如,如图6和图8所示,多条彼此平行的走线500与连接线路200之间设置有第一绝缘层600,以起到绝缘作用。例如,第一绝缘层600的厚度较薄,可以为微米量级。第一绝缘层600可以包括第一缓冲层610、第一树脂层620以及第一钝化层630,第一树脂层620可以起到将第一缓冲层610 和第一钝化层630进行粘合的作用。
例如,在图案化形成走线500后,可以在走线500上沉积第一绝缘材料层,并对第一绝缘材料层图案化以形成暴露第一走线510的过孔和暴露第二走线520的过孔。图8示意性的示出暴露第一走线510的过孔。
例如,走线500的材料包括铜,则第一绝缘层600中与走线500接触的第一缓冲层610的材料包括氮化硅,由此走线500与第一缓冲层610的粘合性较好。
例如,在图案化形成第一绝缘层600以后,可以在第一绝缘层600上沉积第二导电层,并图案化第二导电层以形成各发光单元中的连接线路200。
例如,连接线路200的材料包括铜,则第一绝缘层600中与连接线路200接触的第一钝化层630的材料包括氮化硅,由此连接线路200与第一钝化层630的粘合性较好。
例如,如图6和图8所示,连接线路200的第一输入端211与第一走线510连接,连接线路200的第二输入端221与第二走线520连接。即,第一连接部210的第一输入端211通过位于第一绝缘层600的过孔601与第一走线510电连接,以将与第一连接部210的第一电接触点电连接的发光二极管芯片300的阳极和阴极之一连接至第一走线510;第二连接部220的第二输入端221通过位于第一绝缘层600的过孔与第二走线520电连接,以将与第二连接部220的第二电接触点电连接的发光二极管芯片300的阳极和阴极的另一个连接至第二走线520。
例如,衬底基板100为玻璃基板,其厚度可以大致为5毫米。由于各导电层以及绝缘层的厚度均可以形成的较薄,因此,沿垂直于衬底基板100的方向,背板中除发光二极管芯片以外的包括连接线路的玻璃基线路板的厚度不大于8毫米,从而可以保证背板整体的厚度较薄。
例如,如图6所示,背板还包括位于衬底基板100上电路板900,电路板900被配置为与第一走线510和第二走线520电连接。
例如,电路板900可以为柔性印刷电路板,其通过与外部电源连接以对各发光单元进行例如分区和/分时的电压信号驱动。
例如,外部电源可以包括12V电压源以及串行外设接口(SPI)。
例如,外部电源可以通过多个电路控制器连接至电路板900,以实现对 多个发光单元的分区控制。例如,各个电路控制器可以通过电源线、时钟线、输入/输出线(I/O线)等信号线连接以控制各个电路控制器的工作时序,每个电路控制器可以与一个或多个发光单元电连接以控制发光单元分时发光。
本公开实施例通过对发光单元的分区控制可以使背板达到对比度好、亮度高的效果。
在一些示例中,如图6和图8所示,走线500的厚度(例如小于0.1毫米)大于连接线路200的厚度,且连接线路200包括的第一连接部210、第二连接部220以及第三连接部230的宽度均大于走线500的宽度。多条彼此平行的走线500分布在衬底基板100上以将各发光单元中的发光二极管芯片300的阳极和阴极连接至电路板900,在保证相邻走线500之间的间距满足电器安全要求(例如,不小于15微米)的情况下,走线500的线宽需要设置的较窄以使发光单元数量更多。同时,为了保证走线500的载流能力,可以将走线500的厚度设置的较厚。例如,走线以及各连接部的线宽可以根据其采用的材料的温升得出,即线宽可以根据材料温升与负载电流之间的关系得出。由于位于走线与连接线路之间的绝缘层较薄,在设计连接线路中连接部的线宽时还要考虑避免走线与连接线路重叠面积较多而发生信号串扰。
例如,如图8所示,背板还包括位于连接线路200与多个发光二极管芯片300之间的反射层400。反射层400与连接线路200之间还设置有第二绝缘层700以将反射层400和连接线路200彼此隔离。
例如,反射层400可以为具有光滑表面的金属层以起到反射光的作用。本公开实施例中的反射层用于将发光二极管芯片发出的光进行反射以提高光效。相对于一般PCB板上通过设置感光白油来实现反射光的方式,本公开实施例中通过设置反射层,可以起到更好的反光效果,提高光效。
例如,如图8所示,第二绝缘层700包括第二缓冲层710和第二树脂层720。
例如,连接线路200的材料包括铜,则第二绝缘层700中与连接线路200接触的第二缓冲层710的材料包括氮化硅,由此连接线路200与第二缓冲层710的粘合性较好。
例如,在形成连接线路200以后,可以在连接线路200上沉积第二绝缘材料层,并对第二绝缘材料层图案化以形成具有过孔的第二绝缘层700,第 二绝缘层700中的过孔用于暴露连接线路200。
例如,在形成第二绝缘层700后,在第二绝缘层700上沉积反射材料层,并对反射材料层进行图案化以形成暴露连接线路200的反射层400。即,反射层400暴露了第二绝缘层700中设置的过孔以保证后续发光二极管芯片可以通过第二绝缘层700中设置的过孔实现与连接线路200的电连接。
例如,反射层400远离第二绝缘层700的一侧还设置有第三绝缘层730以将反射层400与发光二极管芯片300绝缘设置。
在一些示例中,如图8所示,背板还包括位于反射层400远离衬底基板100的一侧的白胶层810,白胶层810具有露出发光二极管芯片300的开口。
例如,在完成发光二极管芯片300与连接线路200的电连接以后可以形成白胶层810。例如形成白胶层810之前,可以对围绕发光二极管芯片300且与发光二极管芯片300紧邻的区域以及该区域以外的位置的表面做处理,例如分别做疏水化和亲水化的处理,以使喷涂在相邻发光二极管芯片300之间位置的白胶层810在扩散过程中不会覆盖发光二极管芯片300。例如,白胶层810与发光二极管芯片300均设置于同一层上。例如,如图8所示,白胶层810与发光二极管芯片300均位于第三绝缘层730上。
例如,如图8所示,围绕发光二极管芯片300的区域可以暴露反射层400以实现反射层400对发光二极管芯片300发射的光的反射,提高光效。位于发光二极管芯片300之间的白胶层810的厚度较大以使其远离衬底基板100的平坦表面与衬底基板100的距离大于发光二极管芯片300的远离衬底基板100的表面与衬底基板100的距离,由此围绕发光二极管芯片的白胶层也可以起到反光作用以进一步增加背板的反射率。
例如,如图8所示,背板还包括位于白胶层810远离衬底基板100的一侧的透明层820以覆盖白胶层810和发光二极管芯片300,从而起到保护发光二极管芯片300的作用。
例如,如图6和图8所示,衬底基板100可以包括沿第二方向延伸,且沿第一方向紧密排列的多个涂敷区,透明层820可以通过依次涂敷在每个涂敷区中以完成涂敷。
本公开另一实施例提供一种玻璃基线路板,图9为根据本公开另一实施例提供的玻璃基线路板的平面结构示意图,图10为图9所示的玻璃基线路板 中的一个连接线路单元的平面结构示意图。如图9-10所示,玻璃基线路板包括玻璃基板10以及阵列排布在玻璃基板10上多个连接线路单元200。每个连接线路单元200包括至少一个连接线路子单元201,连接线路子单元201包括多个电接触点对,每个电接触点对被配置为与一个发光二极管芯片的阳极和阴极一一对应连接。图9所示的连接线路子单元201包括将图1所示发光子单元中的多个发光二极管芯片串联连接的连接部。本实施例提供的玻璃基线路板可以为图1所示的背板在设置发光二极管芯片之前的线路板。
本公开实施例中的玻璃基线路板替代一般PCB板,例如背光源中用于电连接发光二极管芯片的PCB板,可以克服一般PCB基材的散热性能不良的问题;并且,由于玻璃基板不易变形,所以在制作大尺寸背板的过程中,仅采用一块大尺寸玻璃基板即可,无需多块基板拼接,可以降低制作成本以及驱动成本。
在一些示例中,如图9和图10所示,连接线路子单元201包括第一连接部210和第二连接部220,第一连接部210包括第一输入端211,第二连接部包括第二输入端221,且第一连接部210和第二连接部220分别包括电接触点。例如第一连接部210包括第一电接触点2021,第二连接部220包括第二电接触点2022。参考图9-10以及图1-2,连接线路子单元201被配置为将多个发光二极管芯片300串联连接。
在一些示例中,如图9和图10所示,连接线路子单元201还包括第三连接部230,第三连接部230的两端各包括一个电接触点,例如第三连接部230的两端各包括一个第三电接触点2023。第三连接部230的一端的第三电接触点2023与第一连接部210的第一电接触点2021组成电接触点对202,第三连接部230的另一端的第三电接触点2023与第二连接部220的第二电接触点2022组成电接触点对202。参考图9-10以及图1-2,每个电接触点对202可以分别与一个发光二极管芯片300的阳极310和阴极320一一对应连接。
例如,如图9和图10所示,第一连接部210、第二连接部220和第三连接部230同层设置且材料相同。例如,各连接部的材料可以均为铜,但不限于此,还可以是其他导电材料。
在一些示例中,如图9和图10所示,在每个连接线路子单元201中,第三连接部230包括多个连接子部231,每个连接子部231的两端各包括一个 电接触点,例如第三电接触点2023。多个连接子部231首尾相邻,以使得相邻的连接子部231的相邻电接触点2023组成电接触点对203。上述的“多个连接子部首尾相邻”指多个连接子部各包括第一端和第二端,相邻的两个连接子部中的一个连接子部的第一端与另一个连接子部的第二端相邻,且位于一个连接子部的第一端的电接触点与位于另一个连接子部的第二端的电接触点组成了电接触点对。
参考图9-10以及图1-2,每个连接子部231的两端各包括一个用于与发光二极管芯片300的阳极310或阴极320电连接的第三电接触点2023,每个电接触点对203中的两个电接触点可以分别与一个发光二极管芯片300的阳极310和阴极320一一对应连接从而使得多个连接子部231通过发光二极管芯片300首尾相连。也就是,通过发光二极管芯片300,多个连接子部231依次首尾相连。
图11为图10中的一个连接线路子单元中的第三连接部的示意图,图4为图11中的一个第一连接子部的示意图。
在一些示例中,如图9-11以及图4所示,多个连接子部231包括第一连接子部2311和第二连接子部2312。第一连接子部2311沿平行于玻璃基板10的第一方向(X方向)延伸,第一连接子部2311具有在大致矩形的沿对角线的方向彼此相对的两个角落处形成缺口2313的形状,第一连接子部2311包括与缺口2313对应的连接区2314,第一连接子部2311的电接触点2023位于连接区2314面向缺口2313的一侧。本实施例中的第一连接子部与图3-4所示的第一连接子部具有相同的特征,在此不再赘述。
在一些示例中,如图9-11所示,第二连接子部2312沿平行于玻璃基板10且与第一方向相交的第二方向(Y方向)延伸,第二连接子部2312的电接触点2023位于第二连接子部2312的在第二方向上的两个端部。第二连接子部2312的电接触点2023与相邻的第一连接子部2311的电接触点2023组成的电接触点对203被配置为将图1所示的多个发光二极管芯片300串联连接。本实施例中的第二连接子部与图3-4所示的第二连接子部具有相同的特征,在此不再赘述。
在一些示例中,如图9-11所示,连接线路子单元201包括沿第一方向延伸且沿第二方向排列的多个第一连接子部行2310,每个第一连接子部行2310 包括至少一个第一连接子部2311,图11示意性的示出第一连接子部行2310包括一个第一连接子部2311。第二连接子部2312的两个端部分别位于相邻的第一连接子部行2310的端部的缺口2313中,以使第二连接子部2312的两个端部的电接触点2023分别与相邻的第一连接子部行2310的电接触点2023组成电接触点对203。与同一第一连接子部行2310形成电接触点对203的第二连接子部2312分别位于第一连接子部行2310在第二方向上的两侧且分别位于第一连接子部行2310在第一方向上的两端。参考如图9-11以及图1所示,第二连接子部2312的两个端部分别位于相邻的两个第一连接子部行2310的端部的彼此相对的缺口2313中,以将相邻的第一连接子部行2310通过发光二极管芯片300连接。并且,与同一第一连接子部行2310通过发光二极管芯片300连接的第二连接子部2312分别位于第一连接子部行2310在第二方向上的两侧且分别位于第一连接子部行2310在第一方向上的两端。图11所示的示例中的第一连接子部行与图3所示的第一连接子部行具有相同的特征,且图11所示的示例中的第一连接子部行与第二连接子部的位置关系与图3所示的第一连接子部行与第二连接子部的位置关系相同,在此不再赘述。
图12为本公开一实施例的另一示例提供的连接线路子单元的局部结构示意图。在一些示例中,如图12所示,每个第一连接子部行2310包括多个第一连接子部2311,相邻的第一连接子部2311中的一个第一连接子部2311的连接区2314位于另一个第一连接子部的缺口2313中。参考图5以及图12,相邻的连接区2314通过发光二极管芯片300相连。本实施例中的第一连接子部行与图5所示的第一连接子部行具有相同的特征,在此不再赘述。
在一些示例中,如图11-12所示,除了位于第一连接子部行2310两端的连接区2314外,第一连接子部行2310在第一方向上各个位置处沿第二方向的尺寸D大致相等。
在一些示例中,如图9-10所示,至少一个连接线路子单元201包括多个连接线路子单元201,多个连接线路子单元201共用第一连接部210和第二连接部220。参考图1-2以及图9-10所示,多个连接线路子单元201共用第一连接部210和第二连接部220以彼此并联连接,即多个连接线路子单元201共用第一连接部210和第二连接部220以使多个发光子单元101并联连接。
在一些示例中,如图9-12所示,第一连接部210包括第一凸出部212,第一连接部210的电接触点2021位于第一凸出部212上,第一凸出部212位于与其相邻的第一连接子部行2310的连接区2314对应的缺口2313内,以使第一凸出部212上的电接触点2021与第一连接子部行2310的连接区2314的电接触点2023组成电接触点对202;第二连接部220包括第二凸出部222,第二连接部220的电接触点2022位于第二凸出部222上,第二凸出部222位于与其相邻的第一连接子部行2310的连接区2314对应的缺口2313内,以使第二凸出部222上的电接触点2022与第一连接子部行2310的连接区2314的电接触点2023组成电接触点对202。
参考图1-6以及图9-12,第一连接部210的第一凸出部212伸入第一连接子部行2310的缺口2313内以使第一连接部210的第一电接触点2021和第三连接部230的第三电接触点2023分别与发光二极管芯片300的阳极310和阴极320电连接。第二连接部220的第二凸出部222伸入第一连接子部行2310的缺口2313内以使第二连接部220的第二电接触点2022和第三连接部230的第三电接触点2023分别与发光二极管芯片300的阳极310和阴极320电连接。本实施例中的第一连接部与第一连接子部行的位置以及连接关系与图1-6所示的第一连接部与第一连接子部行的位置以及连接关系相同,本实施例中的第二连接部与第一连接子部行的位置以及连接关系与图1-6所示的第二连接部与第一连接子部行的位置以及连接关系相同,在此不再赘述。
例如,本实施例提供的玻璃基线路板的连接线路单元还可以包括图7所示连接部,且连接线路单元的具体结构参考图7以及相关描述,在此不再赘述。
例如,本实施例提供的玻璃基线路板还包括图6和图8所示的位于连接线路单元200面向衬底基板100(即玻璃基板10)的一侧的多条彼此平行的走线500,走线500包括多条第一走线510和多条第二走线520。连接线路单元200的第一输入端211与第一走线510连接,连接线路单元200的第二输入端221与第二走线520连接。走线500例如沿第二方向延伸。本实施例提供的走线与图6和图8所示的走线具有相同的特征,在此不再赘述。
例如,本实施例提供的玻璃基线路板还包括图6和图8所示的位于走线500与连接线路单元200之间的第一绝缘层600,以起到绝缘作用。本实施例 提供的第一绝缘层与图6和图8所示的第一绝缘层具有相同的特征,在此不再赘述。
例如,本实施例提供的玻璃基线路板还包括图6和图8所示的位于连接线路单元200与多个发光二极管芯片300之间的反射层400。本实施例提供的反射层与图6和图8所示的反射层具有相同的特征的作用,在此不再赘述。
例如,本实施例提供的玻璃基线路板还包括图6和图8所示的位于反射层400与连接线路单元200之间的第二绝缘层700以将反射层400和连接线路单元200彼此隔离。本实施例提供的第二绝缘层与图6和图8所示的第二绝缘层具有相同的特征,在此不再赘述。
例如。本实施例提供的玻璃基线路板还可以包括图6所示的印刷电路板900,印刷电路板900被配置为与第一走线510和第二走线520电连接以实现连接线路单元的分区驱动。本实施例提供的电路板与图6所示的电路板具有相同的特征和作用,在此不再赘述。
在一些示例中,如图9-12所示,每个连接线路单元200中的电接触点对均匀分布以使图1-6所示的均匀分布的多个发光二极管芯片300可以与多个电接触点对一一对应连接。
例如,本公开实施例中的玻璃基线路板上的连接线路单元200中的各个连接部的位置以及各个电接触对的位置是根据发光二极管芯片300的位置而设计的。在本公开实施例中,为了实现各个连接部的更好的载流能力,各连接部沿与其延伸方向垂直方向的线宽可以设置的较大,但是在增大该线宽尽量宽的同时可以考虑相邻连接部之间的距离不小于15微米。例如,各个连接部在彼此间距不小于15微米的情况下铺满玻璃基板,以保证整个玻璃基线路板的平坦度。
例如,沿垂直于玻璃基板10的方向,玻璃基线路板的厚度不大于8毫米,从而可以保证包括上述玻璃基线路板的背板的厚度较薄。
本公开上述实施例中的玻璃基线路板可以是上述实施例的背板中用于连接发光二极管的线路板,因此,针对本公开实施例的玻璃基线路板的相关描述均可以应用于根据本公开实施例的背板,且针对本公开实施例的背板的相关描述也均可以应用于根据本公开实施例的玻璃基线路板。
本公开实施例提供的玻璃基线路板可以应用于背光源,也可以应用于显 示面板,且采用本实施例提供的玻璃基线路板可以降低制作以及驱动成本。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (26)

  1. 一种背板,包括:
    衬底基板;
    多个发光单元,阵列排布在所述衬底基板上,
    其中,每个所述发光单元包括至少一个发光子单元,所述发光子单元包括连接线路以及与所述连接线路连接的多个发光二极管芯片,所述发光二极管芯片位于所述连接线路远离所述衬底基板的一侧,所述至少一个发光子单元中的所述多个发光二极管芯片串联连接。
  2. 根据权利要求1所述的背板,其中,每个所述发光子单元中,所述连接线路包括第一连接部和第二连接部,所述第一连接部包括第一输入端,所述第二连接部包括第二输入端,且所述第一连接部和所述第二连接部分别包括电接触点;
    所述连接线路还包括第三连接部,所述第三连接部的两端各包括一个电接触点,所述第三连接部的一端的电接触点与所述第一连接部的电接触点组成电接触点对,所述第三连接部的另一端的电接触点与所述第二连接部的电接触点组成电接触点对,且每个所述电接触点对分别与一个发光二极管芯片的阳极和阴极一一对应连接。
  3. 根据权利要求2所述的背板,其中,在每个所述发光子单元中,所述第三连接部包括多个连接子部,每个所述连接子部的两端各包括一个电接触点,相邻的所述连接子部的相邻端的电接触点组成电接触点对,每个所述电接触点对分别与一个发光二极管芯片的阳极和阴极一一对应连接,且多个所述连接子部通过所述发光二极管芯片串联。
  4. 根据权利要求3所述的背板,其中,多个所述连接子部包括第一连接子部和第二连接子部,
    所述第一连接子部沿平行于所述衬底基板的第一方向延伸,所述第一连接子部具有在大致矩形的沿对角线的方向彼此相对的两个角落处形成缺口的形状,所述第一连接子部包括与所述缺口对应的连接区,所述第一连接子部的电接触点位于所述连接区面向所述缺口的一侧,
    所述第二连接子部沿平行于所述衬底基板且与所述第一方向相交的第二 方向延伸,所述第二连接子部的电接触点位于所述第二连接子部的在所述第二方向上的两个端部。
  5. 根据权利要求4所述的背板,其中,所述发光子单元包括沿所述第一方向延伸且沿所述第二方向排列的多个第一连接子部行,每个所述第一连接子部行包括至少一个第一连接子部,所述第二连接子部的两个端部分别位于相邻的所述第一连接子部行的端部的彼此相对的缺口中,以使相邻的所述第一连接子部行通过所述发光二极管芯片和所述第二连接子部连接,
    与同一第一连接子部行通过所述发光二极管芯片连接的第二连接子部分别位于所述第一连接子部行在所述第二方向上的两侧且分别位于所述第一连接子部行在所述第一方向上的两端。
  6. 根据权利要求5所述的背板,其中,每个所述第一连接子部行包括多个第一连接子部,相邻的所述第一连接子部中的一个第一连接子部的连接区位于另一个第一连接子部的缺口中,以使相邻的所述连接区通过所述发光二极管芯片电连接。
  7. 根据权利要求5或6所述的背板,其中,每个第一连接子部行包括第一端部和第二端部,所述多个第一连接子部行的第一端部沿所述第二方向对齐,所述多个第一连接子部行的第二端部沿所述第二方向对齐,且所述多个第一连接子部行和所述第二连接子部整体连接为方波形状。
  8. 根据权利要求5-7任一项所述的背板,其中,除了位于所述第一连接子部行两端的连接区外,所述第一连接子部行在所述第一方向上各个位置处沿所述第二方向的尺寸大致相等。
  9. 根据权利要求5-8任一项所述的背板,其中,所述第一连接部包括第一凸出部,所述第一凸出部位于与其通过所述发光二极管芯片连接的所述第一连接子部行的连接区处的缺口内;所述第二连接部包括第二凸出部,所述第二凸出部位于与其通过所述发光二极管芯片连接的所述第一连接子部行的连接区处的缺口内。
  10. 根据权利要求2-9任一项所述的背板,其中,所述至少一个发光子单元包括多个发光子单元,每个所述发光单元中的所述多个发光子单元共用所述第一连接部和所述第二连接部以使所述多个发光子单元并联连接。
  11. 根据权利要求1-10任一项所述的背板,其中,每个所述发光单元中 的所述发光二极管芯片均匀分布。
  12. 根据权利要求2所述的背板,其中,组成所述电接触点对的两个连接部之间具有间隔,所述发光二极管芯片在所述衬底基板上的正投影与所述间隔在所述衬底基板上的正投影至少部分交叠。
  13. 根据权利要求1-12任一项所述的背板,还包括:
    反射层,位于所述连接线路与所述发光二极管芯片之间。
  14. 根据权利要求13所述的背板,还包括:
    多条彼此平行的走线,位于所述连接线路面向所述衬底基板的一侧,且包括多条第一走线和多条第二走线;
    第一绝缘层,位于所述多条彼此平行的走线与所述连接线路之间;
    第二绝缘层,位于所述反射层与所述连接线路之间以将所述反射层和连接线路彼此隔离,
    其中,所述连接线路的所述第一输入端与所述第一走线连接,所述连接线路的所述第二输入端与所述第二走线连接。
  15. 根据权利要求14所述的背板,其中,所述走线的厚度大于所述连接线路的厚度,且所述第一连接部和所述第二连接部的宽度均大于所述走线的宽度。
  16. 根据权利要求13-15任一项所述的背板,还包括:
    白胶层,位于所述反射层远离所述衬底基板的一侧,且具有露出所述发光二极管芯片的开口;
    透明层,位于所述白胶层远离所述衬底基板的一侧,以覆盖所述白胶层和所述发光二极管芯片。
  17. 一种玻璃基线路板,包括:
    玻璃基板;以及
    多个连接线路单元,阵列排布在所述玻璃基板上;
    其中,每个所述连接线路单元包括至少一个连接线路子单元,所述连接线路子单元包括多个电接触点对,每个所述电接触点对被配置为与一个发光二极管芯片的阳极和阴极一一对应连接以使与多个所述电接触点对连接的多个发光二极管芯片串联连接。
  18. 根据权利要求17所述的玻璃基线路板,其中,所述连接线路子单元 包括第一连接部和第二连接部,所述第一连接部包括第一输入端,所述第二连接部包括第二输入端,且所述第一连接部和所述第二连接部分别包括电接触点;
    所述连接线路子单元还包括第三连接部,所述第三连接部的两端各包括一个电接触点,所述第三连接部的一端的电接触点与所述第一连接部的电接触点组成所述电接触点对,所述第三连接部的另一端的电接触点与所述第二连接部的电接触点组成所述电接触点对。
  19. 根据权利要求18所述的玻璃基线路板,其中,在每个所述连接线路子单元中,所述第三连接部包括多个连接子部,每个所述连接子部的两端各包括一个电接触点,多个所述连接子部首尾相邻,以使得相邻的所述连接子部的相邻电接触点组成所述电接触点对。
  20. 根据权利要求19所述的玻璃基线路板,其中,多个所述连接子部包括第一连接子部和第二连接子部,
    所述第一连接子部沿平行于所述玻璃基板的第一方向延伸,所述第一连接子部具有在大致矩形的沿对角线的方向彼此相对的两个角落处形成缺口的形状,所述第一连接子部包括与所述缺口对应的连接区,所述第一连接子部的电接触点位于所述连接区面向所述缺口的一侧,
    所述第二连接子部沿平行于所述玻璃基板且与所述第一方向相交的第二方向延伸,所述第二连接子部的电接触点位于所述第二连接子部的在所述第二方向上的两个端部。
  21. 根据权利要求20所述的玻璃基线路板,其中,所述连接线路子单元包括沿所述第一方向延伸且沿所述第二方向排列的多个第一连接子部行,每个所述第一连接子部行包括至少一个第一连接子部,所述第二连接子部的两个端部分别位于相邻的所述第一连接子部行的端部的缺口中,以使所述第二连接子部的所述两个端部的电接触点分别与相邻的所述第一连接子部行的电接触点组成所述电接触点对,
    与同一第一连接子部行形成所述电接触点对的所述第二连接子部分别位于所述第一连接子部行在所述第二方向上的两侧且分别位于所述第一连接子部行在所述第一方向上的两端。
  22. 根据权利要求21所述的玻璃基线路板,其中,每个所述第一连接子 部行包括多个第一连接子部,相邻的所述第一连接子部中的一个第一连接子部的连接区位于另一个第一连接子部的缺口中。
  23. 根据权利要求21或22所述的玻璃基线路板,除了位于所述第一连接子部行两端的连接区外,所述第一连接子部行在所述第一方向上各个位置处沿所述第二方向的尺寸大致相等。
  24. 根据权利要求21-23任一项所述的玻璃基线路板,其中,所述第一连接部包括第一凸出部,所述第一连接部的电接触点位于所述第一凸出部上,所述第一凸出部位于与其相邻的所述第一连接子部行的连接区对应的缺口内,以使所述第一凸出部上的电接触点与所述第一连接子部行的连接区的电接触点组成所述电接触点对;所述第二连接部包括第二凸出部,所述第二连接部的电接触点位于所述第二凸出部上,所述第二凸出部位于与其相邻的所述第一连接子部行的连接区对应的缺口内,以使所述第二凸出部上的电接触点与所述第一连接子部行的连接区的电接触点组成所述电接触点对。
  25. 根据权利要求14-24任一项所述的玻璃基线路板,其中,所述至少一个连接线路子单元包括多个连接线路子单元,每个所述连接线路单元中的多个所述连接线路子单元共用所述第一连接部和所述第二连接部。
  26. 根据权利要求17-25任一项所述的玻璃基线路板,其中,每个所述连接线路单元中的所述电接触点对均匀分布。
PCT/CN2019/109452 2019-09-30 2019-09-30 背板以及玻璃基线路板 WO2021062630A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/961,439 US11469359B2 (en) 2019-09-30 2019-09-30 Backplane and glass-based circuit board
EP19945408.3A EP4040227A4 (en) 2019-09-30 2019-09-30 GLASS-BASED BACKPLATE AND PRINTED CIRCUIT BOARD
CN201980001889.6A CN113287059B (zh) 2019-09-30 2019-09-30 背板以及玻璃基线路板
PCT/CN2019/109452 WO2021062630A1 (zh) 2019-09-30 2019-09-30 背板以及玻璃基线路板
US17/930,514 US20230006121A1 (en) 2019-09-30 2022-09-08 Backplane and glass-based circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109452 WO2021062630A1 (zh) 2019-09-30 2019-09-30 背板以及玻璃基线路板

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/961,439 A-371-Of-International US11469359B2 (en) 2019-09-30 2019-09-30 Backplane and glass-based circuit board
US17/930,514 Continuation US20230006121A1 (en) 2019-09-30 2022-09-08 Backplane and glass-based circuit board

Publications (1)

Publication Number Publication Date
WO2021062630A1 true WO2021062630A1 (zh) 2021-04-08

Family

ID=75337614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109452 WO2021062630A1 (zh) 2019-09-30 2019-09-30 背板以及玻璃基线路板

Country Status (4)

Country Link
US (2) US11469359B2 (zh)
EP (1) EP4040227A4 (zh)
CN (1) CN113287059B (zh)
WO (1) WO2021062630A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016332A1 (zh) * 2022-07-22 2024-01-25 京东方科技集团股份有限公司 布线基板及电子装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111812888A (zh) * 2020-07-10 2020-10-23 深圳市华星光电半导体显示技术有限公司 Mini LED背光模组及其制备方法、显示面板
US11608174B2 (en) * 2020-08-17 2023-03-21 Ge Aviation Systems Limited Power distribution panel
CN117850079A (zh) * 2022-09-30 2024-04-09 华为技术有限公司 一种电路板、背光模组、显示模组和电子设备
CN116149099B (zh) * 2023-04-20 2023-08-08 惠科股份有限公司 背光模组及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090316409A1 (en) * 2008-06-24 2009-12-24 Yu-Sik Kim Sub-mount, light emitting device including sub-mount and methods of manufacturing such sub-mount and/or light emitting device
CN104241495A (zh) * 2013-06-17 2014-12-24 陈荣华 一种可以全面发光的led及其制造工艺
CN105355754A (zh) * 2015-10-31 2016-02-24 嘉兴市上村电子有限公司 一种用于led灯丝的玻璃基线路板
CN109031779A (zh) * 2018-07-25 2018-12-18 京东方科技集团股份有限公司 发光二极管基板、背光模组和显示装置
CN110225664A (zh) * 2019-05-09 2019-09-10 深圳市昱谷科技有限公司 一种玻璃基导热线路板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526425A (ja) * 2008-05-20 2010-07-29 パナソニック株式会社 半導体発光装置、並びに、これを用いた光源装置及び照明システム
JP4686643B2 (ja) * 2009-07-03 2011-05-25 シャープ株式会社 半導体発光素子搭載用基板、バックライトシャーシ、表示装置、及び、テレビ受信装置
CN104952863B (zh) * 2014-03-24 2018-05-15 光宝电子(广州)有限公司 发光结构
CN104465968B (zh) * 2013-09-23 2017-08-29 弘凯光电(深圳)有限公司 发光二极管封装结构及其制作方法
CN104183606A (zh) * 2014-08-07 2014-12-03 京东方科技集团股份有限公司 显示基板及其制造方法、显示装置
CN105355755A (zh) * 2015-10-31 2016-02-24 嘉兴市上村电子有限公司 一种基于玻璃基板的led灯丝
US9967979B2 (en) * 2015-11-24 2018-05-08 Toyoda Gosei Co., Ltd. Light-emitting device
JP6729025B2 (ja) * 2016-06-14 2020-07-22 日亜化学工業株式会社 発光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090316409A1 (en) * 2008-06-24 2009-12-24 Yu-Sik Kim Sub-mount, light emitting device including sub-mount and methods of manufacturing such sub-mount and/or light emitting device
CN104241495A (zh) * 2013-06-17 2014-12-24 陈荣华 一种可以全面发光的led及其制造工艺
CN105355754A (zh) * 2015-10-31 2016-02-24 嘉兴市上村电子有限公司 一种用于led灯丝的玻璃基线路板
CN109031779A (zh) * 2018-07-25 2018-12-18 京东方科技集团股份有限公司 发光二极管基板、背光模组和显示装置
CN110225664A (zh) * 2019-05-09 2019-09-10 深圳市昱谷科技有限公司 一种玻璃基导热线路板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4040227A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024016332A1 (zh) * 2022-07-22 2024-01-25 京东方科技集团股份有限公司 布线基板及电子装置

Also Published As

Publication number Publication date
EP4040227A4 (en) 2022-10-19
US20220005990A1 (en) 2022-01-06
CN113287059B (zh) 2022-09-20
US11469359B2 (en) 2022-10-11
CN113287059A (zh) 2021-08-20
EP4040227A1 (en) 2022-08-10
US20230006121A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
WO2021062630A1 (zh) 背板以及玻璃基线路板
US11302247B2 (en) LED display device
US9951925B2 (en) Light emitting device
CN110993775B (zh) 一种背板及其制作方法、背光模组、显示面板
WO2021238570A1 (zh) 连接基板及制备方法、拼接屏、显示装置
US11942485B2 (en) Substrate having dual edge connection line and method for manufacturing the same, display panel, and display apparatus
WO2021087726A1 (zh) 一种阵列基板及其制作方法、显示装置
WO2022109875A1 (zh) 发光基板及其制备方法、阵列基板
WO2008062812A1 (fr) Dispositif d'émission de lumière et dispositif d'émission de lumière de surface
JP2006237320A (ja) フレキシブル実装基板
JP2006119321A (ja) 電気回路間の導通接続構造
KR20080049918A (ko) 액정 표시 장치
WO2023005610A1 (zh) 驱动基板及其制备方法、发光装置
TW202030879A (zh) 拼接式發光二極體電路板
TWI764471B (zh) 發光板、線路板以及顯示裝置
TWI837052B (zh) 拼接顯示器及其製造方法
TWI796799B (zh) 顯示裝置
WO2024092594A1 (zh) 显示基板及透明显示装置
JP7178665B2 (ja) 画像表示装置、および部品実装基板
WO2023004798A1 (zh) 发光基板及其制造方法、背光源、显示装置
WO2024036636A1 (zh) 基板和电子装置
WO2013046874A1 (ja) 線状光源モジュール、実装基板および線状光源モジュールの製造方法
CN117316060A (zh) 一种显示面板、拼接显示面板以及显示装置
CN117317111A (zh) 一种布线基板及其制备方法、发光面板、显示装置
CN116978897A (zh) 显示面板及其制备方法、显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019945408

Country of ref document: EP

Effective date: 20220502