WO2021060532A1 - ゴム組成物および摩擦伝動ベルト - Google Patents

ゴム組成物および摩擦伝動ベルト Download PDF

Info

Publication number
WO2021060532A1
WO2021060532A1 PCT/JP2020/036436 JP2020036436W WO2021060532A1 WO 2021060532 A1 WO2021060532 A1 WO 2021060532A1 JP 2020036436 W JP2020036436 W JP 2020036436W WO 2021060532 A1 WO2021060532 A1 WO 2021060532A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt
mass
water
short fibers
rubber composition
Prior art date
Application number
PCT/JP2020/036436
Other languages
English (en)
French (fr)
Inventor
麻優 江坂
祐介 逸見
Original Assignee
三ツ星ベルト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三ツ星ベルト株式会社 filed Critical 三ツ星ベルト株式会社
Priority to EP20868272.4A priority Critical patent/EP4036166A4/en
Priority to CN202080066695.7A priority patent/CN114521204B/zh
Priority to US17/763,905 priority patent/US20220348753A1/en
Publication of WO2021060532A1 publication Critical patent/WO2021060532A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • F16G1/08Driving-belts made of rubber with reinforcement bonded by the rubber
    • F16G1/10Driving-belts made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • F16G5/08V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2439/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2439/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08J2439/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/10Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber

Definitions

  • the present invention relates to a rubber composition and a friction transmission belt for forming a transmission surface of a friction transmission belt (particularly, a V-ribbed belt) used for driving an automobile engine auxiliary machine and the like.
  • the present invention relates to a rubber composition and a friction transmission belt for forming a transmission surface of a friction transmission belt capable of stabilizing the friction state of the friction transmission surface and improving sound resistance while maintaining the belt performance.
  • a friction transmission belt In the rubber industry, high functionality and high performance are desired, especially in automobile parts.
  • One of the rubber products used for such automobile parts is a friction transmission belt, and this friction transmission belt is widely used for power transmission for driving auxiliary equipment such as an automobile air compressor and an alternator, for example.
  • a belt of this type a V-ribbed belt in which ribs are provided along the longitudinal direction of the belt is known, but the V-ribbed belt is required to have sound resistance in addition to belt performance such as transmission ability and fuel efficiency. Will be done.
  • the friction coefficient of the belt surface (pulley engaging surface) in contact with the pulley is reduced to reduce the noise that tends to occur when the pulley is misaligned (axis misalignment) and the stick. -Improving noise due to the slip phenomenon has become an issue.
  • the stick-slip phenomenon is a self-excited vibration caused by the adhesion of microscopic friction surfaces between the friction surfaces and repeated sliding, and when the coefficient of friction decreases as the sliding speed increases, or from static friction. It occurs when discontinuous friction reduction occurs when shifting to dynamic friction. Even in a friction transmission belt, if the friction coefficient of the transmission surface that rubs against the pulley is high (especially high adhesiveness), a stick that repeats adhesion (stick) and slip (slip) between the friction between the belt and the pulley. -A slip phenomenon (vibration) occurs, and an abnormal noise (squeal) occurs at the stage of transition from adhesion to slip.
  • the generation of stick-slip noise during running under water is also a problem. Specifically, if the wettability of the friction transmission surface is low and the water infiltration state between the belt and pulley is not uniform, the friction coefficient is high in the place where water does not infiltrate (dry state), and the water infiltrate part (covered). In the water state), the coefficient of friction is partially significantly reduced, the friction state becomes unstable, and a stick-slip sound is generated.
  • Patent Document 1 discloses a friction transmission belt in which at least the friction transmission surface is made of a rubber composition containing 1 to 25 parts by mass of a surfactant with respect to 100 parts by mass of an ethylene / ⁇ -olefin elastomer. There is.
  • Patent Document 2 At least a plasticizer having a friction transmission surface having a solubility index of 8.3 to 10.7 (cal / cm 3 ) 1/2 with respect to 100 parts by weight of an ethylene / ⁇ -olefin elastomer is used.
  • a friction transmission belt composed of a rubber composition containing 25 parts by weight is disclosed.
  • At least a part of the friction transmission surface is composed of a rubber composition containing 5 to 50 parts by mass of a water-soluble polymer having a melting point or a softening point of 80 ° C. or less with respect to 100 parts by mass of rubber.
  • the friction transmission belt is disclosed.
  • Polyethylene oxide is used as the water-soluble polymer.
  • Patent Document 4 discloses a friction transmission belt including a compression layer formed of a rubber composition containing a polymer component and polyvinyl alcohol-based resin particles.
  • Patent Document 5 discloses a friction transmission belt in which a surface layer formed of a rubber composition containing polyvinyl alcohol-based resin particles and a polymer component is laminated on the surface of the transmission surface.
  • Patent Document 6 discloses a rubber composition composed of an ethylene- ⁇ -olefin elastomer, polyvinylpyrrolidone, a cellulosic fiber, and a vulcanizing agent.
  • Japanese Patent Application Laid-Open No. 2008-185162 Japanese Patent Application Laid-Open No. 2007-232205 Japanese Patent Application Laid-Open No. 2008-157445 Japanese Patent Application Laid-Open No. 2016-090051 Japanese Patent Application Laid-Open No. 2016-121806 Japan Special Table 2018-527430
  • the sound resistance when exposed to water can be improved without increasing the energy loss (tan ⁇ ) due to internal heat generation and the transmission loss (torcross).
  • the polyvinyl alcohol-based resin particles have a larger particle size (even if the particle size is small, the average particle size is 41 ⁇ m) as compared with other compounding agents, the crack resistance is lowered.
  • Patent Document 6 in an environment-friendly blended system of cellulosic fiber and polyvinylpyrrolidone (PVP), the polar PVP improves the compatibility between the cellulosic fiber and the non-polar rubber, so that the elastic modulus and tensile strength are increased. It has been shown to improve.
  • Patent Document 6 does not mention the effect on the sound resistance of the belt and the belt performance such as transmission efficiency and durability.
  • an object of the present invention is a friction transmission having a rubber composition capable of improving sound resistance while maintaining belt performance such as transmission efficiency and durability of the friction transmission belt, and a friction transmission surface formed of the rubber composition. To provide a belt.
  • the present inventors have combined an elastomer component, a polyvinylpyrrolidone-based resin, and non-water-absorbing short fibers without substantially containing water-absorbing fibers, thereby causing a friction transmission belt.
  • the sound resistance can be improved while maintaining the belt performance such as transmission efficiency and durability, and completed the present invention.
  • the rubber composition of the present invention contains an elastomer component, a polyvinylpyrrolidone-based resin, and non-water-absorbent short fibers, and substantially does not contain water-absorbent fibers.
  • the elastomer component may include an ethylene- ⁇ -olefin elastomer.
  • the K value of the polyvinylpyrrolidone-based resin may be 10 to 100.
  • the non-water-absorbent short fibers may contain aliphatic polyamide short fibers.
  • the ratio of the polyvinylpyrrolidone-based resin may be 1 to 20 parts by mass with respect to 100 parts by mass of the elastomer component.
  • the ratio of the polyvinylpyrrolidone-based resin may be 3 to 100 parts by mass with respect to 100 parts by mass of the non-water-absorbent short fiber.
  • the ratio of the non-water-absorbent short fibers may be 15 to 50 parts by mass with respect to 100 parts by mass of the elastomer component.
  • the rubber composition preferably does not contain cellulosic fibers.
  • the present invention also includes a friction transmission belt having a friction transmission surface formed of a cured product of the rubber composition.
  • the sound resistance can be improved while maintaining the belt performance such as the transmission efficiency and durability of the friction transmission belt.
  • the sound resistance when exposed to water can be improved.
  • FIG. 1 is a schematic view showing the layout of the belt misalignment pronunciation test obtained in the examples.
  • FIG. 2 is a schematic view showing a layout of a misalignment sounding test for a belt after running on the testing machine of FIG.
  • FIG. 3 is a schematic view showing the layout of the transmission performance test of the belt obtained in the example.
  • FIG. 4 is a schematic view showing the layout of the endurance running test of the belt obtained in the example.
  • FIG. 5 is a schematic view showing the layout of a biaxial running test for measuring the transmission loss of the V-ribbed belt obtained in the example.
  • the rubber composition of the present invention exerts the above-mentioned effects by blending a combination of a polyvinylpyrrolidone-based resin and non-water-absorbent short fibers with respect to the elastomer component.
  • the effect of improving the sound resistance when exposed to water despite the combination of non-water-absorbing short fibers as short fibers with respect to polyvinylpyrrolidone-based resin is a surprising effect for the present inventors. Although the details of the mechanism are unknown, it can be estimated as follows when analyzed ex post facto.
  • the sound when water is received is that when water enters between the belt and the pulley, the coefficient of friction remains high at the point where water does not enter (dry state) on the contact surface with the pulley. This is caused by the fact that the coefficient of friction is significantly reduced only at the place where the water has infiltrated (water-covered state), that is, the dry state and the water-covered state are mixed on the contact surface with the pulley. Conventionally, this phenomenon has been measured by measuring the relationship ( ⁇ -V characteristic) between the slip speed (V) and the friction coefficient ( ⁇ ) during running under water, and the friction coefficient decreases as the slip speed increases. In some cases, a stick-slip sound is produced.
  • polyvinyl alcohol (PVA) -based resin has a large particle size, so when used for a long period of time, the eluted PVA portion becomes dents and defects occur, or it becomes a rubber layer. It has a drawback that cracks are likely to occur from the interface with PVA particles.
  • the crack resistance can be further improved in addition to the improvement of the above-mentioned drawbacks (1) to (3).
  • the present invention by combining the PVP-based resin with non-water-absorbent short fibers (particularly, nylon short fibers having an excellent balance between mechanical properties and sound resistance), the above-mentioned effect, that is, details Can exhibit the following effects (1) to (5).
  • the rubber composition (curable rubber composition) of the present invention contains an elastomer component.
  • elastomer component vulverable or crosslinkable rubber may be used, for example, diene rubber [natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber).
  • ethylene- ⁇ -olefin elastomer chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber, silicone rubber, urethane rubber, fluororubber, etc. ..
  • ethylene- ⁇ -olefin elastomers are preferable because they are excellent in ozone resistance, heat resistance, cold resistance, and weather resistance, and the weight of the belt can be reduced.
  • the ethylene- ⁇ -olefin elastomer may contain an ethylene unit and an ⁇ -olefin unit as constituent units, and may further contain a diene unit. Therefore, the ethylene- ⁇ -olefin elastomer includes ethylene- ⁇ -olefin copolymer rubber, ethylene- ⁇ -olefin-diene ternary copolymer rubber and the like.
  • Examples of the ⁇ -olefin for forming an ⁇ -olefin unit include chain ⁇ -C 3-12 olefins such as propylene, butene, pentene, methylpentene, hexene, and octene. Of these ⁇ -olefins, ⁇ -C 3-4 olefins such as propylene (particularly propylene) are preferable.
  • a non-conjugated diene-based monomer is usually used as the diene monomer for forming a diene unit.
  • the non-conjugated diene-based monomer include dicyclopentadiene, methylenenorbornene, ethylylidene norbornene, 1,4-hexadiene, cyclooctadiene and the like.
  • diene monomers etylidene norbornene and 1,4-hexadiene (particularly etylidene norbornene) are preferable.
  • ethylene- ⁇ -olefin elastomers examples include ethylene-propylene copolymer (EPM) and ethylene-propylene-diene ternary copolymer (EPDM).
  • EPM ethylene-propylene copolymer
  • EPDM ethylene-propylene-diene ternary copolymer
  • ethylene- ⁇ -olefin elastomers can be used alone or in combination of two or more.
  • ethylene- ⁇ -olefin-diene ternary copolymer rubber is preferable, and ethylene-propylene-diene copolymer (EPDM) is particularly preferable, because the cross-linking efficiency by the diene unit is excellent.
  • the diene content of ethylene- ⁇ -olefin elastomer may be 10% by mass or less (for example, 0.1 to 10% by mass). It is preferably 7% by mass or less (for example, 0.3 to 7% by mass), more preferably 5% by mass or less (for example, 0.5 to 5% by mass), and most preferably 3% by mass or less (for example, 1 to 3% by mass). Is.
  • the heat resistance is improved by using an elastomer component that does not have a double bond in the main chain, but it is highly advanced by suppressing the double bond due to the diene unit introduced as the side chain to a small amount. Heat resistance can be guaranteed. If the diene content is too high, high heat resistance may not be guaranteed.
  • the diene content means the mass ratio of the diene monomer unit in all the units constituting the ethylene- ⁇ -olefin elastomer, and it can be measured by a conventional method, but it may be a monomer ratio.
  • the Mooney viscosity [ML (1 + 4) 125 ° C.] of the uncrosslinked ethylene- ⁇ -olefin elastomer may be 80 or less, and the Vm of the rubber composition can be adjusted to improve the dispersibility of carbon black, for example. It is 10 to 80, preferably 20 to 70, more preferably 30 to 50, and most preferably 35 to 45. If the Mooney viscosity is too high, the fluidity of the rubber composition may decrease, and the processability in kneading may decrease.
  • the Mooney viscosity can be measured by a method according to JIS K 63001 (2013), and the test conditions are an L-shaped rotor, a test temperature of 125 ° C., preheating of 1 minute, and a rotor operating time of 4 minutes. Is.
  • the proportion of the ethylene- ⁇ -olefin elastomer in the elastomer component may be 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and most preferably 100% by mass (ethylene- ⁇ -). Olefin elastomer only). If the proportion of ethylene- ⁇ -olefin elastomer in the elastomer component is too small, heat resistance and cold resistance may decrease.
  • the rubber composition of the present invention further contains a polyvinylpyrrolidone (PVP) -based resin in addition to the elastomer component.
  • PVP polyvinylpyrrolidone
  • the PVP-based resin may contain N-vinyl-2-pyrrolidone unit as a main constituent unit, and may further contain other copolymerizable units.
  • Examples of the monomer for forming other copolymerizable units include olefins (such as ⁇ -C 2-10 olefins such as ethylene, propylene, 1-butene, isobutene and 1-hexene) and unsaturated carboxylic acids.
  • olefins such as ⁇ -C 2-10 olefins such as ethylene, propylene, 1-butene, isobutene and 1-hexene
  • unsaturated carboxylic acids unsaturated carboxylic acids
  • (meth) acrylic acid C 1-6 alkyl esters such as (meth) acrylic acid, methyl (meth) acrylic acid, ethyl (meth) acrylic acid, (anhydrous) maleic acid, etc.] fatty acid vinyl esters (vinyl acetate) , Vinyl propionate, vinyl crotonate, etc.), Vinyl ethers (C 1-6 alkyl vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, ethylene glycol vinyl ether, 1,3-propanediol vinyl ether, 1,4-butanediol Examples thereof include C 2-6 alkanediol-vinyl ether such as vinyl ether) and unsaturated sulfonic acids (ethylene sulfonic acid, allyl sulfonic acid, etc.). These monomers can be used alone or in combination of two or more. Of these, unsaturated carboxylic acids such as (meth) acrylic acid and methyl (meth
  • the ratio of N-vinyl-2-pyrrolidone units is, for example, 50% by mass or more (for example, 50 to 98% by mass), preferably 80% by mass or more (for example, 80 to 95% by mass), and further. It is preferably 90% by mass or more, and most preferably 100% by mass.
  • the PVP-based resin may be a conventional modified product or derivative. Further, the form of the PVP-based resin may be linear or branched.
  • the K value of the PVP resin is not particularly limited, but is 10 to 100, preferably 15 to 99, more preferably 17 to 98, and more preferably 20 to, for example, from the viewpoint of improving the durability and sound resistance of the belt. 97, most preferably 22.5 to 96. If the K value is too small, the durability and power transmission of the belt may decrease, and if it is too large, the sound resistance may decrease.
  • the K value is a viscosity characteristic value that correlates with the molecular weight, and can be calculated by applying the relative viscosity value (25 ° C.) measured by the capillary viscometer to the following Fikenscher's formula.
  • the ratio of the PVP-based resin can be selected from the range of about 0.1 to 25 parts by mass with respect to 100 parts by mass of the elastomer component, for example, 0.1 to 20 parts by mass, preferably 0.5 to 15 parts by mass, more preferably. Is 1 to 10 parts by mass, more preferably 2 to 8 parts by mass, and most preferably 3 to 7 parts by mass.
  • the ratio of the PVP resin is preferably 1 to 20 parts by mass, more preferably 2 to 15 parts by mass with respect to 100 parts by mass of the elastomer component. It is by mass, more preferably 3 to 10 parts by mass.
  • the ratio of the PVP-based resin is, for example, 3 to 100 parts by mass, preferably 5 to 70 parts by mass, more preferably 10 to 50 parts by mass, and more preferably 12 to 30 parts by mass with respect to 100 parts by mass of the non-water-absorbent short fiber. Parts, most preferably 15 to 20 parts by mass. If the proportion of the PVP resin is too small, the sound resistance when exposed to water may decrease, and if it is too large, the mechanical strength of the rubber composition may decrease.
  • Non-absorbent short fiber The rubber composition of the present invention further contains non-water-absorbent short fibers (non-cellulosic short fibers) in addition to the elastomer component and PVP-based resin.
  • non-water-absorbent short fibers examples include polyolefin short fibers (polyethylene short fibers, polypropylene short fibers, etc.), acrylic short fibers (polyacrylonitrile short fibers, etc.), polyamide short fibers (6 nylon short fibers, 66 nylon short fibers, 610).
  • Adipose polyamide short fibers such as nylon short fibers and 46 nylon short fibers; aromatic polyamide fibers such as aramid), polyester short fibers [polyethylene terephthalate (PET) short fibers, polypropylene terephthalate (PPT) short fibers, polytrimethylene terephthalate (PTT) short fibers, polybutylene terephthalate (PBT) short fibers, polyalkylene allylate short fibers such as polyethylene naphthalate (PEN) short fibers], polyphenylene sulfide (PPS) fibers, polyparaphenylene benzobisoxazole (PBO) fibers , Synthetic fibers such as polyurethane fibers; inorganic fibers such as carbon fibers, glass fibers and metal fibers.
  • PET polyethylene terephthalate
  • PPT polypropylene terephthalate
  • PTT polytrimethylene terephthalate
  • PBT polybutylene terephthalate
  • PBT poly
  • non-absorbent short fibers can be used alone or in combination of two or more.
  • aliphatic polyamide short fibers and polyalkylene allylate short fibers are preferable because they are excellent in transmission efficiency, durability, and sound resistance (particularly, sound resistance when exposed to water), and belt performance and sound resistance when exposed to water are preferable.
  • Aliphatic polyamide short fibers such as 66 nylon short fibers are particularly preferable because they can achieve both sound resistance and sound resistance.
  • the average fiber diameter of the non-water-absorbent short fibers is, for example, 5 to 100 ⁇ m, preferably 10 to 80 ⁇ m, more preferably 15 to 50 ⁇ m, more preferably 20 to 40 ⁇ m, and most preferably 25 to 30 ⁇ m. If the fiber diameter is too small, it may be difficult to disperse uniformly, and conversely, if the fiber diameter is too large, the mechanical properties of the rubber composition may deteriorate.
  • the average fiber length of the non-water-absorbent short fibers is, for example, 0.3 to 30 mm, preferably 0.5 to 10 mm, more preferably 1 to 8 mm, more preferably 1.5 to 5 mm, and most preferably 2 to 4 mm. .. If the fiber length is too short, the mechanical strength of the rubber composition may decrease, and if it is too long, it may be difficult to disperse the rubber composition uniformly.
  • the average fiber diameter and the average fiber length of short fibers can be measured by a conventional method, and for example, an appropriate number of samples (for example, by image analysis of an electron micrograph including a transmission electron microscope and a scanning electron microscope) can be measured. It can be calculated by measuring 50 samples).
  • the orientation direction of the non-water-absorbent short fibers may be random or may be oriented in a predetermined direction, but it is preferably oriented in the belt width direction from the viewpoint of improving the durability of the belt.
  • the short fibers are oriented in the belt width direction
  • substantially parallel means that the short fibers and the belt width direction are substantially parallel. It means that the angle is within 30 °, preferably within 20 °, and more preferably within 10 ° (particularly within 5 °).
  • the rubber composition kneaded with a Banbury mixer or the like is rolled in a roll or a calendar to prepare an uncrosslinked rubber sheet, and the non-water-absorbent short fibers are oriented in a predetermined direction. You can use the method of making it.
  • the non-water-absorbent short fibers may be subjected to an adhesive treatment, if necessary, in order to improve the adhesiveness with the elastomer component (particularly, ethylene- ⁇ -olefin elastomer).
  • a conventional adhesive treatment can be used, for example, immersion in a resin-based treatment liquid in which an adhesive component (for example, an epoxy compound or an isocyanate compound) is dissolved in an organic solvent (toluene, xylene, methyl ethyl ketone, etc.).
  • an adhesive component for example, an epoxy compound or an isocyanate compound
  • an organic solvent toluene, xylene, methyl ethyl ketone, etc.
  • RTL solution resorcin-formalin-latex solution
  • rubber glue in which a rubber composition is dissolved in an organic solvent.
  • the ratio of the non-water-absorbent short fibers can be selected from the range of about 5 to 50 parts by mass with respect to 100 parts by mass of the elastomer component. From the viewpoint of compatibility, it is preferably 15 to 50 parts by mass, more preferably 20 to 40 parts by mass, more preferably 25 to 35 parts by mass, and most preferably 28 to 32 parts by mass. If the proportion of non-water-absorbent short fibers is too small, the transmission efficiency, sound resistance and reinforcing effect may decrease, and if it is too large, the transmission performance due to grip and workability will decrease, and the belt will have. There is a risk that cracks will easily occur and durability will decrease.
  • the rubber composition of the present invention is substantially free of water-absorbent fibers in order to improve the transmission efficiency, durability and sound resistance of the belt.
  • water-absorbent fiber examples include vinyl alcohol-based fiber (polyvinyl alcohol, ethylene-vinyl alcohol copolymer fiber, vinylon, etc.) and cellulose-based fiber [for plants, animals, bacteria, etc. such as pulp and cotton fiber. Derived cellulose fibers), cellulose derivative fibers (cellulose ester fibers, regenerated cellulose fibers such as rayon, etc.)] and the like.
  • the rubber composition of the present invention preferably does not substantially contain water-absorbing fibers (particularly cellulosic fibers), but from the viewpoint of highly improving the transmission efficiency, durability and sound resistance of the belt, it absorbs water. It is particularly preferable that it does not contain sex fibers (particularly cellulosic fibers).
  • the rubber composition of the present invention may further contain a conventional cross-linking agent (or vulcanizing agent) in addition to the elastomer component, PVP-based resin and non-water-absorbent short fibers.
  • a conventional cross-linking agent or vulcanizing agent
  • the cross-linking agent may be an organic peroxide or a sulfur-based vulcanizing agent.
  • organic peroxide examples include diacyl peroxide (dilauroyl peroxide, dibenzoyl peroxide, etc.), peroxyketal [1,1-di (t-butylperoxy) cyclohexane, and 2,2-di (t).
  • sulfur-based sulfurizing agent examples include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, and sulfur chloride (sulfur monochloride, sulfur dichloride, etc.).
  • cross-linking agents can be used alone or in combination of two or more. Of these, a cross-linking agent containing an organic peroxide is preferable.
  • the ratio of the vulcanizing agent or the cross-linking agent is, for example, 0.1 to 30 parts by mass, preferably 1 to 20 parts by mass, and more preferably 3 to 10 parts by mass with respect to 100 parts by mass of the elastomer component. It is by mass, most preferably 4 to 6 parts by mass.
  • the rubber composition of the present invention may further contain a reinforcing agent in addition to the elastomer component, PVP-based resin and non-water-absorbent short fibers.
  • a reinforcing agent examples include carbon black, silica, clay, calcium carbonate, talc, mica and the like. These reinforcing agents can be used alone or in combination of two or more. Of these, carbon black and silica are preferable, and carbon black is particularly preferable.
  • the ratio of the reinforcing agent is, for example, 10 to 200 parts by mass, preferably 20 to 150 parts by mass, more preferably 30 to 100 parts by mass, and most preferably 50 to 80 parts by mass with respect to 100 parts by mass of the elastomer component.
  • the rubber composition of the present invention may further contain a conventional additive used as a rubber compounding agent.
  • Conventional additives include, for example, co-crosslinking agents (such as bismaleimides), vulcanization aids or vulcanization accelerators (such as thiuram-based accelerators), vulcanization retarders, and metal oxides (zinc oxide, magnesium oxide).
  • Calcium oxide calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, aluminum oxide, etc.
  • softeners such as paraffin oil and oils such as naphthenic oil
  • processing agents or processing aids stearic acid, stearic acid, etc.
  • Metal salts waxes, paraffins, fatty acid amides, etc.
  • silane coupling agents anti-aging agents (antioxidants, heat anti-aging agents, bending crack inhibitors, ozone deterioration inhibitors, etc.), coloring agents, tackifiers, Examples include stabilizers (ultraviolet absorbers, heat stabilizers, etc.), flame retardants, antistatic agents, and the like. These additives can be used alone or in combination of two or more.
  • the metal oxide may act as a cross-linking agent.
  • the total ratio of the conventional additives is, for example, 5 to 50 parts by mass, preferably 10 to 30 parts by mass, and more preferably 15 to 25 parts by mass with respect to 100 parts by mass of the elastomer component.
  • the method for preparing the rubber composition of the present invention can be prepared by mixing (or kneading) each component by a conventional method, but in order to mix uniformly, an elastomer component, a PVP-based resin, and a non-water-absorbing short fiber It is preferable to knead the above under heating.
  • the heating temperature is, for example, 120 ° C. or lower, preferably 50 to 120 ° C., more preferably 60 to 100 ° C., and more preferably 70 to 90 ° C. If the heating temperature is too high, the elastomeric components may crosslink.
  • the cured product (crosslinked product) of the rubber composition of the present invention is excellent in ⁇ -V characteristics (coefficient of friction-slope of slip velocity curve) after heat aging, and is a cured product after heat aging at 150 ° C. for 720 hours.
  • the ⁇ -V characteristic of is, for example, 0 to -0.1, preferably -0.01 to -0.095, more preferably -0.03 to -0.09, and most preferably -0.05 to -0. It is 0.085. If the ⁇ V characteristic is too small (the slope of the graph is too large), the sound resistance of the belt may decrease.
  • the ⁇ V characteristic can be measured by the method described in Examples described later.
  • the cured product (crosslinked product) of the rubber composition of the present invention has a low internal loss tangent (tan ⁇ ), for example, 0.08 to 0.17, preferably 0.09 to 0.165, and more preferably 0.1. It is ⁇ 0.16, more preferably 0.11 to 0.15, and most preferably 0.12 to 0.14. If tan ⁇ is too high, internal heat generation becomes large, and energy loss (transmission loss) may increase.
  • tan ⁇ internal loss tangent
  • the loss tangent (tan ⁇ ) can be measured by the method described in Examples described later, and in the cured product in which the short fibers are arranged in a predetermined direction, the loss tangent (tan ⁇ ) is perpendicular to the arrangement direction (columnar direction) of the short fibers. Measure the loss tangent in the direction (opposite direction).
  • the cured product of the rubber composition of the present invention can be used as various molded bodies because it has excellent grip resistance and durability, but it can withstand sound while maintaining belt performance such as transmission efficiency and durability of the friction transmission belt. It is preferable to use it as a rubber layer for forming the friction transmission surface (contact surface with the pulley) of the friction transmission belt because the property can be improved.
  • Examples of the friction transmission belt include flat belts; V-belts such as wrapped V-belts, low-edge V-belts, low-edge cogged V-belts, and V-ribbed belts.
  • V-belts such as wrapped V-belts, low-edge V-belts, low-edge cogged V-belts, and V-ribbed belts.
  • V-ribbed belts used in applications that require fuel efficiency such as auxiliary drive systems for automobile engines, and low-edge V-belts used in continuously variable transmissions for motorcycles (including low-edge cogged V-belts).
  • a V-ribbed belt used in an auxiliary drive system of an automobile engine is particularly preferable because a high degree of durability and sound resistance are required.
  • the rubber composition of the present invention may form a compressed rubber layer (inner surface rubber layer) and / or an extension layer (back surface rubber layer).
  • the friction transmission belt in which the extension layer is the back rubber layer include a V-ribbed belt that runs in a back drive layout in which the back surface of the belt contacts the pulley.
  • a friction transmission belt in which at least the compressed rubber layer is formed of the rubber composition of the present invention is preferable.
  • the friction transmission belt can be manufactured by a conventional method according to the type of belt.
  • EPDM1 "Nordel® IP3640” manufactured by The Dow Chemical Company, Mooney viscosity (125 ° C.) ⁇ 40, ethylene content 55% by mass, diene content 1.8% by mass
  • EPDM2 "EPT4045M” manufactured by Mitsui Chemicals, Inc., Mooney viscosity (125 ° C) ⁇ 45, ethylene content 51% by mass, diene content 7.6% by mass
  • Nylon short fiber average fiber diameter 27 ⁇ m, average fiber length 3 mm (nylon 66 short fiber)
  • Polyester short fibers average fiber diameter 25 ⁇ m, average fiber length 3 mm (PET short fibers)
  • Aramid short fibers Average fiber diameter 15 ⁇ m, average fiber length 8 mm (meth aramid short fibers)
  • Short cotton fiber Average fiber length 6 mm
  • Polyvinylpyrrolidone 1 “Polyvinylpyrrolidone K-30” manufactured by Nippon Shokubai Co., Ltd., K value 27.0 to 33.
  • Silica "Ultrasil VN3" manufactured by Evonik Industries AG, BET specific surface area 180m 2 / g
  • Paraffin oil "Diana (registered trademark) PW-90" manufactured by Idemitsu Kosan Co., Ltd. (paraffin-based process oil)
  • Zinc oxide “2 types of zinc oxide” manufactured by HakusuiTech Co., Ltd.
  • Stearic acid “Tsubaki stearic acid” manufactured by NOF CORPORATION
  • Anti-aging agent 1 Benzimidazole-based anti-aging agent, "Nocrack MB” manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
  • Anti-aging agent 2 Diphenylamine-based anti-aging agent, "Nocrack AD-F” manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
  • Co-crosslinking agent "Barnock PM” manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
  • Organic peroxide "Perbutyl P-40MB” manufactured by NOF CORPORATION Sulfur: Manufactured by Bigen Kagaku Co., Ltd.
  • Vulcanization accelerator Manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
  • Carbon black dispersion "Aqua-Black162" manufactured by Tokai Carbon Co., Ltd.
  • Cotton woven fabric Cotton yarn 20s / 2, warp yarn 70 / 5cm, weft yarn 70 / 5cm
  • Plain weave fabric Core wire 1,000 denier PET fiber with 2x3 twist configuration, top twist coefficient 3.0, Twisted yarn cord with a total denier 6,000 cord twisted with a lower twist coefficient of 3.0, with a core wire diameter of 1.0 mm.
  • Examples 1 to 11 and Comparative Examples 1 to 13 [Compressed rubber layer]
  • the rubber composition for the compressed rubber layer having the formulations shown in Tables 3 to 6 is kneaded at 140 ° C. using a Banbury mixer and rolled with a calendar roll. A sheet rolled to a predetermined thickness was used.
  • the adhesive rubber layer sheet was obtained by kneading the adhesive rubber layer rubber composition having the composition shown in Table 1 using a Banbury mixer and rolling it to a predetermined thickness with a calendar roll.
  • untreated cotton woven fabric plain weave of cotton yarn 20s / 2, warp yarn 70 yarns / 5 cm, weft yarn 70 yarns / 5 cm
  • RFL liquid latex
  • Resolsin and formalin soaked in the stretch layer composition (black dyeing solution) shown in Table 2 for 10 seconds, treated with a tenter at a wide angle of 120 °, and heat-treated at 150 ° C for 4 minutes. There was.
  • a disk-shaped test piece having a diameter of 8 mm and a thickness of 2 mm was collected from a crosslinked rubber sheet, and the friction force was measured using a pin-on-disk friction coefficient measuring device to calculate the friction coefficient. .. Specifically, the test piece is pressed against a mating material (SUS304) having a surface roughness Ra of 0.8 ⁇ m at a load of 2.192 kgf / cm 2 , and the test piece is sprinkled with water only when measuring at a water volume of 30 ml / min.
  • SUS304 mating material
  • the frictional force was measured at a frictional speed of 0 to 2.0 m / sec, and the slope of the curve of the friction coefficient with respect to the frictional speed (sliding speed with respect to the mating material) was calculated by the least squares method.
  • this inclination represents the change of the friction coefficient with respect to the slip speed.
  • pin-on disc friction coefficient measuring device a "pin-on disc friction tester” manufactured by Yonekura Seisakusho Co., Ltd. was used.
  • a method AA-2 forced circulation type heat aging tester crosswind type was used.
  • Dynamic strain 0.2% that is, while applying ⁇ 0.2% strain in the longitudinal direction with the initial strain 1.0% as the center position or the reference position, 70 at a heating rate of 1 ° C./min.
  • the elastic modulus (E') and loss tangent (tan ⁇ ) at ° C. were determined.
  • a cotton woven cloth for forming an stretch layer is wrapped around the outer circumference of a cylindrical molding mold having a smooth surface, and twisted cords serving as core wires are spirally spun around the outer circumference of the cotton woven cloth at predetermined intervals. Further, an uncrosslinked adhesive rubber layer sheet and a compressed rubber layer sheet were wound around the outer periphery in this order to form an uncrosslinked molded body. Then, with the outer periphery of the uncrosslinked molded product covered with a vulcanization jacket, the molded mold equipped with the uncrosslinked molded product is housed in a cross-linking device (so-called vulcanization can) under predetermined heating and pressurizing conditions.
  • a cross-linking device so-called vulcanization can
  • the mold was removed from the molding mold to obtain a tubular cross-linked sleeve. Then, after grinding the outer surface of the cross-linked sleeve with a grinding wheel to form a predetermined V-rib portion, the cross-linked sleeve is cut with a predetermined width in the longitudinal direction of the belt using a cutter blade, and the V-ribbed belt of 3PK1100 ( Number of ribs: 3, circumference length: 1100 mm, belt type: K type, belt thickness: 4.3 mm, rib height: about 2 mm, rib pitch: 3.56 mm), 6PK1100 V-ribbed belt (number of ribs: 6, circumference) Length: 1100 mm, belt type: K type, belt thickness: 4.3 mm, rib height: about 2 mm, rib pitch: 3.56 mm).
  • 3PK1100 Number of ribs: 3, circumference length: 1100 mm, belt type: K type, belt thickness: 4.3 mm, rib height: about 2 mm
  • the sound limit angle test includes a drive pulley (Dr.) with a diameter of 101 mm, an idler pulley (IDL1) with a diameter of 70 mm, a misalignment pulley (W / P) with a diameter of 120 mm, and an idler pulley with a diameter of 70 mm (Dr.).
  • IDL2 a tension pulley (Ten) having a diameter of 61 mm, and an idler pulley (IDL3) having a diameter of 70 mm were arranged in this order using a testing machine having the layout shown in FIG.
  • the axis separation (span length) of the idler pulley (IDL1) and the misalignment pulley was set to 135 mm, and all the pulleys were adjusted to be located on the same plane (misalignment angle 0 °).
  • a 6PK1100 V-ribbed belt is suspended on each pulley of the testing machine, and tension is applied so that the rotation speed of the drive pulley is 1000 rpm and the belt tension is 50 N / Rib (rib) under normal temperature conditions.
  • 5 ml of water is periodically (at intervals of about 30 seconds) 5 ml of water is injected into the friction transmission surface of the V-ribbed belt near the outlet, and the belt is run by misalignment (shifting the misalignment pulley toward each pulley).
  • the angle (sound limit angle) when the sound of (near the entrance of the misalignment pulley) occurs was calculated.
  • the larger the pronunciation limit angle the better the pronunciation resistance.
  • the belt comes off the pulley at around 3 ° (that is, the ribs are displaced), and the power is not transmitted normally.
  • the evaluation of the belt after running is as follows: a drive pulley (Dr.) with an outer diameter of 120 mm, an idler pulley (IDL) with an outer diameter of 85 mm, a driven pulley (Dn.) With an outer diameter of 120 mm, and a tension pulley (Ten.) With an outer diameter of 45 mm.
  • the belts were used after being run by the running tester having the layout shown in FIG. A 6PK1100 V-ribbed belt was hung on each pulley of the testing machine, and the belt was adjusted so that the winding angle of the belt around the idler pulley was 120 °, the winding angle of the belt around the tension pulley was 90 °, and the belt tension was 395N.
  • a sound limit angle test was performed on a belt that had been run for 200 hours with the rotation speed of the drive pulley set to 4900 rpm (the direction of rotation is the direction of the arrow in the figure), the load of the driven pulley set to 8.8 kW, and the atmospheric temperature set to 140 ° C.
  • FIG. 4 shows a drive pulley (Dr.) having an outer diameter of 120 mm, an idler pulley (IDL) having an outer diameter of 85 mm, a driven pulley (Dn.) With an outer diameter of 120 mm, and a tension pulley (Ten.) With an outer diameter of 45 mm arranged in this order.
  • Dr. drive pulley
  • IDL idler pulley
  • Dn. driven pulley
  • Ten. tension pulley
  • the rotation speed of the drive pulley was 4900 rpm (the direction of rotation is the direction of the arrow in the figure), the belt tension was 40 kgf / 3 ribs, the atmosphere temperature was 120 ° C., and the driven pulley was given a load of 12 PS to run for up to 400 hours. .. If an abnormality such as a crack occurred in the rubber layer of the belt before reaching 400 hours, the running was stopped by judging that time as the life. When no failure or abnormality occurred that would reach the end of the running life even after completing 400 hours, the belt was judged to have a running life of 400 hours or more, and was judged to be a belt having excellent crack resistance.
  • the difference from the driven torque was calculated as the torque cross.
  • the torque cloth obtained by this measurement includes not only the torque cloth caused by the V-ribbed belt but also the torque cloth caused by the bearing of the testing machine. Therefore, a metal belt (material: maraging steel) in which the torque cloth as a belt is considered to be substantially 0 is run in advance, and the difference between the driving torque and the driven torque is obtained as the torque cloth (bearing loss) caused by the bearing. Then, the value obtained by subtracting the torcross (bearing loss) caused by the bearing from the torcross (torcross caused by the belt and the bearing) calculated by running the V-ribbed belt was obtained as the torcross caused by the belt alone.
  • a metal belt material: maraging steel
  • the above-mentioned torcross (bearing loss) is the torcross when the metal belt is run at a predetermined initial tension (for example, when the V-ribbed belt is run at an initial tension of 500 N / one belt, the metal belt is run at this initial tension.
  • the bearing loss will be the bearing loss when it is made to work).
  • Tables 3 to 6 show the evaluation results of Examples and Comparative Examples.
  • Example 1 the effect can be obtained even with a small amount of the pronunciation resistance improving agent (5 parts by mass), whereas in Comparative Examples 2 and 3, the sound resistance improving agent is used in a small amount (5 parts by mass) in Comparative Example 2. Is inferior in that the effect is small.
  • Example 2 In Example 1, the sound resistance effect is maintained even in the state of running and heat aging, but in Comparative Examples 2 and 3, the effect is greatly attenuated in the state of running and heat aging. Lack of sustainability.
  • Comparative Example 4 in which polyvinyl alcohol particles were added as a sound resistance improving agent in the configuration of Example 1, a tendency similar to that in Example 1 was observed, but in the durability running test, a crack occurred in the rubber layer of the belt. The crack resistance was inferior to that of Example 1 in that the life was reached before reaching 400 hours.
  • Example 3 has a larger elastic property as an index of mechanical strength.
  • the sound resistance of the belt was superior in Example 1 both when it was dry and when it was exposed to water.
  • Comparative Example 1 using nylon short fibers and Comparative Example 6 using aramid short fibers in a composition containing no PVP the pronunciation resistance of Comparative Example 6 was higher than that of Comparative Example 1. Is inferior, and it can be said that it is the effect of the short fibers themselves. From these results, it was found that nylon short fibers are superior to aramid short fibers in terms of sound resistance.
  • Example 1 in which PVP was added to the composition of Comparative Example 1, the pronunciation resistance was improved to a high level, whereas in the composition of Comparative Example 6, PVP was added.
  • Example 3 in which the above was added, the pronunciation resistance was not improved to a high level. Therefore, it can be said that the aramid short fiber does not have the effect of being used in combination with PVP as much as the nylon short fiber, and by combining the PVP and the nylon short fiber, the belt performance and the sound resistance can be highly compatible.
  • Comparative Examples 7 to 12 are examples in which cotton short fibers (water-absorbent short fibers), which have been commonly used as measures against sound resistance when exposed to water, are used as short fibers. Is.
  • Comparative Example 7 showed an example in which a pronunciation resistance improving agent was not added
  • Comparative Examples 10 to 11 showed an example in which a surfactant was used as a pronunciation resistance improving agent.
  • Comparative Examples 7 to 11 using the cotton short fibers all exhibit the effect of sound resistance when exposed to water at a high level.
  • Examples 1 and 2 using PVP even if the amount added is small (5 parts by mass), the effect of pronunciation resistance is exhibited at the same high level. That is, if PVP and a specific non-water-absorbent fiber are used in combination, it can be said that water absorption by the cotton short fiber is unnecessary. Rather, it can be said that it is preferable not to use cotton in Comparative Examples 7 to 11 in that the durable life (crack resistance) is hindered by the cotton short fibers as compared with Examples 1 and 2.
  • Comparative Example 12 10 parts by mass of nylon short fibers and 15 parts by mass of cotton short fibers are used in combination.
  • Comparative Example 12 since aramid fiber is blended with the cellulosic fiber in EPDM, Comparative Example 12 in which the water-absorbent fiber and the non-water-absorbent fiber are combined is the example of Patent Document 6.
  • Comparative Example 12 showed a tendency similar to that of Example 1 in most of the items, but in the endurance running test, the life was reached before the rubber layer of the belt was cracked and reached 400 hours. Therefore, in the combination of the cellulosic fiber and the aramid short fiber, the durable life (crack resistance) is inhibited by the cotton short fiber, and it can be said that it is preferable that the water-absorbent fiber is not contained.
  • polyvinylpyrrolidone 2 (Example 4) having a K value of 88.0 to 96.0 was compared with polyvinylpyrrolidone 1 (K value 27.0 to 33.0) in Example 1.
  • polyvinylpyrrolidone 3 (Example 5) having a K value of 22.5 to 27.0 was used, the same effect as that of Example 1 was obtained.
  • Example 6 (1 part by mass) in which the ratio of PVP was reduced
  • Example 7 (15 parts by mass) in which the ratio of PVP was increased
  • Example 8 (20 parts by mass)
  • Example 9 25
  • Mass part was compared.
  • Example 1 the effects of using PVP as a sound resistance improving agent and non-water-absorbing short fibers as short fibers in combination include transmission performance due to grip force (magnitude of friction coefficient) and ⁇ -V characteristics (increase in sliding speed). (Change in ⁇ due to), internal heat generation and elastic characteristics are well balanced, and as a result, the belt performance is also related to sound resistance and transmission performance when exposed to water, transmission efficiency (torcross), and durable life (crack resistance). All of them have a high standard.
  • Example 6 in which the amount of PVP was reduced, the pronunciation resistance was lowered due to the influence of the lowered ⁇ V characteristic, but the balance of each characteristic was excellent and there was no problem in practical use. Met.
  • Example 7 15 parts by mass
  • Example 8 (20 parts by mass) in which the amount of PVP was increased
  • the grip force tended to be slightly lower and the internal heat generation tended to be slightly larger than in Example 1.
  • the result was that the balance of each characteristic was excellent as in Example 1.
  • Example 9 25 parts by mass in which the amount was further increased, although the sound resistance was excellent, the internal heat generation was slightly increased and the transmission efficiency (torcross) was slightly lowered as compared with the other examples. From these results, it can be said that the ratio of PVP is preferably 1 to 20 parts by mass from the viewpoint of the balance of each characteristic.
  • the rubber composition of the present invention can be used as various molded bodies, and in particular, it can be preferably used as a friction transmission belt such as a flat belt; a wrapped V-belt, a low-edge V-belt, a low-edge cogged V-belt, and a V-ribbed belt.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、エラストマー成分、ポリビニルピロリドン系樹脂および非吸水性短繊維を含み、かつ吸水性繊維を実質的に含まないゴム組成物に関する。前記エラストマー成分がエチレン-α-オレフィンエラストマーを含んでもよい。前記ポリビニルピロリドン系樹脂のK値が10~100であってもよい。

Description

ゴム組成物および摩擦伝動ベルト
 本発明は、自動車エンジン補機駆動などに用いられる摩擦伝動ベルト(特に、Vリブドベルト)の伝動面を形成するためのゴム組成物および摩擦伝動ベルトに関し、詳しくは、伝達能力や省燃費性などのベルト性能を維持しつつ、摩擦伝動面の摩擦状態を安定化して耐発音性を向上できる摩擦伝動ベルトの伝動面を形成するためのゴム組成物および摩擦伝動ベルトに関する。
 ゴム工業分野のなかでも、特に自動車用部品においては高機能、高性能化が望まれている。このような自動車用部品に用いられるゴム製品の一つとして摩擦伝動ベルトがあり、この摩擦伝動ベルトは、例えば、自動車のエアーコンプレッサーやオルタネータなどの補機駆動の動力伝達に広く用いられている。この種のベルトとしては、リブをベルト長手方向に沿って設けたVリブドベルトが知られているが、Vリブドベルトには、伝達能力や省燃費性などのベルト性能に加えて、耐発音性が要求される。
 自動車エンジン等の補機駆動システムにおける耐発音性に関しては、プーリに接するベルト表面(プーリ係合面)の摩擦係数を小さくして、プーリのミスアライメント(軸ずれ)発生時に生じ易い騒音や、スティック-スリップ現象による騒音の改善が課題となっている。
 スティック-スリップ現象とは、摩擦面間に生ずる微視的な摩擦面の付着や、滑りの繰り返しによって引き起こされる自励振動のことで、摩擦係数が滑り速度の増加とともに低下する場合や、静摩擦から動摩擦に移るときの不連続な摩擦低下が生ずる場合などに発生するものである。摩擦伝動ベルトにおいても、プーリと摩擦する伝動面の摩擦係数が高い(特に粘着性が高い)場合は、ベルトとプーリとの摩擦間にて、付着(スティック)と滑り(スリップ)とを繰り返すスティック-スリップ現象(振動)が生じ、付着から滑りへ移行する段階で異音(鳴き音)が生じる。
 さらに、被水時での走行における、スティック-スリップ音の発生も問題となっている。詳しくは、摩擦伝動面の濡れ性が低く、ベルトとプーリ間の水の浸入状態が均一でないと、水が浸入していない箇所(乾燥状態)では摩擦係数が高く、水が浸入した箇所(被水状態)では、部分的に摩擦係数が著しく低下して、摩擦状態が不安定になり、スティック-スリップ音が発生する。
 これまでに、摩擦伝動面を形成するゴム組成物の配合設計の観点で、被水時の耐発音性を向上(スティック-スリップによる異音を低減)させる処方が提案されている。
 特許文献1には、少なくとも摩擦伝動面が、エチレン・α-オレフィンエラストマー100質量部に対して、界面活性剤を1~25質量部配合したゴム組成物で構成された摩擦伝動ベルトが開示されている。
 特許文献2には、少なくとも摩擦伝動面が、エチレン・α-オレフィンエラストマー100重量部に対して、溶解度指数が8.3~10.7(cal/cm1/2の可塑剤を10~25重量部配合したゴム組成物で構成された摩擦伝動ベルトが開示されている。
 特許文献3には、少なくとも摩擦伝動面の一部が、ゴム100質量部に対して、融点または軟化点が80℃以下の水溶性高分子を5~50質量部含有するゴム組成物で構成される摩擦伝動ベルトが開示されている。前記水溶性高分子としては、ポリエチレンオキサイドが使用されている。
 特許文献4には、ポリマー成分およびポリビニルアルコール系樹脂粒子を含有するゴム組成物で形成された圧縮層を含む摩擦伝動ベルトが開示されている。特許文献5には、伝動面の表面にポリビニルアルコール系樹脂粒子およびポリマー成分を含むゴム組成物で形成された表層が積層されている摩擦伝動ベルトが開示されている。
 特許文献6には、エチレン-α-オレフィンエラストマー、ポリビニルピロリドン、セルロース系繊維、加硫剤から成るゴム組成物が開示されている。
日本国特開2008-185162号公報 日本国特開2007-232205号公報 日本国特開2008-157445号公報 日本国特開2016-090051号公報 日本国特開2016-121806号公報 日本国特表2018-527430号公報
 特許文献1および2の界面活性剤や可塑剤を配合した摩擦伝動ベルトにおいては、摩擦伝動面に滲出した界面活性剤や可塑剤によって、摩擦伝動面を形成するゴム(エチレン-α-オレフィンエラストマー)と水との親和性を高めることができ、ベルトとプーリ間の摩擦状態を安定化させ、被水時の耐発音性を向上(スティック-スリップによる異音を低減)できる。
 しかし、その一方で、ゴム中の界面活性剤や可塑剤の挙動が不安定であるためか、内部発熱によるエネルギー損失(tanδ)が増大して伝達ロス(トルクロス)が大きくなる欠点がある。さらに、界面活性剤や可塑剤は耐熱性に欠けるため、走行中に摩擦伝動面から消失しやすく、持続的な効果は望めない。特に、親水性に富む界面活性剤を用いると、被水時には界面活性剤が溶解して流失しやすいことでも、持続的な効果が望めない。
 また、特許文献3の水溶性高分子でも、ベルトの加硫時に溶融するため、圧縮ゴム層全体に分散するものの、溶融した水溶性高分子がゴムの架橋を阻害するためか、内部発熱によるエネルギー損失(tanδ)が増大して伝達ロス(トルクロス)が大きくなる。
 特許文献4および5のポリビニルアルコール系樹脂粒子の場合は、内部発熱によるエネルギー損失(tanδ)が増大せず伝達ロス(トルクロス)が大きくならないまま、被水時の耐発音性を向上できる。しかし、ポリビニルアルコール系樹脂粒子は、他の配合剤と比べて、粒子径が大きい(小さいものでも平均粒径41μm)ため、耐亀裂性が低下する。
 特許文献6では、環境にやさしいセルロース系繊維とポリビニルピロリドン(PVP)の配合系において、極性を有するPVPがセルロース系繊維と無極性ゴム間の適合性を向上するため、弾性率、引張強さが向上することが示されている。しかし、特許文献6には、ベルトの耐発音性への効果や、伝達効率や耐久性などのベルト性能については言及されていない。
 従って、本発明の目的は、摩擦伝動ベルトの伝達効率や耐久性などのベルト性能を維持しつつ、耐発音性を向上できるゴム組成物およびゴム組成物で形成された摩擦伝動面を有する摩擦伝動ベルトを提供することにある。
 本発明者らは、前記課題を達成するため鋭意検討の結果、吸水性繊維を実質的に含むことなく、エラストマー成分とポリビニルピロリドン系樹脂と非吸水性短繊維とを組み合わせることにより、摩擦伝動ベルトの伝達効率や耐久性などのベルト性能を維持しつつ、耐発音性を向上できることを見出し、本発明を完成した。
 すなわち、本発明のゴム組成物は、エラストマー成分、ポリビニルピロリドン系樹脂および非吸水性短繊維を含み、かつ吸水性繊維を実質的に含まない。前記エラストマー成分はエチレン-α-オレフィンエラストマーを含んでもよい。前記ポリビニルピロリドン系樹脂のK値は10~100であってもよい。前記非吸水性短繊維は脂肪族ポリアミド短繊維を含んでもよい。前記ポリビニルピロリドン系樹脂の割合は前記エラストマー成分100質量部に対して1~20質量部であってもよい。前記ポリビニルピロリドン系樹脂の割合は前記非吸水性短繊維100質量部に対して3~100質量部であってもよい。前記非吸水性短繊維の割合は、前記エラストマー成分100質量部に対して15~50質量部であってもよい。前記ゴム組成物は、セルロース系繊維を含まないのが好ましい。
 本発明には、前記ゴム組成物の硬化物で形成された摩擦伝動面を有する摩擦伝動ベルトも含まれる。
 本発明では、エラストマー成分とポリビニルピロリドン系樹脂と非吸水性短繊維とを組み合わせているため、摩擦伝動ベルトの伝達効率や耐久性などのベルト性能を維持しつつ、耐発音性を向上できる。特に、ポリビニルピロリドン系樹脂に対して、短繊維として非吸水性短繊維を組み合わせることにより、被水時の耐発音性も向上できる。
図1は、実施例で得られたベルトのミスアライメント発音試験のレイアウトを示す概略図である。 図2は、図1の試験機での走行後のベルトについてのミスアライメント発音試験のレイアウトを示す概略図である。 図3は、実施例で得られたベルトの伝達性能試験のレイアウトを示す概略図である。 図4は、実施例で得られたベルトの耐久走行試験のレイアウトを示す概略図である。 図5は、実施例で得られたVリブドベルトの伝達ロスを測定するための二軸走行試験のレイアウトを示す概略図である。
 [ゴム組成物の特性]
 本発明のゴム組成物は、エラストマー成分に対して、ポリビニルピロリドン系樹脂と非吸水性短繊維との組み合わせを配合することによって前述のような効果を奏する。特に、ポリビニルピロリドン系樹脂に対して、短繊維として非吸水性短繊維を組み合わせているにも拘わらず、被水時の耐発音性も向上できた効果は、本発明者等にとって意外な効果であり、そのメカニズムの詳細は不明であるものの、事後的に分析すると以下のように推定できる。
 まず、被水時の発音は、ベルトとプーリとの間に水が浸入した場合に、プーリとの接触面において、水が浸入していない箇所(乾燥状態)では摩擦係数が高いままで、水が浸入した箇所(被水状態)だけ部分的に摩擦係数が著しく低下すること、すなわち、プーリとの接触面に乾燥状態と被水状態とが混在することが原因で生じる。この現象は、従来から、被水走行における滑り速度(V)と摩擦係数(μ)との関係(μ-V特性)の測定が指標とされており、滑り速度の増加とともに摩擦係数が低下する場合に、スティック-スリップ音が生じる。
 そのため、当業者の間では、耐発音性として、被水時でもプーリとの接触面に乾燥状態と被水状態とが混在しない状態にすることを目指し、プーリとの接触面全体に対して、親水性を高めて濡れ性を向上させる(全体を濡れた状態にする)という方法が用いられている。接触面全体を被水状態にすることで表面の摩擦状態が安定し、μ-V特性(摩擦係数-滑り速度曲線の傾きであり、被水時の滑り速度Vに対する摩擦係数μの変化)において、滑り速度を増加しても摩擦係数が低下しない状態になり、発音を抑制することが目的である。従来の耐発音性向上剤(可塑剤、界面活性剤、水溶性高分子など)は、このような思想に基づき、プーリとの接触面全体の親水性を高めて濡れ性(全体を濡れた状態にする)を向上することで、滑り速度の変化に対する摩擦係数μの変化を小さくするための処方といえる。
 例えば、液状の可塑剤や界面活性剤の場合は、ゴム層の内部からプーリとの接触面にブリードして存在し、被水すると接触面全体に均一な水膜を形成し、滑り速度が増加しても摩擦係数μの低下が抑制され、耐発音性向上の効果が得られる。しかし、この状態は、下記(1)~(3)の欠点を有している。
 (1)摩擦係数μ自体が下がることでグリップ力が低下し、伝達性能が低下(スリップロス増加)する
 (2)液状であるため、接触面への供給や放散の影響で、接触面での機能の持続性に限りがある
 (3)可塑剤や界面活性剤の添加は、ゴムの物性(弾性率)の低下、内部発熱の増加(トルクロスの増加)が生じる。
 一方、固体の水溶性高分子の場合は、粒子として接触面に存在し、被水して少しずつ溶解することで均一な水膜を形成する。そのため、可塑剤や界面活性剤のような上記欠点は生じない。
 しかし、固体の水溶性高分子の中では、ポリビニルアルコール(PVA)系樹脂は、粒子径が大きいため、長期的に使用すると、溶出したPVA部分が窪みとなって欠陥が生じたり、ゴム層とPVA粒子との界面から亀裂が発生しやすくなるという欠点を有している。
 これに対して、ポリビニルピロリドン(PVP)系樹脂は、PVAよりも粒子径が小さいため、上記(1)~(3)の欠点の改善に加えて、さらに耐亀裂性も改善できる。
 さらに、プーリとの接触面を形成するゴム層において、被水時の耐発音性の観点からこのようなPVPなどの水溶性高分子と組み合わせる短繊維としては、従来は、特許文献6のように、綿(セルロース系)などの吸水性繊維(短繊維や布)と組み合わせるのが技術常識であった。その理由は、被水した際に、上述の耐発音性向上剤で親水化した接触面に形成した水膜から、水を吸収して除去する機能を付与するという思想に拠っていた。しかし、本発明者等が検証したところ、PVP系樹脂に対して、吸水性繊維ではなく、非吸水性短繊維を組み合わせた方が、伝達効率や耐久性などのベルト性能と耐発音性とを両立でき、特に、非吸水性短繊維として、脂肪族ポリアミド短繊維やポリアルキレンアリレート短繊維などの機械的強度と耐発音性とのバランスに優れた短繊維を選択することにより、ベルト性能と耐発音性とを高度に両立できることが判明した。例えば、後述する実施例にも記載したように、綿短繊維を用いた比較例8~9と、綿短繊維を用いずに、ナイロン短繊維またはポリエチレンテレフタレート(PET)短繊維を用いた実施例1~2および7とでは、耐発音性に大差がないことが判明した。その理由としては、実施例1~2および7ではPVPと非吸水性短繊維との組み合わせによって十分な吸水効果が発揮されているためであると推定できる。これに対して、比較例8~9では吸水性短繊維によって耐久寿命(耐亀裂)が短くなっており、吸水性短繊維が耐亀裂性を阻害していると推定できる。この原因は、セルロース系繊維自体の機械的強度が不足するうえに、吸水することでより機械的強度の不足が助長されると推定できる。これに対して、本発明では、PVP系樹脂に対して、非吸水性短繊維(特に、機械的特性と耐発音性とのバランスに優れるナイロン短繊維)を組み合わせることによって、前記効果、すなわち詳細には下記(1)~(5)の効果を発現できる。
 (1)被水時の耐発音性(滑り速度が増加しても摩擦係数が低下しにくい)
 (2)耐発音効果の持続性(効果が長時間持続される)
 (3)高いグリップ性、すなわち高い伝達性能を維持できる(スリップロスが少ない)
 (4)ゴムの物性(弾性率)低下、内部発熱の増加(トルクロスの増加)が生じない
 (5)耐亀裂性に優れ、耐久寿命が長い。
 [エラストマー成分]
 本発明のゴム組成物(硬化性ゴム組成物)は、エラストマー成分を含む。エラストマー成分としては、加硫または架橋可能なゴムを用いてもよく、例えば、ジエン系ゴム[天然ゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(ニトリルゴム)、水素化ニトリルゴムなど]、エチレン-α-オレフィンエラストマー、クロロスルホン化ポリエチレンゴム、アルキル化クロロスルホン化ポリエチレンゴム、エピクロロヒドリンゴム、アクリル系ゴム、シリコーンゴム、ウレタンゴム、フッ素ゴムなどが挙げられる。これらのエラストマー成分は、単独でまたは二種以上組み合わせて使用できる。これらのうち、耐オゾン性、耐熱性、耐寒性、耐候性に優れ、ベルト重量を低減できる点から、エチレン-α-オレフィンエラストマーが好ましい。
 エチレン-α-オレフィンエラストマーは、構成単位として、エチレン単位、α-オレフィン単位を含んでいればよく、ジエン単位をさらに含んでいてもよい。そのため、エチレン-α-オレフィンエラストマーには、エチレン-α-オレフィン共重合体ゴム、エチレン-α-オレフィン-ジエン三元共重合体ゴムなどが含まれる。
 α-オレフィン単位を形成するためのα-オレフィンとしては、例えば、プロピレン、ブテン、ペンテン、メチルペンテン、ヘキセン、オクテンなどの鎖状α-C3-12オレフィンなどが挙げられる。これらのα-オレフィンのうち、プロピレンなどのα-C3-4オレフィン(特にプロピレン)が好ましい。
 ジエン単位を形成するためのジエンモノマーとしては、通常、非共役ジエン系単量体が利用される。非共役ジエン系単量体としては、例えば、ジシクロペンタジエン、メチレンノルボルネン、エチリデンノルボルネン、1,4-ヘキサジエン、シクロオクタジエンなどが例示できる。これらのジエンモノマーのうち、エチリデンノルボルネン、1,4-ヘキサジエン(特に、エチリデンノルボルネン)が好ましい。
 代表的なエチレン-α-オレフィンエラストマーとしては、例えば、エチレン-プロピレン共重合体(EPM)、エチレン-プロピレン-ジエン三元共重合体(EPDM)などが挙げられる。
 これらのエチレン-α-オレフィンエラストマーは、単独でまたは二種以上組み合わせて使用できる。これらのうち、ジエン単位による架橋効率に優れる点から、エチレン-α-オレフィン-ジエン三元共重合体ゴムが好ましく、エチレン-プロピレン-ジエン共重合体(EPDM)が特に好ましい。
 エチレン-プロピレン-ジエン三元共重合体において、エチレンとプロピレンとの割合(質量比)は、前者/後者=35/65~90/10、好ましくは40/60~80/20、さらに好ましくは45/55~70/30、最も好ましくは50/50~60/40であってもよい。
 エチレン-α-オレフィンエラストマー(特に、EPDMなどのエチレン-α-オレフィン-ジエン三元共重合体ゴム)のジエン含量は10質量%以下(例えば0.1~10質量%)であってもよく、好ましくは7質量%以下(例えば0.3~7質量%)、さらに好ましくは5質量%以下(例えば0.5~5質量%)、最も好ましくは3質量%以下(例えば1~3質量%)である。本発明では、主鎖に二重結合を有していないエラストマー成分を用いることにより耐熱性を向上させているが、側鎖として導入するジエン単位による二重結合も少量に抑制することにより、高度な耐熱性を担保できる。ジエン含量が多すぎると、高度な耐熱性が担保できない虞がある。
 なお、本願において、ジエン含量は、エチレン-α-オレフィンエラストマーを構成する全単位中のジエンモノマー単位の質量割合を意味し、慣用の方法により測定できるが、モノマー比であってもよい。
 未架橋のエチレン-α-オレフィンエラストマーのムーニー粘度[ML(1+4)125℃]は80以下であってもよく、ゴム組成物のVmを調整し、カーボンブラックの分散性を向上できる点から、例えば10~80、好ましくは20~70、さらに好ましくは30~50、最も好ましくは35~45である。ムーニー粘度が高すぎると、ゴム組成物の流動性が低下して、混練りにおける加工性が低下する虞がある。
 なお、本願において、ムーニー粘度は、JIS K 6300-1(2013)に準じた方法で測定でき、試験条件は、L形ロータを使用し、試験温度125℃、予熱1分、ロータ作動時間4分である。
 エラストマー成分中のエチレン-α-オレフィンエラストマーの割合は50質量%以上であればよく、好ましくは80質量%以上、さらに好ましくは90質量%以上であり、最も好ましくは100質量%(エチレン-α-オレフィンエラストマーのみ)である。エラストマー成分中のエチレン-α-オレフィンエラストマーの割合が少なすぎると、耐熱性および耐寒性が低下する虞がある。
 [ポリビニルピロリドン系樹脂]
 本発明のゴム組成物は、エラストマー成分に加えて、ポリビニルピロリドン(PVP)系樹脂をさらに含む。
 PVP系樹脂は、主要な構成単位としてN-ビニル-2-ピロリドン単位を含んでいればよく、他の共重合性単位をさらに含んでいてもよい。
 他の共重合性単位を形成するための単量体としては、例えば、オレフィン類(エチレン、プロピレン、1-ブテン、イソブテン、1-ヘキセンなどのα-C2-10オレフィンなど)、不飽和カルボン酸類[(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチルなどの(メタ)アクリル酸C1-6アルキルエステル、(無水)マレイン酸など]、脂肪酸ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、クロトン酸ビニルなど)、ビニルエーテル類(メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテルなどのC1-6アルキルビニルエーテル類、エチレングリコールビニルエーテル、1,3-プロパンジオールビニルエーテル、1,4-ブタンジオールビニルエーテルなどのC2-6アルカンジオール-ビニルエーテルなど)、不飽和スルホン酸類(エチレンスルホン酸、アリルスルホン酸など)などが挙げられる。これらの単量体は、単独でまたは二種以上組み合わせて使用できる。これらのうち、(メタ)アクリル酸、(メタ)アクリル酸メチルなどの不飽和カルボン酸類、酢酸ビニルなどの脂肪酸ビニルエステル類が好ましい。
 PVP系樹脂において、N-ビニル-2-ピロリドン単位の割合は、例えば、樹脂中50質量%以上(例えば50~98質量%)、好ましくは80質量%以上(例えば80~95質量%)、さらに好ましくは90質量%以上であり、最も好ましくは100質量%である。
 PVP系樹脂は、慣用の変性体や誘導体であってもよい。また、PVP系樹脂の形態は、直鎖状であってもよく、分岐鎖状であってもよい。
 PVP系樹脂のK値は、特に限定されないが、ベルトの耐久性や耐発音性を向上できる点から、例えば10~100、好ましくは15~99、さらに好ましくは17~98、より好ましくは20~97、最も好ましくは22.5~96である。K値が小さすぎると、ベルトの耐久性や動力伝達性が低下する虞があり、逆に大きすぎると、耐発音性が低下する虞がある。
 なお、本願において、K値は、分子量と相関する粘性特性値であり、毛細管粘度計により測定される相対粘度値(25℃)を下記のFikentscherの式に適用して計算できる。
 K=(1.5logηrel-1)/(0.15+0.003c)+[300clogηrel+(c+1.5clogηrel1/2/(0.15c+0.003c
[式中、ηrel:PVP系樹脂水溶液の水に対する相対粘度、c:PVP系樹脂水溶液中のPVP系樹脂濃度(質量%)]
 PVP系樹脂の割合は、エラストマー成分100質量部に対して0.1~25質量部程度の範囲から選択でき、例えば0.1~20質量部、好ましくは0.5~15質量部、さらに好ましくは1~10質量部、より好ましくは2~8質量部、最も好ましくは3~7質量部である。特に、高度な伝達効率などのベルト性能と耐発音性とを両立できる観点から、PVP系樹脂の割合は、エラストマー成分100質量部に対して1~20質量部が好ましく、さらに好ましくは2~15質量部、より好ましくは3~10質量部である。PVP系樹脂の割合は、非吸水性短繊維100質量部に対して、例えば3~100質量部、好ましくは5~70質量部、さらに好ましくは10~50質量部、より好ましくは12~30質量部、最も好ましくは15~20質量部である。PVP系樹脂の割合が少なすぎると、被水時の耐発音性が低下する虞があり、逆に多すぎると、ゴム組成物の機械的強度が低下する虞がある。
 [非吸水性短繊維]
 本発明のゴム組成物は、エラストマー成分およびPVP系樹脂に加えて、非吸水性短繊維(非セルロース系短繊維)をさらに含む。
 非吸水性短繊維としては、例えば、ポリオレフィン短繊維(ポリエチレン短繊維、ポリプロピレン短繊維など)、アクリル短繊維(ポリアクリロニトリル短繊維など)、ポリアミド短繊維(6ナイロン短繊維、66ナイロン短繊維、610ナイロン短繊維、46ナイロン短繊維などの脂肪族ポリアミド短繊維;アラミドなどの芳香族ポリアミド繊維など)、ポリエステル短繊維[ポリエチレンテレフタレート(PET)短繊維、ポリプロピレンテレフタレート(PPT)短繊維、ポリトリメチレンテレフタレート(PTT)短繊維、ポリブチレンテレフタレート(PBT)短繊維、ポリエチレンナフタレート(PEN)短繊維などのポリアルキレンアリレート短繊維など]、ポリフェニレンサルファイド(PPS)繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維、ポリウレタン繊維などの合成繊維;炭素繊維、ガラス繊維、金属繊維などの無機繊維などが挙げられる。
 これらの非吸水性短繊維は、単独でまたは二種以上組み合わせて使用できる。これらのうち、伝達効率、耐久性、耐発音性(特に、被水時の耐発音性)に優れる点から、脂肪族ポリアミド短繊維、ポリアルキレンアリレート短繊維が好ましく、ベルト性能と被水時の耐発音性とを高度に両立できる点から、66ナイロン短繊維などの脂肪族ポリアミド短繊維が特に好ましい。
 非吸水性短繊維の平均繊維径は、例えば5~100μm、好ましくは10~80μm、さらに好ましくは15~50μm、より好ましくは20~40μm、最も好ましくは25~30μmである。繊維径が小さすぎると、均一に分散するのが困難となる虞があり、逆に大きすぎると、ゴム組成物の機械的特性が低下する虞がある。
 非吸水性短繊維の平均繊維長は、例えば0.3~30mm、好ましくは0.5~10mm、さらに好ましくは1~8mm、より好ましくは1.5~5mm、最も好ましくは2~4mmである。繊維長が短すぎると、ゴム組成物の機械的強度が低下する虞があり、逆に長すぎると、均一に分散させるのが困難となる虞がある。
 なお、本願において、短繊維の平均繊維径および平均繊維長は、慣用の方法で測定でき、例えば、透過型電子顕微鏡、走査型電子顕微鏡を含む電子顕微鏡写真の画像解析により適当なサンプル数(例えば50サンプル)を測定して算出できる。
 非吸水性短繊維の配向方向は、ランダムであってもよく、所定の方向に配向していてもよいが、ベルトの耐久性を向上できる点から、ベルト幅方向に配向するのが好ましい。
 なお、本願において「短繊維がベルト幅方向に配向する」とは、短繊維とベルト幅方向とが略平行であることを意味し、「略平行」とは、短繊維とベルト幅方向との角度が30°以内、好ましくは20°以内、さらに好ましくは10°以内(特に5°以内)の角度であることを意味する。
 非吸水性短繊維を所定の方向に配向させる方法としては、バンバリーミキサーなどで混練したゴム組成物を、ロールまたはカレンダーなどで圧延して未架橋ゴムシートを調製する過程で、所定の方向に配向させる方法などを利用できる。
 非吸水性短繊維は、エラストマー成分(特に、エチレン-α-オレフィンエラストマー)との接着性を向上させるため、必要に応じて、接着処理を施してもよい。接着処理としては、慣用の接着処理を利用でき、例えば、接着性成分(例えば、エポキシ化合物、イソシアネート化合物)を有機溶媒(トルエン、キシレン、メチルエチルケトンなど)に溶解させた樹脂系処理液などへの浸漬処理、レゾルシン-ホルマリン-ラテックス液(RFL液)への浸漬処理、ゴム組成物を有機溶媒に溶解させたゴム糊への浸漬処理が挙げられる。
 非吸水性短繊維の割合は、エラストマー成分100質量部に対して5~50質量部程度の範囲から選択でき、例えば10~50質量部であり、伝達効率などのベルト性能と耐発音性とを両立できる点から、好ましくは15~50質量部であり、さらに好ましくは20~40質量部、より好ましくは25~35質量部、最も好ましくは28~32質量部である。非吸水性短繊維の割合が少なすぎると、伝達効率、耐発音性および補強効果が低下する虞があり、逆に多すぎると、グリップ性による伝達性能、および加工性が低下するとともに、ベルトに亀裂が入り易くなって耐久性が低下する虞がある。
 [吸水性繊維]
 本発明のゴム組成物は、ベルトの伝達効率、耐久性および耐発音性を向上させるために、吸水性繊維を実質的に含んでいない。
 吸水性繊維としては、例えば、ビニルアルコール系繊維(ポリビニルアルコール、エチレン-ビニルアルコール共重合体の繊維、ビニロンなど)、セルロース系繊維[セルロース繊維(パルプ、綿繊維などの植物、動物またはバクテリアなどに由来するセルロース繊維)、セルロース誘導体の繊維(セルロースエステル繊維、レーヨンなどの再生セルロース繊維など)など]などが挙げられる。
 本発明のゴム組成物は、吸水性繊維(特に、セルロース系繊維)を実質的に含んでいないことが好ましいが、ベルトの伝達効率、耐久性および耐発音性を高度に向上させる観点から、吸水性繊維(特に、セルロース系繊維)を含んでいないのが特に好ましい。
 [架橋剤]
 本発明のゴム組成物は、エラストマー成分、PVP系樹脂および非吸水性短繊維に加えて、慣用の架橋剤(または加硫剤)をさらに含んでいてもよい。エラストマー成分がエチレン-α-オレフィンエラストマーである場合、架橋剤は、有機過酸化物、硫黄系加硫剤であってもよい。
 有機過酸化物としては、例えば、ジアシルパーオキサイド(ジラウロイルパーオキサイド、ジベンゾイルパーオキサイドなど)、パーオキシケタール[1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、2,2-ジ(t-ブチルパーオキシ)ブタンなど]、アルキルパーオキシエステル(t-ブチルパーオキシベンゾエートなど)、ジアルキルパーオキサイド[ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、1,1-ジ(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,3-ビス(2-t-ブチルパーオキシイソプロピル)ベンゼン、2,5-ジ-メチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサンなど]、パーオキシカーボネート(t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシ-2-エチル-ヘキシルカーボネート、t-アミルパーオキシ-2-エチル-ヘキシルカーボネートなど)などが挙げられる。これらの有機過酸化物は、単独でまたは二種以上組み合わせて使用できる。これらのうち、1,3-ビス(2-t-ブチルパーオキシイソプロピル)ベンゼンなどのジアルキルパーオキサイドが好ましい。
 硫黄系加硫剤としては、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、塩化硫黄(一塩化硫黄、二塩化硫黄など)などが挙げられる。
 これらの架橋剤は、単独でまたは二種以上組み合わせて使用できる。これらのうち、有機過酸化物を含む架橋剤が好ましい。
 加硫剤または架橋剤(特に、有機過酸化物)の割合は、エラストマー成分100質量部に対して、例えば0.1~30質量部、好ましくは1~20質量部、さらに好ましくは3~10質量部、最も好ましくは4~6質量部である。
 [補強剤]
 本発明のゴム組成物は、エラストマー成分、PVP系樹脂および非吸水性短繊維に加えて、補強剤をさらに含んでいてもよい。補強剤としては、例えば、カーボンブラック、シリカ、クレー、炭酸カルシウム、タルク、マイカなどが挙げられる。これらの補強剤は、単独でまたは二種以上組み合わせて使用できる。これらのうち、カーボンブラック、シリカが好ましく、カーボンブラックが特に好ましい。
 補強剤の割合は、エラストマー成分100質量部に対して、例えば10~200質量部、好ましくは20~150質量部、さらに好ましくは30~100質量部、最も好ましくは50~80質量部である。
 [他の成分]
 本発明のゴム組成物は、ゴムの配合剤として利用される慣用の添加剤をさらに含んでいてもよい。慣用の添加剤としては、例えば、共架橋剤(ビスマレイミド類など)、加硫助剤または加硫促進剤(チウラム系促進剤など)、加硫遅延剤、金属酸化物(酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化鉄、酸化銅、酸化チタン、酸化アルミニウムなど)、軟化剤(パラフィンオイルや、ナフテン系オイル等のオイル類など)、加工剤または加工助剤(ステアリン酸、ステアリン酸金属塩、ワックス、パラフィン、脂肪酸アマイドなど)、シランカップリング剤、老化防止剤(酸化防止剤、熱老化防止剤、屈曲き裂防止剤、オゾン劣化防止剤など)、着色剤、粘着付与剤、安定剤(紫外線吸収剤、熱安定剤など)、難燃剤、帯電防止剤などが挙げられる。これらの添加剤は、単独でまたは二種以上組み合わせて使用できる。なお、金属酸化物は架橋剤として作用してもよい。
 慣用の添加剤の合計割合は、エラストマー成分100質量部に対して、例えば5~50質量部、好ましくは10~30質量部、さらに好ましくは15~25質量部である。
 [ゴム組成物の調製方法]
 本発明のゴム組成物の調製方法は、慣用の方法によって各成分を混合(または混練)することにより調製できるが、均一に混合するためには、エラストマー成分、PVP系樹脂、非吸水性短繊維などを加熱下で混練するのが好ましい。加熱温度は、例えば120℃以下、好ましくは50~120℃、さらに好ましくは60~100℃、より好ましくは70~90℃である。加熱温度が高すぎると、エラストマー成分が架橋する虞がある。
 [硬化物の特性]
 本発明のゴム組成物の硬化物(架橋体)は、熱老化後のμ-V特性(摩擦係数-滑り速度曲線の傾き)に優れており、150℃、720時間の熱老化後の硬化物のμ-V特性は、例えば0~-0.1、好ましくは-0.01~-0.095、さらに好ましくは-0.03~-0.09、最も好ましくは-0.05~-0.085である。μ-V特性が小さすぎると(グラフの傾きが大きすぎると)、ベルトの耐発音性が低下する虞がある。
 本願において、μ-V特性は、後述する実施例に記載の方法で測定できる。
 本発明のゴム組成物の硬化物(架橋体)は、内部の損失正接(tanδ)が低く、例えば0.08~0.17、好ましくは0.09~0.165、さらに好ましくは0.1~0.16、より好ましくは0.11~0.15、最も好ましくは0.12~0.14である。tanδが高すぎると、内部発熱が大きくなり、エネルギーロス(伝達ロス)が多くなる虞がある。
 なお、本願において、損失正接(tanδ)は、後述する実施例に記載の方法で測定でき、短繊維が所定の方向に配列した硬化物では、短繊維の配列方向(列理方向)と垂直な方向(反列理方向)の損失正接を測定する。
 [成形体]
 本発明のゴム組成物の硬化物は、耐グリップ性や耐久性などに優れるため、各種成形体として利用できるが、摩擦伝動ベルトの伝達効率や耐久性などのベルト性能を維持しつつ、耐発音性を向上できるため、摩擦伝動ベルトの摩擦伝動面(プーリとの接触面)を形成するゴム層として利用するのが好ましい。
 摩擦伝動ベルトとしては、例えば、平ベルト;ラップドVベルト、ローエッジVベルト、ローエッジコグドVベルト、VリブドベルトなどのVベルトなどが挙げられる。これらのうち、省燃費化が要求される用途、例えば、自動車エンジンの補機駆動システムなどに用いるVリブドベルト、自動二輪車の無段変速装置などに用いるローエッジVベルト(ローエッジコグドVベルトも含む)がさらに好ましく、高度な耐久性および耐発音性を要求される点から、自動車エンジンの補機駆動システムに用いられるVリブドベルトが特に好ましい。
 VリブドベルトやローエッジVベルトなどの摩擦伝動ベルトにおいて、本発明のゴム組成物は、圧縮ゴム層(内面ゴム層)および/または伸張層(背面ゴム層)を形成していてもよい。伸張層が背面ゴム層である摩擦伝動ベルトとしては、例えば、ベルト背面がプーリと接触する背面駆動レイアウトで走行するVリブドベルトなどが挙げられる。これらのうち、少なくとも圧縮ゴム層が本発明のゴム組成物で形成された摩擦伝動ベルトが好まし
い。
 摩擦伝動ベルトの製造方法は、ベルトの種類に応じて慣用の方法によって製造できる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例で使用した原料の詳細を以下に示す。
 [原料]
 EPDM1:The Dow Chemical Company製「Nordel(登録商標)IP3640」、ムーニー粘度(125℃)≒40、エチレン含有量55質量%、ジエン含有量1.8質量%
 EPDM2:三井化学(株)製「EPT4045M」、ムーニー粘度(125℃)≒45、エチレン含量51質量%、ジエン含量7.6質量%
 ナイロン短繊維:平均繊維径27μm、平均繊維長3mm(ナイロン66短繊維)
 ポリエステル短繊維:平均繊維径25μm、平均繊維長3mm(PET短繊維)
 アラミド短繊維:平均繊維径15μm、平均繊維長8mm(メタ系アラミド短繊維)
 綿短繊維:平均繊維長6mm
 ポリビニルピロリドン1:日本触媒(株)製「ポリビニルピロリドンK-30」、K値27.0~33.0
 ポリビニルピロリドン2:日本触媒(株)製「ポリビニルピロリドンK-90」、K値88.0~96.0
 ポリビニルピロリドン3:富士フィルム和光純薬(株)製「ポリビニルピロリドンK-25」、K値22.5~27.0
 界面活性剤:花王(株)製「エマルゲンLS-106」、ポリオキシアルキレンアルキルエーテル
 ポリビニルアルコール:電気化学工業(株)製「デンカポバールF-300S」、ポリビニルアルコール疎水基変性品、ケン化度93.0~97.0モル、粘度平均重合度1700、融点206℃、疎水基の種類:アルキル基
 カーボンブラック:東海カーボン(株)製「シースト3」
 シリカ:エボニックインダストリーズ AG社製「Ultrasil VN3」BET比表面積180m/g
 パラフィンオイル:出光興産(株)製「ダイアナ(登録商標)PW-90」(パラフィン系プロセスオイル)
 酸化亜鉛:ハクスイテック(株)製、「酸化亜鉛2種」
 ステアリン酸:日油(株)製、「ステアリン酸つばき」
 老化防止剤1:ベンズイミダゾール系老化防止剤、大内新興化学工業(株)製「ノクラックMB」
 老化防止剤2:ジフェニルアミン系老化防止剤、大内新興化学工業(株)製「ノクラックAD-F」
 共架橋剤:大内新興化学工業(株)製「バルノックPM」
 有機過酸化物:日油(株)製「パーブチルP-40MB」
 硫黄:美源化学社製
 加硫促進剤:大内新興化学工業(株)製「ノクセラー(登録商標)DM」
 カーボンブラック分散液:東海カーボン(株)製「Aqua-Black162」固形分19.2質量%
 綿織布:綿糸20s/2、経糸70本/5cm、緯糸70本/5cmの平織織布
 心線:1,000デニールのPET繊維を2×3の撚り構成で、上撚り係数3.0、下撚り係数3.0で諸撚りしたトータルデニール6,000のコードを接着処理した撚糸コード、心線径1.0mm。
 実施例1~11および比較例1~13
 [圧縮ゴム層]
 ベルトの伝動面(プーリとの接触面)を形成する圧縮ゴム層には、表3~6に示す配合の圧縮ゴム層用ゴム組成物をバンバリーミキサーを用いて140℃で混練し、カレンダーロールで所定の厚みに圧延したシートを用いた。
 [接着ゴム層]
 接着ゴム層用シートは、表1に示す配合の接着ゴム層用ゴム組成物をバンバリーミキサーを用いて混練し、カレンダーロールで、所定の厚みに圧延した。
Figure JPOXMLDOC01-appb-T000001
 [伸張層]
 伸張層を形成するための綿織布には、未処理の綿織布(綿糸20s/2、経糸70本/5cm、緯糸70本/5cmの平織)を、カーボンブラック分散液およびRFL液(ラテックス、レゾルシンおよびホルマリン)を含む表2に示す伸張層用組成物(黒染め液)に10秒間浸漬し、テンターにより120°の広角度処理を行い、150℃で4分間熱処理した綿織布を用いた。
Figure JPOXMLDOC01-appb-T000002
 [圧縮ゴム層用組成物の架橋ゴム物性]
 圧縮ゴム層用の未架橋ゴムシートを、プレス機を用いて30分間の加圧および加熱(温度170℃、面圧力2.0MPa)して架橋ゴムシートを作製した。
 1)μ-V特性の測定
 架橋ゴムシートから直径8mm×厚さ2mmの円板状試験片を採取し、ピンオンディスク摩擦係数測定装置を用いて、摩擦力を測定し、摩擦係数を算出した。詳しくは、表面粗さRaが0.8μmである相手材(SUS304)により荷重2.192kgf/cmで試験片を押し付けて、30ml/分の水量で、測定するときのみ試験片に水をかけながら、摩擦速度0~2.0m/秒で摩擦力を測定し、摩擦速度(相手材に対する滑り速度)に対する摩擦係数の曲線の傾きを最小二乗法により算出した。なお、この傾きは、滑り速度に対する摩擦係数の変化を表す。
 さらに、JIS K 6257(2010)に準じた促進老化試験を行い、150℃で720時間の熱老化をさせた後の試験片に対しても、摩擦力を測定し、摩擦速度(相手材に対する滑り速度)に対する摩擦係数の曲線の傾きを最小二乗法により算出した。
 なお、ピンオンディスク摩擦係数測定装置としては、(株)米倉製作所製「ピンオンディスク摩擦試験機」を用いた。また、促進老化試験では、A法AA-2強制循環型熱老化試験機(横風式)を用いた。
 2)動的粘弾性(E’、tanδ)の測定
 架橋ゴムシートから、断面形状が長方形(厚さ2.0mm、幅4.0mm)で、長さが40mmの試験片を採取した。このとき、圧延の反列理方向を長さ方向として採取した。そして、粘弾性測定装置(上島製作所製「VR-7121」)のチャックに、チャック間距離15mmで試験片をチャックして固定し、初期歪(静的歪)1.0%を与え、周波数10Hz、動的歪0.2%(すなわち、前記初期歪1.0%を中心位置または基準位置として長手方向に±0.2%の歪みを付与しつつ)、昇温速度1℃/分で70℃での弾性率(E’)および損失正接(tanδ)を求めた。
 [Vリブドベルトの製造]
 表面が平滑な円筒状の成形モールドの外周に、伸張層を形成するための綿織布を巻き付け、この綿織布の外周に、心線となる撚糸コードを所定間隔で螺旋状にスピニングし、さらにその外周に、未架橋の接着ゴム層用シート、圧縮ゴム層用シートを順に巻き付けて、未架橋成形体を形成した。そして、未架橋成形体の外周に加硫用ジャケットを被せた状態で、未架橋成形体を装着した成形モールドを架橋装置(所謂、加硫缶)内に収容し、所定の加熱・加圧条件(180℃、0.9MPa)で架橋を行った後、成形モールドから脱型して筒状の架橋スリーブを得た。そして、この架橋スリーブの外表面を研削ホイールにより研削して所定のVリブ部を形成した後、カッター刃を用いて架橋スリーブをベルト長手方向に所定の幅で切断して、3PK1100のVリブドベルト(リブ数:3個、周長:1100mm、ベルト形:K形、ベルト厚み:4.3mm、リブ高さ:約2mm、リブピッチ:3.56mm)、6PK1100のVリブドベルト(リブ数:6個、周長:1100mm、ベルト形:K形、ベルト厚み:4.3mm、リブ高さ:約2mm、リブピッチ:3.56mm)に仕上げた。なお、切断したベルトの内周側と外周側とを反転させることにより、内周側にVリブ部を有する圧縮ゴム層を備えたVリブドベルトが得られた。
 [Vリブドベルトの性能評価]
 1)発音限界角度試験(ミスアライメント発音評価試験)
 発音限界角度試験(ミスアライメント発音評価試験)は、直径101mmの駆動プーリ(Dr.)、直径70mmのアイドラープーリ(IDL1)、直径120mmのミスアライメントプーリ(W/P)、直径70mmのアイドラープーリ(IDL2)、直径61mmのテンションプーリ(Ten)、直径70mmのアイドラープーリ(IDL3)を順に配置した図1に示すレイアウトの試験機を用いて行った。アイドラープーリ(IDL1)とミスアライメントプーリの軸離(スパン長)を135mmに設定し、全てのプーリが同一平面上(ミスアライメントの角度0°)に位置するように調整した。
 すなわち、試験機の各プーリに6PK1100のVリブドベルトを懸架し、室温条件下で、駆動プーリの回転数が1000rpm、ベルト張力が50N/Rib(リブ)となるように張力を付与し、駆動プーリの出口付近においてVリブドベルトの摩擦伝動面に定期的(約30秒間隔)に5mlの水を注水して、ミスアライメント(ミスアライメントプーリを各プーリに対し手前側にずらす)でベルトを走行させた時の発音(ミスアライメントプーリの入口付近)が発生するときの角度(発音限界角度)を求めた。発音限界角度が大きいほど耐発音性に優れている。なお、通常、3°付近でベルトがプーリからはずれて(すなわち、リブずれとなり)正常に動力伝達しない状態になる。
 走行後のベルトの評価は、外径120mmの駆動プーリ(Dr.)、外径85mmのアイドラープーリ(IDL)、外径120mmの従動プーリ(Dn.)、外径45mmのテンションプーリ(Ten.)を順に配置した図2に示すレイアウトの走行試験機にて走行させた後のベルトを用いた。試験機の各プーリに6PK1100のVリブドベルトを掛架し、アイドラープーリへのベルトの巻き付け角度が120°、テンションプーリへのベルトの巻き付け角度が90°、ベルト張力が395Nとなるように調整した。駆動プーリの回転数を4900rpm(回転方向は図の矢印の方向)、従動プーリの負荷を8.8kW、雰囲気温度を140℃とし、200時間走行させたベルトについて、発音限界角度試験を行った。
 2)伝達性能試験
 伝達性能試験は、直径120mmの駆動プーリ(Dr.)、直径120mmの従動プーリ(Dn.)を順に配置した図3に示すレイアウトの試験機を用いた。そして、試験機の両プーリに3PK1100のVリブドベルトを掛架し、駆動プーリの回転数2000rpm、ベルト張力15.3kgf/3リブの試験条件で走行させ、従動プーリに徐々に負荷を与え、駆動プーリの入口付近においてVリブドベルトの摩擦伝動面に定期的(約60秒間隔)に300mlの水を注水して、ベルトのスリップ率が2%になったときの伝達動力(kw)を計測した。
 3)耐久走行試験(高温低張力屈曲疲労試験)
 外径120mmの駆動プーリ(Dr.)、外径85mmのアイドラープーリ(IDL)、外径120mmの従動プーリ(Dn.)、外径45mmのテンションプーリ(Ten.)を順に配置した図4に示すレイアウトの試験機を用いた。試験機の各プーリに3PK1100のVリブドベルトを掛架し、Vリブドベルトのテンションプーリへの巻き付け角度が90°、アイドラープーリへの巻き付け角度が120°になるように調整した。駆動プーリの回転数を4900rpm(回転方向は図の矢印の方向)、ベルト張力40kgf/3リブ、雰囲気温度120℃とし、また従動プーリには負荷12PSを与えて、400時間を上限として走行させた。400時間に到達する前にベルトのゴム層に亀裂などの異常が発生した場合は、その時間を寿命と判断し走行を打ち切った。400時間を完走しても寿命となるような故障や異常が生じなかった場合は、400時間以上の走行寿命を有するベルトと判断して、耐亀裂性に優れるベルトと判定した。
 4)伝達ロス(トルクロス)の測定
 直径55mmの駆動プーリ(Dr.)と、直径55mmの従動プーリ(Dn.)とで構成される図5に示すレイアウトの二軸走行試験機を用いた。試験機に6PK1100のVリブドベルトを掛架し、500N/ベルト1本の張力でVリブドベルトに所定の初張力を付与し、従動プーリ無負荷で駆動プーリを2000rpmで回転させたときの、駆動トルクと従動トルクとの差をトルクロスとして算出した。なお、この測定で求まるトルクロスは、Vリブドベルトに起因するトルクロス以外に、試験機の軸受けに起因するトルクロスも含まれている。そのため、ベルトとしてのトルクロスが実質0と考えられる金属ベルト(材質:マルエージング鋼)を予め走行させ、その駆動トルクと従動トルクとの差を軸受けに起因するトルクロス(軸受け損失)として求めた。そしてVリブドベルトを走行させて算出したトルクロス(ベルトと軸受けの二つに起因するトルクロス)から、軸受けに起因するトルクロス(軸受け損失)を差し引いた値を、ベルト単体に起因するトルクロスとして求めた。なお、上記トルクロス(軸受け損失)は所定の初張力で金属ベルトを走行させたときのトルクロス(例えば、初張力500N/ベルト1本でVリブドベルトを走行させた場合、この初張力で金属ベルトを走行させたときのトルクロスが軸受け損失となる)である。
 なお、動力を伝達する際には、エネルギー的な損失(伝達ロス)が生じる。このエネルギー損失は、例えば、ベルトを構成するゴム組成物の自己発熱による内部損失や、ベルトの曲げ変形に起因する屈曲損失などが挙げられる。通常、駆動軸における駆動トルク値と、従動軸における従動トルク値との差で算出される「トルクロス」値が、エネルギー損失の指標として用いられ、トルクロスが小さいほど伝達効率が良い(伝達ロスが少ない)と判断でき、自動車エンジン等では省燃費性の指標としても活用されている。本試験でも、トルクロスの測定結果から、省燃費性に影響する伝達効率の比較を行った。
 実施例および比較例の評価結果を表3~6に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表3および5~6に示すように、耐発音性向上剤としてポリビニルピロリドン(PVP)、短繊維として非吸水性のナイロン短繊維、ポリエステル(PET)短繊維、またはアラミド短繊維を用いた例を実施例1~11とした。ゴム組成物単体での物性として、グリップ力(摩擦係数の大きさ)、μ-V特性(滑り速度の増加に伴うμの変化)、内部発熱、弾性特性、の全てに優れ、その結果、ベルト性能としても、被水時の耐発音性や伝達性能、伝達効率(トルクロス)、耐久寿命(耐亀裂性)の全てにおいて、高い水準が確保できていた。
 表3の結果から明らかなように、実施例1~3の構成で、耐発音性向上剤を添加しない比較例1、5および6では、ゴム組成物単体での物性として、μ-V特性において、滑り速度の増加に伴いμが大きく低下し、ベルト性能としても、発音限界角度試験で、耐発音性に劣る結果となった。
 実施例1の構成で、耐発音性向上剤として界面活性剤を添加した比較例2~3では、ゴム組成物単体での物性として、グリップ力(摩擦係数)が低下し、内部発熱、弾性特性も低下した。その結果、被水時の伝達性能や伝達効率(トルクロス)が劣る結果となった。なお、耐発音性としては、μ-V特性や発音限界角度試験の結果から、それなりの効果が得られているが、実施例1と比べると、以下の優劣が見られた。
 (1)実施例1では耐発音性向上剤が少量(5質量部)でも効果が得られるのに、比較例2、3においては耐発音性向上剤が少量(5質量部)の比較例2では効果が小さいという点で劣る。
 (2)実施例1では、走行して熱老化した状態でも、耐発音効果が持続されているが、比較例2~3では、走行して熱老化した状態では効果が大きく減衰しており、持続性に欠ける。
 実施例1の構成で、耐発音性向上剤としてポリビニルアルコール粒子を添加した比較例4では、実施例1と似た傾向が見られたが、耐久走行試験において、ベルトのゴム層に亀裂が生じて400時間に到達する前に寿命となった点で、実施例1に対し耐亀裂性が劣った結果となった。
 PVPとナイロン短繊維とを組み合わせた実施例1と、PVPとアラミド短繊維とを組み合わせた実施例3とを比べると、機械的強度の指標となる弾性特性は実施例3の方が大きかったが、その反面、ベルトの耐発音性は、乾燥時でも被水時でも実施例1の方が優れていた。また、PVPを含まない組成物にて、ナイロン短繊維を用いた比較例1と、アラミド短繊維を用いた比較例6とを比べると、耐発音性は比較例1よりも比較例6の方が劣っており、短繊維自体の影響と云える。これらの結果から、耐発音性の面でアラミド短繊維よりもナイロン短繊維の方が優位であることが判明した。さらに、PVPの添加効果の面で見ると、比較例1の組成にPVPを加えた実施例1では、耐発音性が高度な水準にまで向上したのに対して、比較例6の組成にPVPを加えた実施例3では、耐発音性が高度な水準にまで向上しなかった。そのため、アラミド短繊維では、ナイロン短繊維ほどのPVPとの併用効果が得られず、PVPとナイロン短繊維とを組み合わせることにより、ベルト性能と耐発音性とを高度に両立できると云える。
 表4の結果から明らかなように、比較例7~12は短繊維として、従来から被水時の耐発音対策として常識的に用いられてきた綿短繊維(吸水性短繊維)を用いた例である。
 実施例1および後述する実施例7(実施例1に対してPVPを増量した例)の構成で、短繊維を綿短繊維とした比較例8、9では、殆どの項目で実施例1および7と似た傾向が見られたが、耐久走行試験において、ベルトのゴム層に亀裂が生じて400時間に到達する前に寿命となった点で、実施例1および7に対し耐亀裂性が劣った結果となった。
 この綿短繊維の使用に関する比較データとして、比較例7では耐発音性向上剤を添加しない例、比較例10~11は耐発音性向上剤として界面活性剤を用いた例を示した。綿短繊維を用いた比較例7~11は、いずれも高い水準で被水時の耐発音性の効果を発揮している。その一方で、PVPを用いた実施例1~2では、添加量が少量(5質量部)であっても、同様の高い水準で耐発音性の効果を発揮している。すなわち、PVPと特定の非吸水性繊維とを組み合わせて用いれば、綿短繊維による吸水は不要といえる。むしろ、実施例1~2に対して、比較例7~11では綿短繊維によって耐久寿命(耐亀裂性)が阻害されている点で、綿は用いない方が好ましいと云える。
 さらに、比較例12では、ナイロン短繊維10質量部と綿短繊維15質量部を併用している。特許文献6の実施例では、EPDMに対して、セルロース系繊維とともにアラミド繊維を配合しているため、吸水性繊維と非吸水性繊維とを組み合わせている比較例12は、特許文献6の実施例に相当する。比較例12は、殆どの項目で実施例1と類似の傾向が見られるが、耐久走行試験において、ベルトのゴム層に亀裂が生じて400時間に到達する前に寿命となった。そのため、セルロース系繊維とアラミド短繊維との組み合わせでは、綿短繊維によって耐久寿命(耐亀裂性)が阻害され、吸水性繊維を含まない方が好ましいと云える。
 表5の結果から明らかなように、実施例1のポリビニルピロリドン1(K値27.0~33.0)に対して、K値88.0~96.0のポリビニルピロリドン2(実施例4)、K値22.5~27.0のポリビニルピロリドン3(実施例5)を用いた場合も、実施例1と同等の効果が得られた。
 また、表5では、実施例1の組成に対して、ナイロン短繊維の割合を一定(30質量部)として、PVPの割合を1質量部から25質量部まで変量し、実施例1(5質量部)に対して、PVPの割合を減量した実施例6(1質量部)、PVPの割合を増量した実施例7(15質量部)、実施例8(20質量部)、実施例9(25質量部)を比較した。
 実施例1では、耐発音性向上剤としてPVP、短繊維として非吸水性短繊維を組み合わせて用いる効果として、グリップ力(摩擦係数の大きさ)による伝達性能、μ-V特性(滑り速度の増加に伴うμの変化)、内部発熱および弾性特性のバランスに優れ、その結果、ベルト性能としても、被水時の耐発音性や伝達性能、伝達効率(トルクロス)、耐久寿命(耐亀裂性)の全てにおいて、高い水準を確保している。
 これに対して、PVPを減量した実施例6では、μ-V特性が低下した影響で、耐発音性が低下したが、各特性のバランスには優れており、実用的には問題のないレベルであった。一方、PVPを増量した実施例7(15質量部)、実施例8(20質量部)では、実施例1に対して、グリップ力が若干低下し、内部発熱が若干大きくなる傾向が見られたが、実施例1と同等に各特性のバランスに優れた結果であった。さらに増量した実施例9(25質量部)では、耐発音性には優れるものの、内部発熱が若干大きくなり伝達効率(トルクロス)が他の実施例に比べて若干低下した。これらの結果から、各特性のバランスの観点で、PVPの割合は1~20質量部が好ましいと云える。
 表6の結果から明らかなように、ナイロン短繊維を10質量部に減量した場合であっても、PVPを用いない比較例13に対し、PVPを用いる実施例10(5質量部)、実施例11(10質量部)では、高いグリップ性(摩擦係数)による高い伝達性能、弾性特性、伝達効率(トルクロス)、耐久性の面においては低下が生じることなく、PVPの効果としてμ―V特性、耐発音性が向上した。
 また、ナイロン短繊維の減量の影響を見ると、ナイロン短繊維を30質量部添加した場合(実施例1、比較例1など)に対して、ナイロン短繊維を10質量部に減量した場合には、グリップ性(摩擦係数)とそれに伴う伝達性能が高くなった反面、耐発音性や伝達効率(トルクロス)は低下した。
 さらに、PVPとナイロン短繊維との比率については、PVPの割合が少ない実施例6、PVPの割合が多い実施例11のいずれにおいても、各特性のバランスに優れていた。
 本発明の構成では、耐久寿命(耐亀裂性)を阻害することなく、被水時の耐発音性の効果が得られることが検証できた。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2019年9月25日出願の日本特許出願2019-174609および2020年9月14日出願の日本特許出願2020-153926に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のゴム組成物は、各種の成形体として利用でき、特に、平ベルト;ラップドVベルト、ローエッジVベルト、ローエッジコグドVベルト、Vリブドベルトなどの摩擦伝動ベルトとして好ましく利用できる。

Claims (9)

  1.  エラストマー成分、ポリビニルピロリドン系樹脂および非吸水性短繊維を含み、かつ吸水性繊維を実質的に含まないゴム組成物。
  2.  前記エラストマー成分がエチレン-α-オレフィンエラストマーを含む請求項1記載のゴム組成物。
  3.  前記ポリビニルピロリドン系樹脂のK値が10~100である請求項1または2記載のゴム組成物。
  4.  前記非吸水性短繊維が脂肪族ポリアミド短繊維を含む請求項1~3のいずれか一項に記載のゴム組成物。
  5.  前記ポリビニルピロリドン系樹脂の割合が前記エラストマー成分100質量部に対して1~20質量部である請求項1~4のいずれか一項に記載のゴム組成物。
  6.  前記ポリビニルピロリドン系樹脂の割合が前記非吸水性短繊維100質量部に対して3~100質量部である請求項1~5のいずれか一項に記載のゴム組成物。
  7.  前記非吸水性短繊維の割合が、前記エラストマー成分100質量部に対して15~50質量部である請求項1~6のいずれか一項に記載のゴム組成物。
  8.  セルロース系繊維を含まない請求項1~7のいずれか一項に記載のゴム組成物。
  9.  請求項1~8のいずれか一項に記載のゴム組成物の硬化物で形成された摩擦伝動面を有する摩擦伝動ベルト。
PCT/JP2020/036436 2019-09-25 2020-09-25 ゴム組成物および摩擦伝動ベルト WO2021060532A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20868272.4A EP4036166A4 (en) 2019-09-25 2020-09-25 RUBBER COMPOSITION AND FRICTION TRANSMISSION BELT
CN202080066695.7A CN114521204B (zh) 2019-09-25 2020-09-25 橡胶组合物和摩擦传动带
US17/763,905 US20220348753A1 (en) 2019-09-25 2020-09-25 Rubber Composition and Friction Transmission Belt

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-174609 2019-09-25
JP2019174609 2019-09-25
JP2020153926A JP6849850B1 (ja) 2019-09-25 2020-09-14 ゴム組成物および摩擦伝動ベルト
JP2020-153926 2020-09-14

Publications (1)

Publication Number Publication Date
WO2021060532A1 true WO2021060532A1 (ja) 2021-04-01

Family

ID=75154617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036436 WO2021060532A1 (ja) 2019-09-25 2020-09-25 ゴム組成物および摩擦伝動ベルト

Country Status (5)

Country Link
US (1) US20220348753A1 (ja)
EP (1) EP4036166A4 (ja)
JP (1) JP6849850B1 (ja)
CN (1) CN114521204B (ja)
WO (1) WO2021060532A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515605A (ja) * 2000-12-07 2004-05-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 二成分パルプ強化材
JP2007232205A (ja) 2005-08-31 2007-09-13 Mitsuboshi Belting Ltd 摩擦伝動ベルト
JP2008157445A (ja) 2006-11-30 2008-07-10 Mitsuboshi Belting Ltd 摩擦伝動ベルト及びその製造方法
JP2008185162A (ja) 2007-01-31 2008-08-14 Mitsuboshi Belting Ltd 摩擦伝動ベルト
JP2016090051A (ja) 2014-10-31 2016-05-23 三ツ星ベルト株式会社 摩擦伝動ベルト
JP2016121806A (ja) 2014-12-25 2016-07-07 三ツ星ベルト株式会社 摩擦伝動ベルト及びその製造方法
JP2017110236A (ja) * 2015-09-02 2017-06-22 Jsr株式会社 組成物及び成形体
JP2017150662A (ja) * 2016-02-25 2017-08-31 三ツ星ベルト株式会社 摩擦伝動ベルト及びその製造方法
JP2018527430A (ja) 2015-07-10 2018-09-20 ゲイツ コーポレイション ゴム組成物およびそれを使用したゴム製品
JP2019174609A (ja) 2018-03-28 2019-10-10 株式会社ジャパンディスプレイ 表示装置および表示装置の製造方法
JP2020153926A (ja) 2019-03-22 2020-09-24 Necプラットフォームズ株式会社 ベルトコンベア監視システム、ベルトコンベア監視装置、ベルトコンベア監視方法、及びプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150315372A1 (en) * 2011-12-12 2015-11-05 Gates Corporation Rubber Composition And Rubber Products Using Same
JP6055430B2 (ja) * 2013-03-29 2016-12-27 三ツ星ベルト株式会社 伝動用ベルト
US20160362525A1 (en) * 2014-02-27 2016-12-15 E. I. Du Pont De Nemours And Company Micropulp-elastomer masterbatches and compounds
JP2016006245A (ja) * 2014-05-22 2016-01-14 ユニチカ株式会社 繊維収束剤、繊維状強化材および繊維強化樹脂組成物
WO2016009858A1 (ja) * 2014-07-16 2016-01-21 Jsr株式会社 サイジング剤、組成物及び成形体

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515605A (ja) * 2000-12-07 2004-05-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 二成分パルプ強化材
JP2007232205A (ja) 2005-08-31 2007-09-13 Mitsuboshi Belting Ltd 摩擦伝動ベルト
JP2008157445A (ja) 2006-11-30 2008-07-10 Mitsuboshi Belting Ltd 摩擦伝動ベルト及びその製造方法
JP2008185162A (ja) 2007-01-31 2008-08-14 Mitsuboshi Belting Ltd 摩擦伝動ベルト
JP2016090051A (ja) 2014-10-31 2016-05-23 三ツ星ベルト株式会社 摩擦伝動ベルト
JP2016121806A (ja) 2014-12-25 2016-07-07 三ツ星ベルト株式会社 摩擦伝動ベルト及びその製造方法
JP2018527430A (ja) 2015-07-10 2018-09-20 ゲイツ コーポレイション ゴム組成物およびそれを使用したゴム製品
JP2017110236A (ja) * 2015-09-02 2017-06-22 Jsr株式会社 組成物及び成形体
JP2017150662A (ja) * 2016-02-25 2017-08-31 三ツ星ベルト株式会社 摩擦伝動ベルト及びその製造方法
JP2019174609A (ja) 2018-03-28 2019-10-10 株式会社ジャパンディスプレイ 表示装置および表示装置の製造方法
JP2020153926A (ja) 2019-03-22 2020-09-24 Necプラットフォームズ株式会社 ベルトコンベア監視システム、ベルトコンベア監視装置、ベルトコンベア監視方法、及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4036166A4

Also Published As

Publication number Publication date
EP4036166A4 (en) 2023-10-18
JP6849850B1 (ja) 2021-03-31
CN114521204B (zh) 2023-12-12
CN114521204A (zh) 2022-05-20
JP2021055058A (ja) 2021-04-08
US20220348753A1 (en) 2022-11-03
EP4036166A1 (en) 2022-08-03

Similar Documents

Publication Publication Date Title
JP6055430B2 (ja) 伝動用ベルト
JP6616852B2 (ja) 伝動ベルト
CN109642640B (zh) 多楔带及其用途
EP3214338A1 (en) Friction transmission belt and manufacturing method thereof
WO2021079809A1 (ja) 摩擦伝動ベルトおよびその製造方法
WO2018155722A1 (ja) 伝動ベルト
US6177202B1 (en) Power transmission belt
US11300178B2 (en) Friction drive belt
JP5926543B2 (ja) 摩擦伝動ベルト及びその製造方法
JP7348143B2 (ja) ゴム組成物およびその製造方法ならびに伝動ベルト
WO2021060536A1 (ja) 摩擦伝動ベルト
JP6849850B1 (ja) ゴム組成物および摩擦伝動ベルト
JP6175113B2 (ja) 摩擦伝動ベルト
JP4820107B2 (ja) 伝動ベルト
WO2021014980A1 (ja) 伝動ベルト用心線の製造方法および伝動ベルトの製造方法、ならびに処理剤および処理用キット
JP6916356B2 (ja) 摩擦伝動ベルト
JP7571240B2 (ja) ゴム組成物およびその製造方法ならびに伝動ベルト
JP7532107B2 (ja) ゴム組成物およびその製造方法ならびに伝動ベルト
JP2021021184A (ja) 伝動ベルト用心線の製造方法および伝動ベルトの製造方法、ならびに処理剤および処理用キット
WO2018043355A1 (ja) Vリブドベルト及びその用途
JP6746818B1 (ja) Vリブドベルトとその製造方法、およびゴム組成物
EP4296537A1 (en) Transmission v-belt
JP2008157319A (ja) 摩擦伝動ベルト
JP2008298151A (ja) Vリブドベルト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020868272

Country of ref document: EP

Effective date: 20220425