WO2021060173A1 - クラッド鋼板及びその製造方法 - Google Patents

クラッド鋼板及びその製造方法 Download PDF

Info

Publication number
WO2021060173A1
WO2021060173A1 PCT/JP2020/035404 JP2020035404W WO2021060173A1 WO 2021060173 A1 WO2021060173 A1 WO 2021060173A1 JP 2020035404 W JP2020035404 W JP 2020035404W WO 2021060173 A1 WO2021060173 A1 WO 2021060173A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
base steel
base
plate
less
Prior art date
Application number
PCT/JP2020/035404
Other languages
English (en)
French (fr)
Inventor
遼介 酒井
洋太 黒沼
純二 嶋村
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020227009407A priority Critical patent/KR20220047862A/ko
Priority to EP20867942.3A priority patent/EP4036265B1/en
Priority to JP2021548876A priority patent/JP7031796B2/ja
Priority to CN202080066553.0A priority patent/CN114430779B/zh
Publication of WO2021060173A1 publication Critical patent/WO2021060173A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/026Rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • B21B2001/383Cladded or coated products
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Definitions

  • the present invention relates to a clad steel sheet used for, for example, a cork drum and a method for manufacturing the clad steel sheet.
  • a clad steel sheet is a steel sheet in which a laminated material made of a corrosion-resistant alloy is bonded to a base steel sheet such as carbon steel.
  • the clad steel sheet has both mechanical properties as a structural member and corrosion resistance, and has a feature that it is cheaper than a solid wood corrosion resistant alloy. Therefore, clad steel sheets are widely used in industrial fields such as shipbuilding, pressure vessels, and energy fields, and demand is increasing against the background of an increase in properties with severe corrosive environments in resource development.
  • a clad steel sheet used for, for example, a pressure vessel a clad steel sheet using 1Cr-1 / 2Mo steel or the like, which has higher high temperature strength than carbon steel, as a base material (see, for example, Patent Document 1) has been known.
  • a cork drum used in the delayed caulking process 1.1 / 4Cr-1 / 2Mo steel and 1Cr-1 / 2Mo steel are often used, and in some cases 1 / 2Mo steel is used. is there.
  • the operating temperature is about 440 ° C to 500 ° C and the operating pressure is about 1 to 7 kg / cm 2 G during operation, and when coke is taken out, a cycle of normal temperature and atmospheric pressure is performed every 16 to 24 hours. Repeated. Meanwhile, the interior of the coke drum for a H 2 S environment, as a high-temperature sulfurization countermeasure, Ni based alloys such as 13Cr stainless steel or Alloy625 as the cladding material SUS405 and SUS410S is employed.
  • the base material made of 1 / 2Mo steel in the clad steel sheet manufactured by normalizing as described above has a double-phase structure of ferrite having a coarse microstructure and hard bainite. Therefore, it is known that the toughness of the base metal is significantly deteriorated, and it is difficult to achieve both the strength of the base metal and the toughness of the base metal.
  • the present invention has been developed in view of the above-mentioned current situation, and an object of the present invention is to provide a clad steel sheet having both base material strength and base material toughness together with a manufacturing method thereof.
  • the present invention has been made to achieve the above object, and the gist thereof is as follows.
  • the composition of the base steel sheet is mass%.
  • the area ratio of bainite at the plate thickness 1/2 position in the plate thickness direction of the base steel plate is 20% or more, and the average crystal grain size of ferrite at the plate thickness 1/2 position in the plate thickness direction is 15 ⁇ m or less.
  • the composition of the base steel sheet is further increased by mass%.
  • the composition of the base steel sheet is further in mass%, V: 0.005 to 0.030%, Ti: 0.005 to 0.030%, Ca: 0.0005 to 0.0040%.
  • a method for producing a clad steel sheet in which the rolled plate is subjected to normalizing at a temperature of 1/2 of the plate thickness in the plate thickness direction of the base steel plate at an Ac 3 transformation point or more and 1000 ° C. or less twice or more.
  • An assembled slab in which a base steel sheet material having the component composition of the base steel sheet according to any one of [1] to [3] and a laminated material made of a Ni-based alloy are assembled at a surface temperature. Heat to a temperature range of 1050 ° C to 1200 ° C, A rolled plate is produced by rolling the heated assembled slab so that the rolling reduction ratio is 2.0 or more in a temperature range of 950 ° C. or higher and the rolling end temperature is 800 ° C.
  • a method for producing a clad steel sheet in which the rolled plate is subjected to normalizing at a temperature of 1/2 of the plate thickness in the plate thickness direction of the base steel plate at an Ac 3 transformation point or more and 1000 ° C. or less twice or more.
  • the assembled slabs are laminated in the order of the base steel plate material, the laminated material, the laminated material, and the base steel plate material, or the base steel plate material and the laminated material are laminated.
  • the method for producing a clad steel sheet according to [6] or [7].
  • the toughness of the base metal can be ensured by setting the diameter to 15 ⁇ m or less.
  • the clad steel has a structure in which a laminated material is joined to one side or both sides of a base material.
  • the laminated material include, but are not limited to, corrosion-resistant stainless steel or Ni-based alloys, and various alloys can be used depending on the application.
  • the thickness of the clad steel sheet is, for example, about 70 mm, but the thickness is not limited to this. Further, usually, the plate thickness of the base steel plate is about 5 to 66 mm, and the plate thickness of the laminated material is about 1.5 to 4.0 mm.
  • the composition of the base steel plate is C: 0.120 to 0.180%, Si: 0.15 to 0.40%, Mn: 0.50 to 0.90%, P: 0.020 in mass%. % Or less, S: 0.010% or less, Cu + Ni + Cr: 0.800 to 1.100% (however, each element symbol indicates the content of each element), Mo: 0.45 to 0.60%, Nb : 0.005 to 0.025%, Al: 0.005 to 0.050%, N: 0.0010 to 0.0070%.
  • each component composition will be described in detail.
  • C 0.120 to 0.180% C is an element that contributes to precipitation strengthening as a carbide.
  • the C content is less than 0.120%, sufficient strength of the base metal cannot be secured.
  • the C content exceeds 0.180%, the toughness of the base metal and the toughness of the weld heat-affected zone are deteriorated due to the precipitation of coarse carbides (cementite). Therefore, the C content is set to 0.120 to 0.180%.
  • the preferred upper limit is 0.165%.
  • Si 0.15 to 0.40% Si is an element added to secure the strength of the base metal by deoxidizing or strengthening the solid solution.
  • the Si content is less than 0.15%, the effect is not sufficient.
  • the Si content exceeds 0.40%, the toughness of the base metal and the toughness of the weld heat affected zone are deteriorated. Therefore, the Si content is set to 0.15 to 0.40%.
  • the preferred lower limit is 0.20%.
  • Mn 0.50 to 0.90%
  • Mn is an element added to ensure the strength of the base metal and the toughness of the base metal by improving the hardenability.
  • the Mn content is set to 0.50 to 0.90%.
  • the preferred lower limit is 0.70%.
  • P 0.020% or less
  • P is an unavoidable impurity that deteriorates the toughness of the base metal. Therefore, the P content is 0.020% or less. It is preferably 0.0080% or less.
  • S 0.010% or less
  • S generally exists as a sulfide-based inclusion in steel and deteriorates the toughness of the base metal. Therefore, it is preferable to reduce S as much as possible, and the S content is 0.010% or less. It is preferably 0.0050% or less.
  • Mo 0.45 to 0.60%
  • Mo contributes to increasing the strength of the base steel sheet by strengthening precipitation.
  • the Mo content is less than 0.45%, the effect is not sufficient.
  • the Mo content exceeds 0.60%, the toughness of the weld heat affected zone may deteriorate. Therefore, when Mo is contained, the content thereof is set to 0.45 to 0.60% or less.
  • the preferred lower limit is 0.50%.
  • Nb 0.005 to 0.025%
  • Nb contributes to increasing the strength of the base steel sheet by strengthening precipitation and increasing hardenability. Further, Nb forms a carbonitride, and the pinning effect of the carbonitride suppresses the coarsening of austenite, which contributes to the improvement of the toughness of the base metal.
  • the Nb content is preferably 0.005% or more, preferably 0.015% or more.
  • the Nb content is 0.025% or less, preferably 0.020% or less.
  • Al 0.005 to 0.050%
  • Al is an element that suppresses the coarsening of austenite by the pinning effect of the nitride and contributes to the improvement of the toughness of the base metal. It is also an element added for deoxidation. However, if the Al content is less than 0.005%, these effects are not sufficient. On the other hand, when the Al content exceeds 0.050%, alumina clusters are formed and the ductility is deteriorated. Therefore, the Al content is set to 0.005 to 0.050%. The preferred lower limit is 0.020%.
  • N 0.0010 to 0.0070%
  • the coarsening of austenite is suppressed by the pinning effect of the nitride, which contributes to the improvement of the toughness of the base metal and the heat-affected zone of welding.
  • the N content is set to 0.0010 to 0.0070%.
  • the preferred lower limit is 0.0020%.
  • Cu + Ni + Cr 0.800 to 1.100% (However, each element symbol indicates the content of each element.)
  • Cu, Ni, and Cr are all elements that improve hardenability, and are elements that are added to ensure the strength of the base metal and the toughness of the base metal.
  • the total content of Cu, Ni, and Cr is preferably 0.800% or more, preferably 0.950% or more.
  • the total content of Cu, Ni, and Cr is set to 1.100% or less.
  • Cu, Ni, and Cr it is not necessary to contain all the elements of Cu, Ni, and Cr, and it is sufficient that any one or two of them are contained to satisfy the above total content.
  • Cu, Ni, and Cr Cu: 0.30 to 0.40%, Ni: 0.30 to 0.40%, and Cr: 0.20 to 0.30%, respectively. You may. If the Cu content is less than 0.30%, the Ni content is less than 0.30%, or the Cr content is less than 0.20%, a sufficient strength-toughness balance cannot be ensured. Therefore, when Cu, Ni, and Cr are contained, the Cu content is preferably 0.30% or more and preferably 0.35% or more, and the Ni content is 0.30% or more and 0.
  • the Cr content is 0.20% or more, preferably 0.25% or more.
  • the Cu content is 0.40% or less, the Ni content is 0.40% or less, and the Cr content is 0.30% or less.
  • V 0.005 to 0.030%
  • Ti 0.005 to 0.030%
  • Ca 0.0005 to 0.0040%
  • One kind or two or more kinds may be contained.
  • V 0.005 to 0.030%
  • V contributes to increasing the strength of the base steel sheet by strengthening precipitation.
  • the V content is less than 0.005%, the effect is not sufficient.
  • the V content exceeds 0.030%, the toughness of the weld heat affected zone deteriorates. Therefore, when V is contained, the content thereof is set to 0.005 to 0.030% or less. A more preferable lower limit is 0.025%.
  • Ti 0.005 to 0.030%
  • the coarsening of austenite is suppressed by the pinning effect of the nitride, which contributes to the improvement of the toughness of the base metal and the heat-affected zone of welding.
  • Ti is an element effective for increasing the strength of the steel sheet by precipitation strengthening.
  • the Ti content exceeds 0.030%, the nitride becomes coarse and becomes the starting point of brittle fracture and ductile fracture. Therefore, when Ti is contained, the content thereof is set to 0.005 to 0.030%.
  • the preferred upper limit is 0.020%.
  • Ca 0.0005-0.0040%
  • Ca has a function of fixing S in steel to improve the toughness of the base metal and the HIC resistance.
  • the content thereof is set to 0.0005 to 0.0040% or less. More preferably, it is 0.0020 to 0.0030%.
  • the balance of the composition components is Fe and unavoidable impurities.
  • Inevitable impurities are those that are present in the raw material or are inevitably mixed in the manufacturing process, and are originally unnecessary, but they are allowed to be contained because they are in trace amounts and do not affect the characteristics. Means impurities. Therefore, even if unavoidable impurities are contained, the characteristics of the base metal do not change significantly. For example, it is permissible to contain less than 0.003% oxygen (O).
  • the steel structure of the base material steel plate has a structure containing bainite. Specifically, the area ratio of bainite at the position of 1/2 of the plate thickness in the plate thickness direction of the base steel plate is set to 20% or more.
  • the average crystal grain size of ferrite at the position of 1/2 of the plate thickness in the plate thickness direction of the base steel plate is set to 15 ⁇ m or less.
  • the area ratio of bainite and the average grain size of ferrite will be explained below.
  • the steel structure of the base steel sheet must have a structure containing bainite from the viewpoint of ensuring strength, and this bainite is transformed. By strengthening the structure, it effectively contributes to improving the strength of the steel sheet.
  • the area ratio of bainite to the entire steel structure at the plate thickness 1/2 position in the plate thickness direction of the base steel plate (hereinafter, also simply referred to as the plate thickness 1/2 position) is 20% or more.
  • the base steel sheet may contain bainite in an area ratio of 20% or more, may have a total area ratio of ferrite and bainite of 100%, or may contain a steel structure other than ferrite and bainite. It may be something to do.
  • the area ratio of bainite at the position where the plate thickness is 1/2 is obtained as follows. That is, the area ratio is such that the L cross section (cross section parallel to the rolling direction and parallel to the rolling surface normal direction) at the plate thickness 1/2 position in the plate thickness direction of the base steel plate is mirror-polished and then corroded by night tar. It was obtained by observing a 1.2 mm 2 region selected artificially with an optical microscope at a magnification of 100 times and analyzing the image.
  • Average crystal grain size of ferrite 15 ⁇ m or less Since the grain boundaries of ferrite serve as resistance to brittle crack propagation, miniaturization of crystal grains contributes to the improvement of base metal toughness. Therefore, the average crystal grain size of ferrite is set to 15 ⁇ m or less. The average crystal grain size of ferrite was evaluated in accordance with JIS G 0551.
  • the laminated material bonded to the base steel plate is made of, for example, a corrosion-resistant alloy.
  • the corrosion-resistant alloy is not particularly limited, but it is preferably a stainless steel such as SUS405 or SUS410S or a Ni-based alloy.
  • the assembled slab is heated to a temperature range of ° C, rolled at a surface temperature range of 950 ° C or higher at a reduction ratio according to the type of laminated material, and then air-cooled to be a rolled plate composed of a base steel plate and a laminated material.
  • Is produced, and the produced rolled plate is subjected to normalizing twice or more at an Ac 3 transformation point or more and 1000 ° C. or less at a temperature of 1/2 of the plate thickness in the plate thickness direction of the base steel plate.
  • the material of the base material steel plate and the material of the base material are laminated, or the material of the base material steel plate, the material of the laminated material, the material of the laminated material, and the material of the base material steel plate are in this order. Assembled by stacking. When laminating the laminated materials, a release agent is applied in advance between the laminated materials, and after the normalizing process is completed, the upper part and the lower part are peeled off to form one side of the base steel plate which becomes the product plate. A clad steel sheet to which the normalizing material is bonded can be obtained. Further, the assembly slab is formed by electron beam welding or laser beam welding of base steel sheets in an environment of vacuum (negative pressure) of 10 -4 torr or less, and temporarily attaching the base steel sheets and the laminated material. There may be.
  • the slab heating temperature is set to 1050 ° C to 1200 ° C. It is preferably 1050 to 1100 ° C.
  • the reduction ratio is set according to the type of the laminated material.
  • the reduction ratio of the material to be rolled in a temperature range of 950 ° C. or higher needs to be 1.5 or higher.
  • the reduction ratio in the temperature range of the surface temperature of 1000 ° C. or higher is 2.0 or higher.
  • the rolling reduction ratio in the temperature range of the surface temperature of the material to be rolled is 950 ° C. or higher must be 2.0 or higher.
  • the reduction ratio in the temperature range of the surface temperature of 1000 ° C. or higher is 2.5 or higher.
  • the rolling end temperature is 800 ° C. or higher at the surface temperature of the assembled slab.
  • Normalizing temperature Normalizing at a temperature of 1/2 of the plate thickness at an Ac 3 transformation point or more and 1000 ° C. or less After the above clad rolling, the rolled plate is heated to perform normalizing.
  • the normalizing temperature referred to here is the temperature at the position of 1/2 of the plate thickness in the plate thickness direction in the base steel plate portion of the rolled plate. If the normalizing temperature is less than the Ac 3 transformation point, the austenite transformation is not completed, the final structure becomes non-uniform, and the toughness of the base steel sheet deteriorates.
  • the normalizing temperature is set to the Ac 3 transformation point or more and 1000 ° C. or less. It is preferably 900 ° C. to 1000 ° C.
  • the Ac 3 transformation point can be obtained by the following equation (1).
  • Ac 3 (° C.) 912.0-230.5 x C + 31.6 x Si? 20.4 x Mn? 39.8 x Cu? 18.1 x Ni? 14.8 x Cr + 16.8 x Mo ... (1)
  • the element symbol in the above formula (1) means the content (mass%) of each element, and is set to zero when the element is not contained.
  • the ferrite of the final structure is refined by increasing the ferrite metamorphic nucleation sites due to the miniaturization of austenite during normalizing.
  • the particle size of austenite during heating during normalizing is affected by the particle size of the pre-normalizing structure and the dispersed state of the precipitates during normalizing.
  • the austenite during heating of the normalizing is refined.
  • the clad steel sheet needs to be rolled at a high temperature in order to ensure the bondability between the laminated material and the base material, and the pre-normalizing structure of the base material is that the base material is not clad but carbon steel alone.
  • the number of normalizing is set to 2 or more.
  • the mutual relationship between the temperatures at the time of heating each normalizing is not particularly limited and may be appropriately selected.
  • Example 1 a material of a base steel sheet having the component composition shown in Table 1 below was prepared.
  • the laminated material was stainless steel made of SUS410S.
  • the underlined portion means that it is outside the scope of the present invention, and “-” means that it is not contained or is contained as an unavoidable impurity.
  • test piece shape No. 4, test piece collection position: plate thickness 1/2 position, test piece collection direction: C direction, test temperature: room temperature
  • test piece conforming to JIS Z2241 were performed on the clad steel plate thus obtained.
  • a Charpy impact test (notch shape: V notch, test piece collection position: plate thickness 1/2 position, test piece collection direction: C direction) based on JIS Z2242 was carried out, and yield strength (YS) and tensile strength (TS) were performed. ), The ductile brittle transition temperature (vTrs) was determined.
  • the position where the test piece is collected in the tensile test and the Charpy impact test is the position where the plate thickness is 1/2 means that the plate thickness of the base steel plate is 1/2.
  • the tensile strength TS (Toughness Strength) ⁇ 515 [MPa] (after baking, after PWHT 640 ° C-3 hr, after PWHT 640 ° C-21 hr) at the plate thickness 1/2 position in the plate thickness direction of the base steel plate.
  • Yield strength YS Yield Strength
  • Yield Strength ⁇ 295 [MPa] (after baking, after PWHT640 ° C-21hr), yield strength YS ⁇ 390 [MPa] (after PWHT640 ° C-3hr), ductile brittle transition temperature vTrs ⁇ -
  • a material having a temperature of 10 [° C.] (after PWHT 640 ° C.-21 hr) satisfies the characteristics (base material strength and base material toughness) required for a clad steel plate for a pressure vessel such as a cork drum used at 300 ° C. or higher, for example. It was evaluated as a thing.
  • Comparative example No. 22 the desired base material toughness cannot be obtained because the number of times of normalizing is less than the appropriate range. Comparative example No. 23, since the slab heating temperature exceeds the appropriate range, the desired base material toughness cannot be obtained.
  • the strength of the base material and the toughness of the base material of the clad steel sheet are improved by controlling the steel structure of the base steel sheet in addition to controlling the composition of the components. Was done.
  • Example 2 a material of a base steel sheet having the same composition as that of Example 1 shown in Table 1 described above was prepared. However, the material of the laminated material was a Ni-based alloy made of Alloy625.
  • Example 2 The same evaluation test as in Example 1 was carried out on the clad steel sheet thus obtained, and the yield strength (YS), tensile strength (TS), ductile brittle transition temperature (vTrs) and joint interfacial shear strength were determined. These results are shown in Table 5.
  • Comparative Example No. 26 since the C, Mn and Mo contents of the base steel sheet are below the appropriate range, the amount of bainite generated during cooling is also small, and the desired tensile properties cannot be obtained. Comparative Example No. 33, since the C and Si contents of the base steel sheet exceed the appropriate range, the desired base material toughness cannot be obtained. Comparative Example No. 34, the C content of the base steel sheet is above the appropriate range, and the total content of Cu, Ni, and Cr is below the appropriate range, so that the desired base material toughness cannot be obtained. Comparative Example No. In No. 35, the Al, Nb and N contents are below the appropriate range, so that the desired base metal toughness cannot be obtained.
  • Comparative Example No. 40 the slab heating temperature is above the appropriate range and the number of times of normalizing is below the appropriate range, so that the desired base material toughness cannot be obtained. Comparative Example No. 41, since the slab heating temperature and the reduction ratio at 950 ° C. or higher are below the appropriate range, the desired bondability between the base steel sheet and the laminated material cannot be obtained. Comparative Example No. 42, the desired base material toughness cannot be obtained because the normalizing temperature is below the appropriate range. Comparative Example No. In No. 43, since the normalizing temperature exceeds the appropriate range, the desired base material characteristics cannot be obtained. Comparative Example No. In No. 40, the slab heating temperature is above the appropriate range and the number of times of normalizing is below the appropriate range, so that the desired base material toughness cannot be obtained. Comparative Example No. In No. 41, since the slab heating temperature and the reduction ratio at 950 ° C. or higher are below the appropriate range, the desired bondability between the base steel sheet and the laminated material cannot be obtained. Comparative Example No. In No. 42,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

本発明のクラッド鋼板は、母材鋼板に合せ材が接合されたものであって、母材鋼板の成分組成は、質量%で、C:0.120~0.180%、Si:0.15~0.40%、Mn:0.50~0.90%、P:0.020%以下、S:0.010%以下、Cu+Ni+Cr:0.800~1.100%(ただし、各元素記号は各元素の含有量を示す。)、Mo:0.45~0.60%、Nb:0.005~0.025%、Al:0.005~0.050%、N:0.0010~0.0070%、を含有し、残部がFe及び不可避的不純物からなり、母材鋼板の板厚方向の板厚1/2位置におけるベイナイトの面積率は20%以上であり、板厚方向の板厚1/2位置におけるフェライトの平均結晶粒径は15μm以下である。

Description

クラッド鋼板及びその製造方法
 本発明は、例えばコークドラムなどに用いられるクラッド鋼板およびその製造方法に関する。
 クラッド鋼板とは、炭素鋼などの母材鋼板に、耐食性合金からなる合せ材を張り合わせた鋼板である。クラッド鋼板は、構造部材としての機械的特性と耐食性を兼ね備え、無垢材耐食性合金と比較して安価であるという特長を有している。そのため、クラッド鋼板は、造船、圧力容器、エネルギー分野を主とした産業分野で広く使用されており、資源開発における腐食環境の厳しい物件が増加していることを背景に需要が高まっている。
 従来から、例えば圧力容器用等に用いられるクラッド鋼板として、炭素鋼より高温強度の高い1Cr-1/2Mo鋼等を母材(例えば特許文献1参照)としたクラッド鋼板が知られている。また、ディレイドコーキングプロセスに使用されるコークドラムでは、1・1/4Cr-1/2Mo鋼や1Cr-1/2Mo鋼が採用されるケースが多く、一部1/2Mo鋼が採用されるケースもある。
 コークドラムにおいて、運転時には運転温度が約440℃~500℃、運転圧力が約1~7kg/cmGになり、コークス取り出し時には、常温及び大気圧になるようなサイクルが16~24時間おきに繰り返される。一方、コークドラムの内部はHS環境であるため、高温硫化対策として、合せ材にはSUS405やSUS410Sのような13Cr系ステンレス鋼やAlloy625のようなNi基合金が採用される。
特開2001-247915号公報
 上述のような焼きならしによって製造されたクラッド鋼板における1/2Mo鋼からなる母材は、ミクロ組織が粗大なフェライトと硬質なベイナイトとの複相組織となる。このため、母材靱性が著しく劣化することが知られており、母材強度と母材靱性との両立は困難である。
 本発明は、上記の現状に鑑み開発されたものであって、母材強度と母材靱性とを両立したクラッド鋼板を、その製造方法とともに提供することを目的とする。
 本発明は、上記目的を達成すべくなされたものであり、その要旨は次の通りである。
[1] 母材鋼板に合せ材が接合されているクラッド鋼板であって、
 母材鋼板に合せ材が接合されているクラッド鋼板であって、
 前記母材鋼板の成分組成は、質量%で、
 C:0.120~0.180%、
 Si:0.15~0.40%、
 Mn:0.50~0.90%、
 P:0.020%以下、
 S:0.010%以下、
 Mo:0.45~0.60%、
 Nb:0.005~0.025%、
 Al:0.005~0.050%、および
 N:0.0010~0.0070%、
を含有し、さらに、Cu、Ni、Crを、
 Cu+Ni+Cr:0.800~1.100%、
 (ただし、各元素記号は各元素の含有量を示す。)
を満足する範囲で含有し、残部がFe及び不可避的不純物からなり、
 前記母材鋼板の板厚方向の板厚1/2位置におけるベイナイトの面積率は20%以上であり、板厚方向の板厚1/2位置におけるフェライトの平均結晶粒径は15μm以下であるクラッド鋼板。
[2] 前記母材鋼板の成分組成が、さらに質量%で、
 Cu:0.30~0.40%、
 Ni:0.30~0.40%、
 Cr:0.20~0.30%、
を含有することを特徴とする[1]に記載のクラッド鋼板。
[3] 前記母材鋼板の成分組成が、さらに質量%で、V:0.005~0.030%、Ti:0.005~0.030%、Ca:0.0005~0.0040%のうちから選ばれた1種または2種以上を含有する[1]又は[2]に記載のクラッド鋼板。
[4] 前記合せ材は、ステンレス鋼からなる[1]~[3]のいずれかに記載のクラッド鋼板。
[5] 前記合せ材は、Ni基合金からなる[1]~[3]のいずれかに記載のクラッド鋼板。
[6] [1]~[3]のいずれかに記載の母材鋼板の成分組成を有する母材鋼板の素材とステンレス鋼からなる合せ材の素材とを組み立てた組立スラブを、表面温度で1050℃~1200℃の温度域に加熱し、
 加熱した前記組立スラブに表面温度950℃以上の温度域での圧下比1.5以上とする圧延を施して圧延板を作製し、
 前記圧延板に、前記母材鋼板の板厚方向の板厚1/2位置の温度でAc変態点以上1000℃以下の焼きならしを2回以上施す
 クラッド鋼板の製造方法。
[7] [1]~[3]のいずれかに記載の母材鋼板の成分組成を有する母材鋼板の素材とNi基合金からなる合せ材の素材とを組み立てた組立スラブを、表面温度で1050℃~1200℃の温度域に加熱し、
 加熱した前記組立スラブに表面温度950℃以上の温度域での圧下比2.0以上であって、圧延終了温度を前記組立スラブの表面温度800℃以上とする圧延を施して圧延板を作製し、
 前記圧延板に、前記母材鋼板の板厚方向の板厚1/2位置の温度でAc変態点以上1000℃以下の焼きならしを2回以上施す
 クラッド鋼板の製造方法。
[8] 前記組立スラブを、母材鋼板の素材、合せ材の素材、合せ材の素材、母材鋼板の素材の順に積層して、または母材鋼板の素材と合せ材の素材とを積層して組み立てる[6]または[7]に記載のクラッド鋼板の製造方法。
 本発明のクラッド鋼板及びその製造方法によれば、ベイナイトの面積率を20%以上として母材強度を確保しながら、母材鋼板の板厚方向の板厚1/2位置におけるフェライトの平均結晶粒径を15μm以下として母材靱性を確保することができる。
 以下、本発明の実施形態について説明する。クラッド鋼は、母材の片面または両面に合せ材が接合された構造を有する。合せ材としては、例えば耐食性のステンレス鋼又はNi基合金が挙げられるが、これに限定されず、用途に応じて種々の合金を用いることができる。なお、クラッド鋼板の板厚は例えば70mm程度であるが、これに限定されない。また、通常、母材鋼板の板厚は5~66mm程度であり、合せ材の板厚は1.5~4.0mm程度である。
 まず、本発明のクラッド鋼板における母材鋼板の成分組成について説明する。なお、成分組成における単位はいずれも「質量%」であるが、以下、特に断らない限り、単に「%」で示す。
 母材鋼板の成分組成は、質量%で、C:0.120~0.180%、Si:0.15~0.40%、Mn:0.50~0.90%、P:0.020%以下、S:0.010%以下、Cu+Ni+Cr:0.800~1.100%(ただし、各元素記号は各元素の含有量を示す。)、Mo:0.45~0.60%、Nb:0.005~0.025%、Al:0.005~0.050%、N:0.0010~0.0070%、を含有する。以下、各成分組成について詳説する。
 C:0.120~0.180%
 Cは、炭化物として析出強化に寄与する元素である。ここで、C含有量が0.120%未満では、十分な母材強度を確保できない。一方、C含有量が0.180%を超えると、粗大な炭化物(セメンタイト)の析出により、母材靭性および溶接熱影響部靱性を劣化させる。従って、C含有量は0.120~0.180%とする。好ましい上限値は0.165%である。
 Si:0.15~0.40%
 Siは、脱酸や固溶強化による母材強度確保のため添加する元素である。ここで、Si含有量が0.15%未満では、その効果が十分ではない。一方、Si含有量が0.40%を超えると、母材靭性や溶接熱影響部靭性を劣化させる。従って、Si含有量は0.15~0.40%とする。好ましい下限値は0.20%である。
 Mn:0.50~0.90%
 Mnは、焼き入れ性向上による母材強度確保および母材靭性確保のため添加する元素である。ここで、Mn含有量が0.50%未満では、その効果が十分ではない。一方、Mn含有量が0.90%を超えると、溶接性が劣化する。従って、Mn含有量は0.50~0.90%とする。好ましい下限値は0.70%である。
 P:0.020%以下
 Pは、母材靭性を劣化させる不可避的不純物である。従って、P含有量は0.020%以下とする。好ましくは0.0080%以下である。
 S:0.010%以下、
 Sは、一般に鋼中においては硫化物系介在物として存在し、母材靭性を劣化させる。従って、Sは極力低減するのが好ましく、S含有量は0.010%以下とする。好ましくは0.0050%以下である。
 Mo:0.45~0.60%、
 Moは析出強化により母材鋼板の高強度化に寄与する。ここで、Mo含有量が0.45%未満ではその効果は十分ではない。一方、Mo含有量が0.60%を超えると、溶接熱影響部の靭性を劣化させる場合がある。従って、Moを含有させる場合、その含有量は0.45~0.60%以下とする。好ましい下限値は0.50%である。
 Nb:0.005~0.025%
 Nbは、析出強化や焼入れ性増大により母材鋼板の高強度化に寄与する。また、Nbは炭窒化物を形成し、その炭窒化物によるピンニング効果でオーステナイトの粗大化を抑制し、母材靭性向上に寄与する。しかし、Nb含有量が0.005%未満では、その効果が十分ではない。よって、Nb含有量は0.005%以上とし、0.015%以上であることが好ましい。一方、Nb含有量が0.025%を超えると、島状マルテンサイトや粗大なNb炭窒化物の生成を招き、溶接熱影響部の靭性が劣化する。従って、Nb含有量は0.025%以下とし、好ましくは0.020%以下である。
 Al:0.005~0.050%
 Alは、窒化物によるピンニング効果でオーステナイトの粗大化を抑制し、母材靭性向上に寄与する元素である。また、脱酸のために添加される元素である。しかし、Al含有量が0.005%未満では、これらの効果が十分ではない。一方、Al含有量が0.050%を超えると、アルミナクラスターを形成して延性を劣化させる。従って、Al含有量は0.005~0.050%とする。好ましい下限値は0.020%である。
 N:0.0010~0.0070%
 Nは、0.0010%以上含有させることにより、窒化物によるピンニング効果でオーステナイトの粗大化を抑制し、母材や溶接熱影響部の靭性向上に寄与する。しかし、N含有量が0.0070%を超えると、溶接熱影響部の靱性が劣化する。従って、N含有量は0.0010~0.0070%とする。好ましい下限値は、0.0020%である。
 Cu+Ni+Cr:0.800~1.100% (ただし、各元素記号は各元素の含有量を示す。)
 Cu、Ni、Crはいずれも、焼入れ性を向上させる元素であり、母材強度確保および母材靭性確保のため添加する元素である。ここで、Cu、Ni、Crの合計含有量が0.800%未満では、十分な強度‐靱性バランスを確保できない。よって、Cu、Ni、Crの合計含有量は0.800%以上とし、0.950%以上とすることが好ましい。しかし、Cu、Ni、Crは高価な元素であるため、多量に含有させるとコストの増加を招く。従って、Cu、Ni、Crの合計含有量は1.100%以下とする。
 なお、Cu、Ni、Crのすべての元素を含有させる必要はなく、いずれか1種もしくは2種を含有させて上記合計含有量を満たしていればよい。Cu、Ni、Crのすべて含有させる場合、Cu:0.30~0.40%、Ni:0.30~0.40%、および、Cr:0.20~0.30%、でそれぞれ含有させてもよい。Cu含有量が0.30%未満、Ni含有量が0.30%未満、またはCr含有量が0.20%未満では、十分な強度-靱性バランスを確保できない。このため、Cu、Ni、およびCrを含有させる場合には、Cu含有量は0.30%以上とし、0.35%以上であることが好ましく、Ni含有量は0.30%以上とし、0.35%以上であることが好ましく、Cr含有量は0.20%以上とし、0.25%以上であることが好ましい。しかし、Cu、Ni、Crは高価な元素であるため、多量に含有させるとコストの増加を招く。従って、Cu、Ni、Crを含有させる場合には、Cu含有量は0.40%以下、Ni含有量は0.40%以下、Cr含有量は0.30%以下とする。
 また、上記した成分組成に加えて、さらにV:0.005~0.030%、Ti:0.005~0.030%、Ca:0.0005~0.0040%、のうちから選ばれた1種または2種以上を含有させてもよい。
 V:0.005~0.030%
 Vは、析出強化により母材鋼板の高強度化に寄与する。ここで、V含有量が0.005%未満ではその効果が十分ではない。一方、V含有量が0.030%を超えると、溶接熱影響部の靭性が劣化する。従って、Vを含有させる場合、その含有量は0.005~0.030%以下とする。さらに好ましい下限値は0.025%である。
 Ti:0.005~0.030%
 Tiは、0.005%以上含有させることにより、窒化物によるピンニング効果でオーステナイトの粗大化を抑制し、母材や溶接熱影響部の靭性向上に寄与する。また、Tiは、析出強化による鋼板の高強度化に有効な元素である。しかし、Ti含有量が0.030%を超えると、窒化物が粗大化し脆性破壊や延性破壊の起点となる。従って、Tiを含有させる場合、その含有量は0.005~0.030%とする。好ましい上限値は0.020%である。
 Ca:0.0005~0.0040%
 Caは、鋼中のSを固定して母材靭性や耐HIC特性を向上させる働きがある。この効果を得るためには、Caを0.0005%以上含有させることが好ましい。しかし、Ca含有量が0.0040%を超えると、鋼中の介在物を増加させ、母材靭性や耐HIC特性を劣化させる場合がある。従って、Caを含有させる場合、その含有量は0.0005~0.0040%以下とする。さらに好ましくは0.0020~0.0030%である。
 なお、上記母材鋼板において上記組成成分の残部はFeおよび不可避不純物である。不可避不純物とは、原料中に存在し、あるいは製造工程において不可避的に混入するもので、本来は不要なものであるが、微量であり、特性に影響を及ぼさないため、含有が許容されている不純物を意味する。よって、不可避的不純物が含まれていても母材の特性に顕著な変化は生じない。たとえば、0.003%以下の酸素(O)が含有されることは許容される。
 以上、クラッド鋼の母材の適正組成範囲について説明したが、当該成分組成の制御に加えて母材鋼板の鋼組織を制御することにより、母材強度および母材靱性の向上を図ることができる。まず、母材強度を確保するために、母材鋼板の鋼組織はベイナイトを含む組織になっている。具体的には、母材鋼板の板厚方向の板厚1/2位置におけるベイナイトの面積率を20%以上とする。また、母材靱性を確保するためには、母材鋼板において脆性亀裂の起点となりうる粗大な炭化物(セメンタイト)の低減と脆性亀裂伝播抵抗を増大させる組織の微細化を同時に行うことが有効である。具体的には、母材鋼板の板厚方向の板厚1/2位置におけるフェライトの平均結晶粒径を15μm以下とする。以下にベイナイトの面積率及びフェライトの平均結晶粒径について分説する。
 母材鋼板の板厚方向の板厚1/2位置におけるベイナイトの面積率:20%以上
 母材鋼板の鋼組織は、強度確保の観点からベイナイトを含む組織とする必要があり、このベイナイトは変態組織強化によって鋼板の強度向上に有効に寄与する。具体的には、母材鋼板の板厚方向の板厚1/2位置(以下、単に板厚1/2位置ともいう)における鋼組織全体に対するベイナイトの面積率で20%以上とする。なお、母材鋼板は、ベイナイトを面積率で20%以上含有するものであればよく、フェライトとベイナイトの合計の面積率が100%からなるものでもよいし、フェライトとベイナイト以外の鋼組織を含有するものであってもよい。
 板厚1/2位置におけるベイナイトの面積率は、以下のようにして求めたものである。すなわち、面積率は、母材鋼板の板厚方向の板厚1/2位置のL断面(圧延方向に平行で圧延面法線方向に平行な断面)を鏡面研磨後、ナイタールにより腐食し、無作為に選択した1.2mmの領域を、光学顕微鏡を用いて倍率:100倍観察し、画像解析することで求めたものである。
 フェライトの平均結晶粒径:15μm以下
 フェライトの結晶粒界は、脆性亀裂伝播の抵抗となるため、結晶粒の微細化は母材靭性の向上に寄与する。従って、フェライトの平均結晶粒径は15μm以下とする。なお、フェライトの平均結晶粒径はJIS G 0551に準拠して評価したものである。
 クラッド鋼において、母材鋼板に接合された合せ材は、例えば耐食性合金からなっている。耐食性合金は特に限定されるものではないが、SUS405やSUS410S等のステンレス鋼もしくはNi基合金とすることが好ましい。
 上述した母材鋼板の組織制御を行うには、成分組成および製造条件、特に圧延後の焼きならし条件を適正に制御することが重要である。そこで、上記クラッド鋼板の製造方法について説明する。このクラッド鋼板の製造方法は、上記した成分組成を有する母材鋼板の素材と、ステンレス鋼もしくはNi基合金からなる合せ材の素材とを積層してなる組立スラブを、表面温度で1050℃~1200℃の温度域に加熱し、組立スラブに、表面温度950℃以上の温度域で合せ材の種類に応じた圧下比で圧延を施した後、空冷して母材鋼板と合せ材からなる圧延板を作製し、作製した圧延板に、母材鋼板の板厚方向の板厚1/2位置の温度でAc変態点以上1000℃以下の焼きならしを2回以上施すものである。
 ここで、組立スラブは、例えば、母材鋼板の素材と合せ材の素材とを積層して、または、母材鋼板の素材、合せ材の素材、合せ材の素材、母材鋼板の素材の順に積層して組み立てられる。なお、合せ材同士を重ね合わせる際、合せ材間に剥離剤を予め塗布しておき、焼きならし処理の終了後に、上部と下部とを剥離することによって、製品板となる母材鋼板の片面に合せ材が接合されているクラッド鋼板が得られる。また、組立スラブは、例えば10-4torr以下の真空(負圧)となる環境下で母材鋼板同士を電子ビーム溶接またはレーザービーム溶接し、母材鋼板と合せ材とを仮付けしたものであってもよい。
 スラブ加熱温度が表面温度で1050℃~1200℃での加熱
 スラブ加熱温度が1050℃未満では、母材鋼板と合せ材との接合性の確保が困難になる。一方、スラブ加熱温度が1200℃を超えると、母材鋼板においてオーステナイトが粗大化し、靱性が劣化する。従って、スラブ加熱温度は1050℃~1200℃とする。好ましくは1050~1100℃である。
 表面温度950℃以上の温度域で合せ材の種類に応じた圧下比での圧延
 クラッド鋼板の母材鋼板と合せ材との接合性は、高温域での圧延により確保される。すなわち、高温域での圧延では、母材鋼板と合せ材の変形抵抗が小さくなって良好な接合界面が形成されるため、接合界面での元素の相互拡散が容易になり、母材鋼板と合せ材との接合性が確保される。
 母材鋼板と合せ材との接合性の観点から、合せ材の種類に応じて圧下比が設定される。合せ材がステンレス鋼からなる場合、圧延される材料の表面温度950℃以上の温度域での圧下比を1.5以上とする必要がある。好ましくは表面温度1000℃以上の温度域での圧下比を2.0以上とする。
 合せ材がNi基合金からなる場合、圧延される材料の表面温度950℃以上の温度域での圧下比を2.0以上とする必要がある。好ましくは表面温度1000℃以上の温度域での圧下比を2.5以上とする。さらに、合せ材がNi基合金からなる場合、圧延終了温度が表面温度で800℃を下回ると、母材と合せ材との界面にせん断応力が加わり、接合性が劣化する場合がある。したがって、圧延終了温度は、組立スラブの表面温度で800℃以上とする。
 焼きならし温度:板厚1/2位置の温度でAc変態点以上1000℃以下での焼きならし
 上記のクラッド圧延後、圧延板を加熱して焼きならしを行う。なお、ここでいう焼きならし温度は、圧延板の母材鋼板部分における板厚方向の板厚1/2位置の温度である。焼きならし温度がAc変態点未満であると、オーステナイト変態が完了せず、最終組織が不均一となって母材鋼板の靱性が劣化する。一方、焼きならし温度が1000℃を超えると、オーステナイトのピンニングに作用するAlの窒化物やNbの炭窒化物の溶解により、オーステナイトが粗大化して母材鋼板の靱性が劣化する。従って、焼きならし温度はAc変態点以上1000℃以下とする。好ましくは900℃~1000℃である。なお、Ac変態点は、下記(1)式により求めることができる。
Ac(℃)=912.0?230.5×C+31.6×Si?20.4×Mn?39.8×Cu?18.1×Ni?14.8×Cr+16.8×Mo…(1)
 ここで、上記式(1)における元素記号は、各元素の含有量(質量%)を意味し、当該元素が含有されていない場合にはゼロとする。
 焼きならし回数:2回以上
 最終組織のフェライトは、焼きならし時のオーステナイトの微細化によるフェライト変態核生成サイトの増加により微細化する。ここで、焼きならしの加熱時のオーステナイトの粒径は、焼きならし前組織の粒径と焼きならし時の析出物の分散状態が影響する。焼きならし前組織の微細化、析出物の量の増加およびサイズの低下をさせることにより、焼きならしの加熱時のオーステナイトは微細化する。上述のように、クラッド鋼板は合せ材と母材の接合性確保のために、高温での圧延が必要であり、母材の焼きならし前組織が、母材をクラッドではなく炭素鋼単独で製造する無垢材の組織に比べて粗大になり易い。そこで、焼きならしを2回以上実施することで、析出物の分散状態に顕著な変化はないが、焼きならし前組織が微細化することで最終組織のフェライトが微細化して母材靱性を確保することができる。従って、焼きならし回数は2回以上とする。各回の焼きならしの加熱時の温度の相互の関係については、特に制約されるものではなく、適宜選択してもよい。
 実施例1において、下記表1に示す成分組成を有する母材鋼板の素材を作製した。なお、合せ材はSUS410Sからなるステンレス鋼とした。表1~3において、下線部分は、本発明の範囲外であることを意味し、「-」は含有していない、もしくは不可避不純物として含有している場合を意味する。
Figure JPOXMLDOC01-appb-T000001
 表1に示す成分組成(残部はFeおよび不可避的不純物)の母材鋼板の素材と合せ材(SUS410S)の素材とを積層して組み立てた組立スラブに、下記表2に示す条件で加熱した後に圧延を施して圧延板を作製し、ついで、得られた圧延板に、表2に示す条件で焼きならしを施して、板厚69mmのクラッド鋼板(母材鋼板の板厚:65mm、合せ材の板厚:4mm)を製造した。焼きならしを2回実施した場合の焼きならし温度は、1回目と2回目とで同一の温度とした。
Figure JPOXMLDOC01-appb-T000002
 かくして得られたクラッド鋼板に対し、JIS Z2241に準拠した引張試験(試験片形状:4号、試験片採取位置:板厚1/2位置、試験片採取方向:C方向、試験温度:室温)およびJIS Z2242に準拠したシャルピー衝撃試験(ノッチ形状:Vノッチ、試験片採取位置:板厚1/2位置、試験片採取方向:C方向)を実施し、降伏強度(YS)および引張強さ(TS)、延性脆性遷移温度(vTrs)を求めた。なお、引張試験およびシャルピー衝撃試験の試験片採取位置が板厚1/2位置というのは、母材鋼板の板厚1/2位置であることを指す。
 また、JISG0601に準拠したせん断試験を実施して母材鋼板と合せ材との接合界面せん断強度を求め、母材鋼板と合せ材の接合性を評価した。接合界面せん断強度が300MPa以上の場合に接合性が良好であるとした。さらに、上述した方法により、鋼組織の同定および各相の面積率の算出、ならびにフェライトの平均結晶粒径の算出を行った。これらの結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 評価基準として、母材鋼板の板厚方向の板厚1/2位置において、引張強さTS(Tensile Strength)≧515[MPa](焼きならし後、PWHT640℃-3hr後、PWHT640℃-21hr後)、降伏強度YS(Yield Strength)≧295[MPa](焼きならし後、PWHT640℃-21hr後)、降伏強度YS≧390[MPa](PWHT640℃-3hr後)、延性脆性遷移温度vTrs<-10[℃](PWHT640℃-21hr後)であるものを、例えば300℃以上で使用されるコークドラム等の圧力容器用のクラッド鋼板に求められる特性(母材強度及び母材靭性)を満足するものであると評価した。
 表3の発明例では、いずれも上記母材強度及び母材靭性を満足する結果が得られており、接合性も良好であることがわかる。一方、比較例No.2は、母材鋼板のC、MnおよびMo含有量が適正範囲を下回っているため、冷却中に生じたベイナイトの量も少なく、所望の引張特性が得られない。比較例No.9は、母材鋼板のC含有量およびSi含有量が適正範囲を上回っているため、所望の母材靭性が得られない。比較例のNo.10は、母材鋼板のC含有量が適正範囲を上回っており、Cu、Ni、Crの合計含有量が適正範囲を下回っているため、所望の母材靭性が得られない。
 比較例No.11は、Al、NbおよびN含有量が適正範囲を下回っているため、所望の母材靭性が得られない。比較例No.16は、スラブ加熱温度が適正範囲を上回っており、また、焼きならし回数が適正範囲を下回っているため、所望の母材靭性が得られない。比較例No.18は、焼きならし温度が適正範囲を下回っているため、所望の母材靭性が得られない。比較例No.19は、焼きならし温度が適正範囲を上回っているため、所望の母材特性が得られない。比較例No.21は、スラブ加熱温度および950℃以上での圧下比が適正範囲を下回っているため、所望の母材鋼板と合せ材の接合性が得られない。比較例のNo.22は、焼きならし回数が適正範囲を下回っているため、所望の母材靭性が得られない。比較例のNo.23は、スラブ加熱温度が適正範囲を上回っているため、所望の母材靭性が得られない。以上のように、合せ材としてステンレス鋼を用いた場合、当該成分組成の制御に加えて母材鋼板の鋼組織を制御することにより、クラッド鋼板における母材強度および母材靱性の向上を図ることができた。
 実施例2において、上述した表1に示す実施例1と同様の成分組成を有する母材鋼板の素材を作製した。ただし、合せ材の素材はAlloy625からなるNi基合金とした。
 表1に示す成分組成(残部はFeおよび不可避的不純物)の母材鋼板の素材と合せ材の素材とを、上述した手法により積層して組み立てた組立スラブに、下記表4に示す条件で圧延を施して圧延板を作製した。ついで、得られた圧延板に、表4に示す条件で焼きならしを施して、板厚69mmのクラッド鋼板(母材鋼板の板厚:65mm、合せ材の板厚:4mm)を製造した。焼きならしを2回実施した場合の焼きならし温度は、1回目と2回目とで同一の温度とした。
Figure JPOXMLDOC01-appb-T000004
 かくして得られたクラッド鋼板に対し実施例1と同様の評価試験を行い、降伏強度(YS)、引張強さ(TS)、延性脆性遷移温度(vTrs)及び接合界面せん断強度を求めた。これらの結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 そして、上記実施例1と同様の評価基準を用いて、母材強度、母材靭性及び母材鋼板と合せ材の接合性を評価した。表5の発明例ではいずれも、上述した降伏強度(YS)、引張強さ(TS)、延性脆性遷移温度(vTrs)及び接合界面せん断強度の基準を満足していることがわかる。
 一方、比較例No.26は、母材鋼板のC、MnおよびMo含有量が適正範囲を下回っているため、冷却中に生じたベイナイトの量も少なく、所望の引張特性が得られない。比較例No.33は、母材鋼板のCおよびSi含有量が適正範囲を上回っているため、所望の母材靭性が得られない。比較例No.34は、母材鋼板のC含有量が適正範囲を上回っており、Cu、Ni、Crの合計含有量が適正範囲を下回っているため、所望の母材靭性が得られない。比較例No.35は、Al、NbおよびN含有量が適正範囲を下回っているため、所望の母材靭性が得られない。
 比較例No.40は、スラブ加熱温度が適正範囲を上回っており、また、焼きならし回数が適正範囲を下回っているため、所望の母材靭性が得られない。比較例No.41は、スラブ加熱温度および950℃以上での圧下比が適正範囲を下回っているため、所望の母材鋼板と合せ材の接合性が得られない。比較例No.42は、焼きならし温度が適正範囲を下回っているため、所望の母材靭性が得られない。比較例No.43は、焼きならし温度が適正範囲を上回っているため、所望の母材特性が得られない。比較例No.44は、圧延終了温度が適正範囲を下回っているため、所望の母材鋼板と合せ材の接合性が得られない。比較例のNo.45は、焼きならし回数が適正範囲を下回っているため、所望の母材靭性が得られない。比較例のNo.46は、スラブ加熱温度が適正範囲を上回っているため、所望の母材靭性が得られない。以上のように、合せ材としてNi基合金を用いた場合、当該成分組成の制御に加えて母材鋼板の鋼組織を制御することにより、クラッド鋼板における母材強度および母材靱性の向上を図ることができた。
 

Claims (8)

  1.  母材鋼板に合せ材が接合されているクラッド鋼板であって、
     前記母材鋼板の成分組成は、質量%で、
     C:0.120~0.180%、
     Si:0.15~0.40%、
     Mn:0.50~0.90%、
     P:0.020%以下、
     S:0.010%以下、
     Mo:0.45~0.60%、
     Nb:0.005~0.025%、
     Al:0.005~0.050%、および
     N:0.0010~0.0070%、
    を含有し、さらに、Cu、Ni、Crを、
     Cu+Ni+Cr:0.800~1.100%、
     (ただし、各元素記号は各元素の含有量を示す。)
    を満足する範囲で含有し、残部がFe及び不可避的不純物からなり、
     前記母材鋼板の板厚方向の板厚1/2位置におけるベイナイトの面積率は20%以上であり、板厚方向の板厚1/2位置におけるフェライトの平均結晶粒径は15μm以下であるクラッド鋼板。
  2.  前記母材鋼板の成分組成が、さらに質量%で、
     Cu:0.30~0.40%、
     Ni:0.30~0.40%、
     Cr:0.20~0.30%
    を含有する請求項1に記載のクラッド鋼板。
  3.  前記母材鋼板の成分組成が、さらに質量%で、V:0.005~0.030%、Ti:0.005~0.030%、Ca:0.0005~0.0040%のうちから選ばれた1種または2種以上を含有する請求項1または2に記載のクラッド鋼板。
  4.  前記合せ材は、ステンレス鋼からなる請求項1~3のいずれか1項に記載のクラッド鋼板。
  5.  前記合せ材は、Ni基合金からなる請求項1~3のいずれか1項に記載のクラッド鋼板。
  6.  請求項1~3のいずれか1項に記載の母材鋼板の成分組成を有する母材鋼板の素材とステンレス鋼からなる合せ材の素材とを組み立てた組立スラブを、表面温度で1050℃~1200℃の温度域に加熱し、
     加熱した前記組立スラブに表面温度950℃以上の温度域での圧下比1.5以上とする圧延を施して圧延板を作製し、
     前記圧延板に、前記母材鋼板の板厚方向の板厚1/2位置の温度でAc変態点以上1000℃以下の焼きならしを2回以上施す
     クラッド鋼板の製造方法。
  7.  請求項1~3のいずれか1項に記載の母材鋼板の成分組成を有する母材鋼板の素材とNi基合金からなる合せ材の素材とを組み立てた組立スラブを、表面温度で1050℃~1200℃の温度域に加熱し、
     加熱した前記組立スラブに表面温度950℃以上の温度域での圧下比2.0以上であって、圧延終了温度を前記組立スラブの表面温度800℃以上とする圧延を施して圧延板を作製し、
     前記圧延板に、前記母材鋼板の板厚方向の板厚1/2位置の温度でAc変態点以上1000℃以下の焼きならしを2回以上施す
     クラッド鋼板の製造方法。
  8.  前記組立スラブを、母材鋼板の素材、合せ材の素材、合せ材の素材、母材鋼板の素材の順に積層して、または母材鋼板の素材と合せ材の素材とを積層して組み立てる請求項6または7に記載のクラッド鋼板の製造方法。
PCT/JP2020/035404 2019-09-25 2020-09-18 クラッド鋼板及びその製造方法 WO2021060173A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227009407A KR20220047862A (ko) 2019-09-25 2020-09-18 클래드 강판 및 그의 제조 방법
EP20867942.3A EP4036265B1 (en) 2019-09-25 2020-09-18 Clad steel sheet and method for manufacturing same
JP2021548876A JP7031796B2 (ja) 2019-09-25 2020-09-18 クラッド鋼板及びその製造方法
CN202080066553.0A CN114430779B (zh) 2019-09-25 2020-09-18 复合钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-173657 2019-09-25
JP2019173657 2019-09-25

Publications (1)

Publication Number Publication Date
WO2021060173A1 true WO2021060173A1 (ja) 2021-04-01

Family

ID=75165806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035404 WO2021060173A1 (ja) 2019-09-25 2020-09-18 クラッド鋼板及びその製造方法

Country Status (5)

Country Link
EP (1) EP4036265B1 (ja)
JP (1) JP7031796B2 (ja)
KR (1) KR20220047862A (ja)
CN (1) CN114430779B (ja)
WO (1) WO2021060173A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102639378B1 (ko) * 2022-12-05 2024-02-22 동국제강 주식회사 노멀라이징을 이용한 니켈 합금계 클래드 강재 제조방법 및 이 제조 방법으로 제조된 니켈 합금계 클래드 강재

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475791A (ja) * 1990-03-30 1992-03-10 Nippon Steel Corp クラッド鋼板の製造方法
JP2001247915A (ja) 2000-03-06 2001-09-14 Nkk Corp 高靭性鋼の製造方法
WO2018181381A1 (ja) * 2017-03-29 2018-10-04 Jfeスチール株式会社 クラッド鋼板およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582148B2 (ja) * 1989-01-23 1997-02-19 川崎製鉄株式会社 溶接部靱性の優れた低温用低降伏比ニッケル鋼板の製造方法
RU2566121C1 (ru) * 2011-09-30 2015-10-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Высокопрочный гальванизированный погружением стальной лист с превосходной характеристикой сопротивления удару и способ его изготовления и высокопрочный, подвергнутый легированию, гальванизированный погружением стальной лист и способ его изготовления
JP5454723B2 (ja) * 2012-04-25 2014-03-26 Jfeスチール株式会社 耐海水腐食性に優れたステンレスクラッド鋼板の合せ材及びそれを用いたステンレスクラッド鋼板並びにその製造方法
CN105658831B (zh) * 2013-10-21 2017-08-04 杰富意钢铁株式会社 奥氏体类不锈钢包层钢板及其制造方法
KR101967678B1 (ko) * 2014-11-11 2019-04-10 제이에프이 스틸 가부시키가이샤 Ni 합금 클래드 강판 및 그의 제조 방법
JP6168131B2 (ja) * 2014-12-09 2017-07-26 Jfeスチール株式会社 ステンレスクラッド鋼板
CN108085585B (zh) * 2016-11-23 2020-05-22 宝山钢铁股份有限公司 一种高强耐蚀复合花纹钢及其制造方法
CN108116006A (zh) * 2016-11-30 2018-06-05 宝山钢铁股份有限公司 一种超级奥氏体不锈钢轧制复合钢板及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475791A (ja) * 1990-03-30 1992-03-10 Nippon Steel Corp クラッド鋼板の製造方法
JP2001247915A (ja) 2000-03-06 2001-09-14 Nkk Corp 高靭性鋼の製造方法
WO2018181381A1 (ja) * 2017-03-29 2018-10-04 Jfeスチール株式会社 クラッド鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4036265A4

Also Published As

Publication number Publication date
CN114430779A (zh) 2022-05-03
JP7031796B2 (ja) 2022-03-08
EP4036265B1 (en) 2024-05-01
CN114430779B (zh) 2023-02-10
EP4036265A1 (en) 2022-08-03
JPWO2021060173A1 (ja) 2021-12-23
EP4036265A4 (en) 2022-08-24
KR20220047862A (ko) 2022-04-19

Similar Documents

Publication Publication Date Title
JP6857729B2 (ja) スーパーオーステナイトステンレス鋼圧延複合鋼板及びその製造方法
KR101967678B1 (ko) Ni 합금 클래드 강판 및 그의 제조 방법
JP4252974B2 (ja) クラッド鋼用母材および該クラッド鋼用母材を用いたクラッド鋼の製造方法
WO2005098068A1 (ja) 大入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板
KR102259450B1 (ko) 클래드 강판 및 그 제조 방법
JP6705569B1 (ja) クラッド鋼板およびその製造方法
WO2018139513A1 (ja) 二相ステンレスクラッド鋼およびその製造方法
JP5124854B2 (ja) ラインパイプ用鋼板、その製造方法およびラインパイプ
JP2018053281A (ja) 角形鋼管
JP6024643B2 (ja) 母材の低温靭性とHAZ靭性及び合せ材の耐食性に優れたNi合金クラッド鋼板の製造方法
JPH07252592A (ja) 成形性、低温靭性及び疲労特性に優れた熱延高強度鋼板
JP6079611B2 (ja) 母材の低温靭性とHAZ靭性及び合せ材の耐食性に優れたNi合金クラッド鋼板およびその製造方法
JPWO2020071343A1 (ja) オーステナイト系ステンレス圧延クラッド鋼板および母材鋼板ならびに圧延クラッド鋼板の製造方法
JP7031796B2 (ja) クラッド鋼板及びその製造方法
JP4276576B2 (ja) 大入熱溶接熱影響部靭性に優れた厚手高強度鋼板
JP6750572B2 (ja) 母材が高強度で低温靱性に優れたクラッド鋼板およびその製造方法
JPH07292445A (ja) 二相ステンレスクラッド鋼およびその製造方法ならびに溶接方法
JP4539100B2 (ja) 超大入熱溶接熱影響部靭性に優れた非調質高強度厚鋼板の製造方法
JP7506306B2 (ja) 大入熱溶接用高強度鋼板
WO2021200572A1 (ja) 母材靭性および継手靭性に優れた高張力鋼板とその製造方法
JP7417090B2 (ja) 摩擦圧接用鋼板、複合部材および自動車用部材
JP4464859B2 (ja) 低降伏比鋼板を用いた大入熱溶接継手及び溶接方法
JP2002309339A (ja) 溶接熱影響部靭性と疲労特性に優れた溶接継手
JP2020204092A (ja) 大入熱溶接用高強度鋼板
JP2001121289A (ja) 耐sr特性に優れた高強度鋼管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548876

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227009407

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020867942

Country of ref document: EP

Effective date: 20220425