WO2021057372A1 - 一种高刚性尼龙及其制备方法 - Google Patents

一种高刚性尼龙及其制备方法 Download PDF

Info

Publication number
WO2021057372A1
WO2021057372A1 PCT/CN2020/111597 CN2020111597W WO2021057372A1 WO 2021057372 A1 WO2021057372 A1 WO 2021057372A1 CN 2020111597 W CN2020111597 W CN 2020111597W WO 2021057372 A1 WO2021057372 A1 WO 2021057372A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
glass fiber
parts
nylon composite
zone
Prior art date
Application number
PCT/CN2020/111597
Other languages
English (en)
French (fr)
Inventor
郑宇航
郑子华
陈扬友
郑飞飞
梁卫涛
朱文博
Original Assignee
广东格瑞新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东格瑞新材料股份有限公司 filed Critical 广东格瑞新材料股份有限公司
Publication of WO2021057372A1 publication Critical patent/WO2021057372A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the invention relates to the technical field of nylon, in particular to a high-rigidity nylon composite material and a preparation method thereof.
  • Polyamide commonly known as nylon
  • nylon has good comprehensive properties, including mechanical properties, heat resistance, abrasion resistance, chemical resistance and self-lubrication, and has low friction coefficient, certain flame retardancy, easy processing, and suitable It is used to fill and enhance modification with glass fibers and other fillers to improve material performance and expand the scope of application.
  • Glass fiber reinforced nylon has high mechanical strength, excellent wear resistance and corrosion resistance.
  • the glass fiber content of traditional glass fiber reinforced materials is generally below 50%, which can meet the requirements of general plastic products, but it is super high compared to metal materials. In terms of strength and dimensional stability, traditional glass fiber reinforced nylon cannot achieve the purpose of replacing steel with plastic.
  • the common high glass fiber content reinforced nylon on the market has a glass fiber content of 50% to 55%.
  • the purpose of the present invention is to provide a nylon composite material with high glass fiber content, high rigidity and low water absorption and a preparation method thereof.
  • a high-rigidity nylon composite material including the following parts by weight of raw materials:
  • the glass fiber content of the nylon composite material of the present invention reaches more than 60%.
  • the high glass fiber content gives the nylon composite material higher strength, improves dimensional stability, and reduces water absorption.
  • the invention adopts three PA materials for blending, so that the nylon material has better processing fluidity, the glass fiber has better dispersibility in the nylon material, and the batch quality of the produced composite material is stable.
  • melt index of the PA6 at 230° C. and 2.16 kg is 15-20 g/10 min, and the relative viscosity is 2.5-3.
  • melt index of the PA66 at 275° C. and 5 kg is 100-120 g/10 min, and the relative viscosity is 2.5-2.7.
  • melt index of the PA12 at 230° C. and 2.16 kg is 9-11 g/10 min.
  • the present invention screens and combines the properties of PA6, PA66 and PA12, so that the composite material has better flow processability and mechanical properties, which is beneficial to the improvement of the comprehensive performance of the nylon composite material.
  • the glass fiber is an alkali-free glass fiber, and the diameter of the glass fiber is 8-12 ⁇ m.
  • the R 2 O content of alkali-free glass fiber is less than 0.8%, which is an aluminoborosilicate component. Its chemical stability, electrical insulation properties and strength are all very good.
  • the modifier is a silane coupling agent or modified starch.
  • the lubricant is at least one of talc, montmorillonite, polyethylene wax and calcium stearate.
  • the antioxidant is a hindered phenol antioxidant and/or a phosphite antioxidant.
  • the method for preparing a high-rigidity nylon composite material as described above is obtained by adding each raw material to a twin-screw extruder for melt extrusion.
  • the present invention modifies glass fibers.
  • modification method cationic modified starch is used as a modifier and montmorillonite is used as a lubricant.
  • the modification method is as follows:
  • the preparation method of the high-rigidity nylon composite material includes the following steps:
  • each zone of the screw extruder is: the temperature in the first zone is 250-260°C, the temperature in the second zone is 260-270°C, the temperature in the third zone is 270-280°C, the temperature in the fourth zone is 260-270°C, and the temperature in the fifth zone is 240-260°C.
  • the feeding area of the feeding port is divided into three areas.
  • Modified starch is often used as a sizing agent for glass fiber, which has good adhesion to glass fiber and good film-forming ability, and the glass fiber after infiltration also has good compatibility with high molecular polymer. Because of its bonding and clustering to glass fibers, the glass fibers can be used for textiles after wetting.
  • modified starch although modified starch has good compatibility with nylon, its bonding properties will also make the glass fiber agglomeration more serious. Therefore, it cannot solve the problem of glass fiber in nylon. Dispersion issues.
  • montmorillonite is added to the glass fiber modification. The montmorillonite has a strong cation exchange function and can adhere to cationic starch.
  • the cationic modified starch can be inserted between the layers of montmorillonite.
  • Starch and montmorillonite have a good combination, and the montmorillonite added between the starch film and the glass fiber can enhance the lubricity of the glass fiber, and the glass fiber is easily separated from each other under the lubrication of the montmorillonite during the melting process Therefore, the modified glass fiber has better compatibility with nylon and also has better dispersibility, which effectively solves the problems of uneven dispersion of high glass fiber content and exposure of glass fiber.
  • the beneficial effects of the present invention are: the glass fiber content of the nylon composite material of the present invention reaches more than 60%, and the high glass fiber content gives the nylon composite material higher strength, improves dimensional stability, and reduces water absorption, and in order to avoid floating
  • the present invention uses three PA materials for blending, so that nylon material has better processing fluidity, glass fiber has better dispersibility in nylon material, and the batch quality of composite materials produced is stable. .
  • a high-rigidity nylon composite material including the following parts by weight of raw materials:
  • melt index of the PA6 at 230°C and 2.16kg is 15g/10min, and the relative viscosity is 2.7
  • melt index of the PA66 at 275° C. and 5 kg is 100 g/10 min, and the relative viscosity is 2.6.
  • melt index of the PA12 at 230° C. and 2.16 kg is 9 g/10 min.
  • the glass fiber is an alkali-free glass fiber, and the diameter of the glass fiber is 10 ⁇ m.
  • the modifier is a silane coupling agent.
  • the lubricant is talc.
  • the antioxidant is a hindered phenol antioxidant.
  • the method for preparing a high-rigidity nylon composite material as described above is obtained by adding each raw material to a twin-screw extruder for melt extrusion.
  • the temperature of each zone of the twin-screw extruder is: a zone temperature of 250°C, The zone temperature is 260°C, the temperature in the third zone is 270°C, the temperature in the fourth zone is 260°C, and the temperature in the fifth zone is 240°C.
  • the side feed port feeding zone is a three zone.
  • a high-rigidity nylon composite material including the following parts by weight of raw materials:
  • melt index of the PA6 at 230° C. and 2.16 kg is 20 g/10 min, and the relative viscosity is 3.
  • melt index of the PA66 at 275° C. and 5 kg is 120 g/10 min, and the relative viscosity is 2.7.
  • melt index of the PA12 at 230° C. and 2.16 kg is 11 g/10 min.
  • the glass fiber is an alkali-free glass fiber, and the diameter of the glass fiber is 12 ⁇ m.
  • the modifier is a silane coupling agent.
  • the lubricant is polyethylene wax.
  • the antioxidant is a phosphite antioxidant.
  • the method for preparing a high-rigidity nylon composite material as described above is obtained by adding each raw material to a twin-screw extruder for melt extrusion.
  • the temperature of each zone of the twin-screw extruder is: one zone temperature is 260°C, The zone temperature is 270°C, the three zone temperature is 280°C, the four zone temperature is 270°C, the five zone temperature is 260°C, and the side feed port feeding zone is three zones.
  • a high-rigidity nylon composite material including the following parts by weight of raw materials:
  • melt index of the PA6 at 230° C. and 2.16 kg is 17 g/10 min, and the relative viscosity is 2.7.
  • melt index of the PA66 at 275° C. and 5 kg is 112 g/10 min, and the relative viscosity is 2.6.
  • melt index of the PA12 at 230° C. and 2.16 kg is 10.3 g/10 min.
  • the glass fiber is an alkali-free glass fiber, and the diameter of the glass fiber is 10 ⁇ m.
  • the modifier is silane coupling agent kh550.
  • the lubricant is montmorillonite.
  • the antioxidant is a hindered phenol antioxidant.
  • the method for preparing a high-rigidity nylon composite material as described above includes the following steps:
  • each zone exiting the machine is: zone one temperature 255°C, zone two temperature 265°C, zone three temperature 275°C, zone four temperature 265°C, zone five temperature 250°C, side feed port feeding zone is three zone.
  • a high-rigidity nylon composite material including the following parts by weight of raw materials:
  • melt index of the PA6 at 230° C. and 2.16 kg is 17 g/10 min, and the relative viscosity is 2.7.
  • melt index of the PA66 at 275° C. and 5 kg is 112 g/10 min, and the relative viscosity is 2.6.
  • melt index of the PA12 at 230° C. and 2.16 kg is 10.3 g/10 min.
  • the glass fiber is an alkali-free glass fiber, and the diameter of the glass fiber is 10 ⁇ m.
  • the modifier is Dongmei brand DM-933 cationic modified starch.
  • the lubricant is montmorillonite.
  • the antioxidant is a hindered phenol antioxidant.
  • the preparation method of the high-rigidity nylon composite material includes the following steps:
  • each zone of the twin-screw extruder is: the temperature of the first zone is 255°C, the temperature of the second zone is 265°C, the temperature of the third zone is 275°C, the temperature of the fourth zone is 265°C, and the temperature of the fifth zone is 265°C.
  • the temperature is 250°C, and the feeding zone of the side feed port is three zones.
  • the preparation method of the high-rigidity nylon composite material includes the following steps:
  • the side feed port is put into the twin-screw extruder.
  • the temperature of each zone of the twin-screw extruder is: the temperature of the first zone is 255°C, the temperature of the second zone is 265°C, the temperature of the third zone is 275°C, the temperature of the fourth zone is 265°C, and the temperature of the fifth zone is 250. °C, the feeding area of the side feed port is three areas.
  • the lubricant is talc.
  • the preparation method of the high-rigidity nylon composite material includes the following steps:
  • each zone of the twin-screw extruder is: the temperature of the first zone is 255°C, the temperature of the second zone is 265°C, the temperature of the third zone is 275°C, the temperature of the fourth zone is 265°C, and the temperature of the fifth zone is 265°C.
  • the temperature is 250°C, and the feeding zone of the side feed port is three zones.
  • Example 3-4 and Comparative Example 1-2 were tested for tensile strength, flexural strength, impact strength and water absorption respectively.
  • the tensile strength test standard is ISO527-2, and the sample size is 150*10*4mm.
  • the extension speed is 10mm/min;
  • the test standard for bending strength is ISO178 standard, the sample size is 80*10*4mm, the bending speed is 2mm/min, and the span is 64mm;
  • the test standard for simply supported beam impact strength is ISO179.
  • the sample size is 55*6*4mm, and the notch depth is one third of the sample thickness;
  • the test standard for water absorption is ISO62, and the sample size is 60*60*1mm.
  • Table 1 The specific data is shown in Table 1 below: The test results are as follows:
  • the cationic modified starch + montmorillonite modified glass fiber has better modification effect than the silane coupling agent, the glass fiber has better dispersibility, and the modified starch also has better toughness, so it is worthy of nylon
  • the composite material has better mechanical properties, but because starch has a certain degree of water absorption, the relative silane coupling agent modification will increase the water absorption of the nylon composite material; from the comparative example 1, it can be seen that montmorillonite is not used as a modified material.
  • montmorillonite is not used as a modified material.
  • the adhesiveness of starch tends to agglomerate glass fibers, and the mechanical properties of the composite material drop sharply.
  • Comparative Example 2 it can be seen that since talc does not have a layered structure and cation exchange function, it cannot completely replace montmorillonite.
  • the role of the glass fiber is to lubricate the glass fiber, and the mechanical properties are still poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种高刚性的尼龙复合材料及其制备方法,包括如下重量份数的原料:PA6 20份、PA66 5-10份、PA12 5-10份、玻璃纤维65-75份、改性剂6-10份、润滑剂4-6份、抗氧化剂0.5-1份。该尼龙复合材料的玻纤含量达到60%以上,高玻纤含量赋予尼龙复合材料较高的强度,改善尺寸稳定性,并且降低了吸水率,而为了避免浮纤以及应力集中的问题,采用了三种PA材料进行共混,使得尼龙材料具有更好的加工流动性,玻纤在尼龙材料具有较好的分散性,生产的复合材料批次质量稳定。

Description

[根据细则26改正06.11.2020] 一种高刚性尼龙及其制备方法 技术领域
本发明涉及尼龙技术领域,具体涉及一种高刚性的尼龙复合材料及其制备方法。
背景技术
聚酰胺(俗称尼龙)具有良好的综合性能,包括力学性能、耐热性、耐磨损性、耐化学药品性和自润滑性,且摩擦系数低,有一定的阻燃性,易于加工,适于用玻璃纤维和其它填料填充增强改性,以此提高材料性能和扩大应用范围。玻纤增强尼龙具有较高的机械强度,耐磨性和耐腐蚀性优良,传统玻纤增强材料的玻纤含量一般在50%以下,能够满足一般塑料制品的要求,但相对于金属材料超高的强度和尺寸稳定性来言,传统玻纤增强尼龙还不能够达到以塑代钢的目的。目前市场上常见的高玻纤含量增强尼龙的玻纤含量在50%~55%,在使用过程中,由于尼龙自身具有的吸水性,使得材料在长期使用的环境下强度和刚性大大降低,本身具有的吸水性这个特点,也使得制件尺寸发生了较大变化,这种缺陷在材料应用于水处理行业时表现得特别明显。
发明内容
为了克服现有技术中存在的缺点和不足,本发明的目的在于提供一种高玻纤含量、高刚性和低吸水的尼龙复合材料及其制备方法。
本发明的目的通过下述技术方案实现:
一种高刚性的尼龙复合材料,包括如下重量份数的原料:
Figure PCTCN2020111597-appb-000001
Figure PCTCN2020111597-appb-000002
本发明的尼龙复合材料的玻纤含量达到60%以上,高玻纤含量赋予尼龙复合材料较高的强度,改善尺寸稳定性,并且降低了吸水率,而为了避免浮纤以及应力集中的问题,本发明采用了三种PA材料进行共混,使得尼龙材料具有更好的加工流动性,玻纤在尼龙材料具有较好的分散性,生产的复合材料批次质量稳定。
其中,所述PA6在230℃和2.16kg条件下的熔融指数为15-20g/10min,相对粘度为2.5-3。
其中,所述PA66在275℃和5kg条件下的熔融指数为100-120g/10min,相对粘度为2.5-2.7。
其中,所述PA12在230℃和2.16kg条件下的熔融指数为9-11g/10min。
本发明通过对PA6、PA66和PA12的性质进行筛选组合,使得复合材料具有较佳的流动加工性和力学性能,利于尼龙复合材料的综合性能提升。
其中,所述玻璃纤维为无碱玻璃纤维,所述玻璃纤维的直径为8-12μm。无碱玻璃纤维R 2O含量小于0.8%,是一种铝硼硅酸盐成分。它的化学稳定性、电绝缘性能、强度都很好。
其中,所述改性剂为硅烷偶联剂或改性淀粉。
其中,所述润滑剂为滑石粉、蒙脱土、聚乙烯蜡和硬脂酸钙中的至少一种。
其中,所述抗氧化剂为受阻酚类抗氧剂和/或亚磷酸酯类抗氧剂。
如上所述的一种高刚性的尼龙复合材料的制备方法,将各原料加入至双螺杆挤出机进行熔融挤出即得。
为了进一步解决高玻纤含量在尼龙材料分散不均的问题,本发明对玻璃纤维进行了改性,改性方法中需采用阳离子改性淀粉作为改性剂,蒙脱土作为润滑剂,具体的改性方法如下:
取6-10重量份的阳离子改性淀粉和2-3重量份的蒙脱土加入至100重量份的水中,升温至40-50℃,在20-40kHz的条件下震荡分散20-30min,然后加入 65-75重量份的玻璃纤维,在20-40kHz的条件下继续震荡分散20-30min,然后过滤干燥,即得到改性后的玻璃纤维。
此时,高刚性的尼龙复合材料的制备方法包括如下步骤:
(1)取6-10重量份的阳离子改性淀粉和2-3重量份的蒙脱土加入至100重量份的水中,升温至40-50℃,在20-40kHz的条件下震荡分散20-30min,然后加入65-75重量份的玻璃纤维,在20-40kHz的条件下继续震荡分散20-30min,然后过滤干燥,即得到改性后的玻璃纤维;
(2)将PA6、PA66、PA12、抗氧化剂和剩余的润滑剂从主喂料口投入双螺杆挤出机中,改性后的玻璃纤维从侧喂料口投入双螺杆挤出机中,双螺杆挤出机的各区温度为:一区温度250-260℃,二区温度260-270℃,三区温度270-280℃、四区温度260-270℃,五区温度240-260℃,侧喂料口喂入区为三区。
改性淀粉常作为玻璃纤维的浸润剂,对玻纤有良好的粘附性,具有较好的成膜能力,并且浸润后的玻璃纤维也跟高分子聚合物具有较好的相容性,也因为其对玻纤具有粘结集束性,因而浸润后玻纤能够用于纺织。但在共混改性尼龙技术领域中,改性淀粉虽然与尼龙具有较好的相容性,但是其粘结的性质也会使玻纤团聚现象更加严重,因此并不能解决玻纤在尼龙的分散性问题。而本发明在玻璃纤维改性中加入了蒙脱土,蒙脱土具有较强的阳离子交换功能,可以与阳离子淀粉发生粘附,阳离子改性淀粉可以插接于蒙脱土的层间,因而淀粉与蒙脱土具有良好的结合性,而在淀粉膜与玻璃纤维之间增加的蒙脱土可以增强玻璃纤维的润滑性,在熔融过程中玻璃纤维在蒙脱土的润滑作用下彼此容易分离,因而使改性后的玻璃纤维具有与尼龙较好的相容性同时也具有较佳的分散性,有效解决高玻纤含量分散不均和玻纤外露的问题。
本发明的有益效果在于:本发明的尼龙复合材料的玻纤含量达到60%以上,高玻纤含量赋予尼龙复合材料较高的强度,改善尺寸稳定性,并且降低了吸水率,而为了避免浮纤以及应力集中的问题,本发明采用了三种PA材料进 行共混,使得尼龙材料具有更好的加工流动性,玻纤在尼龙材料具有较好的分散性,生产的复合材料批次质量稳定。
具体实施方式
为了便于本领域技术人员的理解,下面结合实施例对本发明作进一步的说明,实施方式提及的内容并非对本发明的限定。
实施例1
一种高刚性的尼龙复合材料,包括如下重量份数的原料:
Figure PCTCN2020111597-appb-000003
其中,所述PA6在230℃和2.16kg条件下的熔融指数为15g/10min,相对粘度为2.7
其中,所述PA66在275℃和5kg条件下的熔融指数为100g/10min,相对粘度为2.6。
其中,所述PA12在230℃和2.16kg条件下的熔融指数为9g/10min。
其中,所述玻璃纤维为无碱玻璃纤维,所述玻璃纤维的直径为10μm。
其中,所述改性剂为硅烷偶联剂。
其中,所述润滑剂为滑石粉。
其中,所述抗氧化剂为受阻酚类抗氧剂。
如上所述的一种高刚性的尼龙复合材料的制备方法,将各原料加入至双螺杆挤出机进行熔融挤出即得,双螺杆挤出机的各区温度为:一区温度250℃, 二区温度260℃,三区温度270℃、四区温度260℃,五区温度240℃,侧喂料口喂入区为三区。
实施例2
一种高刚性的尼龙复合材料,包括如下重量份数的原料:
Figure PCTCN2020111597-appb-000004
其中,所述PA6在230℃和2.16kg条件下的熔融指数为20g/10min,相对粘度为3。
其中,所述PA66在275℃和5kg条件下的熔融指数为120g/10min,相对粘度为2.7。
其中,所述PA12在230℃和2.16kg条件下的熔融指数为11g/10min。
其中,所述玻璃纤维为无碱玻璃纤维,所述玻璃纤维的直径为12μm。
其中,所述改性剂为硅烷偶联剂。
其中,所述润滑剂为聚乙烯蜡。
其中,所述抗氧化剂为亚磷酸酯类抗氧剂。
如上所述的一种高刚性的尼龙复合材料的制备方法,将各原料加入至双螺杆挤出机进行熔融挤出即得,双螺杆挤出机的各区温度为:一区温度260℃,二区温度270℃,三区温度280℃、四区温度270℃,五区温度260℃,侧喂料口喂入区为三区。
实施例3
一种高刚性的尼龙复合材料,包括如下重量份数的原料:
Figure PCTCN2020111597-appb-000005
其中,所述PA6在230℃和2.16kg条件下的熔融指数为17g/10min,相对粘度为2.7。
其中,所述PA66在275℃和5kg条件下的熔融指数为112g/10min,相对粘度为2.6。
其中,所述PA12在230℃和2.16kg条件下的熔融指数为10.3g/10min。
其中,所述玻璃纤维为无碱玻璃纤维,所述玻璃纤维的直径为10μm。
其中,所述改性剂为硅烷偶联剂kh550。
其中,所述润滑剂为蒙脱土。
其中,所述抗氧化剂为受阻酚类抗氧剂。
如上所述的一种高刚性的尼龙复合材料的制备方法,包括如下步骤:
(1)将硅烷偶联剂和玻璃纤维加入乙醇溶液中进行改性处理,干燥后得到改性后的玻璃纤维;
(2)将PA6、PA66、PA12、抗氧化剂和润滑剂从主喂料口投入双螺杆挤出机中,改性后的玻璃纤维从侧喂料口投入双螺杆挤出机中,双螺杆挤出机的各区温度为:一区温度255℃,二区温度265℃,三区温度275℃、四区温度265℃,五区温度250℃,侧喂料口喂入区为三区。
实施例4
一种高刚性的尼龙复合材料,包括如下重量份数的原料:
Figure PCTCN2020111597-appb-000006
Figure PCTCN2020111597-appb-000007
其中,所述PA6在230℃和2.16kg条件下的熔融指数为17g/10min,相对粘度为2.7。
其中,所述PA66在275℃和5kg条件下的熔融指数为112g/10min,相对粘度为2.6。
其中,所述PA12在230℃和2.16kg条件下的熔融指数为10.3g/10min。
其中,所述玻璃纤维为无碱玻璃纤维,所述玻璃纤维的直径为10μm。
其中,所述改性剂为东美牌DM-933阳离子改性淀粉。
其中,所述润滑剂为蒙脱土。
其中,所述抗氧化剂为受阻酚类抗氧剂。
高刚性的尼龙复合材料的制备方法包括如下步骤:
(1)取8重量份的阳离子改性淀粉和2.5重量份的蒙脱土加入至100重量份的水中,升温至45℃,在30kHz的条件下震荡分散25min,然后加入70重量份的玻璃纤维,在30kHz的条件下继续震荡分散25min,然后过滤干燥,即得到改性后的玻璃纤维;
(2)将20重量份PA6、5重量份PA66、5重量份PA12、0.7重量份抗氧化剂和剩余的2.5重量份润滑剂从主喂料口投入双螺杆挤出机中,改性后的玻璃纤维从侧喂料口投入双螺杆挤出机中,双螺杆挤出机的各区温度为:一区温度255℃,二区温度265℃,三区温度275℃、四区温度265℃,五区温度250℃,侧喂料口喂入区为三区。
对比例1
本对比例与实施例4的不同之处在于:
高刚性的尼龙复合材料的制备方法包括如下步骤:
(1)取8重量份的阳离子改性淀粉和加入至100重量份的水中,升温至45℃,在30kHz的条件下震荡分散25min,然后加入70重量份的玻璃纤维,在30kHz的条件下继续震荡分散25min,然后过滤干燥,即得到改性后的玻璃纤维;
(2)将20重量份PA6、5重量份PA66、5重量份PA12、0.7重量份抗氧化剂和5重量份润滑剂从主喂料口投入双螺杆挤出机中,改性后的玻璃纤维从侧喂料口投入双螺杆挤出机中,双螺杆挤出机的各区温度为:一区温度255℃,二区温度265℃,三区温度275℃、四区温度265℃,五区温度250℃,侧喂料口喂入区为三区。
对比例2
本对比例与实施例4的不同之处在于:
所述润滑剂为滑石粉。
高刚性的尼龙复合材料的制备方法包括如下步骤:
(1)取8重量份的阳离子改性淀粉和2.5重量份的滑石粉加入至100重量份的水中,升温至45℃,在30kHz的条件下震荡分散25min,然后加入70重量份的玻璃纤维,在30kHz的条件下继续震荡分散25min,然后过滤干燥,即得到改性后的玻璃纤维;
(2)将20重量份PA6、5重量份PA66、5重量份PA12、0.7重量份抗氧化剂和剩余的2.5重量份润滑剂从主喂料口投入双螺杆挤出机中,改性后的玻璃纤维从侧喂料口投入双螺杆挤出机中,双螺杆挤出机的各区温度为:一区温度255℃,二区温度265℃,三区温度275℃、四区温度265℃,五区温度250℃,侧喂料口喂入区为三区。
实施例3-4和对比例1-2分别进行拉伸强度、弯曲强度、冲击强度和吸水率的测试,拉伸强度的测试标准为ISO527-2,试样尺寸为150*10*4mm,拉伸速度为10mm/min;弯曲强度的测试标准为ISO178标准,试样尺寸为80*10*4mm,弯 曲速度为2mm/min,跨距为64mm;简支梁冲击强度的测试标准为ISO179标准,试样尺寸为55*6*4mm,缺口深度为试样厚度的三分之一;吸水率的测试标准为ISO62,试样尺寸为60*60*1mm。具体数据如下表1所示:测试结果如下表:
Figure PCTCN2020111597-appb-000008
由上表可知,阳离子改性淀粉+蒙脱土改性玻璃纤维相对硅烷偶联剂的改性效果更好,玻璃纤维分散性更佳,并且改性淀粉也具有较好的韧性,因此值得的尼龙复合材料具有较佳的力学性,但由于淀粉具有一定的吸水性,因此相对硅烷偶联剂改性会增加尼龙复合材料的吸水性;从对比例1可知,蒙脱土不作为改性材料仅作为润滑剂,由于淀粉的粘结性易使玻璃纤维团聚,复合材料的力学性能急剧下降;从对比例2可知,由于滑石粉不具有层状结构和阳离子交换功能,因此不能完全取代蒙脱土的作用起到润滑玻璃纤维的效果,力学性能仍是较差的。
上述实施例为本发明较佳的实现方案,除此之外,本发明还可以其它方式实现,在不脱离本发明构思的前提下任何显而易见的替换均在本发明的保护范围之内。

Claims (10)

  1. 一种高刚性的尼龙复合材料,其特征在于:包括如下重量份数的原料:
    Figure PCTCN2020111597-appb-100001
  2. 根据权利要求1所述的一种高刚性的尼龙复合材料,其特征在于:所述PA6在230℃和2.16kg条件下的熔融指数为15-20g/10min,相对粘度为2.5-3。
  3. 根据权利要求1所述的一种高刚性的尼龙复合材料,其特征在于:所述PA66在275℃和5kg条件下的熔融指数为100-120g/10min,相对粘度为2.5-2.7。
  4. 根据权利要求1所述的一种高刚性的尼龙复合材料,其特征在于:所述PA12在230℃和2.16kg条件下的熔融指数为9-11g/10min。
  5. 根据权利要求1所述的一种高刚性的尼龙复合材料,其特征在于:所述玻璃纤维为无碱玻璃纤维,所述玻璃纤维的直径为8-12μm。
  6. 根据权利要求1所述的一种高刚性的尼龙复合材料,其特征在于:所述改性剂为硅烷偶联剂或改性淀粉。
  7. 根据权利要求1所述的一种高刚性的尼龙复合材料,其特征在于:所述润滑剂为滑石粉、蒙脱土、聚乙烯蜡和硬脂酸钙中的至少一种。
  8. 根据权利要求1所述的一种高刚性的尼龙复合材料,其特征在于:所述抗氧化剂为受阻酚类抗氧剂和/或亚磷酸酯类抗氧剂。
  9. 权利要求1所述的一种高刚性的尼龙复合材料的制备方法,其特征在于:将各原料加入至双螺杆挤出机进行熔融挤出即得。
  10. 根据权利要求9所述的一种高刚性的尼龙复合材料的制备方法,其特征在于:所述改性剂为阳离子改性淀粉,润滑剂包括2-3重量份的蒙脱土,制备方法包括如下步骤:(1)取6-10重量份的阳离子改性淀粉和2-3重量份的蒙脱土加入至100重量份的水中,升温至40-50℃,在20-40kHz的条件下震荡分散20-30min,然后加入65-75重量份的玻璃纤维,在20-40kHz的条件下继续震荡分散20-30min,然后过滤干燥,即得到改性后的玻璃纤维;
    (2)将PA6、PA66、PA12、抗氧化剂和剩余的润滑剂从主喂料口投入双螺杆挤出机中,改性后的玻璃纤维从侧喂料口投入双螺杆挤出机中,双螺杆挤出机的各区温度为:一区温度250-260℃,二区温度260-270℃,三区温度270-280℃、四区温度260-270℃,五区温度240-260℃,侧喂料口喂入区为三区。
PCT/CN2020/111597 2019-09-25 2020-08-27 一种高刚性尼龙及其制备方法 WO2021057372A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910913665.4 2019-09-25
CN201910913665.4A CN110643173A (zh) 2019-09-25 2019-09-25 一种高刚性的尼龙复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2021057372A1 true WO2021057372A1 (zh) 2021-04-01

Family

ID=69011220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111597 WO2021057372A1 (zh) 2019-09-25 2020-08-27 一种高刚性尼龙及其制备方法

Country Status (2)

Country Link
CN (1) CN110643173A (zh)
WO (1) WO2021057372A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113956656A (zh) * 2021-11-04 2022-01-21 河南海瑞祥科技有限公司 一种表面超疏水疏油的耐磨尼龙复合材料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110643173A (zh) * 2019-09-25 2020-01-03 广东格瑞新材料股份有限公司 一种高刚性的尼龙复合材料及其制备方法
CN111909510A (zh) * 2020-08-11 2020-11-10 广东聚邦兴材科技有限公司 一种尼龙复合材料及其制备方法
CN112552674B (zh) * 2020-12-11 2022-06-07 天津金发新材料有限公司 一种低浮纤、高冲击强度聚酰胺复合材料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050250886A1 (en) * 2004-05-10 2005-11-10 Georg Stoeppelmann Thermoplastic polyamide moulding compositions
CN101215417A (zh) * 2007-12-28 2008-07-09 深圳市科聚新材料有限公司 一种己二酸己二胺加纤改性工程塑料及其制备方法
CN105036567A (zh) * 2015-07-31 2015-11-11 华南理工大学 一种用于玻纤浸润剂中变性淀粉的制备方法
CN105419320A (zh) * 2015-11-19 2016-03-23 东莞市众一新材料科技有限公司 一种高玻纤填充增强尼龙复合材料及其制备方法
CN107663371A (zh) * 2017-09-19 2018-02-06 江门市德众泰工程塑胶科技有限公司 一种用于环保电镀的脂肪族聚酰胺复合物及其制备方法
CN110643173A (zh) * 2019-09-25 2020-01-03 广东格瑞新材料股份有限公司 一种高刚性的尼龙复合材料及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101343410B (zh) * 2007-07-12 2010-11-10 上海化工研究院 一种无卤的阻燃性增强聚酰胺组合物
CN101613527B (zh) * 2009-07-29 2011-02-09 东莞市意普万工程塑料有限公司 一种耐醇解尼龙复合材料及其制备方法
WO2014041804A1 (ja) * 2012-09-14 2014-03-20 東レ株式会社 ポリアミド樹脂組成物、成形品
CN103289372A (zh) * 2013-05-09 2013-09-11 东莞市意普万尼龙科技股份有限公司 一种汽车发动机罩盖专用尼龙6组合物及其制备方法
CN103450663B (zh) * 2013-08-07 2016-08-10 金发科技股份有限公司 抗蠕变聚酰胺组合物、制备方法及制得的制品
CN104761886B (zh) * 2014-01-08 2018-08-14 旭化成株式会社 聚酰胺树脂组合物及成形品
CN106675009A (zh) * 2015-11-05 2017-05-17 株洲时代新材料科技股份有限公司 一种轨道扣件用高强高韧尼龙复合材料及其制备方法
CN105542454A (zh) * 2015-11-11 2016-05-04 陕西聚洁瀚化工有限公司 一种玻璃纤维增强尼龙的制备方法
CN106751771A (zh) * 2016-11-18 2017-05-31 杭州本松新材料技术股份有限公司 一种高纤维增强尼龙复合材料
CN108676355B (zh) * 2018-05-23 2021-03-23 江苏金发科技新材料有限公司 低浮纤高光泽玻纤增强聚酰胺组合物
CN109438979A (zh) * 2018-11-22 2019-03-08 浙江华谊胜德材料科技有限公司 一种高光滑工程塑料合金及其制备方法
CN109666291B (zh) * 2018-12-07 2021-09-03 厦门德丰行塑胶工业有限公司 一种高刚性低吸水尼龙6复合材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050250886A1 (en) * 2004-05-10 2005-11-10 Georg Stoeppelmann Thermoplastic polyamide moulding compositions
CN101215417A (zh) * 2007-12-28 2008-07-09 深圳市科聚新材料有限公司 一种己二酸己二胺加纤改性工程塑料及其制备方法
CN105036567A (zh) * 2015-07-31 2015-11-11 华南理工大学 一种用于玻纤浸润剂中变性淀粉的制备方法
CN105419320A (zh) * 2015-11-19 2016-03-23 东莞市众一新材料科技有限公司 一种高玻纤填充增强尼龙复合材料及其制备方法
CN107663371A (zh) * 2017-09-19 2018-02-06 江门市德众泰工程塑胶科技有限公司 一种用于环保电镀的脂肪族聚酰胺复合物及其制备方法
CN110643173A (zh) * 2019-09-25 2020-01-03 广东格瑞新材料股份有限公司 一种高刚性的尼龙复合材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113956656A (zh) * 2021-11-04 2022-01-21 河南海瑞祥科技有限公司 一种表面超疏水疏油的耐磨尼龙复合材料及其制备方法
CN113956656B (zh) * 2021-11-04 2023-09-22 河南海瑞祥科技有限公司 一种表面超疏水疏油的耐磨尼龙复合材料及其制备方法

Also Published As

Publication number Publication date
CN110643173A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
WO2021057372A1 (zh) 一种高刚性尼龙及其制备方法
JP6549484B2 (ja) 高メルトフローpeak組成物
CN103374197B (zh) 一种高强度碳纤维增强聚醚醚酮复合材料及其制备方法
EP2460858A1 (de) Polyamidformmassen auf Basis von Mischungen aus transparenten Copolyamiden und aliphatischen Homopolyamiden zur Herstellung von transparenten Formteilen
CN111040440B (zh) 一种低密度高耐磨尼龙复合材料及其制备方法和应用
CN107573683A (zh) 一种低介电常数玻纤增强聚酰胺材料及其制备方法
US11390725B2 (en) Polyetheretherketone composite and method of preparing same
CN105176079A (zh) 一种短切玻璃纤维增强尼龙改性材料及其制备方法
CN109777091B (zh) 一种3d打印用高强耐磨尼龙复合材料及其制备方法和应用
CN107022167A (zh) 一种玻纤增强聚醚醚酮3d打印耗材及其制备方法
CN109593352A (zh) 超低吸水耐寒耐磨尼龙复合材料及其制备方法和应用
CN108424648B (zh) 一种注塑用碳纤维复合材料
WO2022110668A1 (zh) 一种疏水性高cti聚苯硫醚组合物及其制备方法与应用
CN102964830A (zh) 高强度碳纤维增强无卤阻燃pa66复合材料及制备方法
CN104497532A (zh) 一种无卤阻燃高光泽高玻纤增强pc材料及其制备方法
CN107365480A (zh) 高耐热低介电常数的nmt材料及其制备方法
CN111171563A (zh) 聚酰胺材料及制备方法
CN103146134A (zh) 一种高强度、高耐热玻纤增强聚醚醚酮复合材料及制备方法
CN110194893B (zh) 硅铝复合物协同氢氧化镁阻燃尼龙复合材料及其制备方法
CN112980076A (zh) 一种托辊用石墨烯耐磨pe复合材料及其制备方法
CN112375297A (zh) 一种用于新能源汽车水室的玻纤增强pp/pa66复合材料及制备方法
CN114395242B (zh) 高导热pok复合材料及其制备方法与应用
CN112063056A (zh) 一种良外观玻纤增强聚丙烯复合材料及其制备方法
CN104403257A (zh) 陶瓷纤维增强abs/pc合金及其制备方法
CN109988425A (zh) 一种耐高低温循环开裂聚苯硫醚增韧复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867976

Country of ref document: EP

Kind code of ref document: A1