WO2021056758A1 - 一种钙钛矿薄膜及其制备方法、光电器件 - Google Patents

一种钙钛矿薄膜及其制备方法、光电器件 Download PDF

Info

Publication number
WO2021056758A1
WO2021056758A1 PCT/CN2019/118745 CN2019118745W WO2021056758A1 WO 2021056758 A1 WO2021056758 A1 WO 2021056758A1 CN 2019118745 W CN2019118745 W CN 2019118745W WO 2021056758 A1 WO2021056758 A1 WO 2021056758A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
polymer
monomer
preparation
hydrocarbon group
Prior art date
Application number
PCT/CN2019/118745
Other languages
English (en)
French (fr)
Inventor
吴永伟
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/624,927 priority Critical patent/US11643729B2/en
Publication of WO2021056758A1 publication Critical patent/WO2021056758A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0805Chalcogenides
    • C09K11/0816Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0827Halogenides
    • C09K11/0833Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/85Layers having high electron mobility, e.g. electron-transporting layers or hole-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/86Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • This application relates to the technical field of optoelectronic devices, in particular to a perovskite film and a preparation method thereof, and optoelectronic devices.
  • perovskite structures As a new generation of semiconductor materials, materials based on perovskite structures have shown great application potential in the fields of optoelectronic devices such as solar cells, displays and lighting, lasers and detectors. At the same time, most of the perovskite optoelectronic devices are based on wet preparation, which is very conducive to the large-area and low-cost commercial production of the devices.
  • perovskites are in the form of polycrystalline thin films. Therefore, the quality of the film caused by microscopic grain growth has a crucial impact on its optoelectronic performance.
  • the crystal grains do not completely cover the substrate, pinholes, and grain boundary problems that are almost inevitable. Poor film quality tends to increase the probability of non-radiative recombination, reduce luminescence performance and carrier mobility, and cause material degradation.
  • the grain boundaries in the perovskite film will form defects, which become the source of "attack" by external factors and degradation of the perovskite itself.
  • Additive engineering is a way to add another "irrelevant" substance to the perovskite precursor solution to protect the grain boundaries, passivate defects, and improve the stability of materials and devices.
  • additives are mainly concentrated in small molecular compounds such as organic amines and ammonium salts.
  • linear polymers have been used as additives in perovskite solar cells.
  • directly added polymers often cause precipitation in the perovskite precursor. , Is not conducive to subsequent solution processing.
  • the present application provides a perovskite film, a preparation method thereof, and an optoelectronic device, which can solve the grain boundary defects in the perovskite film, and avoid direct addition of polymer to cause precipitation of the perovskite precursor, which is not conducive to subsequent solution processing The problem.
  • This application provides a method for preparing a perovskite film.
  • the method includes the following steps:
  • Step S10 adding the first monomer and the second monomer to the perovskite precursor solution according to a preset ratio, stirring uniformly to form a first mixed solution, and preparing the first mixed solution on a substrate;
  • step S20 the substrate with the first mixed solution prepared on the surface is subjected to an annealing process, the first monomer and the second monomer react in situ to generate a first polymer, and the perovskite
  • the precursor liquid forms perovskite grains, and the first polymer is combined with the perovskite grains and concentrated at the grain boundaries of the perovskite grains;
  • Step S30 curing the first mixed liquid to form the perovskite film
  • the first monomer and the second monomer are as shown in the general structural formulas (I) and (II), respectively:
  • R1 and R3 are the same or different branched alkyl groups with 3 to 20 carbon atoms, branched amine groups with 3 to 30 carbon atoms, substitutions with 6 to 30 carbon atoms, or One of an unsubstituted aromatic hydrocarbon group or a condensed ring aromatic hydrocarbon group, a substituted or unsubstituted heteroaromatic hydrocarbon group having 5 to 30 carbon atoms, or a condensed heterocyclic aromatic hydrocarbon group, R2 contains O, N, S A group containing at least one atom among atoms, Fx is a fluorine atom connected to a benzene ring, x represents the number of fluorine atoms, and x is an integer of 2 to 4.
  • the R1 and the R3 are selected from one of the following chemical structural formulas:
  • * represents the substitution position
  • the R2 is selected from any one of the following structural formulas:
  • * represents the substitution position
  • the method before the step S10, the method further includes the following steps:
  • step S101 the compounds AX and BX 2 are dissolved in the precursor solvent according to a certain stoichiometric ratio, heated until the solid is completely dissolved to form a solution containing the perovskite compound, and the solution is continuously stirred to form the perovskite Precursor liquid; wherein the molecular formula of the perovskite compound is ABX 3 ;
  • A represents a cation, and the cation is selected from one or more of CH 3 NH 3 + , NH 2 CHNH 2 + and Cs + ;
  • B is one selected from Pb 2+ and Sn 2+ A mixture of one or more than one;
  • X is a mixture of one or more selected from I, Br, and Cl.
  • the precursor solvent is selected from one or more mixed solvents of N,N-dimethylformamide, dimethyl sulfoxide, and ⁇ -butyrolactone.
  • the first polymer includes at least one atom containing a lone pair of electrons, and the atom containing a lone pair of electrons of the first polymer is identical to that in the perovskite crystal grains.
  • Pb 2+ and/or Sn 2+ form a coordination, so that at least a part of the first polymer is enriched at the grain boundary.
  • the present application also provides a perovskite film prepared by the above-mentioned preparation method.
  • the perovskite film is obtained by combining the atoms containing lone pairs of electrons in the first polymer and the Pb 2+ in the perovskite crystal grains. And/or Sn 2+ forms a coordinated combination, the first polymer is concentrated at the grain boundary of the perovskite grains, and the first polymer is formed by the first monomer and the second Network cross-linked polymer formed by in-situ reaction of monomers;
  • the first monomer and the second monomer are as shown in the general structural formulas (I) and (II), respectively:
  • R1 and R3 are the same or different branched alkyl groups with 3 to 20 carbon atoms, branched amino groups with 3 to 30 carbon atoms, and substituted with 6 to 30 carbon atoms Or an unsubstituted aromatic hydrocarbon group or a condensed ring aromatic hydrocarbon group, a substituted or unsubstituted heteroaromatic hydrocarbon group with 5 to 30 carbon atoms or a condensed heterocyclic aromatic hydrocarbon group, R2 is one of O, N, A group containing at least one of the S atoms, Fx is a fluorine atom connected to the benzene ring, x represents the number of fluorine atoms, and x is an integer of 2 to 4.
  • the present application also provides an optoelectronic device including the above-mentioned perovskite film, the perovskite film being a functional layer in the optoelectronic device.
  • the functional layer in the optoelectronic device is an electron transport layer or a hole transport layer.
  • the beneficial effects of the present application are: the perovskite film, the preparation method thereof, and the optoelectronic device provided by the present application are obtained by adding the first monomer and the second monomer that can form a cross-linked polymer in situ to the perovskite precursor solution In the process of preparing the perovskite film, the first monomer and the second monomer react in situ to form the first polymer, which is combined with the perovskite grains and concentrated at the grain boundaries of the perovskite grains In order to passivate perovskite grain defects.
  • the first polymer formed by in-situ cross-linking polymerization can provide more effective hydrothermal barrier and mechanical resistance; at the same time, the in-situ generation method avoids directly adding polymerization The precipitation of perovskite precursor liquid caused by chemical additives.
  • Fig. 1 is a flow chart of a method for preparing a perovskite film provided by an embodiment of the application.
  • FIG. 1 it is a flow chart of the preparation method of the perovskite film provided by the embodiment of this application.
  • the method includes the following steps: Step S10, adding a first monomer and a second monomer that can generate a cross-linked polymer in situ to the perovskite precursor solution in a preset ratio, and stirring uniformly to form a first mixed solution, And preparing the first mixed solution on the substrate.
  • the method further includes the preparation of the perovskite precursor liquid, including the following steps:
  • step S101 the compounds AX and BX 2 are dissolved in the precursor solvent according to a certain stoichiometric ratio, heated to 70° C. until the solid is completely dissolved to form a solution containing the perovskite compound, and the solution is continuously stirred to form the Perovskite precursor fluid.
  • the molecular formula of the perovskite compound is ABX 3 .
  • A represents a cation, which includes but is not limited to one or more of CH 3 NH 3 + , NH 2 CHNH 2 + and Cs + ;
  • B includes but is not limited to Pb 2+ ,
  • Sn 2+ X includes but is not limited to one or more mixtures of I, Br, and Cl.
  • the precursor solvent is selected from one or more mixed solvents of N,N-dimethylformamide, dimethyl sulfoxide, and ⁇ -butyrolactone.
  • first monomer and the second monomer are as shown in the general structural formulas (I) and (II):
  • R1 and R3 are the same or different branched alkyl groups with 3 to 20 carbon atoms, branched amino groups with 3 to 30 carbon atoms, and substituted with 6 to 30 carbon atoms Or an unsubstituted aromatic hydrocarbon group or a condensed ring aromatic hydrocarbon group, a substituted or unsubstituted heteroaromatic hydrocarbon group with 5 to 30 carbon atoms or a condensed heterocyclic aromatic hydrocarbon group, R2 is one of O, N, A group containing at least one of the S atoms, Fx is a fluorine atom connected to the benzene ring, x represents the number of fluorine atoms, and x is an integer of 2 to 4.
  • R1 and the R3 are selected from one of the following chemical structural formulas 1-18:
  • * represents the substitution position
  • the R2 is selected from any one of the following structural formulas 19-22:
  • * represents the substitution position
  • step S20 the substrate with the first mixed solution prepared on the surface is subjected to an annealing process, the first monomer and the second monomer react in situ to generate a first polymer, and the perovskite
  • the precursor liquid forms perovskite grains, and the first polymer is combined with the perovskite grains and concentrated at the grain boundaries of the perovskite grains.
  • the first mixed solution is coated or ink-jet printed on the substrate on which the perovskite thin film is to be prepared, and then annealed at a temperature of 40°C to 150°C for 5 minutes to 2 hours, or placed at room temperature for 2 hours to 20 hours.
  • the added first monomer and the second monomer react in situ to form the first polymer in a network shape, and the general structural formula (III) of the first polymer is as follows Shown:
  • R1 and R3 are the same or different branched alkyl groups with 3 to 20 carbon atoms, branched amino groups with 3 to 30 carbon atoms, and substituted with 6 to 30 carbon atoms Or an unsubstituted aromatic hydrocarbon group or a condensed ring aromatic hydrocarbon group, a substituted or unsubstituted heteroaromatic hydrocarbon group with 5 to 30 carbon atoms or a condensed heterocyclic aromatic hydrocarbon group, R2 is one of O, N, A group containing at least one of the S atoms, Fx is a fluorine atom connected to the benzene ring, x represents the number of fluorine atoms, and x is an integer of 2 to 4.
  • R1 and the R3 are selected from one of the following chemical structural formulas 1-18:
  • * represents the substitution position
  • the R2 is selected from any one of the following structural formulas 19-22:
  • * represents the substitution position
  • step S30 the first mixed liquid is solidified to form the perovskite film.
  • the O, N, S and other atoms with lone pairs of electrons contained in the first polymer will effectively interact with the perovskite grains, that is, the lone-containing atoms of the first polymer
  • the electron-pairing atoms form coordination with Pb 2+ and/or Sn 2+ in the perovskite grains, so that at least a part of the first polymer is concentrated at the grain boundary, thereby increasing the first polymer The ability of a polymer to bind the perovskite grains.
  • the first polymer concentrated at the grain boundary will effectively protect the grain boundary and passivate defects.
  • the precipitation of the perovskite precursor liquid caused by the direct addition of polymer additives is avoided.
  • the organic cation in the titanium ore forms a chemical bond with the first polymer through coordination, which greatly reduces the defects caused by the volatilization of the cation during the annealing process, so that the charge transfer efficiency of the device during the working process is improved, and the device efficiency and repeatability are improved.
  • fluorine-containing groups are introduced into the perovskite precursor solution, which are self-distributed at the grain boundaries after film formation, to improve the hydrophobicity of the perovskite material from the grain boundaries, and use fluorine-containing groups to cross-link At the grain boundaries of the perovskite grains, the film formation quality of the perovskite material can be improved, and the water repellency of the fluorine-containing group can be used to improve the stability of the perovskite film.
  • the group has improved its photoelectric performance.
  • the first polymer of this embodiment has three major functions. One is to protect the grain boundaries "in situ" and passivate defects; the other is to prevent the infiltration of perovskite by external moisture and air; and the third is to inhibit the perovskite.
  • the ion migration (mainly Pb 2+ , X ⁇ ) inside the ore film is because the grain boundary is the most important channel for ion migration in the perovskite film.
  • the first polymer formed by in-situ cross-linking polymerization can provide more effective hydrothermal barrier and mechanical resistance.
  • the present application also provides a perovskite film prepared by the above-mentioned preparation method.
  • the perovskite film is obtained by combining atoms containing lone pairs of electrons in the first polymer with Pb 2+ and/or Pb 2+ and/or in the perovskite crystal grains. Sn 2+ is formed by coordination and mutual bonding.
  • the first polymer is concentrated at the grain boundaries of the perovskite crystal grains.
  • the first polymer is formed by the first monomer and the second monomer. Network crosslinked polymer formed by in-situ reaction.
  • This application also provides an optoelectronic device including the above-mentioned perovskite thin film.
  • the optoelectronic device includes, but is not limited to, perovskite light-emitting diodes, perovskite solar cells, perovskite color films, perovskite lasers, and perovskites. Detector, perovskite scintillator, etc.
  • the perovskite film is a functional layer in the optoelectronic device.
  • the functional layer in the optoelectronic device is an electron transport layer or a hole transport layer.
  • the first monomer and the second monomer that can form a cross-linked polymer in situ are added to the perovskite precursor.
  • the first and second monomers pass The first polymer is formed after the in-situ reaction, and is combined with the perovskite grains and concentrated at the grain boundaries of the perovskite grains, thereby passivating the defects of the perovskite grains.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Photovoltaic Devices (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供一种钙钛矿薄膜及其制备方法、光电器件,通过将含有可原位交联的第一单体与第二单体的混合液制备于基板上;进行退火制程,第一单体与第二单体通过原位反应后生成第一聚合物,该第一聚合物与钙钛矿前驱液形成的钙钛矿晶粒结合并集中于钙钛矿晶粒的晶界处,以钝化钙钛矿晶粒缺陷;之后通过固化形成钙钛矿薄膜。

Description

一种钙钛矿薄膜及其制备方法、光电器件 技术领域
本申请涉及光电器件技术领域,尤其涉及一种钙钛矿薄膜及其制备方法、光电器件。
背景技术
作为新一代半导体材料,基于钙钛矿结构的材料在太阳能电池、显示和照明、激光和探测器等光电子器件领域展现出了巨大应用潜力。同时,大多数钙钛矿光电器件基于湿法制备,非常有利于器件的大面积、低成本商业化生产。
在绝大多数已报道的工作中,钙钛矿都是多晶薄膜形态,因此,微观晶粒生长造成的膜质优劣对其光电性能有着至关重要的影响。比如,晶粒没有完全覆盖基片,针孔,还有几乎无法避免的晶界问题等。较差的膜质往往加大非辐射复合的概率,降低发光性能和载流子迁移率,同时引起材料的降解。通常,钙钛矿薄膜中的晶界会形成缺陷,成为外部因素“攻击”和钙钛矿自身降解的源头。添加剂工程是一种在钙钛矿前驱液中添加另一“无关”物质,借以达到保护晶界,钝化缺陷,提升材料和器件的稳定性。目前添加剂主要集中于有机胺、铵盐等小分子化合物,此外,有少量线形聚合物作为添加剂应用于钙钛矿太阳能电池的报道,但是直接加入的聚合物往往会引起钙钛矿前驱液产生沉淀,不利于后续的溶液加工。
因此,现有技术存在缺陷,急需改进。
技术问题
本申请提供一种钙钛矿薄膜及其制备方法、光电器件,能够解决钙钛矿薄膜中的晶界缺陷,并且避免直接加入聚合物引起钙钛矿前驱液产生沉淀,不利于后续的溶液加工的问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请提供一种钙钛矿薄膜的制备方法,所述方法包括以下步骤:
步骤S10,将第一单体与第二单体按照预设比例添加至钙钛矿前驱液中,搅拌均匀形成第一混合液,并将所述第一混合液制备于基板上;
步骤S20,将表面制备有所述第一混合液的所述基板进行退火制程,所述第一单体与所述第二单体通过原位反应后生成第一聚合物,所述钙钛矿前驱液形成钙钛矿晶粒,所述第一聚合物与所述钙钛矿晶粒结合并集中于所述钙钛矿晶粒的晶界处;
步骤S30,对所述第一混合液进行固化,形成所述钙钛矿薄膜;
所述第一单体与所述第二单体分别如结构通式(Ⅰ)和(Ⅱ)所示:
Figure PCTCN2019118745-appb-000001
其中,R1,R3为相同或不同的具有3至20个碳原子的支链烷基基团、具有3至30个碳原子的支链胺基基团、具有6至30个碳原子的取代或未取代的芳香族烃基或稠环芳香族烃基、具有5至30个碳原子的取代或未取代的杂芳香族烃基或稠杂环芳香族烃基中的一者,R2为含有O、N、S原子中的至少一种原子的基团,Fx为连接在苯环上的氟原子,x表示氟原子的个数,x为2~4的整数。
在本申请的制备方法中,所述第一聚合物的结构通式(Ⅲ)如下所示:
Figure PCTCN2019118745-appb-000002
在本申请的制备方法中,所述R1与所述R3选自以下化学结构式中的一种:
Figure PCTCN2019118745-appb-000003
Figure PCTCN2019118745-appb-000004
式中,*代表取代位置。
在本申请的制备方法中,所述R2选自以下结构式中的任意一种:
Figure PCTCN2019118745-appb-000005
式中,*代表取代位置。
在本申请的制备方法中,在所述步骤S10之前,所述方法还包括以下步骤:
步骤S101,将化合物AX和BX 2按照一定的化学计量比例溶于前驱体溶剂中,加热至固体完全溶解,形成含有钙钛矿化合物的溶液,并连续搅拌所述溶液,形成所述钙钛矿前驱液;其中,所述钙钛矿化合物的分子式为ABX 3
式中,A代表阳离子,该阳离子选自CH 3NH 3 +、NH 2CHNH 2 +和Cs +中的一种或一种以上的混合物;B为选自Pb 2+、Sn 2+中的一种或一种以上的混合物;X为选自I、Br、Cl中的一种或一种以上的混合物。
在本申请的制备方法中,所述前驱体溶剂选自N,N-二甲基甲酰胺、二甲基亚砜、γ-丁内酯中的一种或者一种以上的混合溶剂。
在本申请的制备方法中,所述第一聚合物中包括至少一个含孤对电子的原子,所述第一聚合物的所述含孤对电子的原子与所述钙钛矿晶粒中的Pb 2+和/或Sn 2+形成配位,使得至少一部分所述第一聚合物富集于所述晶界处。
本申请还提供一种采用如上所述的制备方法制备的钙钛矿薄膜,所述钙钛矿薄膜是通过第一聚合物中含孤对电子的原子与钙钛矿晶粒中的Pb 2+和/或Sn 2+形成配位相互结合形成的,所述第一聚合物富集于所述钙钛矿晶粒的晶界处,所述第一聚合物是通过第一单体与第二单体经原位反应形成的网状交联聚合物;
所述第一单体与所述第二单体分别如结构通式(Ⅰ)和(Ⅱ)所示:
Figure PCTCN2019118745-appb-000006
式中,R1,R3为相同或不同的具有3至20个碳原子的支链烷基基团、具有3至30个碳原子的支链胺基基团、具有6至30个碳原子的取代或未取代的芳香族烃基或稠环芳香族烃基、具有5至30个碳原子的取代或未取代的杂芳香族烃基或稠杂环芳香族烃基中的一者,R2为含有O、N、S原子中的至少一种原子的基团,Fx为连接在苯环上的氟原子,x表示氟原子的个数,x为2~4的整数。
本申请还提供一种包括如上所述的钙钛矿薄膜的光电器件,所述钙钛矿薄膜为所述光电器件中的功能层。
在本申请的光电器件中,所述光电器件中的所述功能层为电子传输层或空穴传输层。
有益效果
本申请的有益效果为:本申请提供的钙钛矿薄膜及其制备方法、光电器件,通过将可原位形成交联聚合物的第一单体和第二单体添加至钙钛矿前驱液中,在制备钙钛矿薄膜的制程中第一单体与第二单体通过原位反应后生成第一聚合物,且与钙钛矿晶粒结合并集中于钙钛矿晶粒的晶界处,从而钝化钙钛矿晶粒缺陷。相较于小分子和线形聚合物添加剂,原位交联聚合形成的第一聚合物可以提供更有效的水热阻隔及机械力抗性;同时,原位生成的方式,又避免了直接加入聚合物添加剂引起的钙钛矿前驱液沉淀现象。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的钙钛矿薄膜的制备方法流程图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
本申请针对现有的钙钛矿薄膜中晶粒没有完全覆盖基片,形成针孔以及晶界处的缺陷,从而降低发光性能和载流子迁移率,以及引起材料降解的技术问题,本实施例能够解决该缺陷。如图1所示,为本申请实施例提供的钙钛矿薄膜的制备方法流程图。所述方法包括以下步骤:步骤S10,将可原位生成交联聚合物的第一单体与第二单体按照预设比例添加至钙钛矿前驱液中,搅拌均匀形成第一混合液,并将所述第一混合液制备于基板上。
其中,在所述步骤S10之前,所述方法还包括钙钛矿前驱液的制备,包括以下步骤:
步骤S101,将化合物AX和BX 2按照一定的化学计量比例溶于前驱体溶剂中,加热至70℃至固体完全溶解,形成含有钙钛矿化合物的溶液,并连续搅拌所述溶液,形成所述钙钛矿前驱液。
其中,所述钙钛矿化合物的分子式为ABX 3。式中,A代表阳离子,该阳离子包括但不限于CH 3NH 3 +、NH 2CHNH 2 +和Cs +中的一种或一种以上的混合物;B包括但不限于Pb 2+、Sn 2+中的一种或一种以上的混合物;X包括但不限于I、Br、Cl中的一种或一种以上的混合物。所述前驱体溶剂选自N,N-二甲基甲酰胺、二甲基亚砜、γ-丁内酯中的一种或者一种以上的混合溶剂。
其中,所述第一单体与所述第二单体分别如结构通式(Ⅰ)和(Ⅱ)所示:
Figure PCTCN2019118745-appb-000007
式中,R1,R3为相同或不同的具有3至20个碳原子的支链烷基基团、具有3至30个碳原子的支链胺基基团、具有6至30个碳原子的取代或未取代的芳香族烃基或稠环芳香族烃基、具有5至30个碳原子的取代或未取代的杂芳香族烃基或稠杂环芳香族烃基中的一者,R2为含有O、N、S原子中的至少一种原子的基团,Fx为连接在苯环上的氟原子,x表示氟原子的个数,x为2~4的整数。
具体地,所述R1与所述R3选自以下化学结构式1~18中的一种:
Figure PCTCN2019118745-appb-000008
式中,*代表取代位置。
所述R2选自以下结构式19~22中的任意一种:
Figure PCTCN2019118745-appb-000009
式中,*代表取代位置。
步骤S20,将表面制备有所述第一混合液的所述基板进行退火制程,所述第一单体与所述第二单体通过原位反应后生成第一聚合物,所述钙钛矿前驱液形成钙钛矿晶粒,所述第一聚合物与所述钙钛矿晶粒结合并集中于所述钙钛矿晶粒的晶界处。
具体地,在待制备钙钛矿薄膜的基板上涂布或喷墨打印所述第一混合液,然后在40℃~150℃的温度下退火处理5分钟~2小时,或常温放置2小时~20小时。在此过程中,加入的所述第一单体与所述第二单体通过原位反应后生成网状的所述第一聚合物,所述第一聚合物的结构通式(Ⅲ)如下所示:
Figure PCTCN2019118745-appb-000010
式中,R1,R3为相同或不同的具有3至20个碳原子的支链烷基基团、具有3至30个碳原子的支链胺基基团、具有6至30个碳原子的取代或未取代的芳香族烃基或稠环芳香族烃基、具有5至30个碳原子的取代或未取代的杂芳香族烃基或稠杂环芳香族烃基中的一者,R2为含有O、N、S原子中的至少一种原子的基团,Fx为连接在苯环上的氟原子,x表示氟原子的个数,x为2~4的整数。
具体地,所述R1与所述R3选自以下化学结构式1~18中的一种:
Figure PCTCN2019118745-appb-000011
式中,*代表取代位置。
所述R2选自以下结构式19~22中的任意一种:
Figure PCTCN2019118745-appb-000012
式中,*代表取代位置。
步骤S30,对所述第一混合液进行固化,形成所述钙钛矿薄膜。
由于所述第一聚合物中含有的O、N、S等具有孤对电子的原子,将有效地与所述钙钛矿晶粒发生相互作用,即所述第一聚合物的所述含孤对电子的原子与所述钙钛矿晶粒中的Pb 2+和/或Sn 2+形成配位,使得至少一部分所述第一聚合物富集于所述晶界处,从而提高所述第一聚合物与所述钙钛矿晶粒的结合能力。其中,集中于晶界处的所述第一聚合物将有效的保护晶界,钝化缺陷。
由于目前高性能的钙钛矿光电器件都是基于有机胺离子(CH 3NH 3 +或NH 2CHNH 2 +)的钙钛矿薄膜,这些有机铵根离子在退火或者光照工作过程中会丢失或者迁移,这样会生成大量由于有机铵根离子的缺失形成的缺陷,一方面这些缺陷会显著降低器件的效率,另一方面这些缺陷会为阳离子迁移提供传输通道,加速离子迁移。钙钛矿离子迁移在晶界处表现的尤其明显,而有机铵根离子的挥发会增加晶界的传输通道,加速离子迁移,从而降低器件的稳定性。通过本申请的制备方法,由于可原位交联聚合的所述第一单体与所述第二单体的引入,避免了直接加入聚合物添加剂引起的钙钛矿前驱液沉淀现象,由于钙钛矿中有机阳离子与所述第一聚合物通过配位形成化学键,大大减少在退火过程中由于阳离子挥发而产生的缺陷,从而使得器件在工作过程中电荷传输效率提高,器件效率、重复性得到大幅改善,并且由于这种化学键键合作用很强,可以牢牢拴住阳离子,从而抑制其迁移,显著提高器件的稳定性。本实施例还通过在钙钛矿前驱液中引入含氟基团,在成膜之后自分布在晶界处,从晶界处提高钙钛矿材料的憎水能力,利用含氟基团交联于钙钛矿晶粒的晶界处,可提高钙钛矿材料的成膜质量,同时利用含氟基团的憎水性来提高钙钛矿薄膜的稳定性,并且通过所掺杂的含氟基团提高了其光电性能。
本实施例的所述第一聚合物具有三大作用,一是“就地”保护晶界,钝化缺陷;二是阻止外界潮湿、空气等对钙钛矿的侵渗;三是抑制钙钛矿薄膜内部的离子迁移(主要是Pb 2+,X -),因为晶界是所述钙钛矿薄膜内离子迁移最主要的通道。本申请相较于小分子和线形聚合物添加剂,原位交联聚合形成的所述第一聚合物可以提供更有效的水热阻隔及机械力抗性。
本申请还提供一种采用上述制备方法制备的钙钛矿薄膜,所述钙钛矿薄膜是通过第一聚合物中含孤对电子的原子与钙钛矿晶粒中的Pb 2+和/或Sn 2+形成配位相互结合形成的,所述第一聚合物富集于所述钙钛矿晶粒的晶界处,所述第一聚合物是通过第一单体与第二单体经原位反应形成的网状交联聚合物。其中,所述第一单体与所述第二单体以及所述第一聚合物的结构通式分别如上述实施例中的结构通式(Ⅰ)~(Ⅲ)所示,具体请参照上述实施例中的描述,此处不再赘述。
本申请还提供一种包括上述钙钛矿薄膜的光电器件,所述光电器件包括但不限于钙钛矿发光二极管,钙钛矿太阳能电池,钙钛矿彩膜,钙钛矿激光器,钙钛矿探测器,钙钛矿闪烁体等等。所述钙钛矿薄膜为所述光电器件中的功能层。
在一种实施例中,所述光电器件中的所述功能层为电子传输层或空穴传输层。
本申请通过将可原位形成交联聚合物的第一单体和第二单体添加至钙钛矿前驱液中,在制备钙钛矿薄膜的制程中第一单体与第二单体通过原位反应后生成第一聚合物,且与钙钛矿晶粒结合并集中于钙钛矿晶粒的晶界处,从而钝化钙钛矿晶粒缺陷。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请, 本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (10)

  1. 一种钙钛矿薄膜的制备方法,其中,所述方法包括以下步骤:
    步骤S10,将第一单体与第二单体按照预设比例添加至钙钛矿前驱液中,搅拌均匀形成第一混合液,并将所述第一混合液制备于基板上;
    步骤S20,将表面制备有所述第一混合液的所述基板进行退火制程,所述第一单体与所述第二单体通过原位反应后生成第一聚合物,所述钙钛矿前驱液形成钙钛矿晶粒,所述第一聚合物与所述钙钛矿晶粒结合并集中于所述钙钛矿晶粒的晶界处;
    步骤S30,对所述第一混合液进行固化,形成所述钙钛矿薄膜;
    所述第一单体与所述第二单体分别如结构通式(Ⅰ)和(Ⅱ)所示:
    Figure PCTCN2019118745-appb-100001
    其中,R1,R3为相同或不同的具有3至20个碳原子的支链烷基基团、具有3至30个碳原子的支链胺基基团、具有6至30个碳原子的取代或未取代的芳香族烃基或稠环芳香族烃基、具有5至30个碳原子的取代或未取代的杂芳香族烃基或稠杂环芳香族烃基中的一者,R2为含有O、N、S原子中的至少一种原子的基团,Fx为连接在苯环上的氟原子,x表示氟原子的个数,x为2~4的整数。
  2. 根据权利要求1所述的制备方法,其中,所述第一聚合物的结构 通式(Ⅲ)如下所示:
    Figure PCTCN2019118745-appb-100002
  3. 根据权利要求1所述的制备方法,其中,所述R1与所述R3选自以下化学结构式中的一种:
    Figure PCTCN2019118745-appb-100003
    Figure PCTCN2019118745-appb-100004
    式中,*代表取代位置。
  4. 根据权利要求1所述的制备方法,其中,所述R2选自以下结构式中的任意一种:
    Figure PCTCN2019118745-appb-100005
    式中,*代表取代位置。
  5. 根据权利要求1所述的制备方法,其中,在所述步骤S10之前,所述方法还包括以下步骤:
    步骤S101,将化合物AX和BX 2按照一定的化学计量比例溶于前驱体溶剂中,加热至固体完全溶解,形成含有钙钛矿化合物的溶液,并连续搅拌所述溶液,形成所述钙钛矿前驱液;
    其中,所述钙钛矿化合物的分子式为ABX 3
    式中,A代表阳离子,该阳离子选自CH 3NH 3 +、NH 2CHNH 2 +和Cs +中的一种或一种以上的混合物;B为选自Pb 2+、Sn 2+中的一种或一种以上的混合 物;X为选自I、Br、Cl中的一种或一种以上的混合物。
  6. 根据权利要求5所述的制备方法,其中,所述前驱体溶剂选自N,N-二甲基甲酰胺、二甲基亚砜、γ-丁内酯中的一种或者一种以上的混合溶剂。
  7. 根据权利要求5所述的制备方法,其中,所述第一聚合物中包括至少一个含孤对电子的原子,所述第一聚合物的所述含孤对电子的原子与所述钙钛矿晶粒中的Pb 2+和/或Sn 2+形成配位,使得至少一部分所述第一聚合物富集于所述晶界处。
  8. 一种采用如权利要求1~7任一项所述的制备方法制备的钙钛矿薄膜,其中,所述钙钛矿薄膜是通过第一聚合物中含孤对电子的原子与钙钛矿晶粒中的Pb 2+和/或Sn 2+形成配位相互结合形成的,所述第一聚合物富集于所述钙钛矿晶粒的晶界处,所述第一聚合物是通过第一单体与第二单体经原位反应形成的网状交联聚合物;
    所述第一单体与所述第二单体分别如结构通式(Ⅰ)和(Ⅱ)所示:
    Figure PCTCN2019118745-appb-100006
    式中,R1,R3为相同或不同的具有3至20个碳原子的支链烷基基团、具有3至30个碳原子的支链胺基基团、具有6至30个碳原子的取代或未取代的芳香族烃基或稠环芳香族烃基、具有5至30个碳原子的 取代或未取代的杂芳香族烃基或稠杂环芳香族烃基中的一者,R2为含有O、N、S原子中的至少一种原子的基团,Fx为连接在苯环上的氟原子,x表示氟原子的个数,x为2~4的整数。
  9. 一种包括如权利要求8所述的钙钛矿薄膜的光电器件,其中,所述钙钛矿薄膜为所述光电器件中的功能层。
  10. 根据权利要求9所述的光电器件,其中,所述光电器件中的所述功能层为电子传输层或空穴传输层。
PCT/CN2019/118745 2019-09-26 2019-11-15 一种钙钛矿薄膜及其制备方法、光电器件 WO2021056758A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/624,927 US11643729B2 (en) 2019-09-26 2019-11-15 Perovskite film, method of preparing thereof, and optoelectronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910916495.5A CN110690355B (zh) 2019-09-26 2019-09-26 一种钙钛矿薄膜及其制备方法、光电器件
CN201910916495.5 2019-09-26

Publications (1)

Publication Number Publication Date
WO2021056758A1 true WO2021056758A1 (zh) 2021-04-01

Family

ID=69110374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/118745 WO2021056758A1 (zh) 2019-09-26 2019-11-15 一种钙钛矿薄膜及其制备方法、光电器件

Country Status (3)

Country Link
US (1) US11643729B2 (zh)
CN (1) CN110690355B (zh)
WO (1) WO2021056758A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584723B (zh) * 2020-05-11 2022-08-05 深圳市华星光电半导体显示技术有限公司 发光器件及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170125747A1 (en) * 2015-10-30 2017-05-04 Postech Academy - Industry Foundation Metal halide perovskite light emitting device and method of manufacturing the same
CN108321298A (zh) * 2018-02-12 2018-07-24 西北工业大学 一种高效率平面异质结钙钛矿薄膜太阳能电池及制备方法
CN108922972A (zh) * 2018-06-28 2018-11-30 中国科学院宁波材料技术与工程研究所 钙钛矿薄膜、钙钛矿太阳能电池及其制备方法
CN109659394A (zh) * 2018-12-14 2019-04-19 北京化工大学 一种高质量全无机钙钛矿薄膜材料的制备方法及应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201421133D0 (en) * 2014-11-28 2015-01-14 Cambridge Entpr Ltd Electroluminescent device
CN104861958B (zh) * 2015-05-14 2017-02-15 北京理工大学 一种钙钛矿/聚合物复合发光材料及其制备方法
CN105906807B (zh) * 2016-06-16 2018-07-10 华南理工大学 一种具有本征阻燃性能的聚三唑及其制备方法和应用
CN107302055B (zh) * 2017-06-15 2019-12-13 南京工业大学 一种钙钛矿薄膜的制备方法
EP3489240A1 (en) * 2017-11-28 2019-05-29 Ecole Polytechnique Fédérale de Lausanne (EPFL) In-situ cross-linkable hole transporting triazatruxene monomers for optoelectronic devicestr
CN109192860B (zh) * 2018-09-03 2022-04-01 陕西师范大学 一种三元混合溶剂的钙钛矿太阳电池制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170125747A1 (en) * 2015-10-30 2017-05-04 Postech Academy - Industry Foundation Metal halide perovskite light emitting device and method of manufacturing the same
CN108321298A (zh) * 2018-02-12 2018-07-24 西北工业大学 一种高效率平面异质结钙钛矿薄膜太阳能电池及制备方法
CN108922972A (zh) * 2018-06-28 2018-11-30 中国科学院宁波材料技术与工程研究所 钙钛矿薄膜、钙钛矿太阳能电池及其制备方法
CN109659394A (zh) * 2018-12-14 2019-04-19 北京化工大学 一种高质量全无机钙钛矿薄膜材料的制备方法及应用

Also Published As

Publication number Publication date
CN110690355B (zh) 2020-12-04
CN110690355A (zh) 2020-01-14
US11643729B2 (en) 2023-05-09
US20210210689A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
JP7129066B2 (ja) 混合カチオンペロブスカイト固体太陽電池とその製造
EP3318606B1 (en) Silicon-containing resin composition
CN114163990B (zh) 高结晶质量的金属卤素钙钛矿薄膜,其制备方法及由其制备的光电探测器
JP2022542724A (ja) 複合発光材料、その製造方法及びその使用
CN111129319B (zh) 一种CsnFA1-nPbX3钙钛矿薄膜的制备方法
CN112062680B (zh) 一种有机质子型离子液体、二维钙钛矿纯相量子阱结构薄膜、制备方法及其应用
WO2021056758A1 (zh) 一种钙钛矿薄膜及其制备方法、光电器件
CN110148673A (zh) 一种改性pedot:pss、制备方法和石墨烯基钙钛矿量子点发光二极管的制备方法
KR20030021674A (ko) 정공 수송/주입 능력이 있는 화합물과 이를 포함하는분자자기조립막을 갖춘 유기 전기발광 소자
CN111892504B (zh) 一种双氨基有机化合物钝化材料及其应用
CN114420852A (zh) 一种纯相rp钙钛矿薄膜的制备方法
US20220069236A1 (en) 2d organic-inorganic hybrid perovskites and uses thereof
WO2020206872A1 (zh) 梯度结构特征的二维Ruddlesden-Popper杂化钙钛矿薄膜及其制备方法
Tripathi et al. Improved performance of planar perovskite devices via inclusion of ammonium acid iodide (AAI) derivatives using a two step inter-diffusion process
WO2021042494A1 (zh) 一种钙钛矿薄膜添加剂、钙钛矿薄膜制备方法及其应用
CN114464739A (zh) 一种空气中制备高性能近红外钙钛矿薄膜的方法
CN111777522A (zh) 多位点氨基酸钝化材料、基于该材料的钙钛矿及其制备方法和应用
CN115835674A (zh) 钙钛矿发光二极管及其制备方法
WO2019097087A1 (en) Optoelectronic device comprising guanidinium in the organic-inorganic perovskite
CN110854271B (zh) 一种高稳定钙钛矿太阳能电池及其制备方法
CN114649482A (zh) 基于籽晶诱导生长钙钛矿薄膜的反式太阳能电池制备方法
CN111690978B (zh) 一种层状有机无机杂化钙钛矿晶体及其合成方法
CN111799377B (zh) 一种基于含氯化合物调节钙钛矿晶体取向提升钙钛矿光电器件性能的方法
Li et al. A simple method to improve the performance of perovskite light-emitting diodes via layer-by-layer spin-coating CsPbBr 3 quantum dots
Xu et al. Low non-radiative recombination loss in CsPbI 2 Br perovskite solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947190

Country of ref document: EP

Kind code of ref document: A1