WO2021057630A1 - 导热体、导热材料和半导体器件的封装结构 - Google Patents

导热体、导热材料和半导体器件的封装结构 Download PDF

Info

Publication number
WO2021057630A1
WO2021057630A1 PCT/CN2020/116359 CN2020116359W WO2021057630A1 WO 2021057630 A1 WO2021057630 A1 WO 2021057630A1 CN 2020116359 W CN2020116359 W CN 2020116359W WO 2021057630 A1 WO2021057630 A1 WO 2021057630A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
film layer
metal film
heat conductor
semiconductor device
Prior art date
Application number
PCT/CN2020/116359
Other languages
English (en)
French (fr)
Inventor
赫然
谢荣华
肖昆辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020227013608A priority Critical patent/KR20220066383A/ko
Priority to JP2022518735A priority patent/JP7373061B2/ja
Priority to EP20869156.8A priority patent/EP4023733A4/en
Publication of WO2021057630A1 publication Critical patent/WO2021057630A1/zh
Priority to US17/702,551 priority patent/US20220216124A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/16Materials undergoing chemical reactions when used
    • C09K5/18Non-reversible chemical reactions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/142Metallic substrates having insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/2954Coating
    • H01L2224/29599Material
    • H01L2224/29698Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29699Material of the matrix
    • H01L2224/2979Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/2954Coating
    • H01L2224/29599Material
    • H01L2224/29698Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29798Fillers
    • H01L2224/29799Base material
    • H01L2224/298Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/2954Coating
    • H01L2224/29599Material
    • H01L2224/29698Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29798Fillers
    • H01L2224/29799Base material
    • H01L2224/29893Base material with a principal constituent of the material being a solid not provided for in groups H01L2224/298 - H01L2224/29891, e.g. allotropes of carbon, fullerene, graphite, carbon-nanotubes, diamond

Definitions

  • This application relates to heat dissipation technology, in particular to a heat conductor, a heat conduction material, and a packaging structure of a semiconductor device.
  • solder for example, Au80Sn20
  • thermal interface materials for example, thermal conductive glue
  • the thermal conductivity of Au80Sn20 is about 57W/mK, which is much lower than the thermal conductivity of the semiconductor device substrate (for example, the thermal conductivity of the silicon substrate is about 150W/mK, and the thermal conductivity of the silicon carbide substrate is about Is 400W/mK) and the thermal conductivity of the heat dissipation substrate (for example, the thermal conductivity of a copper substrate is about 400W/mK). Therefore, the solder itself has become the main bottleneck in reducing the thermal resistance of the package structure.
  • the present application provides a thermal conductor, which has a relatively high thermal conductivity.
  • the thermal conductivity of the package structure can be improved.
  • the present application also provides a packaging structure of a semiconductor device, which uses the aforementioned heat conductor.
  • the present application also provides a thermally conductive material, and the aforementioned thermal conductor can be obtained after curing the thermally conductive material.
  • this application provides a heat conductor.
  • the heat conductor includes a matrix, diamond particles and first metal nanoparticles. Wherein, the diamond particles and the first metal nanoparticles are both distributed in the matrix.
  • the outer surface of the diamond particles is sequentially wrapped with a carbide film layer, a first metal film layer and a second metal film layer.
  • the carbide film layer covers the entire outer surface of the diamond particles.
  • the first metal film layer covers the entire outer surface of the carbide film layer.
  • the second metal film layer covers the entire outer surface of the first metal film layer by chemical or physical deposition. Further, the first metal nano particles and the outer surface of the second metal film layer are combined by a metal bond.
  • the surface of the diamond particles is covered with three film layers: a carbide film layer, a first metal film layer and a second metal film layer, and the three film layers are used to reduce the diamond particles and the first metal nano particles. Thermal resistance of the interface between.
  • a carbide film layer is provided between the diamond particles and the first metal film layer. Since the carbide includes carbon and metal, the thermal conductivity and adhesion between the diamond particles and the first metal film layer can be enhanced. Sex.
  • the second metal film layer and the first metal nanoparticles usually use the same material, because the same material is easier to achieve a low thermal resistance connection.
  • the first metal film layer and the first metal nano particles usually use different materials, but because the second metal film layer is usually covered by a chemical or physical deposition process on the surface of the first metal film layer, the first metal film layer and the second metal film layer The thermal resistance between the two metal film layers is relatively low.
  • the material used for the matrix may be an organic polymer.
  • the diamond particles are evenly distributed in the matrix.
  • the first metal nanoparticles are uniformly distributed in the matrix.
  • the adjacent first metal nanoparticles are bonded by metal bonds, so that a connecting surface between the two opposite surfaces of the thermal conductor can be formed inside the thermal conductor. Thermal path.
  • second metal nanoparticles are grown on the outer surface of the second metal film layer, which are dispersed in the matrix. And the adjacent first metal nano particles and the second metal nano particles are combined by a metal bond to form a heat conduction path.
  • the second metal nanoparticles are uniformly grown on the outer surface of the second metal film layer.
  • the adjacent second metal nanoparticles and the first metal nanoparticles are combined by a metal bond.
  • the carbide film layer is a tungsten carbide film layer, a titanium carbide film layer, a chromium carbide film layer, a molybdenum carbide film layer, a nickel carbide film layer, and a silicon carbide film layer Any of them. Since the thermal resistance of these materials is relatively small, using any of these materials can reduce the overall thermal resistance of the heat conductor.
  • the thickness of the carbide film layer is greater than or equal to 10 nanometers and less than or equal to 500 nanometers.
  • the interface thermal resistance and interface adhesion of the carbide film layer can be optimized.
  • the material used for the first metal film layer is tungsten, titanium, chromium, molybdenum, nickel, platinum, or palladium. Using any one of these materials to prepare the first metal film layer can improve the interfacial adhesion between the carbide film layer and the second metal film layer.
  • the thickness of the first metal film layer is greater than or equal to 10 nanometers and less than or equal to 500 nanometers.
  • the interface thermal resistance and interface adhesion of the first metal film layer can be optimized.
  • the second metal film layer includes a layer of metal film or stacked multilayer metal films, and the materials used for each metal film are copper, silver, gold, and platinum. , Palladium, Indium, Bismuth, Aluminum or Aluminum Oxide.
  • the second metal film layer and the first metal nanoparticles use the same material, so that when the thermally conductive material is sintered to form a heat conductor, the second metal film layer and the first metal nanoparticles have good sintering characteristics.
  • the thickness of the second metal film layer is greater than or equal to 0.1 micrometers and less than or equal to 10 micrometers.
  • the material of the first metal nanoparticles is one or more of copper, silver, gold, and tin.
  • the particle size of the first metal nanoparticles is greater than or equal to 10 nanometers and less than or equal to 500 nanometers.
  • the material of the second metal nanoparticle is at least one of copper, silver, or gold.
  • the particle size of the second metal nanoparticles is greater than or equal to 10 nanometers and less than or equal to 200 nanometers.
  • the volume ratio of the matrix is less than or equal to 10%.
  • the volume ratio of the diamond particles is 0.05%-80%, and the limit is used to improve the thermal conductivity of the heat conductor, and by adjusting the volume ratio of the diamond particles in the heat conductor , You can adjust the Young's modulus and thermal expansion coefficient of the thermal conductor.
  • the diameter of the diamond particles is greater than or equal to 0.01 micrometers and less than or equal to 200 micrometers, and the limitation is used to improve the thermal conductivity of the heat conductor, and by adjusting the diameter of the diamond particles in the heat conductor, it can be adjusted The Young's modulus and thermal expansion coefficient of the thermal conductor.
  • the diamond particles are single crystal diamond particles, polycrystalline diamond particles, or both single crystal diamond particles and polycrystalline diamond particles.
  • this application provides a thermally conductive material.
  • the difference between the heat-conducting material and the heat-conducting body described in any of the foregoing implementations is that the heat-conducting material is fluid, while the aforementioned heat-conducting body is solid; the heat-conducting material can be cured to obtain the aforementioned heat-conducting body.
  • the thermally conductive material includes organic polymers, first metal nanoparticles and diamond particles.
  • the first metal nano particles and the diamond particles are both distributed in the organic polymer.
  • the outer surface of the diamond particles is sequentially covered with three film layers, a carbide film layer, a first metal film layer and a second metal film layer.
  • the carbide film layer covers the entire outer surface of the diamond particles.
  • the first metal film layer covers the entire outer surface of the carbide film layer.
  • the second metal film layer covers the entire outer surface of the first metal film layer. It is worth noting that the first metal nanoparticle and the outer surface of the second metal film layer are bonded by a metal bond.
  • the beneficial effects of the thermal conductor described above can be used, which will not be repeated here.
  • the adjacent first metal nanoparticles are combined by metal bonds to form a heat conduction path.
  • the thermally conductive material further includes second metal nanoparticles grown on the outer surface of the second metal film layer , Used to form a heat conduction path.
  • the adjacent first metal nanoparticles and the second metal nanoparticles are combined by a metal bond for Form a heat conduction path.
  • the present application also provides a packaging structure of a semiconductor device.
  • the package structure includes a semiconductor device, a heat dissipation substrate, and the heat conductor as described in the foregoing first aspect or any one of the first aspects.
  • the heat conductor is located between the semiconductor device and the heat dissipation substrate, and one surface of the heat conductor faces the back of the semiconductor device and is in contact with the back of the semiconductor device, and the other surface faces the heat dissipation
  • the surface of the substrate for installing the device is in contact with the surface for installing the device.
  • the heat generated by the semiconductor device can be timely conducted to the heat dissipation substrate and transferred out through the heat dissipation substrate.
  • the back surface of the semiconductor device has a back surface metal layer.
  • the back metal layer is a layer of metal film or a laminated multilayer metal film, and the materials used for each metal film are titanium (Ti), platinum (Pt), palladium (Pd), aluminum (Al), nickel (Ni) , Copper (Cu), silver (Ag) or gold (Au).
  • the purpose of adding a back metal layer on the back of the semiconductor device is to further enhance the ability of heat transfer from the semiconductor device to the heat conductor.
  • the back metal layer and the surfaces of the heat conductor facing each other are combined by a metal bond, so that the heat can be further increased.
  • the heat conductor and the heat dissipation substrate face each other
  • the surfaces of the counterparts are joined by metal bonds, so that the ability of heat transfer from the heat conductor to the heat dissipation substrate can be further improved.
  • FIG. 1 is a schematic diagram of a packaging structure of a semiconductor device provided by this application.
  • FIGS. 2 to 4 are schematic diagrams of a thermal conductor provided by the present application.
  • FIG. 1 shows a schematic diagram of a package structure of a semiconductor device provided by the present application.
  • the package structure includes a semiconductor device 10, a heat conductor 20 and a heat dissipation substrate 30.
  • the semiconductor device 10 is disposed on the heat dissipation substrate 30, and the heat conductor 20 is located between the semiconductor device 10 and the heat dissipation substrate 30.
  • the surface of the semiconductor device 10 facing the heat dissipation substrate 30 is the back surface of the semiconductor device 10
  • the surface of the heat dissipation substrate 30 for mounting (or fixing) the semiconductor device 10 may be referred to as the fixing surface of the heat dissipation substrate 30.
  • One surface is in contact with the back surface of the semiconductor device 10, and the other surface is in contact with the fixed surface of the heat dissipation substrate 30. It should be understood that one surface of the heat conductor 20 is deviated from the other surface of the heat conductor 20.
  • the shape and size of one surface of the heat conductor 20 and the back surface of the semiconductor device 10 are the same, and one surface of the heat conductor 20 and the back surface of the semiconductor device 10 are edge-aligned.
  • the heat conductor 20 is not only used to guide the heat dissipated by the semiconductor device 10 into the heat dissipation substrate 30 (or used to form a heat conduction channel between the semiconductor device 10 and the heat dissipation substrate 30), but also to connect the semiconductor device 10 to the heat dissipation substrate 30.
  • a mechanical connection is formed between the heat dissipation substrates 30.
  • the thermal conductor 20 may be formed by thermally curing a thermally conductive material (sometimes referred to as "thermally conductive solder") filled between the back surface of the semiconductor device 10 and the fixing surface of the heat dissipation substrate 30.
  • a thermally conductive material sometimes referred to as "thermally conductive solder”
  • the heat-conducting material please refer to the relevant description of the embodiments of the heat-conducting material provided later in this application, and no detailed description will be made here.
  • the thermal curing process may be low
  • the sintering process is performed at a temperature of 300°C
  • the back surface of the semiconductor device 10 and one of the surfaces of the heat conductor 20 are bonded by a metal bond.
  • the other surface of the heat conductor 20 and the fixing surface of the heat dissipation substrate 30 are combined by a metal bond.
  • the thermally conductive material is sintered at a temperature not higher than 300°C, the metal particles located on the back of the semiconductor device 10 and the metal nanoparticles located on one of the surfaces of the thermal conductor 20 can pass through a metal bond. Combine.
  • the thermally conductive material is sintered at a temperature not higher than 300°C, the metal particles located on the fixed surface of the heat dissipation substrate 30 and the nanometal nanoparticles located on the other surface of the thermal conductor 20 can pass between the metal particles. Key combination.
  • the metal nanoparticles located on one of the surfaces of the thermal conductor 20 are usually first metal nanoparticles, but may also be second metal nanoparticles.
  • first metal nanoparticles but may also be second metal nanoparticles.
  • second metal nanoparticles For the difference between the first metal nanoparticle and the second metal nanoparticle, please refer to the description of the following embodiments.
  • the thermal conductor 20 is a thermally conductive sheet, and the thermally conductive sheet is placed between the surface of the semiconductor device 10 and the fixing surface of the heat dissipation substrate 30.
  • the thermally conductive sheet can also be obtained by curing the thermally conductive material in advance.
  • the thermally conductive sheet may be obtained by curing (or pre-forming) the thermally conductive material at a temperature not higher than 300°C.
  • the back surface of the semiconductor device 10 may have a back surface metal layer 11.
  • the back metal layer 11 refers to one or more metal thin films plated on the back (or bottom surface) of the semiconductor device 10. It is worth noting that the materials used for each metal film included in the back metal layer 11 are titanium (Ti), platinum (Pt), palladium (Pd), aluminum (Al), nickel (Ni), copper (Cu), silver (Ag) or gold (Au).
  • the back metal layer 11 includes laminated multilayer metal films, the materials used for every two adjacent metal films are different. Optionally, the materials used for the multilayer metal films included in the back metal layer 11 are different.
  • the back surface of the semiconductor device 10 has a back surface metal layer 11
  • the aforementioned "the back surface of the semiconductor device 10 and one of the surfaces of the heat conductor 20 are bonded by a metal bond" specifically means that the back surface metal layer 11 faces the heat conductor.
  • the surface and one of the surfaces of the heat conductor are bonded by a metal bond.
  • the substrate of the semiconductor device 10 described in the present application is a silicon substrate, a silicon carbide substrate, a gallium nitride substrate, a single crystal diamond substrate or a polycrystalline diamond substrate.
  • the semiconductor device 10 includes an active device layer 12, and the active device layer 12 is located on the front side of the semiconductor device 10 (the “back side of the semiconductor device 10” has been defined above, then the front side of the semiconductor device 10 refers to the The opposite surface of the back side of the semiconductor device 10).
  • the active device layer 12 may specifically be a silicon device layer or a wide band gap semiconductor device layer.
  • the active device layer 12 may be silicon carbide, gallium nitride or gallium oxide.
  • the semiconductor device 10 is a chip.
  • a heat sink may also be provided on the back of the heat dissipation substrate 30, and the heat sink is used to dissipate the heat on the heat dissipation substrate.
  • the back surface of the heat dissipation substrate 30 is away from the fixing surface of the heat dissipation substrate 30.
  • the heat sink may specifically be a heat sink fin.
  • the heat sink may be fixed on the back surface of the heat dissipation substrate 30 through a thermally conductive material, a thermal conductor, or a thermal interface material (TIM, Thermal Interface Material).
  • the heat-conducting material (or heat-conducting body) may be the heat-conducting material (or heat-conducting body) provided in the following embodiments of the present application, or other heat-conducting materials (or heat-conducting bodies).
  • the heat dissipation substrate 30 may be a metal substrate, a diamond substrate, a copper-clad ceramic substrate, a silicon carbide substrate, or an aluminum nitride substrate.
  • the heat dissipation substrate 30 may also be a substrate made of a composite material including diamond-metal.
  • the heat dissipation substrate 30 itself may be a metal (ie, a metal substrate), or a substrate covered with a surface metal layer, and the material of the surface metal layer is one of copper, nickel, silver, or gold. Many kinds.
  • the present application also provides a thermal conductor.
  • the thermal conductor 20 can be applied to the aforementioned packaging structure, and is used to transfer the heat generated by the semiconductor device 10 to the heat dissipation substrate 30 and transfer it out through the heat dissipation substrate 30.
  • FIG. 2 shows a schematic diagram of a thermal conductor 20 provided by the present application.
  • the heat conductor 20 includes a matrix 28, diamond particles 21 and first metal nanoparticles 25, and the diamond particles 21 and the first metal nanoparticles 25 are uniformly dispersed in the matrix 28.
  • the outer surface of the diamond particles 21 is sequentially covered with a carbide film layer 22, a first metal film layer 23, and a second metal film layer 24.
  • the carbide film layer 22 is in contact with the outer surface of the diamond particles 21 and covers the entire outer surface of the diamond particles 21.
  • the first metal film layer 23 is located between the carbide film layer 22 and the second metal film layer 24 and covers the entire outer surface of the carbide film layer 22.
  • the second metal film layer 24 is located on the outer surface of the first metal film layer 23 and wraps the entire outer surface of the first metal film layer 23.
  • the matrix 28 may be an organic polymer, and both the diamond particles 21 and the first metal nanoparticles 25 may be uniformly distributed in the organic polymer.
  • the particle size (that is, the diameter) of the diamond particles 21 is on the order of micrometers.
  • the particle size of the diamond particles 21 may be greater than or equal to 0.01 micrometers and less than or equal to 200 micrometers.
  • the average particle size of the diamond particles 21 is 5 microns. Since the shape of the diamond particles 21 is not spherical, the particle size of the diamond particles 21 can be understood as the average particle size of the diamond particles 21. In addition, when referring to the "particle size of a particle" elsewhere in this application, it should also be understood as the average particle size of the particle.
  • the diamond particles 21 may all be diamond particles with a particle size of micrometers, and may also include diamond particles with a particle size of micrometers and diamond particles with a particle size of nanometers.
  • nano-scale diamond particles are relatively small, their surface area is also relatively small.
  • the interface thermal resistance will be relatively large, and the heat conduction effect will be relatively poor.
  • the diamond particles 21 may be single crystal diamond particles or polycrystalline diamond particles, and may also include both single crystal diamond particles and polycrystalline diamond particles.
  • the volume percentage of the diamond particles 21 is greater than or equal to 0.05% and less than or equal to 80%, or the volume percentage of the diamond particles 21 is greater than or equal to 5% and less than or equal to 80%, Alternatively, the volume ratio of diamond particles is greater than or equal to 10% and less than or equal to 80%.
  • the volume ratio of the matrix 28 may be less than or equal to 10%. Further, the volume ratio of the base 28 may be less than or equal to 1%.
  • the carbide film layer 22 is a tungsten carbide (WC or W2C) film layer, a titanium carbide (TiC) film layer, a chromium carbide (Cr3C2, Cr3C7 or Cr23C7) film layer, a molybdenum carbide ( MoC or Mo2C) film, nickel carbide (Ni3C) film or silicon carbide (SiC) film.
  • the material of the tungsten carbide film layer may be tungsten carbide (WC), tungsten carbide (W2C), or both tungsten carbide (WC) It also includes tungsten carbide (W2C).
  • the material of the chromium carbide film layer is one of three chromium two carbide (Cr3C2), three chromium seven carbide (Cr3C7) or twenty-three chromium seven carbide (Cr23C7) Or multiple.
  • the material used for the molybdenum carbide film layer can be molybdenum carbide (MoC), molybdenum carbide (Mo2C), or both molybdenum carbide (MoC) and molybdenum carbide (MoC). Including molybdenum carbide (Mo2C).
  • the thickness of the carbide film layer 22 is greater than or equal to 10 nanometers and less than or equal to 500 nanometers.
  • the materials used for the first metal film layer 23 are tungsten (W), titanium (Ti), chromium (Cr), molybdenum (Mo), nickel (Ni), platinum (Pt), and palladium (Pd). Further, the thickness of the first metal film layer 23 is greater than or equal to 10 nanometers and less than or equal to 500 nanometers.
  • the second metal film layer 24 includes a layer of metal film or stacked multilayer metal films, and the materials used for each metal film are copper (Cu), silver (Ag), gold (Au), platinum (Pt), and copper (Cu), silver (Ag), gold (Au), and platinum (Pt). ), palladium (Pd), indium (In), bismuth (Bi), aluminum (Al) and alumina.
  • the second metal film layer 24 includes a laminated multi-layer metal film, every two adjacent metal films in the multi-layer metal film are made of different materials.
  • the multiple metal films included in the second metal film layer 24 are made of different materials.
  • the thickness of the second metal film layer 24 is greater than or equal to 0.1 micrometers and less than or equal to 10 micrometers.
  • the thickness of the second metal film layer 24 may be 1 micrometer.
  • the material used for the first metal nanoparticles 25 in this embodiment is one or more of copper (Cu), silver (Ag), gold (Au), and tin (Sn).
  • the first metal nano particles 25 may be one or more of all the following metal particles: copper particles, silver particles, gold particles, tin particles, silver-coated copper, and copper, silver, gold, and tin.
  • the so-called "silver-coated copper” refers to coating a layer of silver on the outside of the copper ball.
  • the so-called "particles of an alloy formed by any two or three of copper, silver, gold, and tin", for example, may be copper-silver alloy particles, silver-copper alloy particles, copper-gold alloy particles, gold-copper alloy particles, Copper-tin alloy particles, tin-copper alloy particles or copper-silver-tin alloy particles, etc.
  • the particle size of the first metal nanoparticles 25 is greater than or equal to 10 nanometers and less than or equal to 500 nanometers.
  • the first metal nanoparticles 25 are silver particles, and have an average particle diameter of 30 nanometers.
  • first metal nanoparticles 25 and the outer surface of the second metal film layer 24 are bonded by a metal bond. More precisely, it should be said that part of the first metal nanoparticles 25 It is combined with the metal ions on the outer surface of the second metal film layer 24 through a metal bond. Correspondingly, adjacent first metal nanoparticles 25 can also be bonded by metal bonds.
  • second metal nanoparticles 27 may be grown on the outer surface of the second metal film layer 24. It can be seen that the difference between the second metal nanoparticle 27 and the first metal nanoparticle 25 is that the former is grown on the outer surface of the second metal film layer 24, and the latter is different from the metal on the outer surface of the second metal film layer 24.
  • the ions are joined by metal bonds.
  • the second metal nano particles 27 are at least one of gold particles, silver particles or copper particles.
  • the adjacent second metal nano particles 27 and the first metal nano particles 25 may be combined by a metal bond.
  • the particle size of the second metal nanoparticles 27 is greater than or equal to 10 nanometers and less than or equal to 200 nanometers.
  • 7 second metal nanoparticles 27 are uniformly grown on the outer surface of the second metal film layer 24.
  • the first metal nanoparticles 25 and the diamond particles 21, or the first metal nanoparticles 25, the second metal nanoparticles 27 and the diamond particles 21, form a strip that penetrates one surface of the thermal conductor 20 to the other surface The heat conduction path.
  • the metal bond between 27 and the first metal nanoparticle 25 can be achieved by sintering the material forming the metal bond at a temperature not higher than 300°C.
  • sintering the second metal nanoparticles 27 and the first metal nanoparticles 25 at a temperature not higher than 300°C can form a metal between the adjacent second metal nanoparticles 27 and the first metal nanoparticles 25. key.
  • one or more of multi-walled carbon nanotubes, single-walled carbon nanotubes, or graphene may be uniformly mixed in the matrix 28.
  • the application also provides a thermally conductive material.
  • the thermally conductive material includes organic polymers, first metal nanoparticles and diamond particles. Wherein, the first metal nano particles and the diamond particles are uniformly distributed in the organic polymer. The outer surface of the diamond particles is sequentially covered with a carbide film layer, a first metal film layer and a second metal film layer.
  • the embodiment of the heat-conducting material has many parts in common with the embodiment of the aforementioned heat-conductor (for the same part, please refer to the aforementioned embodiment of the heat-conductor, which will not be repeated here). The difference between the two is The point is that the organic polymer is fluid, so the thermally conductive material is fluid.
  • the heat-conducting body described in the foregoing embodiment can be obtained. It should be understood that the foregoing heat-conducting body is solid.
  • the thermally conductive material can be heated at a temperature not higher than 300° C. to be sintered and form the thermal conductor as described in the foregoing embodiment. Therefore, it is easy to know that the volume proportion of the organic polymer in the thermally conductive material is greater than the volume proportion of the organic polymer in the thermal conductor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种高导热率的导热体(20),能够用于对半导体器件(10)进行散热,尤其是可以用于半导体器件(10)封装领域。导热体(20)包括基体(28)和分布在基体(28)内的金刚石颗粒(21)以及第一金属纳米颗粒(25),并且金刚石颗粒(21)的外表面依次包括有碳化物膜层(22)、第一金属膜层(23)和第二金属膜层(24),这三层膜层用于降低金刚石颗粒(21)与第一金属纳米颗粒(25)之间的界面热阻。另外,还提供了一种流动态的导热材料以及一种采用了导热体(20)的半导体封装结构。

Description

导热体、导热材料和半导体器件的封装结构
相关申请的交叉引用
本申请要求在2019年09月24日提交中国专利局、申请号为201910906873.1、申请名称为“导热体、导热材料和半导体器件的封装结构”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及散热技术,尤其涉及一种导热体、导热材料和半导体器件的封装结构。
背景技术
在半导体器件的封装结构中,通常采用焊料(例如Au80Sn20)或热界面材料(例如导热胶)将该半导体器件设置在散热基板上。然而,Au80Sn20的热导率约为57W/mK,远低于该半导体器件的衬底的热导率(例如硅衬底的热导率约为150W/mK,碳化硅衬底的热导率约为400W/mK)和散热基板的热导率(例如铜基板的热导率约为400W/mK)。因此,焊料本身已成为降低该封装结构热阻的主要瓶颈。
发明内容
本申请提供了一种导热体,该导热体具有比较高的导热率,在将该导热体用在半导体器件的封装结构中时,能够提高该封装结构的导热率。另外,本申请还提供了半导体器件的封装结构,该封装结构用到了前述的导热体。进一步地,本申请还提供了导热材料,对该导热材料进行固化处理后可以得到前述的导热体。
第一方面,本申请提供的一种导热体。该导热体包括基体、金刚石颗粒和第一金属纳米颗粒。其中,金刚石颗粒和第一金属纳米颗粒均分布在该基体内。该金刚石颗粒的外表面依次包裹有碳化物膜层、第一金属膜层和第二金属膜层。该碳化物膜层覆盖在该金刚石颗粒的全部外表面。该第一金属膜层覆盖该碳化物膜层的全部外表面。该第二金属膜层通过化学或者物理沉积的方式覆盖该第一金属膜层的全部外表面。进一步地,该第一金属纳米颗粒与该第二金属膜层的外表面之间通过金属键结合。
在本申请中,该金刚石颗粒的表面覆盖有碳化物膜层、第一金属膜层和第二金属膜层三个膜层,该三个膜层用于降低该金刚石颗粒与第一金属纳米颗粒之间的界面热阻。
因为金刚石是声子导热,而金属是电子导热的,所以金刚石与金属之间的导热方式很不同,这将导致它们之间的导热性不好;并且,由于金刚石和金属两种材料本身的特性差距比较大,所以它们在直接粘附的时候,粘附性也不好。本申请中,在金刚石颗粒和第一金属膜层之间设置了碳化物膜层,由于该碳化物包括碳和金属,所以能够增强金刚石颗粒与第一金属膜层之间的导热性以及粘附性。
值得注意的是,第二金属膜层与第一金属纳米颗粒通常采用相同的材料,因为相同的材料之间更容易实现低热阻的连接。第一金属膜层与第一金属纳米颗粒通常采用不同的材料,但是由于第二金属膜层通常采用化学或者物理沉积的工艺覆盖在第一金属膜层的表面,所以第一金属膜层与第二金属膜层之间的热阻比较低。
综上可知,通过在金刚石颗粒与第一金属纳米颗粒之间设置三个膜层,达到降低该金刚石颗粒与该第一金属纳米颗粒之间界面热阻的效果。
可选的,该基体采用的材料可以是有机聚合物。
可选的,所述金刚石颗粒均匀地分布在所述基体内。
可选的,该第一金属纳米颗粒均匀地分布在所述基体内。
结合第一方面,在第一种可能的实现方式下,相邻的所述第一金属纳米颗粒之间通过金属键结合,从而可以在该导热体内部形成连通该导热体相对的两个表面的导热路径。
结合第一方面或第二方面的第一种可能的实现方式,在第二种可能的实现方式下,所述第二金属膜层的外表面生长有第二金属纳米颗粒,这样分散在基体内且相邻的第一金属纳米颗粒与第二金属纳米颗粒通过金属键结合,进而形成导热路径。
可选的,该第二金属纳米颗粒均匀地生长在该第二金属膜层的外表面。
可选的,相邻的第二金属纳米颗粒与第一金属纳米颗粒之间通过金属键结合。
结合前述任意一种实现方式,在本实现方式中,所述碳化物膜层为碳化钨膜层、碳化钛膜层、碳化铬膜层、碳化钼膜层、碳化镍膜层和碳化硅膜层中的任意一种。由于这些材料的热阻比较小,所以采用这些材料中的任意一种,可以降低该导热体的整体热阻。
可选的,该碳化物膜层的厚度大于或等于10纳米且小于或等于500纳米。通过调节该碳化物膜层的厚度,能够优化该碳化物膜层的界面热阻以及界面粘附性。
结合前述任意一种实现方式,在本实现方式中,所述第一金属膜层采用的材料为钨、钛、铬、钼、镍、铂或钯。采用这些材料中的任意一种制备所述第一金属膜层,能够提升碳化物膜层与第二金属膜层之间的界面粘附性。
可选的,所述第一金属膜层的厚度大于或等于10纳米且小于或等于500纳米。通过调节该第一金属膜层的厚度,能够优化该第一金属膜层的界面热阻以及界面粘附性。
结合前述任意一种实现方式,在本实现方式中,所述第二金属膜层包括一层金属薄膜或层叠设置的多层金属薄膜,每层金属薄膜采用的材料为铜、银、金、铂、钯、铟、铋、铝或氧化铝。
通常,第二金属膜层与第一金属纳米颗粒采用相同的材料,这样在将导热材料烧结形成导热体时,第二金属膜层与第一金属纳米颗粒之间具有良好的烧结特性。
可选的,所述第二金属膜层的厚度大于或等于0.1微米且小于或等于10微米。
结合前述任意一种实现方式,在本实现方式中,第一金属纳米颗粒的材料为铜、银、金以及锡中的一种或多种。
可选的,所述第一金属纳米颗粒的粒径大于或等于10纳米且小于或等于500纳米。
结合前述任意一种实现方式,在本实现方式中,所述第二金属纳米颗粒的材料为铜、银或金中的至少一种。
可选的,该第二金属纳米颗粒的粒径大于或等于10纳米且小于或等于200纳米。
可选的,在该导热体中,该基体的体积占比小于或等于10%。
可选的,在该导热体中,所述金刚石颗粒的体积占比为0.05%-80%,该限定用于提高该导热体的导热率,并且通过调节该导热体内的金刚石颗粒的体积占比,可以调节该导热体的杨氏模量和热膨胀系数。
可选的,所述金刚石颗粒的粒径大于或等于0.01微米且小于或等于200微米,该限定用于提高该导热体的导热率,并且通过调节该导热体内的金刚石颗粒的粒径,可以调节该导热体的杨氏模量和热膨胀系数。
可选的,所述金刚石颗粒为单晶金刚石颗粒、多晶金刚石颗粒、或既有单晶金刚石颗 粒又有多晶金刚石颗粒。
第二方面,本申请提供的一种导热材料。该导热材料与前述任意实现方式所述的导热体的不同之处在于:该导热材料是流动态的,而前述导热体是固态的;该导热材料经过热固化处理可以得到前述导热体。
具体的,该导热材料包括有机聚合物、第一金属纳米颗粒和金刚石颗粒。其中,所述第一金属纳米颗粒和所述金刚石颗粒均分布在所述有机聚合物内。所述金刚石颗粒的外表面依次包覆有碳化物膜层、第一金属膜层和第二金属膜层三个膜层。其中,所述碳化物膜层覆盖所述金刚石颗粒的全部外表面。所述第一金属膜层覆盖所述碳化物膜层的全部外表面。所述第二金属膜层覆盖所述第一金属膜层的全部外表面。值得注意的是,所述第一金属纳米颗粒与所述第二金属膜层的外表面之间通过金属键结合。
关于该导热材料的有益效果,可以前面描述的导热体的有益效果,此处不再赘述。
结合第二方面,在第一种可能的实现方式中,相邻的所述第一金属纳米颗粒之间通过金属键结合,用于形成导热路径。
结合第二方面或第二方面的第一种可能的实现方式,在第二种可能的实现方式中,该导热材料还包括生长在所述第二金属膜层的外表面的第二金属纳米颗粒,用于形成导热路径。
结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中,相邻的所述第一金属纳米颗粒与所述第二金属纳米颗粒之间通过金属键结合,用于形成导热路径。
第三方面,本申请还提供一种半导体器件的封装结构。该封装结构包括半导体器件、散热基板和如前述第一方面或第一方面的任一种实现方式所述的导热体。所述导热体位于所述半导体器件和所述散热基板之间,且所述导热体的一个表面朝向所述半导体器件的背面且与所述半导体器件的背面相接触,另一表面朝向所述散热基板的用于设置器件的表面且与所述用于设置器件的表面相接触。
由于该导热体具有比较好的导热性能,所以在该封装结构中,该半导体器件产生的热量能够被及时地传导到该散热基板上,并通过该散热基板传递出去。
结合第三方面,在第一种可能的实现方式中,所述半导体器件的背面具有背面金属层。所述背面金属层为一层金属薄膜或层叠的多层金属薄膜,每层金属薄膜采用的材料为钛(Ti)、铂(Pt)、钯(Pd)、铝(Al)、镍(Ni)、铜(Cu)、银(Ag)或金(Au)。
在该半导体器件的背面增设背面金属层,是为了进一步提升热量从该半导体器件传递到该导热体的能力。
结合第三方面的第一种可能的实现方式,在第二种可能的实现方式中,所述背面金属层与所述导热体相互朝向对方的表面之间通过金属键结合,从而能够进一步提升热量从该半导体器件传递到该导热体的能力。
结合第三方面、第三方面的第一种可能的实现方式或第三方面的第二种可能的实现方式,在第三种可能的实现方式中,所述导热体与所述散热基板相互朝向对方的表面通过金属键结合,从而能够进一步提升热量从该导热体传递到该散热基板的能力。
附图说明
图1为本申请提供的一种半导体器件的封装结构的示意图。
图2至4均为本申请提供的一种导热体的示意图。
具体实施方式
请参见附图1,它示出了本申请提供的一种半导体器件的封装结构的示意图。具体的,该封装结构包括半导体器件10、导热体20和散热基板30。半导体器件10设置在散热基板30上,且导热体20位于半导体器件10和散热基板30之间。其中,半导体器件10朝向散热基板30的表面为半导体器件10的背面,散热基板30中用于设置(或固定)半导体器件10的表面可以称为散热基板30的固定面,则导热体20的其中一个表面与该半导体器件10的背面相接触,另一个表面与散热基板30的固定面相接触。应当知道的是,导热体20的其中一个表面与导热体20的另一个表面是相背离的。
可选的,导热体20的其中一个表面与该半导体器件10的背面的形状以及大小均相同,且导热体20的其中一个表面与该半导体器件10的背面是边缘对齐的。
在本申请中,导热体20不仅用于将半导体器件10散热的热量导入散热基板30中(或者说用于在半导体器件10与散热基板30之间形成导热通道),而且使该半导体器件10与散热基板30之间形成机械连接。
可选的,导热体20可以由填充在半导体器件10的背面与散热基板30的固定面之间的导热材料(有时候也被称为“导热焊料”)经过热固化处理后形成。在这种情况下,该导热材料的可以参见本申请后续提供的关于导热材料的实施例的相关描述,此处暂不进行做详细描述。
值得注意的是,在导热体20是由对填充在半导体器件10的背面与散热基板30的固定面之间的导热材料进行热固化处理后得到的情况下,该热固化处理可以是在不高于300℃的温度条件进行的烧结处理。
对于本申请提供的封装结构来说,则在另一个实施例中,半导体器件10的背面与导热体20的其中一个表面之间通过金属键结合。可选的,导热体20的另一个表面与散热基板30的固定面之间通过金属键结合。
需要说明的是,在不高于300℃的温度条件对该导热材料进行烧结处理时,位于半导体器件10背面的金属颗粒与位于导热体20的其中一个表面的金属纳米颗粒之间可以通过金属键结合。
类似地,在不高于300℃的温度条件对该导热材料进行烧结处理时,位于散热基板30的固定面的金属颗粒与位于导热体20的另一个表面的纳金属纳米颗粒之间可以通过金属键结合。
需要说明的是,位于导热体20的其中一个表面的金属纳米颗粒通常为第一金属纳米颗粒,也可以为第二金属纳米颗粒。关于第一金属纳米颗粒以及第二金属纳米颗粒的区别,请参见下述实施例的描述。
可选的,导热体20为一个导热片,该导热片被放置在该半导体器件10的表面与散热基板30的固定面之间。应当知道的是,该导热片也可以是预先对导热材料进行固化处理后得到的。具体的,该导热片可以是在不高于300℃的温度条件下对该导热材料进行固化(或预成型)处理得到的。
在本实施例中,半导体器件10的背面可以具有背面金属层11。背面金属层11是指被镀在半导体器件10背面(或底面)的一层或多层金属薄膜。值得注意的是,背面金属层11包括的每层金属薄膜采用的材料为钛(Ti)、铂(Pt)、钯(Pd)、铝(Al)、镍(Ni)、铜(Cu)、银(Ag)或金(Au)。在背面金属层11包括层叠的多层金属薄膜时,每相邻两层金属薄膜采 用的材料是不同的。可选的,背面金属层11包括的多层金属薄膜各自采用的材料是不同的。
在半导体器件10的背面具有背面金属层11时,前述的“半导体器件10的背面与导热体20的其中一个表面之间通过金属键结合”具体是指背面金属层11面朝所述导热体的表面与所述导热体的其中一个表面之间通过金属键结合。
本申请所述的半导体器件10的衬底为硅衬底、碳化硅衬底、氮化镓衬底、单晶金刚石衬底或多晶金刚石衬底。
可选的,半导体器件10包括有源器件层12,且有源器件层12位于半导体器件10的正面(前面已经对“半导体器件10的背面”进行的定义,则半导体器件10的正面是指与半导体器件10的背面相背离的表面)。其中,有源器件层12具体可以为硅器件层或宽禁带半导体器件层。有源器件层12可以为碳化硅、氮化镓或氧化镓。
可选的,半导体器件10为芯片。
在本申请的另一个实施例中,还可以在散热基板30的背面设置散热片,该散热片用于将散热基板上的热量散发出去。其中,散热基板30的背面与散热基板30的固定面是相背离的。该散热片具体可以为散热翅片。进一步地,该散热片可以通过导热材料、导热体或热界面材料(TIM,Thermal Interface Material)被固定在散热基板30的背面。该导热材料(或导热体)可以是本申请的下述实施例所提供的导热材料(或导热体),也可以是其他的导热材料(或导热体)。
可选的,散热基板30可以为金属基板、金刚石基板、覆铜陶瓷基板、碳化硅基板或氮化铝基板。散热基板30还可以是采用包括金刚石-金属的复合材料制作的基板。
可选的,散热基板30本身可以是金属(也即金属基板),也可以是包覆有表面金属层的基板,且该表面金属层的材料为铜、镍、银或金中的一种或多种。
本申请还提供的一种导热体,导热体20可以应用于前述封装结构中,用于将半导体器件10产生的热量传递到散热基板30,并通过散热基板30传递出去。
请参见附图2,它示出了本申请提供的一种导热体20的示意图。具体的,导热体20包括基体28、金刚石颗粒21和第一金属纳米颗粒25,金刚石颗粒21和第一金属纳米颗粒25均均匀地分散在基体28内。值得注意的是,金刚石颗粒21的外表面依次包覆有碳化物膜层22、第一金属膜层23和第二金属膜层24。其中,碳化物膜层22与金刚石颗粒21的外表面相接触,且包覆金刚石颗粒21的全部外表面。第一金属膜层23位于碳化物膜层22与第二金属膜层24之间,且包覆碳化物膜层22的全部外表面。第二金属膜层24位于第一金属膜层23的外表面,且包裹第一金属膜层23的全部外表面。
需要说明的是,在金刚石颗粒21的外表面依次包裹多层膜层的目的是降低金刚石颗粒21的表面热阻,因此,本申请所述的“包覆(或包裹)……全部外表面”可以是包覆(或包裹)了全部外表面,也可以是几乎包覆(或包裹)了全部外表面,例如包裹(或包裹)95%以上的外表面。应当知道的是,本申请所述的“包覆……全部外表面”还会受工艺水平的限制,因此实际上可能并没有包覆(或包裹)了全部外表面。具体的,在本申请中,对“包覆(或包裹)……全部外表面”的理解应当以是否能够实现本实施例的发明目的以及本领域技术人员的理解为准。
其中,基体28可以为有机聚合物,则金刚石颗粒21以及第一金属纳米颗粒25均可以均匀地分布在该有机聚合物内。
可选的,金刚石颗粒21的粒径(也即直径)是微米级的。金刚石颗粒21的粒径可以大于或等于0.01微米且小于或等于200微米。示例性的,金刚石颗粒21的平均粒径为5微米。由于金刚石颗粒21的形状并不是球状的,所以金刚石颗粒21的粒径可以理解为是金刚石颗粒21的平均粒径。另外,在本申请的其他地方提及“颗粒的粒径”时,也应该按照是该颗粒的平均粒径进行理解。
进一步地,在本实施例中,金刚石颗粒21可以均为粒径是微米级的金刚石颗粒,也可以既包括粒径是微米级的金刚石颗粒,又包括粒径是纳米级的金刚石颗粒。由于纳米级的金刚石颗粒比较小,所以其表面积也比较小。对于相同体积的多颗微米级金刚石颗粒和多颗纳米级金刚石颗粒来说,该多颗纳米级金刚石颗粒由于总的表面积比较大,因此界面热阻也会比较大,进而导热效果会比较差。
可选的,金刚石颗粒21可以为单晶金刚石颗粒,也可以为多晶金刚石颗粒,还可以既包括单晶金刚石颗粒又包括多晶金刚石颗粒。
可选的,在导热体20中,金刚石颗粒21的体积占比大于或等于0.05%且小于或等于80%,或者,金刚石颗粒21的体积占比大于或等于5%且小于或等于80%,或者,金刚石颗粒的体积占比大于或等于10%且小于或等于80%。
值得注意的是,在本申请提供的导热体中,基体28的体积占比可以小于或等于10%。进一步地,基体28的体积占比可以小于或等于1%。
需要说明的是,在本实施例中,碳化物膜层22为碳化钨(WC或W2C)膜层、碳化钛(TiC)膜层、碳化铬(Cr3C2、Cr3C7或Cr23C7)膜层、碳化钼(MoC或Mo2C)膜层、碳化镍(Ni3C)膜层或碳化硅(SiC)膜层。具体的,在碳化物膜层22为碳化钨膜层时,该碳化钨膜层的材料可以为碳化钨(WC),也可以为碳化二钨(W2C),还可以既包括碳化钨(WC)又包括碳化二钨(W2C)。在碳化物膜层22为碳化铬膜层时,该碳化铬膜层的材料为二碳化三铬(Cr3C2)、七碳化三铬(Cr3C7)或七碳化二十三铬(Cr23C7)中的一种或多种。在碳化物膜层22为碳化钼膜层时,该碳化钼膜层所采用的材料可以为碳化钼(MoC),也可以为碳化二钼(Mo2C),还可以既包括碳化钼(MoC)又包括碳化二钼(Mo2C)。另外,在本实施例中,碳化物膜层22的厚度大于或等于10纳米且小于或等于500纳米。
值得注意的是,第一金属膜层23采用的材料为钨(W)、钛(Ti)、铬(Cr)、钼(Mo)、镍(Ni)、铂(Pt)、钯(Pd)。进一步地,第一金属膜层23的厚度大于或等于10纳米且小于或等于500纳米。
需要关注的是,第二金属膜层24包括一层金属薄膜或层叠的多层金属薄膜,每层金属薄膜采用的材料为铜(Cu)、银(Ag)、金(Au)、铂(Pt)、钯(Pd)、铟(In)、铋(Bi)、铝(Al)及氧化铝等。在第二金属膜层24包括层叠的多层金属薄膜时,该多层金属薄膜中每相邻两层金属薄膜采用不同的材料制成。可选的,第二金属膜层24包括的多层金属薄膜分别采用不同的材料制成。其中,第二金属膜层24的厚度大于或等于0.1微米且小于或等于10微米。示例性的,第二金属膜层24的厚度可以为1微米。
值得注意的是,本实施例所述的第一金属纳米颗粒25所采用的材料为铜(Cu)、银(Ag)、金(Au)以及锡(Sn)中的一种或多种。具体的,第一金属纳米颗粒25可以为以下所有金属颗粒中的一种或者多种:铜颗粒、银颗粒、金颗粒、锡颗粒、银包覆铜,以及铜、银、金和锡中的任意两种或者三种物质形成的合金的颗粒。需要说明的是,在本申请中,多种是指两种以上。所谓的“银包覆铜”是指在铜球的外部包覆一层银。所谓的“铜、银、金和 锡中的任意两种或者三种物质形成的合金的颗粒”,例如,可以为铜银合金颗粒、银铜合金颗粒、铜金合金颗粒、金铜合金颗粒、铜锡合金颗粒、锡铜合金颗粒或铜银锡合金颗粒等。可选的,第一金属纳米颗粒25的粒径大于或等于10纳米且小于或等于500纳米。示例性地,第一金属纳米颗粒25为银颗粒,且平均粒径为30纳米。
需要说明的是,如图3所示,部分第一金属纳米颗粒25与该第二金属膜层24的外表面之间通过金属键结合,更准确的是,应当说部分第一金属纳米颗粒25与位于该第二金属膜层24的外表面的金属离子之间通过金属键结合。相应的,相邻的第一金属纳米颗粒25之间也可以通过金属键结合。
为了降低第二金属膜层24外表面的表面热阻,在另一个实施例中,如图4所示,还可以在第二金属膜层24的外表面生长形成第二金属纳米颗粒27。由此可知,第二金属纳米颗粒27与第一金属纳米颗粒25的区别在于:前者是生长在该第二金属膜层24的外表面的,后者与第二金属膜层24外表面的金属离子之间是通过金属键结合的。其中,第二金属纳米颗粒27为金颗粒、银颗粒或铜颗粒中的至少一种。在本实施例中,则相邻的第二金属纳米颗粒27与第一金属纳米颗粒25之间可以通过金属键结合。还需要说明的是,第二金属纳米颗粒27的粒径大于或等于10纳米且小于或等于200纳米。可选的,7第二金属纳米颗粒27均匀地生长在所述第二金属膜层24的外表面。
参见附图4,第一金属纳米颗粒25以及金刚石颗粒21,或者,第一金属纳米颗粒25、第二金属纳米颗粒27以及金刚石颗粒21,形成一条贯通导热体20的其中一个表面到另一个表面的导热路径。
需要说明的是,无论是第一金属纳米颗粒25与第二金属膜层24的外表面之间的金属键,相邻的第一金属纳米颗粒25之间的金属键,还是第二金属纳米颗粒27与第一金属纳米颗粒25之间的金属键,均可以通过在不高于300℃的温度条件下对形成该金属键的材料进行烧结实现。例如在不高于300℃的温度条件下对第二金属纳米颗粒27与第一金属纳米颗粒25进行烧结,可以在相邻的第二金属纳米颗粒27与第一金属纳米颗粒25之间形成金属键。
为了提供本申请提供的导热体的导热率,在另一个实施例中,还可以在基体28内均匀地混合多壁碳纳米管、单壁碳纳米管或石墨烯中的一种或多种。
本申请还提供了一种导热材料。该导热材料包括有机聚合物、第一金属纳米颗粒以及金刚石颗粒。其中,该第一金属纳米颗粒以及该金刚石颗粒均均匀地分布在该有机聚合物内。该金刚石颗粒的外表面依次包覆有碳化物膜层、第一金属膜层和第二金属膜层。需要注意的是,关于导热材料的实施例与前述关于导热体的实施例有很多相同的部分(相同部分参见前述关于导热体的实施例即可,此处不再赘述),二者的不同之处在于:该有机聚合物是流动态的,所以该导热材料也是流动态的。该导热材料被加热发生烧结后能够得到如前述实施例所述的导热体,应当知道的是,前述的导热体是固态的。示例性的,该导热材料可以在不高于300℃的温度条件下被加热发生烧结并形成如前述实施例所述的导热体。因此容易知道,该导热材料中的有机聚合物的体积占比大于该导热体中的有机聚合物的体积占比。
应当知道的是,前述实施例仅为本发明的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保 护范围为准。再者,上述多个实施例之间可以相互参见。

Claims (22)

  1. 一种导热体,其特征在于,包括基体和分布在所述基体内的金刚石颗粒和第一金属纳米颗粒,所述金刚石颗粒的外表面依次包覆有碳化物膜层、第一金属膜层和第二金属膜层,所述碳化物膜层覆盖所述金刚石颗粒的全部外表面,所述第一金属膜层覆盖所述碳化物膜层的全部外表面,所述第二金属膜层通过化学或物理沉积的方式覆盖所述第一金属膜层的全部外表面,所述第一金属纳米颗粒与所述第二金属膜层的外表面之间通过金属键结合。
  2. 如权利要求1所述的导热体,其特征在于,相邻的所述第一金属纳米颗粒之间通过金属键结合。
  3. 如权利要求1或2所述的导热体,其特征在于,还包括生长在所述第二金属膜层的外表面的第二金属纳米颗粒。
  4. 如权利要求3所述的导热体,其特征在于,相邻的所述第一金属纳米颗粒与所述第二金属纳米颗粒之间通过金属键结合。
  5. 如权利要求1至4任一项所述的导热体,其特征在于,所述碳化物膜层为碳化钨膜层、碳化钛膜层、碳化铬膜层、碳化钼膜层、碳化镍膜层和碳化硅膜层中的任意一种。
  6. 如权利要求1至5任一项所述的导热体,其特征在于,所述碳化物膜层的厚度大于或等于10纳米且小于或等于500纳米。
  7. 如权利要求1至6任一项所述的导热体,其特征在于,所述第一金属膜层采用的材料为钨、钛、铬、钼、镍、铂或钯。
  8. 如权利要求1至7任一项所述的导热体,其特征在于,所述第一金属膜层的厚度大于或等于10纳米且小于或等于500纳米。
  9. 如权利要求1至8任一项所述的导热体,其特征在于,所述第二金属膜层包括一层金属薄膜或层叠设置的多层金属薄膜,每层金属薄膜采用的材料为铜、银、金、铂、钯、铟、铋、铝或氧化铝。
  10. 如权利要求1至9任一项所述的导热体,其特征在于,所述第二金属膜层的厚度大于或等于0.1微米且小于或等于10微米。
  11. 如权利要求1至10任一项所述的导热体,其特征在于,所述第一金属纳米颗粒的材料为铜、银、金以及锡中的一种或多种。
  12. 如权利要求1至11任一项所述的导热体,其特征在于,所述基体的体积占比小于或等于10%。
  13. 如权利要求1至12任一项所述的导热体,其特征在于,所述金刚石颗粒的体积占比为0.05%-80%。
  14. 如权利要求1至13任一项所述的导热体,其特征在于,所述金刚石颗粒的粒径大于或等于0.01微米且小于或等于200微米。
  15. 一种导热材料,其特征在于,包括有机聚合物和分布在所述有机聚合物内的金刚石颗粒以及第一金属纳米颗粒,所述金刚石颗粒的外表面依次包覆有碳化物膜层、第一金属膜层和第二金属膜层,所述碳化物膜层覆盖所述金刚石颗粒的全部外表面,所述第一金属膜层覆盖所述碳化物膜层的全部外表面,所述第二金属膜层覆盖所述第一金属膜层的全部外表面,所述第一金属纳米颗粒与所述第二金属膜层的外表面之间通过金属键结合。
  16. 如权利要求15所述的导热材料,其特征在于,相邻的所述第一金属纳米颗粒之间 通过金属键结合。
  17. 如权利要求15或16所述的导热材料,其特征在于,还包括生长在所述第二金属膜层的外表面的第二金属纳米颗粒。
  18. 如权利要求17所述的导热材料,其特征在于,相邻的所述第一金属纳米颗粒与所述第二金属纳米颗粒之间通过金属键结合。
  19. 一种半导体器件的封装结构,其特征在于,包括半导体器件、散热基板和如权利要求1至14任一项所述的导热体,所述导热体位于所述半导体器件和所述散热基板之间,且所述导热体的一个表面朝向所述半导体器件的背面且与所述半导体器件的背面相接触,另一表面朝向所述散热基板的固定面且与所述散热基板的固定面相接触。
  20. 如权利要求19所述的封装结构,其特征在于,所述半导体器件的背面具有背面金属层,所述背面金属层为一层金属薄膜或层叠的多层金属薄膜,每层金属薄膜采用的材料为钛、铂、钯、铝、镍、铜、银或金。
  21. 如权利要求19或20所述的封装结构,其特征在于,所述导热体与所述散热基板相互朝向对方的表面通过金属键结合。
  22. 如权利要求20或21所述的封装结构,其特征在于,所述背面金属层与所述导热体相互朝向对方的表面之间通过金属键结合。
PCT/CN2020/116359 2019-09-24 2020-09-21 导热体、导热材料和半导体器件的封装结构 WO2021057630A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227013608A KR20220066383A (ko) 2019-09-24 2020-09-21 열적 전도체, 열적 전도성 재료, 및 반도체 디바이스의 패키징 구조체
JP2022518735A JP7373061B2 (ja) 2019-09-24 2020-09-21 熱伝導体、熱伝導性材料、及び半導体デバイスのパッケージ構造
EP20869156.8A EP4023733A4 (en) 2019-09-24 2020-09-21 THERMAL CONDUCTOR, THERMALLY CONDUCTIVE MATERIAL, AND SEMICONDUCTOR DEVICE ENCAPSULATING STRUCTURE
US17/702,551 US20220216124A1 (en) 2019-09-24 2022-03-23 Heat conductor, heat-conducting material, and package structure of semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910906873.1A CN112625657B (zh) 2019-09-24 2019-09-24 导热体、导热材料和半导体器件的封装结构
CN201910906873.1 2019-09-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/702,551 Continuation US20220216124A1 (en) 2019-09-24 2022-03-23 Heat conductor, heat-conducting material, and package structure of semiconductor device

Publications (1)

Publication Number Publication Date
WO2021057630A1 true WO2021057630A1 (zh) 2021-04-01

Family

ID=75165092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116359 WO2021057630A1 (zh) 2019-09-24 2020-09-21 导热体、导热材料和半导体器件的封装结构

Country Status (6)

Country Link
US (1) US20220216124A1 (zh)
EP (1) EP4023733A4 (zh)
JP (1) JP7373061B2 (zh)
KR (1) KR20220066383A (zh)
CN (1) CN112625657B (zh)
WO (1) WO2021057630A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200370146A1 (en) * 2018-02-21 2020-11-26 Sumitomo Electric Industries, Ltd. Composite material and composite material manufacturing method
US20220236019A1 (en) * 2021-01-22 2022-07-28 DTEN, Inc. Flexible thermal connection structure
CN115725273A (zh) * 2021-08-26 2023-03-03 华为技术有限公司 金刚石基导热填料及制备方法、复合导热材料和电子设备
CN115847947B (zh) * 2023-02-07 2023-06-06 有研工程技术研究院有限公司 一种多层复合铟基热界面材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1982404A (zh) * 2005-12-13 2007-06-20 鸿富锦精密工业(深圳)有限公司 热界面材料及其制备方法
JP2011074166A (ja) * 2009-09-30 2011-04-14 Shingijutsu Kaihatsu Kk 二重被覆ダイヤモンド研磨材粒子及びその製造方法
CN105695831A (zh) * 2016-03-21 2016-06-22 中南大学 一种超高导热连续金刚石骨架增强复合材料及制备方法
CN105803242A (zh) * 2016-03-21 2016-07-27 中南大学 一种片状与线状导热材料耦合增强复合材料及制备方法
CN106995896A (zh) * 2017-05-24 2017-08-01 西安炬光科技股份有限公司 一种金刚石颗粒增强金属基复合材料的金属化方法及结构
CN107454827A (zh) * 2015-04-01 2017-12-08 美梦有限公司 包括导热泡沫层的垫组合件
CN109371303A (zh) * 2018-11-07 2019-02-22 中国科学院宁波材料技术与工程研究所 导热复合材料及其制备方法、散热件

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146672A (ja) * 2000-11-06 2002-05-22 Polymatech Co Ltd 熱伝導性充填剤及び熱伝導性接着剤並びに半導体装置
US7360581B2 (en) * 2005-11-07 2008-04-22 3M Innovative Properties Company Structured thermal transfer article
CN102610531A (zh) * 2012-03-12 2012-07-25 华中科技大学 一种金刚石-硅复合封装材料的制备方法
CN106795596A (zh) * 2014-09-02 2017-05-31 联合材料公司 金刚石复合材料和散热部件
CN104674053A (zh) * 2015-01-26 2015-06-03 北京科技大学 一种高热导率金刚石/Cu电子封装复合材料的制备方法
CN108329830A (zh) * 2018-02-01 2018-07-27 云南中宣液态金属科技有限公司 一种高导热复合热界面材料及其制备方法
CN108912683B (zh) * 2018-06-13 2021-02-26 中国科学院金属研究所 基于低熔点金属\导热粒子复合导热网络的热界面材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1982404A (zh) * 2005-12-13 2007-06-20 鸿富锦精密工业(深圳)有限公司 热界面材料及其制备方法
JP2011074166A (ja) * 2009-09-30 2011-04-14 Shingijutsu Kaihatsu Kk 二重被覆ダイヤモンド研磨材粒子及びその製造方法
CN107454827A (zh) * 2015-04-01 2017-12-08 美梦有限公司 包括导热泡沫层的垫组合件
CN105695831A (zh) * 2016-03-21 2016-06-22 中南大学 一种超高导热连续金刚石骨架增强复合材料及制备方法
CN105803242A (zh) * 2016-03-21 2016-07-27 中南大学 一种片状与线状导热材料耦合增强复合材料及制备方法
CN106995896A (zh) * 2017-05-24 2017-08-01 西安炬光科技股份有限公司 一种金刚石颗粒增强金属基复合材料的金属化方法及结构
CN109371303A (zh) * 2018-11-07 2019-02-22 中国科学院宁波材料技术与工程研究所 导热复合材料及其制备方法、散热件

Also Published As

Publication number Publication date
EP4023733A4 (en) 2022-10-19
CN112625657A (zh) 2021-04-09
JP7373061B2 (ja) 2023-11-01
US20220216124A1 (en) 2022-07-07
KR20220066383A (ko) 2022-05-24
JP2022549311A (ja) 2022-11-24
CN112625657B (zh) 2022-01-14
EP4023733A1 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
WO2021057630A1 (zh) 导热体、导热材料和半导体器件的封装结构
US8772925B2 (en) Bonding structure and bonding method of heat diffusion member, and cooling unit using the same
US10396009B2 (en) Heat dissipation material and method of manufacturing thereof, and electronic device and method of manufacturing thereof
US8039953B2 (en) System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler
US9984951B2 (en) Sintered multilayer heat sinks for microelectronic packages and methods for the production thereof
JP2015532531A (ja) バルクグラフェン材料を含む熱管理アセンブリ
CN101405859A (zh) 热互连和界面系统,其制备方法和用途
US20190229083A1 (en) Hybrid bonding materials comprising ball grid arrays and metal inverse opal bonding layers, and power electronics assemblies incorporating the same
US11702725B2 (en) Bonding structure and method of manufacturing bonding structure
JP5760668B2 (ja) シート状構造体及びその製造方法並びに電子機器及びその製造方法
JP2008214524A (ja) 接着剤、半導体装置および半導体装置の製造方法
JP6354235B2 (ja) 電子機器とその組み立て方法、及びシート状構造体とその製造方法
JP6244651B2 (ja) シート状構造体及びその製造方法、並びに電子装置及びその製造方法
JP2023087658A (ja) 複合材料およびこの複合材料を含む放熱部品
JP4051402B2 (ja) 可撓性を有する伝熱装置およびその製造方法
WO2004107438A1 (ja) サブマウントおよびそれを用いた半導体装置
US10388627B1 (en) Micro-bonding structure and method of forming the same
JP5935302B2 (ja) シート状構造体及びその製造方法並びに電子機器及びその製造方法
JP6217084B2 (ja) 放熱構造体及びその製造方法
JP2008218771A (ja) 接着シート、接着シートの製造方法および半導体装置
JPH05299545A (ja) 放熱体
TW201608033A (zh) 半導體封裝體及其製造方法
CN110957228A (zh) 一种碳化硅表面增强的铝散热基板及制造方法
US10751840B2 (en) Multilayer composite bonding materials and power electronics assemblies incorporating the same
JP2003133492A (ja) 半導体素子収納用パッケージおよび半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869156

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518735

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020869156

Country of ref document: EP

Effective date: 20220330

ENP Entry into the national phase

Ref document number: 20227013608

Country of ref document: KR

Kind code of ref document: A